Canadian Bulletin of Fisheries and Aquatic Sciences
 12039500

Sedentariate

 and archiannelid polychaetes of British Columbia and Washington

Katharine D. Hobson • Karl Banse

SEDENTARIATE AND ARCHIANNELID POLYCHAETES OF BRITISH COLUMBIA AND WASHINGTON

The Canadian Bulletins of Fisheries and Aquatic Sciences are designed to interpret current knowledge in scientific fields pertinent to Canadian fisheries and aquatic environments. Recent numbers in this series are listed at the back of this Bulletin.

The Canadian Journal of Fisheries and Aquatic Sciences is published in annual volumes of monthly issues. Canadian Special Publications of Fisheries and Aquatic Sciences are issued periodically. These series are available from authorized bookstore agents and other bookstores, or you may send your prepaid order to the Canadian Government Publishing Centre, Supply and Services Canada, Hull, Que. K1A 0S9. Make cheques or money orders payable in Canadian funds to the Receiver General for Canada.

Director and Editor-in-Chief of Scientific Information

J. Watson, Ph.D.

Deputy Director and Editor Johanna M. Reinhart, m.sc.
Assistant Editors D. G. Cook, PH.D.
Lorraine C. Smith, ph.d.

Production-Documentation
J. Camp

Production-Documentation G. J. Neville
Mickey Lewis

Department of Fisheries and Oceans
Scientific Information and Publications Branch
Ottawa, Canada
K1A 0E6

Sedentariate and archiannelid polychaetes of British Columbia and Washington

Katharine D. Hobson \dagger
Aquatic Zoology Division
Provincial Museum
Victoria, B.C. V8W 1A1

Karl Banse

Department of Oceanography
University of Washington
Seattle, WA 98195 USA

©Minister of Supply and Services Canada 1981

Available from authorlzed bookstore agents and other bookstores,
or you may send your prepaid order to the
Canadian Government Publishing Centre.
Supply and Services Canada, Hull, Que. K1A 0S9
Make cheques or money orders payable in Canadian funds to the Receiver General for Canada.
A deposit copy of thls publication is also avaiiable
for reference in public libraries across Canada
Canada: $\$ 10.50 \quad$ Catalog No. Fs 94-209E
Other countries: $\$ 12.60$ ISBN 0-660-10921-2
ISSN 0706-6503

Prices sublect to change without notice

Printed in Canada

MARACLE PRESS LTD
OSHAWA ONTARIO
Requestion no. FP802-1-0200

Contents

The authors' initials indicate the principal scientific responsibility for each family except MLJ (M. L. Jones) for the Magelonidae

vii	Abstract
viii	Résumé
1	Introduction
	1 Scope of Work
	1 History and Present Knowledge of the Polychaete Fauna
	2 Comparison with Other Temperate North Pacific Provinces
	5 Collection and Identification
	6 Use of Keys
9	Checklist of Sedentariate and Archiannelid Polychaetes from the Continental Shelves of British Columbia and Washington
13	Principal External Diagnostic Characters of Families of
	Sedentariate and Archiannelid Polychaetes
26	Keys
	26 Sedentaria
	26 Orbiniidae (KDH)
	29 Questidae (KDH)
	30 Paraonidae (KDH)
	34 Apistobranchidae (KB)
	34 Spionidae (KDH/KB)
	45 Trochochaetidae (KB)
	46 Poecilochaetidae (KB)
	46 Magelonidae (MLJ)
	48 Heterospionidae (KB)
	48 Chaetopteridae (KDH)
	50 Cirratulidae (KB)
	54 Acrocirridae (KB)
	55 Cossuridae (KB)
	55 Ctenodrilidae (KB)
	56 Flabelligeridae (KDH)
	59 Scalibregmidae (KDH)
	60 Opheliidae (KDH)
	63 Sternaspidae (KDH)
	63 Capitellidae (KDH)
	67 Parergodrilidae (KDH)
	67 Arenicolidae (KDH)
	68 Maldanidae (KB)
	77 Oweniidae (KDH)
	78 Sabellariidae (KDH)
	79 Amphictenidae (KDH)
	80 Ampharetidae (KB)
	86 Terebellidae (KB)

CONTENTS (Continued)

> 96 Trichobranchidae (KB)
> 97 Sabellidae (KB)
> 107 Serpulidae (KDH)
> 114 Archiannelida
> 115 Polygordidae (KDH)
> 115 Protodrilidae (KDH)
> 117 Saccocirridae (KDH)
> 117 Dinophilidae (KDH)
> 118 Nerillidae (KDH)

119 Acknowledgments
Explanation of Abbreviations and Symbols
121 Glossary
126 References
132 Credits
133 Index to polychaete taxa

Abstract

Hobson, K. D., and K. Banse 1981. Sedentariate and archiannelid polychaetes of British Columbia and Washington. Can. Bull. Fish. Aquat. Sci. 209: 144 p.

The Bulletin concerns the sedentariate and archiannelid polychaetes of British Columbia and Washington, the northern section of the Oregon Biogeographic Province. A checklist of the 273 species known from landward of the $200-\mathrm{m}$ isobath indicates those species for which we have seen local specimens. Brief instructions for collection, identification, and use of the illustrated keys are given. A tabulated scheme summarizes the principal external diagnostic characters of the families. Keys to all genera from the continental shelves of the cold-temperate North Pacific are provided under the relevant family. The species keys identify the species known from British Columbia and Washington and an additional 19 species, which may be expected there. The diagnostic characters are presented in a series of alternative choices but supplemental characters are added to preclude accidental misidentification of species not yet recorded from British Columbia and Washington but known from elsewhere in the cold-temperate North Pacific. Several new referrals and records are reported. The Bulletin contains about 400 detailed figures.

The waters of British Columbia and Washington share 45% of their benthic polychaete species (including errantiate taxa) with the shelf off southern California, i.e., the northern part of the San Diego Biogeographic Province. The commonality is similar to or less than that of the mollusks of the same region. British Columbia and Washington have about 45% of their benthic polychaetes in common with the cold-temperate Northwest Pacific biogeographical provinces as a whole. Key words: Polychaeta, taxonomy, identification keys, geographical distribution.

Résumé

Hobson, K. D., and K. Banse. 1981. Sedentariate and archiannelid polychaetes of British Columbia and Washington. Can. Bull. Fish. Aquat. Sci. 209: 144 p.

Le présent Bulletin est consacré aux polychètes sédentaires et archiannélides de la Colombie-Britannique et de l'État de Washington, la section septentrionale de la province biogéographique de l'Oregon. Une liste des 273 espèces connues habitant des profondeurs de 200 m et moins comprend les espèces dont nous avons vu des exemplaires locaux. Nous donnons de brèves instructions pour la collecte, l'identification et l'usage de clés illustrées. Un tableau résume les principales caractéristiques diagnostiques externes des familles. Pour chaque famille, nous présentons une clé de tous les genres provenant des plateaux continentaux du Pacifique nord froid-tempéré. Les clés des espèces permettent d'identifier les polychètes connus de la Colombie-Britannique et de Washington, ainsi que 19 autres espèces qu'on peut s'attendre de trouver dans cette région. Les caractères diagnostiques sont donnés en une série de choix. Nous y ajoutons des caractères supplémentaires afin de prévenir une fausse identification d'espèces non encore signalées en ColombieBritannique et Washington, mais connues ailleurs dans le Pacifique nord froidtempéré. En plus de contenir plusieurs références et mentions, le présent Bulletin est illustré d'environ 400 figures détaillées.

Quarante-cinq pour cent des espèces de polychètes benthiques (y compris les taxa errants) des eaux de la Colombie-Britannique et de Washington se rencontrent également sur le plateau continental au large de la Californie méridionale, i.e. la partie septentrionale de la province biogéographique de San Diego. Cette présence commune est à peu près semblable ou est inférieure à celle des mollusques de la même région. La Colombie-Britannique et Washington possèdent environ 45% de leurs polychètes benthiques en commun avec les provinces biogéographiques du Pacifique nord-ouest froid-tempéré, prises dans leur ensemble.

Introduction

Scope of Work

This Bulletin is the second and final volume summarizing the taxonomic knowledge of the polychaetous annelids recorded landward of the $200-\mathrm{m}$ isobath of the continental shelf of British Columbia and Washington. The sedentariate and archiannelid species are treated herein, whereas the first volume (Banse and Hobson 1974) covered the benthic errantiate forms.

The main purpose of the work, as that of the first volume, is to provide a means of identifying benthic polychaetes from British Columbia and Washington; here, as elsewhere, these annelids contribute a significant fraction of the number of species and biomass of the animals larger than 0.5-1.0 mm (Banse and Hobson 1974). Biogeographic remarks are made for the region that forms the northern part of the coldtemperate Oregon Province (Briggs 1974). The recent history and state of knowledge of the polychaetes of the province are reviewed, and comparisons with other temperate North Pacific provinces attempted. The biogeographic section is followed by references to methods of collection, fixation, and identification, and by advice on using the keys. A checklist of the species known to occur on the continental shelves of British Columbia and Washington is provided. The species of which the authors have seen specimens collected in the region are set in bold face in the checklist.

The principal external characters of the families of sedentariate and archiannelid polychaetes are summarized and keys to all genera known from the continental shelves of the cold-temperate North Pacific Ocean given. To be consistent with the layout of the first volume, we continue to delimit the area covered by Point Conception on the California coast to the south and by latitude $36^{\circ} \mathrm{N}$ off the Pacific coast of Japan; we include also the Sea of Japan, except for the coast of Honshu west of the Noto Peninsula and the southern coast of Korea. We allowed ourselves some latitude in deciding which genera to identify, because cold-
temperate forms may show submergence and occur south of the indicated borders in cooler water on the deep parts of the shelves. The poleward coverage of the keys extends beyond the limit of the coldtemperate North Pacific Ocean and comprises the northern part of the Sea of Okhotsk and Point Barrow, Alaska. The species keys, in contrast to the generic keys, treat only species of British Columbia, Washington, and immediately adjacent areas (essentially Oregon) recorded landward of the $200-\mathrm{m}$ isobath. Of the 292 species or subspecies incorporated in the keys, 273 are now known to occur in British Columbia and Washington.

The principal scientific responsibility for each family is indicated in the table of contents. K. D. Hobson had drafted the generic and specific keys for the families she was to be responsible for, as well as the family key, and had prepared the majority of the drawings for them. We had extensively consulted about the text so that the scientific content was agreed upon by the time she passed away (Sept. 19, 1975). Further, she had used rough versions of the keys for the other major families, except the Cirratulidae and Maldanidae, in her examination of the large collections in the British Columbia Provincial Museum and improved these drafts. After her death, the changes made in the families designated by her initials mainly concerned the choice of phrasing, for example, in the keys. Changes in scientific content were largely restricted to the family key, the Spirorbinae, and a revision of the key for the Spionidae. Also the introductory material was more recently prepared. Finally, the key and figures for the Magelonidae were contributed by M. L. Jones.

History and Present Knowledge of the Polychaete Fauna

The first comprehensive keys for the area were those by Berkeley and Berkeley (1948; 1952); they treated 295 benthic species for British Columbia. The Berkeleys chose to omit the few additional species recorded from Friday Harbor, just outside
the limits of the political entity of British Columbia, and from other Washington localities. Thus, the known benthic polychaetes of British Columbia and Washington in 1948/1952 comprised just over 300 species. However, appreciably more species had been collected from the area but could not be identified easily when the present authors and F. H. Nichols (now at the U.S. Geological Survey, Menlo Park CA 94025) participated from the mid-1960s onwards in the benthic studies of U. Lie (now at the Institute of Marine Biology, University of Bergen, N-5065, Blomsterdalen, Norway).

For British Columbia during this period, C. Berkeley tabulated 164 errantiate benthic taxa (1967) and 186 sedentariate and archiannelid taxa (1968), i.e., a total of 350 species. The lists included some records for Washington, as well as from beyond the $200-\mathrm{m}$ line, and were not strictly comparable to Berkeley and Berkeley (1948; 1952) or to the present work.

The checklists in Banse and Hobson (1974) and the present volume contain 195 and 273 taxa, respectively, i.e., a total of 468. To this number may be added species identified in these keys only to genus; new errantiate records (Armstrong et al. 1977; Armstrong and Jumars 1978; Kravitz and Jones 1979); two or three unidentified errantiate species in the British Columbia Provincial Museum; three new records in Knight-Jones et al. (1980); and almost 10 unpublished records by others at the Friday Harbor Laboratories, University of Washington. Including these, the polychaete fauna of British Columbia and Washington as known to the $200-\mathrm{m}$ isobath of the continental shelf comprises approximately 495 species. In addition, 15 species (13 starred in these keys; two in Knight-Jones et al. 1980) have been found both to the north of British Columbia (including the Bering Sea) and to the south of Washington and, thus, are very likely to occur in local waters too.

It is difficult to estimate how well known the polychaete fauna of British Columbia and Washington is now. During the last 10 yr , rather large species (e.g., of

Nereidae and Maldanidae) and common, mediumsized forms (e.g., Hobsonia florida) were newly found in the intertidal; H. florida is not a recent immigrant as it seems to have been common in 1940 (Banse 1979b). Further, certain less accessible habitats, e.g., holdfasts of subtidal algae and the open continental shelf, have not been well studied. In fact, a small-scale sampling program on the shelf off the mouth of the Columbia River by Kravitz and Jones (1979) yielded several new records and species of Phyllodocidae. In contrast, large collections off Oregon (Carey 1972), focused on the outer shelf and the continental slope, did not add a material number of new records.

The polychaete fauna of the southern part of the Oregon Province is less known than that of British Columbia and Washington (see Hartman 1968, 1969 for northern and central California). Relatively wellstudied families contain a significant number of species not reported from the northern part of the Oregon Province. For example, in addition to the 20,37 , and 31 species, respectively, of Ampharetidae, Terebellidae, and Sabellidae found in waters of British Columbia and Washington, or to be expected because of records both to the north and in the southern part of the province, one (two?), five (six?), and six species occur only in the southern part of the Oregon Province (inside the $200-\mathrm{m}$ isobath; principally from Hartman 1969); these three families contain larger and often conspicuously colored species, thus reducing sampling bias. In other words, the southern part of the Province contributes about one-eighth of the total, and the total polychaete fauna of the entire Oregon Province may exceed 550 species. This number surpasses somewhat that for southern California, i.e., the northern part of the San Diego Province (Table A).

Comparison with Other Temperate North Pacific Provinces

In the first volume, we followed earlier views about the biogeographic divisions of the North Pacific Ocean and considered the waters of British Columbia and Washington
to be parts of a cold-temperate OregonianAleutian Province. Briggs (1974) reviewed new evidence that confirms an important faunistic break in the area of the northern border of British Columbia (i.e., Dixon Entrance, about $55^{\circ} \mathrm{N}$) and the tip of southeastern Alaska. Thus, Briggs distinguishes an Aleutian from an Oregon Province. The latter extends to Point Conception on the Californian coast and joins to the south the warm-temperate San Diego Province, which extends to southern Baja California. The cold-temperate, western North Pacific region covered by the generic keys comprises three biogeographic provinces (Briggs 1974).

Few polychaete collections have been made in the Aleutian Province, and these usually focused on larger species. Therefore, for the eastern North Pacific Ocean, only a comparison with polychaetes of the northern, well-studied part of the San Diego Province (i.e., the shelf off southern California) is possible (Table A). An additional comparison is attempted with the shelves of the cold-temperate Northwest Pacific as a whole as delineated on p. 4 (Table B). For the northern San Diego Province, records from the intertidal, estuaries, and the shelf in Hartman (1968; 1969) were counted so that a few species collected in the upper regions of the canyons were excluded. We believe our species concept is markedly influenced by Hartman's work, so the comparison of the two provinces is particularly appropriate. For the Northwest Pacific, only the families or lower taxa recently revised in that region were reviewed (Imajima 1967, 1969, 1972, 1973, 1976; Imajima and Higuchi 1975; Strelzov 1973; and Ushakov 1972). Additional records for these families, principally from Chlebovitch (1961), Imajima and Hartman (1964), and Ushakov (1955), were included. For both comparisons, the names and records were mostly accepted as given. All species in the checklist herein and in Banse and Hobson (1974) (including the queried names) were regarded as members of the shelf fauna of British Columbia and Washington, as were those species starred in our keys that were recorded both to the north and to the south

Table A. Comparison of polychaete records in the northern parts of the Oregon and San Diego provinces (largely families with ≥ 10 species in either province).

taxon	N. Oregon Province		N. San Diego Province
	records	$\%$ in common with N . San Diego	records
Polynoidae	30	40	25
Phyllodocidae	27	44*	23
Syllidae**	35	57	37
Nereidae	18	56	18
Nephtyidae	13	54	12
Onuphidae \& Eunicidae	9	67	30
Lumbrineridae	13	85	19
Orbiniidae	10	70	9
Spionidae	33	45	35
Cirratulidae	13	62	17
Opheliidae	10	40	10
Capitellidae	12	42	12
Maldanidae	27	37	17
Ampharetidae	20	55	13
Terebellidae	37	32	21
Sabellidae	31	26	20
Serpulidae	21	19	16
All benthic families**	471	45	453

*Lower if including records by Kravitz and Jones (1979).
**Without Autolytinae.
of British Columbia and Washington. The Autolytinae and the archiannelid families were excluded as obviously they were studied with differing attention in the various areas.

Of the 471 species from British Columbia and Washington considered here, 210 (45%) have been found also in the northern San Diego Province. The number of common species is 46% of the San Diego fauna. The percentage varies greatly among the families (Table A) so that the confidence

Table B. Comparison of polychaete records in the northern part of the Oregon Province and the cold-temperate Northwest Pacific.

	N. Oregon Province	NW Pacific	
taxon	records	\% in common with NW Pac.	records
Phyllodocidae	27	52^{*}	24
Syllidae**	33	39	46
Nereidae	16	50	27
Sphaerodoridae	4	75	4
Lumbrineridae	13	23	11
Paraonidae	12	50	17
Hydroides	0	0	4
Totals	105	45	133

*,**See footnotes, Table A.
limit about the value of 45% must be large. The commonality of the northern Oregon fauna with that of the Northwest Pacific, as percentage of the Oregon fauna, is also 45% (Table B). Again, there is considerable variation from family to family.

It must be remembered that the arbitrary defining of the seaward borders of the provinces by the $200-\mathrm{m}$ isobath may affect the calculated commonality of the Oregon Province with warm-temperate regions. Below the shelf break off southern California, submergence of northern Oregonian forms is apparent for 31 polychaetes (not in Table A; from distributions labeled by O, B, C, or A in Hartman 1968; 1969). Submergence can be expected also on the outer shelf above 200 m but below the mean depth of the principal thermocline. In other words, the distributional information available for our study is not fully adequate to the question asked, because the proper depth limitation of the San Diego Province might be landward of the shelf break. Further, northern forms in the San Diego Province may be tied to pockets of cool, upwelling water that are often observed near capes along the southern Cali-
fornia and Baja California coasts (reviewed in Briggs 1974). Both effects would reduce the percentage of species in common between the northern Oregon Province and the warm-water areas of the San Diego Province.

Because of the inadequate knowledge of the fauna of the Aleutian Province and the uneven distribution of sampling effort within the Oregon Province, the degree of endemism among the polychaetes in the latter cannot be evaluated. For the same reason of inadequate sampling, biogeographic patterns within the province cannot be described for the polychaetes beyond the occurrence of additional species in the southern province mentioned above. Zoogeographic differences within the Oregon Province, however, are well known and one of the reasons that zoogeographic divisions on the North American west coast were disputed for a long time (Valentine 1966; Brusca 1973). Many authors even noted faunistic differences between Washington and British Columbia (for the outer coasts, e.g., Valentine 1966; for the fjord system, e.g., Cameron and Mounce 1922; for fishes, A. DeLacy and B. S. Miller, both of the College of Fisheries, University of Washington, Seattle, WA, 98195, personal communication).

Previously, polychaetes were believed to be more widely distributed than species of other major groups (e.g.,Ekman 1953: 13, 224; Fauvel [in Grassé 1959]; Thorson 1961). More recently, Kohn and Lloyd (1973) suggested the same for the 43 polychaete species known from Easter Island at that time. However, the view of "notoriously widespread" polychaete worms (Day 1973: 2) is not borne out by a comparison of the polychaetes of the temperate North American west coast and the mollusks well studied here. Valentine (1966) obtained a Jaccard coefficient of 0.38 for the mollusks between the Californian Province (very close in extent to the northern part of San Diego Province, here) and the entire Oregonian Province, delineated like the Oregon Province in Briggs (1974). The polychaetes shared by the northern parts of the Oregon
and San Diego Provinces yield a coefficient of 0.30, and show less commonality than the mollusks. However, the coefficients for the latter and, hence, the similarity, were greater than the above value between the California Province and the southern part of the Oregonian Province (Valentine 1966: table 1). Therefore, the mollusk coefficient for the comparison, as here between the northern parts of the Oregon and San Diego Provinces, must have been lower than 0.38 . To judge from the variability of coefficients among the individual polychaete families, it seems unlikely that the mollusk value would differ significantly from the overall polychaete coefficient of 0.30 .

Collection and Identification

Some suggestions for obtaining and treating polychaete samples were given by Banse and Hobson (1974). Fauchald (1977), among others, provided additional advice, and especially emphasized pitfalls to be encountered when separating animals from sandy or muddy sediments. For the laboratory work, we repeat that care must be exercised when sorting samples that contain formalin: the aldehyde is also poisonous to man so that long-term exposure to the vapor should be avoided. Fortunately, formalin fixes proteins so well that even leaving the samples overnight in tap water at normal or low room temperatures will do little harm to the animals. Therefore, it is sufficient to work with dishes barely (or not at all) smelling of formaldehyde.

Banse and Hobson (1974) or Fauchald (1977) may be consulted for the technical aspects of identification. We reemphasize that very few details of setae can be seen without dissection. When it is necessary to study setae in frontal view, the excised torus or setal sack may be mounted in sufficient fluid under a coverslip so the torus is not flattened. If too much is excised or the uncini are withdrawn, the preparation should be torn apart with needles. To obtain setae in side view, press the coverslip with the thumb to flatten the preparation. If that is not sufficient, maceration in KOH or a
household bleach like clorox is recommended, but setae may swell in KOH.

Failure to use magnification high enough to study setae is probably the most common technical reason for misidentification of polychaetes. Note that the size of the teeth at the vertex of an uncinus is often near the limit of optical resolution by the ordinary light microscope. The problem is ameliorated by viewing the setae in a medium with a low refractive index. Water with or without alcohol or glycerin are usually adequate. Strelzov (1973) employed a saturated solution of sodium acetate to observe fine details, following Söderström (1920) who introduced potassium acetate for this purpose. Phase contrast may also be used.

Permanent mounts of dissected parapodia or of entire, very small specimens can be made in a variety of ways. If a preparation in water or alcohol that is already under a coverslip is to be preserved, it often suffices to place a drop of glycerin at the edge; the drop will gradually be drawn under the slip. It is better, however, to mount the material directly in glycerin. In either case, the preparation is usable for a few years, particularly when ringed with fingernail polish to prevent accidental loss of the coverglass. Polylactophenol (one part lactic acid, one part phenol; transfer specimen from water or alcohol) may be similarly held under the coverglass. Note that the tissue will be slightly macerated by the reagent, and calcium carbonate (opercula of Serpulidae) will be dissolved.

More permanent mounts may be made in Polyvinyllactophenol (PVA) or Hoyer's medium (transfer from water or preferably 70% alcohol with water). For the former, suspend 8 g polyvinyl in 28 mL of 70% acetone with water. Mix 20 mL each of lactic acid and phenol (warming may be necessary) and add slowly to the first solution; then gradually add 40 mL of water. Heat in water bath until clear and viscous (A. J. Kohn, Department of Zoology, University of Washington, Seattle, WA 98195, personal communication; see also McHardy 1966). For Hoyer's medium, dissolve 30 g
of gum arabic by heating in 50 mL of water. Add 200 g of chloralhydrate and then 16 mL of glycerin (P. A. Jumars, Department of Oceanography, University of Washington, Seattle, WA 98195, personal communication). Light (1978a) employed Turtox CMC-10 Mounting Medium for polychaetes. Both PVA and CMC-10 contract when hardened so preparations, especially thick ones, have to be watched carefully for many weeks. Usually, more embedding medium needs to be added with time before the coverslip can be ringed.

Truly permanent mounts are made in media like Euparal. With mounts in Canada Balsam, details of setae may be poorly visible because of its high refractive index, although phase contrast may ameliorate the problem. Any microscopical technique book may be consulted for the method. With any untried resins, it is advisable to check whether the details of setae show as well, as in e.g., water or glycerin.

For an ongoing program as well as for later checking, a reference collection of local material (specimens as well as preparations) should be maintained at the site of the work and, as a safeguard, additional specimens should be deposited in a major museum. The depository should be mentioned in any publication resulting from the identification effort.

Use of Keys

The sedentariate families are arranged largely as in Hartman (1959), without recognizing higher taxa. The papers by Dales (1977), Fauchald (1977), Mileikowski (1977), and Clark (1978) represent recent attempts, or discussions thereof, to distribute these families over a number of orders that reflect phylogenetic relationships. Similarly adhering to Hartman (1959), we have retained the archiannelid families as a group; Clark (1978) as well as Westheide (1971) and Mileikowski (1977) may be consulted for a discussion of views on their position. Generally, we followed Hartman (1959; 1965a) also in the nomenclature of the taxa; as in Banse and Hobson (1974), however,
we treated many genera of other current authors as subgenera, thereby often reverting to the earlier usage of large genera. This approach was taken solely to facilitate use of the key by the nonspecialist for whom identification of polychaetes may be a necessity. The subgeneric names are incorporated in the checklist, keys, and index and permit easy access to other systems.

The principal diagnostic characters of all sedentariate and archiannelid families are summarized in Table 1-6. The figures as well as the text should be consulted (cf. p. 13). Dichotomous keys were given by Berkeley and Berkeley (1952), Ushakov (1955), and Fauchald (1977).

The species keys of each family are preceded by keys to the genera reported from the continental shelves of the coldtemperate North Pacific Ocean as defined on p. 1. Genera and species not known from British Columbia and Washington are marked by (\dagger) unless we have reason to expect their occurrence. The latter taxa, marked with $\left({ }^{*}\right)$, have been recorded off Oregon, or both to the south of Washington and north of British Columbia (or at higher latitudes of the cold-temperate Northwest Pacific). If a specimen cannot be assigned to a genus, the worldwide key by Fauchald (1977) should be consulted.

The diagnostic characters to identify the known species of British Columbia and Washington are presented in the specific keys in a series of alternative choices. Many couplets include additional statements that are not contrasted with each other. The purpose is to preclude species known from elsewhere in the cold-temperate Pacific Ocean, but found for the first time off British Columbia or Washington, from fitting the key accidentally. If a specimen does not match the characterization of a species completely, it is mandatory to consult the appropriate references cited in the keys.

The authors of monographic treatments are listed below the family names. References are usually not supplied below the species name if the species was recorded in Berkeley and Berkeley (1952), Canadian Pacific Fauna (CPF, herein). If, however,
the Berkeleys' description is inadequate, or the species is misidentified, one or more citations are provided. If only one reference is given, it contains both the description and the record. If two or more are cited, the semicolon separates that (or those) supplying the description from the following one that establishes the record.

All lateral bodily views (or partial views) are presented from the left side. The drawings are not to scale even within species. Numbers in figures denote segments.

An explanation of the abbreviations used in the tables and figures (p. 120) and a glossary of the basic terminology (p. 121) follow the keys.

Finally a cautionary note on using the species keys outside the area for which they have been written is appropriate. We advise against this but are resigned to the fact that it is going to happen because of the absence of other works. It was shown above that our keys are not fully representative of the southern part of the Oregon Province. Further, recall that the phrasing in the specific couplets took into account the diagnostic characters of all species known from the continental shelves between the coast of central Japan and the southern border of the Oregon Province at Point Conception. The supposition was that these species
are more likely to be among the hitherto overlooked species than, e.g., Arctic forms. Had we anticipated that the polychaete faunae of the northern part of San Diego province and of British Columbia and Washington showed the same degree of similarity as the faunae of the latter region and the cold-temperate Northwest Pacific Ocean, we would have extended the principle that underlies the phrasing of couplets and taken the polychaetes of the San Diego Province into consideration as well. Thus, in case the keys are used in the southern part of the Oregon Province, the Atlas by Hartman (1968; 1969) must be consulted to reduce the possibility of misidentification. Since the temptation to apply our keys will be greatest in the little-studied Aleutian Province, workers there should be advised that we anticipate the occurrence of undescribed endemic species as well as Arctic forms. The Arctic elements were considered in the phrasing of the couplets only to the extent that they were reported from the Bering and Okhotsk Seas; many Arctic polychaete species do occur there, in contrast to the Gulf of Alaska (Ushakov 1955). Among the mollusks, however, endemics make up about one-quarter of the Aleutian fauna (Valentine 1966) which might be true for the polychaetes as well.

Checklist of Sedentariate and Archiannelid Polychaetes from the Continental Shelves of British Columbia and Washington

Abstract

Names in boldface indicate that the authors have seen specimens from British Columbia or Washington. A query indicates doubtful records. Species described but not named are also included but forms identified only to genus are omitted.

ORBINIIDAE

Leitoscoloplos panamensis (Monroe)
Leitoscoloplos pugettensis (Pettibone)
Naineris dendritica (Kinberg)
Naineris quadricuspida (Fabricius)
Naineris uncinata Hartman
Orbinia (Phylo) felix (Kinberg)
Orbiniella nuda Hobson
Protoariciella oligobranchia Hobson
Scoloplos acmeceps Chamberlin
Scoloplos armiger (Müller)
QUESTIDAE
Questa caudicirra Hartman
PARAONIDAE
Avicidea assimilis Tebble
Aricidea lopezi Berkeley and Berkeley
Aricidea minuta Southward
Aricidea neosuecica Hartman
Aricidea quadrilobata Webster and Benedict
Aricidea ramosa Annenkova
Cirrophorus branchiatus Ehlers
Cirrophorus lyra (Southern)
Paraonella platybranchia (Hartman)
Paraonella spinifera (Hobson)
Tauberia gracilis (Tauber)

APISTOBRANCHIDAE

Apistobranchus ornatus Hartman Apistobranchus tullbergi (Théel)?

SPIONIDAE

Laonice cirrata (Sars)?
Laonice pugettensis Banse and Hobson
Malacoceros (Malacoceros) fuliginosus
(Claparède)
M. (Rhynchospio) glutaeus (Ehlers)

Paraprionospio pinnata (Ehlers)

Polydora (Boccardia) columbiana Berkeley
P. (Boccardia) hamata Webster
P. (Boccardia) pugettensis Blake
P. (Boccardia) polybranchia Haswell
P. (Boccardia) proboscidea Hartman
P. (Polydora) alloporis Light
P. (Polydora) brachycephala Hartman
P. (Polydova) cardalia Berkeley
P. (Polydora) commensalis Andrews
P. (Polydora) giardi Mesnil
P. (Polydora) ligni Webster
P. (Polydora) pygidialis Blake and Woodwick
P. (Polydora) quadrilobata Jacobi
P. (Polydora) socialis (Schmarda)
P. (Polydora) spongicola Berkeley and Berkeley
P. (Pseudopolydora) kempi japonica Imajima and Hartman
Prionospio cirrifera Wirén
Prionospio steenstrupi Malmgren
Pygospio elegans Claparède
Scolelepis foliosa
(Audouin and Milne-Edwards)
Scolelepis squamata (Müller)
Spio (Spio) butleri Berkeley and Berkeley
S. (Spio) cirvifera (Banse and Hobson)
S. (Spio) filicornis (Müller)

Spiophanes berkeleyorum Pettibone
Spiophanes bombyx (Claparède)
Spiophanes kroyeri Grube
Streblospio benedicti Webster
TROCHOCHAETIDAE
Trochochaeta multisetosa (Oersted)
MAGELONIDAE
Magelona berkeleyi Jones
Magelona hobsonae Jones
Magelona longicornis Johnson
Magelona sacculata Hartman

CHAETOPTERIDAE

Chaetopterus variopedatus (Renier)
Mesochaetopterus taylori Potts
Phyllochaetopterus claparedii McIntosh
Phyllochaetopteras prolifica Potts
Spiochaetopterus costarum (Claparède)

CIRRATULIDAE

Caulleriella alata (Southern)?
Chaetozone acuta Banse and Hobson
Chaetozone setosa Malmgren
Chaetozone spinosa Moore?
Cirratulus cirratus (Müller)
Cirratulus spectabilis (Kinberg)
Dodecaceria concharum Oersted
Dodecaceria fewkesi Berkeley and Berkeley
Tharyx multifilis Moore
Tharyx parvus Berkeley
Tharyx secundus Banse and Hobson
Tharyx serratisetis Banse and Hobson

ACROCIRRIDAE

Acrocirrus coltumbianus Banse
Acrocirrus occipitalis Banse
Macrochaeta pege Banse
COSSURIDAE
Cossura soyeri Laubier Cossura sp.

CTENODRILIDAE

Ctenodrilus serratus (Schmidt)
FLABELLIGERIDAE
Brada sachalina Annenkova
Brada villosa (Rathke)
Flabelligera affinis Sars
Pherusa negligens (Berkeley and Berkeley)
Pherusa plumosa (Müller)
Piromis eruca (Claparède)

SCALIBREGMIDAE

Asclerocheilus beringianus Ushakov
Hyboscolex pacificus (Moore)
Scalibregma inflatum Rathke

OPHELIIDAE

Armandia brevis (Moore)
Euzonus mucronata (Treadwell)
Euzonus williamsi (Hartman)
Ophelia limacina (Rathke)
Ophelina acıminata Oersted
Ophelina breviata (Ehlers)
Travisia brevis Moore
Travisia forbesii Johnston
Travisia japonica Fujiwara
Travisia pupa Moore

STERNASPIDAE
Sternaspis scutata (Renier)

CAPITELLIDAE

Barantolla americana Hartman
Capitella capitata (Fabricius)
Capitella dizonata Johnson
Decamastus gracilis Hartman
Heteromastus filiformis (Claparède)
Heteromastus filobranchus
Berkeley and Berkeley
Mediomastus ambiseta (Hartman)
Mediomastus capensis Day
Notomastus giganteus Moore
Notomastus lineatus Claparède
Notomastus tenuis Moore
Notomastus variegatus
Berkeley and Berkeley

PARERGODRILIDAE

Stygocapitella subterranea Knöllner

ARENICOLIDAE

Abarenicola claparedi oceanica Healy and Wells
Abarenicola claparedi vagabunda Healy and Wells
Abarenicola pacifica Healy and Wells
Arenicola marina (Linnaeus)
Branchiomaldane vincenti Langerhans

MALDANIDAE

Asychis biceps (Sars)
Asychis disparidenta (Moore)
Asychis lacera (Moore)
Asychis similis (Moore)
Axiothella rubrocincta (Johnson)
Clymenella torquata (Leidy)
Clymenura columbiana (Berkeley)
Euclymene zonalis (Verrill)
Euclymene cf. zonalis (Verrill)
Isocirrus longiceps (Moore)
Macroclymene sp.
Maldane glebifex Grube
Maldane sarsi sarsi Malmgren
Maldanella harai (Izuka)
Maldanella robusta Moore
Micromaldane ornithochaeta Mesnil
Nicomache lumbricalis (Fabricius)
Nicomache personata Johnson
Notoproctus pacificus (Moore)
Petaloproctus tenuis borealis Arwidsson
Petaloproctus tenuis tenuis (Théel)
Praxillella affinis affinis (Sars)
Praxillella affinis pacifica Berkeley
Praxillella gracilis (Sars)
Praxillella praetermissa (Malmgren)
Praxillura maculata Moore
Rhodine bitorquata Moore

OWENIIDAE

Myriochele oculata Zachs
Owenia fusiformis delle Chiaje

SABELLARIIDAE

Idanthyrsus armatus Kinberg Idanthyrsus ornamentatus (Chamberlin)
Sabellaria cementarium Moore

AMPHICTENIDAE

Pectinaria (Amphictene) moorei Annenkova
P. (Cistenides) granulata (Linnaeus)
P. (Pectinaria) californiensis Hartman

AMPHARETIDAE

Amage anops (Johnson)
Ampharete acutifrons (Grube)
Ampharete finmarchica (Sars)
Ampharcte goesi brazhinikovi Annenkova

Ampharete goesi goesi Malmgren Ampharete labrops Hartman Amphicteis mucronata Moore Amphicteis scaphobranchiata Moore Amphisamytha bioculata (Moore)
Anobothrus gracilis (Malmgren)
Asabellides lineata (Berkeley and Berkeley)
Asabellides sibirica (Wirén)
Hobsonia florida (Hartman)
Lysippe Iabiata Malmgren
Melinna cristata (Sars)
Melinna elisabethae McIntosh
Samytha californiensis Hartman
Schistocomus hiltoni Chamberlin
Sosanopsis hesslei Banse

TEREBELLIDAE

Amaeana occidentalis (Hartman)
Amphitrite cirrata Müller
Artacama conifera Moore
Betapista dekkerae Banse
Eupolymnia heterobranchia (Johnson)
Lanassa venusta venusta (Maln)
Laphania boecki Malmgren
Lysilla loveni Malmgren
Neoamphitrite edwardsi (Quatrefages)
Neoamphitrite robusta (Johnson)
Neoleprea japonica Hessle
Neoleprea spiralis (Johnson)
Nicolea zostericola (Oersted)
Pista brevibranchiata Moore
Pista cristata (Müller)
Pista elongata Moore
Pista moorei Berkeley and Berkeley
Pista pacifica Berkeley and Berkeley
Polycirrus californicus Moore
Polycirrus sp. I
Polycirvis sp. II
Polycirrus sp. III
Polycirrus sp. IV
Polycirrus sp. V
Proclea graffii (Langerhans)
Scionella estevanica Berkeley and Berkeley
Scionella japonica Moore
Streblosoma bairdi (Malmgren)
Terebella ehrenbergi Grube
Thelepus cincinnatus (Fabricius)
Thelepus crispus Johnson
Thelepus japonicus Marenzeller?
Thelepus setosus (Quatrefages)

TRICHOBRANCHIDAE

Novobranchus pacificus
Berkeley and Berkeley
Terebellides stroemi Sars
Trichobranchus glacialis Malmgren

SABELLIDAE
Chone aurantiaca (Johnson)
Chone duneri Malmgren
Chone ecaudata (Moore)
Chone infundibuliformis Kröyer
Chone magna (Moore)
Euchone analis (Kröyer)
Euchone incolor Hartman
Eudistylia catharinae Banse
Eudistylia polymorpha (Johnson)
Eudistylia vancouveri (Kinberg)
Fabricia oregonica Banse
Fabricia sabella (Ehrenberg)
Fabriciola berkeleyi Banse
Jasmineira pacifica Annenkova
Laonome kroyeri Malmgren
Manayunkia aestuarina (Bourne)
Megalomma splendida (Moore)
Myxicola aesthetica (Claparède)
Myxicola infundibulum (Renier)
Oriopsis gracilis Hartman
Oriopsis minuta (Berkeley and Berkeley)
Potamilla neglecta (Sars)
Potamilla intermedia Moore
Potamilla myriops Marenzeller
Potamilla occelata Moore
Sabella (Demonax) media (Bush)
S. (Demonax) pacifica
(Berkeley and Berkeley)
S. (Sabella) crassicornis Sars

Sabellastarte sp .
Schizobranchia insignis Bush

SERPULIDAE

Apomatus geniculatus (Moore and Bush)
Apomatus timmsii Pixell
Crucigera irregularis Bush
Crucigera zygophora (Johnson)
Protula pacifica Pixell
Pseudochitinopoma occidentalis (Bush)
Salmacina tribranchiata (Moore)
Serpula vermicularis Linnaeus
Spirorbis (Circeis) spirillum (Linnaeus)
S. (Eulaeospira) variabilis Bush
S. (Janua) pusilloides Bush
S. (Leodora) validus Verrill
S. (Paradexiospira) nakamurai (Uchida)
S. (Prodexiospira) violaceus Levinsen
S. (Pileolaria) granulatus (Linnaeus)
S. (Pileolaria) langerhansi (Caullery and Mesnil)
S. (Pileolaria) moerchi Levinsen
S. (Protolaeospira) ambilateralis Pixell
S. (Protolaeospira) racemosus (Pixell)
S. (Romanchella) medius Pixell
S. (Spirorbis) borealis Daudin

PROTODRILIDAE

Protodriloides chaetifer (Remane)
Protodrilus flabelliger Wieser

SACCOCIRRIDAE

Saccocirrus eroticus Gray

DINOPHILIDAE

Dinophilus kincaidi Jones and Ferguson Diurodrilus ankeli Ax
Trilobodrilus nipponicus Uchida and Okuda
NERILLIDAE
Nerilla antennata Schmidt
Nerilla digitata Wieser
Nerilla inopinata Gray

Principal External Diagnostic Characters of Families of Sedentariate and Archiannelid Polychaetes

Polychaetes usually are easily identified to the family level on the basis of their external appearance. For this purpose, the following tables provide an illustration and a summary of some external diagnostic characters of each family of sedentariate and archiannelid polychaetes. The tabular information for each family extends horizontally across both facing pages. The user should not attempt to classify specimens solely on the basis of the figures; the tabular material also must be utilized so that families with similar appearances are not confused.

Although some of the figures are original, the majority have been drawn from Banse (1969), Berkeley and Berkeley (1952), Day (1967), Hartman (1945, 1947, 1961, 1965b, 1966, 1969), Jones (1974), Jouin (1971), Karling (1958), Levenstein (1970), Pettibone (1963a), Potts (1914), Swedmark (1964), Ushakov (1955), Wilfert (1973), and Wu and Yang (1962). Most figures have been simplified or modified for similarity of style.

Table 1, fig. A-H.

Table 1, fig. A-H (cont.)

Other diagnostic characters
Parapodia lateral in thorax, dorsal in abdomen (as in Table 1, fig. A)
Abdomen usually appearing "ragged"
Without jaws
Resembling oligochaete [however, gonads in several segments]
With few bidentate hooks (as in Table 1, fig. B, insert)
Several anterior segments with simple gills (as in Table 1, fig. C)

Notopodia cirruslike, with aciculae
Some anterior neuropodia with fimbriated postsetal lobes (as in Table 1, fig. D)
Without jaws
Few anterior to many segments with [usually] spl (as in Table 1, fig. E) or pinnate gills
With hooded hooks [without hoods in some Spiophanes spp.] at least in posterior neuropodia (as in Table 1, fig. E, insert)

Noto- and neurocirri spindle- or bottle-shaped
Setiger 1 with setae directed anteriorly; setiger 3, and sometimes 2, with neuropodial spines (as in Table 1, fig. F)
Setiger 1 with setae directed anteriorly [not Elicodasia \dagger] (as in Table 1, fig. G)
Neuropodial spines on few anterior or most setigers

Setigers 1-8 with capillary setae; setiger 9 with capillary or spatulate setae; remaining setigers with looded hooks (as in Table 1, fig. FH, insert)

Table 2, fig. A-G.

[^0]Table 2, Fig. A-G (cont.)

Other diagnostic characters
Setigers 2-9 with threadlike gills; remaining setigers greatly elongate, almost encircled by setae (as in Table 2, fig. A)

With dorsal cirri on 6 anterior segments (as in Table 2, fig. B)

Body with 2 or 3 distinct regions
Setiger 4 with large modified setae (as in Table 2, fig. C, insert)

Anterior setigers usually narrow [crowded]
Few to many segments with long threadlike gills (as in Table 2, fig. D)

Anterior segments with 0 or 4 pairs [usually] of gills (as in Table 2, fig. E) [often lost]
Notosetae transversely barred, finely spinose; neurosetae compound (as in Table 2, fig. E, insert)

Numerous segments
Setiger 2 or 3 with long median tentacle (as in Table 2, fig. F)

Raphidrilus \dagger with 0-2 median unpaired cirri on anterior segments
Juveniles of Raphidrilus \dagger with segmental gills

Table 3, fig. A-H.

FLABELLIGERIDAE
Table 3, fig. A
Page 56, Fig. 11

FAUVELIOPSIDAE ${ }^{2}$

Table 3, fig. B

SCALIBREGMIDAE
Table 3, fig. C
Page 59; Fig. 12

OPHELIIDAE

Table 3, fig. D, E
Page 60; Fig. 13

STERNASPIDAE

Table 3; fig. F
Page 63

CAPITELLIDAE
Table 3, fig. G
Page 63; Fig. 14

PARERGODRILIDAE
Table 3, fig. H
Page 67
${ }^{2}$ The Fauveliopsidae are not known from the continental shelf in the cold-temperate North Pacific. References: Fauchald (1977), Katzmann and Laubier (1974).

Other diagnostic characters
Body surface covered with papillae and sediment (as in Table 3, fig. A) or with mucus
With (as in Table 3, fig. A) or without cephalic cage of setae
Notosetae, and often neurosetae, transversely barred, smooth (as in Table 3, fig. A, insert)
Body surface smooth (as in Table 3, fig. B) or with few small papillae; without ventral groove Acicular setae (as in Table 3, fig. B, insert) sometimes accompanied by capillary setae

Body often anteriorly swollen (as in Table 3, fig. C); segments often secondarily annulated Parapodia usually with some short forked setae (as in Table 3, fig. C, insert)

Body often grooved ventrally (as in Table 3, fig. D)
All setae capillaries, sometimes with dentate margins

Anterior end with acicular setae (as in Table 3, fig. F); posterior end with horny ventral plate and numerous threadlike gills

At least first 4 setigers with capillaries only; sometimes followed by setigers with dorsal capillaries and ventral hooded hooks; abdominal [except in some Mediomastus spp.] and sometimes posterior thoracic setigers with hooded hooks only (as in Table 3, fig. G, insert)

Body small, with 8-11 setigers
Parapodia with few limbate and forked setae (as in Table 3, fig. H, insert)

Family	Appendages of anterior end	Setae
ARENICOLIDAE Table 4, fig. A Page 67; Fig. 15	absent	notosetae spl neurosetae spl
MALDANIDAE Table 4, fig. B Page 68; Fig. 16, 17	absent	notosetae spl neurosetae spl
OWENIIDAE Table 4, fig. C Page 77; Fig. 18	0-1 pair grooved palps With or without membranous funnel	notosetae spl neurosetae spl
BOGUEIDAE ${ }^{3}$ Table 4, fig. D	absent	notosetae spl neurosetae spl
SABELLARIIDAE Table 4, fig. E Page 78; Fig. 19	1 pair palps, 0-several cirriform lobes many filiform oral tentacles [except \quad Phalacrostemma \dagger] [rarely seen]	notosetae spl
AMPHICTENIDAE Table 4, fig. F Page 79; Fig. 20	2 pair tC many filiform oral tentacles	notosetae spl neurosetae spl

[^1]Table 4, FIG. A-F (cont.)

Other diagnostic characters
Segments secondarily annulated; many median segments with [usually] branched gills (as in Table 4, fig. A)
All notosetae capillaries; all neurosetae unhooded hooks
Most setigers longer than wide (as in Table 4, fig. B). All notosetae capillaries; all neurosetae unhooded hooks with tuft below main tooth (as in Table 4, fig. B, insert) [sometimes instead spines in few anterior setigers]

Setigers 1-3 often much shorter than following setigers (as in Table 4, fig. C), without neurosetae All notosetae capillaries; all neurosetae small, unhooded bi- or tridentate hooks in several rows (as in Table 4, fig. C, insert)

Body form similar to that of Oweniidae (as in Table 4, fig. C)
Neurosetae avicular uncini (as in Table 4, fig. D, insert) in 1 or 2 rows
Anterior end with 2 or 3 concentric rows of paleae with metallic sheen (as in Table 4, fig. E) With notopodial paleae on 3 or 4 thoracic segments

Anterior end with 2 fascicles of paleae with metallic sheen (as in Table 4, fig. F)
Tube sandy, conical (as in Table 4, fig. F [scale reduced])
All notosetae capillaries; all neurosetae pectinate or [sometimes] avicular uncini (as in Table 4,
fig. D, insert; Fig. 20b)

Family	Appendages of anterior end	Setae
AMPHARETIDAE Table 5, fig. A Page 80; Fig. 21	few to many retractile tentacles [appear to emerge from mouth if everted]	```notosetae spl ant'ly absent post'ly neurosetae spl```
TEREBELLIDAE Table 5, fig. B Page 86; Fig. 22, 23	few to many nonretractile tentacles [appear to insert above mouth]	```notosetae spl ant'ly usually absent post'ly neurosetae spl```
TRICHOBRANCHIDAE Table 5, fig. C Page 96; Fig. 24	few to many nonretractile tentacles [appear to insert above mouth]	```notosetae spl ant'ly usually absent post'ly neurosetae spl```
SABELLONGIDAE ${ }^{4}$ Table 5, fig. D	1 pair palps	notosetae spl neurosetae spl
SABELLIDAE Table 5, fig. E Page 97; Fig. 25, 26	crown of "gills" [tentacular lobes, stiff and pinnate; often lost]	notosetae spl neurosetac spl
CAOBANGIIDAE ${ }^{5}$ Table 5, fig. F	crown of pinnate "gills"	notosetae spl neurosetae spl
SERPULIDAE Table 5, fig. G Page 107; Fig. 27, 28	crown of pinnate "gills" [as in Sabellidae]	notosetae spl neurosetae spl

[^2]

Other diagnostic characters
Anterior end with (as in Fig. 21c) or without paleae (as in Table 5, fig. A)
With 3-4, rarely 2, pairs of usually simple gills (as in Table 5, Fig. A [lost gills leave scars])
All notosetae capillaries; all neurosetae avicular uncini (as in Fig. 21a)
With 0-3 pairs of branched [usually] gills (as in Table 5, fig. B)
All notosetae capillaries; all neurosetae avicular uncini (as in Table 5, fig. B, insert)

With 1 single branched (as in Table 5, fig. C) or 2-4 pairs of simple or branched gills
All notosetae capillaries; thoracic neurosetae unhooded acicular uncini (as in Table 5, fig. C, insert) or spines (as in Fig. 24d); abdominal neurosetae avicular uncini (as in Table 5, fig. B, insert)

Last few segments with large falcate spines (as in Table 5, fig. D, insert)
Parapodia inverted in abdomen [uncini or hooks neuropodial in thorax, notopodial in abdomen]
Tube, if any, usually membranous
Parapodia inverted in abdomen [uncini neuropodial in thorax, notopodial in abdomen]

Anus near anterior end
Parapodia inverted in abdomen [uncini neuropodial in thorax, notopodial in abdomen]
1 [rarely 0 or 2] radiole modified into operculum (as in Table 5, fig. G)
Usually with thoracic membrane (as in Table 5, fig. G)
Tube calcareous
Parapodia inverted in abdomen [uncini neuropodial in thorax, notopodial in abdomen]

Table 6, fig. A-E.

Other diagnostic characters
May be long

Usually less than 15 mm long

Most setae forked (as in Table 6, fig. C, insert)
ARCHIANNELIDA
(see Key on page 114)

Usually less than 1 mm long

Usually less than 1 mm long

SEDENTARIA

ORBINIIDAE

(ARICIIDAE in CPF)

Table 1, fig. A; Fig. 1
Day (1973); Hartman (1957); Pettibone (1957)

Abstract

The abdomen begins where the neuropodia become dorsal in position (as in Fig. 1k). Interramal cirri, slender lobes situated between the noto- and neuropodia, may occur on posterior thoracic and anterior and median abdominal segments (as in Fig. 1k).

Segments 1 and 2 without parapodia (as in Fig. 1m). Body usually shorter than 2 cm . PROTOARICIINAE 2
Segment 1 without parapodia (as in Fig. 1g). Body longer than 2 cm . ORBI- NIINAE 4
2 Without gills. Neuropodia with both acicular and capillary setae (as inFig. 1l)Orbiniella
With gills (as in Fig. 1m) 3
Abdominal neuropodia with crenulated capillary setae only Protoaricia \dagger
Abdominal neuropodia with both acicular and crenulated capillary setae
Protoariciella
Prostomium pointed anteriorly (as in Table 1, Fig. A). First 3 neuropodia without large brush-tipped setae 5

[^3]

Postsetal lobes on posterior thoracic neuropodia smooth (as in Fig. 1a, b)

> Thoracic neuropodia with acicular setae (as in Fig. 1n)
> Scoloplos
> The acicular setae may be lacking in juveniles (cf. Brown 1979) or may be overlooked by
> being short.

Thoracic neuropodia without acicular setae [examine several parapodia]
Leitoscoloplos

Leitoscoloplos Day

With 1 or 2 subpodial lobes on posterior thoracic segments (Fig. 1a)
L. panamensis (Monro)
(See Haploscoloplos panamensis in Hartman 1969;
Scoloplos panamensis in Hobson 1976)
Without subpodial lobes (Fig. 1b) \qquad L. pugettensis (Pettibone)
(Haploscoloplos elongata [not Quatrefages] in CPF, see Scoloplos pugettensis in Pettibone 1957)

Naineris Blainville

In the listed species, some thoracic acicular neurosetae are ridged (as in Fig. 1d), and some abdominal notosetae are forked (as in Fig. 1i). Subuluncini (as in Fig. 1e) are setae intermediate in form between capillary and acicular setae.

Prostomium rounded anteriorly. Postsetal lobe of thoracic neuropodia with
single papilla (Fig. 1f). Thoracic neuropodia without subuluncini
N. quadricuspida (Fabricius)
(See Fauvel 1927; Hobson 1974)

Prostomium truncated anteriorly (as in Fig. 1g). Postsetal lobe of thoracic
neuropodia otherwise

Postsetal lobe of thoracic neuropodia a low ridge, without papillae (Fig. 1c).
Thoracic neuropodia with subuluncini (Fig. 1e). Gills from setiger 7-15. (See
also Fig. 1d) ...itica (Kinberg)
(N. laevigata [not Grube] in CPF)

This taxon may be a subspecies of N. laevigata Grube \dagger according to Hartman (1957).
Postsetal lobe of thoracic neuropodia with papillae: 1 on setigers $1-6,2$ on remaining thoracic setigers (Fig. 1h). Thoracic neuropodia without subuluncini. Gills from setiger 5 or 6 . (See also Fig. 1g, i) N. uncinata Hartman
(See Hartman 1969)
Some specimens from British Columbia may have up to $3-5$ papillae on each postsetal lobe of posterior thoracic neuropodia. N. berkeleyorum Pettibone, 1957, is a synonym of this species (Hartman 1959).

Orbinia Quatrefages

Posterior thoracic neuropodia without spines \qquad Subgenus Orbinia \dagger

Posterior thoracic neuropodia with spines (as in Fig. 1j). Subgenus Phylo. Ventral fringe (Fig. 1j) on setigers $11-14$ through 17-22 with up to 11-18 papillae. Anterior and median abdominal parapodia with interramal cirri (Fig. 1k)
. felix (Kinberg)
(Aricia michaelseni Ehlers in CPF, see also Banse et al. 1968 [as Phylo felix])

Orbiniella Day

Without gills, cirri, or postsetal lobes. Neuropodium with 2-4 spines and 0-4 spinous capillary setae (Fig. 1l) O. nuda Hobson (See Hobson 1974, 1976)

Protoariciella Hartmann-Schröder

Gills from setiger 4 or 5 (Fig. 1m), absent on last 28-47 setigers. Most parapodia with forked notosetae \qquad P. oligobranchia Hobson
(See Hobson 1976)

Scoloplos Blainville

The listed species lack single, thick aciculae projecting from abdominal neuropodia. The transition from thorax to abdomen does not occur before setiger 16 .

1 With single subpodial lobe (as in Fig. 1a) on posterior thoracic and anterior abdominal segments. (See also Fig. 1n)
S. armiger (Müller)

Without subpodial lobe
S. acmeceps Chamberlin
(See Hartman 1969; Berkeley and Berkeley 1956)

QUESTIDAE

Table 1, fig. B; Fig. 2
Hartman (1969); Hobson (1970)
Parapodia with serrated capillaries and bidentate hooks (as in Fig. 2c), without trifurcate setae. Posterior segments with cirriform gills (as in Fig. 2b)

Questa Hartman

One recognized species in genus. (See also Fig. 2a-c)
Q. caudicirra Hartman
(See Hobson 1976)

Fig. 2. QUESTIDAE: Questa caudicirra: a, anterior end, dorsal view; b, posterior end, dorsal view; c, bidentate hook and basal parts of capillary setae. Source: Hobson (1976) [a, b, modified].

PARAONIDAE

Table 1, fig. C; Fig. 3
Hartman (1957); Strelzov (1973)

Notopodia of posterior segments may be distinguished from neuropodia by the presence of a postsetal lobe (as in Fig. 3o). Setae must be examined with an oil immersion lens. The diagnostic, modified setae may occur on median or posterior setigers.
K. D. Hobson followed Strelzov's (1973) definition of the genera. Neither author was aware of the study by Imajima (1973). Imajima's records and new descriptions were subsequently considered by K. Banse while using Strelzov's generic referrals.

1 Median and posterior notopodia with forked or acicular setae (as in Fig. 3j, k). Median antenna short or absent (as in Fig. 3) Cirrophorus

Median and posterior notopodia without forked or acicular setae

2 With antenna. Nuchal organ not separated from posterior border of head region (as in Fig. 3b, h). Gills from setiger 4

Aricidea
Without antenna. Nuchal organ separated from posterior border of head region by rudimentary buccal segment (as in Fig. 3n). Gills from setiger 4-8 [local species] or absent

Fig. 3. PARAONIDAE: Aricidea assimilis: a, hooked neuroseta. A. lopezi: b, anterior end, dorsal view [setae omitted]; c. hooked neuroseta. A. minuta: d, pseudocompound neuroseta; e, acicular neuroseta [not hooked]. A. neosuecica: f, hooked neuroseta. A. quadrilobata: g, anterior parapodium, anterior view. A. ramosa: h, anterior end, dorsal view [setae omitted]. A. wassi\%: i, hooked neuroseta. Cirrophorus branchiatus: \mathfrak{j}, forked notoseta from setiger 5 ; k , acicular notoseta from setiger 45 . C. lyra: l, anterior end, dorsal view; m , forked notoseta. Paraonella platybranchia: n , anterior end, dorsal view. P. spinifera: o , notopodium from posterior setiger, posterior view. Tauberia gracilis: \mathbf{p}, hooked neuroseta. Sources: a, l, Strelzov (1973); b, j, k, n, original; c, Banse et al. (1968); d, e, Hobson (1976); f, o, Hobson (1972); g, CPF; h, m, p, Banse and Hobson (1968); i, Imajima (1973) [f, h, l, modified].

The listed species possess neuropodial modified setae but do not have some posterior gills which are markedly (twice or more) longer than the others.

1 Anterior parapodia with bifid notopodial and conspicuous, entire neuropodial postsetal lobe (Fig. 3g). Antenna long, slender, extending to setiger 6-10 .. A. quadrilobata Webster and Benedict (A. Iongicornuta Berkeley in CPF, see Strelzov 1973)

Anterior parapodia with entire notopodial postsetal lobe, without neuropodial postsetal lobe
(See Banse and Hobson 1968)
\qquad4

Antenna not jointed
5
Antenna not jointed 5

Antenna 2- or 3-jointed, not extending beyond anterior border of setiger 1. Two kinds of modified neurosetae: pseudocompound (Fig. 3d) and acicular with nearly straight distal end and long subterminal, hairlike process on concave side of shaft (Fig. 3e). With 9-14 pairs of broad, leaflike gills
A. minuta Southward (See Strelzov 1973; Hobson 1976)

Antenna $3-6$ jointed, extending to setiger 2 or 3 . One kind of modified neurosetae: hooked, with long subterminal process on concave side of shaft (Fig. 3i). With 7-18 pairs of cirriform or leaflike gills A. wassi Pettibone*
(See Pettibone 1965; Blake and Walton 1977,
Hobson 1972, Imajima 1973)

5 Antenna clublike, not extending beyond anterior border of setiger 1. Modified neurosetae hooked, with short distal hairs, without terminal process (Fig. 3f)
A. neosuecica Hartman
(A. jeffreysii [not McIntosh] in CPF, see Hobson 1972)

Antenna tapering distally (as in Fig. 3b), extending to setiger 1-10. Modified neurosetae hooked, with or without distal hairs; with long, slender terminal process at least in posterior setigers (as in Fig. 3a, c). Gill-bearing segments without single papilla posterior to notopodial postsetal lobes

Modified neurosetae with distal hairs; in posterior setigers [only!] also with terminal process (Fig. 3a) A. assimilis Tebble
(See Strelzov 1973; Hobson 1976)
Modified neurosetae without distal hairs, with terminal process; occasionally with thin, short subterminal process on concave side of shaft (Fig. 3c). (See also Fig. 3b)
A. lopezi Berkeley and Berkeley (See Berkeley and Berkeley 1956)

Cirrophorus Ehlers

Notopodia with forked setae (Fig. 3j) from about setiger 5, form of setae gradually changing to acicular (Fig. 3k) by setiger 12-15. Gills from setiger 5 [rarely 6]
C. branchiatus Ehlers
(See Aricidea branchiata in Berkeley and Berkeley 1956)
Notopodia with forked setae (Fig. 3m) from setiger 4-8, without acicular setae. With $10-16$ pairs of gills, from setiger 4. Notopodial postsetal lobe uniform in length to end of gill-bearing region. (See also Fig. 3l)
C. lyra (Southern)
(See Strelzov 1973; Paraonis lyra in Banse and Hobson 1968)

Paraonella Strelzov

Posterior setigers with spinelike notosetae (Fig. 30). With $12-20$ pairs of gills, from setiger 5 or 6 . Prostomium bluntly triangular, without eyespots
P. spinifera (Hobson)
(See Paraonis spinifera in Hobson 1972)
Posterior setigers without spinelike notosetae. With 16-29 pairs of gills, from setiger 4. Prostomium long and pointed, with 2 small black eyespots (Fig. 3n)
P. platybranchia (Hartman)
(See Hobson 1976)

Tauberia Strelzov

The Commission of Zoological Nomenclature has meanwhile declared Tauberia to be a junior synonym of Levinsenia Mesnil (Bull. Zool. Nomencl. 36: 114-118, 1979).

With 10-16 pairs of gills [length more than 3 times width], from setiger 6 or 7 [5-8]. Without eyespots. Modified neurosetae hooked, indistinctly hooded (Fig. 3p) ... T. gracilis (Tauber)

The local form may be referable to T. gracilis minuta (Hartmann-Schröder). This subspecies is recognized by Imajima (1973) [as Paraonides gracilis minuta] but not by

Strelzov (1973).

APISTOBRANCHIDAE

Table 1, fig. D
Orrhage (1962); Pettibone (1963a)
One recognized genus in family Apistobranchus

Apistobranchus Levinsen

Neuropodial postsetal lobe on setiger 4 coarsely serrated [with 3-6 teeth in animals wider than about 0.55 mm (as in Table 1, fig. D). Notopodia often missing on some or all setigers 7-11 A. tullbergi (Théel)
(See Pettibone 1963a; questionable record in Banse 1972a)
Neuropodial postsetal lobe on setiger 4 not serrated, with pointed or bifid ventral tip. Notopodia present on setigers 7-11 A. ornatus Hartman (See Hartman 1965b; Banse 1972a)

SPIONIDAE

Table 1, fig. E; Fig. 4-6
Blake and Kudenov (1978); Foster (1971); Light (1978a)

Notopodial hooks, if present, usually begin more posteriorly than neuropodial hooks. A gill usually may be distinguished from the notopodial postsetal lobe by the presence of a blood vessel (see Fig. 4a). The gills on setiger 1 may be small and easily overlooked. The dorsal sense organ [termed caruncle by some authors] is a posterior extension of the prostomium (see Fig. 4m). Genital pouches in median, and sometimes also anterior, segments are pocketlike structures of large skin folds between successive neuropodia, opening upwards (as in Fig. 4e).

> Setiger 5 modified (as in Fig. 4k) [may be slightly modified, as in Fig. 5c], with stout hooks .. Polydora
Setiger 5 not modified, without stout hooks 2

Without gills (as in Fig. 6k). Setiger 1 with stout curved neuroseta
Spiophanes
With gills (as in Fig. 6d). Setiger 1 without stout, curved neuroseta 3
With 1 pair of gills [on setiger 1]. Setiger 2 with raised dorsal membrane (asin Fig. 6m)
With more than 1 pair of gills 4
Gills beginning after setiger 10 [sometimes with 1 pair of gill-like cirri on setiger 2 of males]
Gills beginning on setiger 1 or 2 5

7 Hooded hooks bi- or tridentate [side view]. Gills simple
Hooded hooks multidentate (as in Fig. 6a [listed species]). Gills simple or pinnate94a). Posterior notopodia without accessory gills6
With gills on anterior half or less of body 7
With gills on most of body 10

8 Dorsal sense organ long, extending over several to many segments. With genital pouches (as in Fig. 4e [check median region]). Gills present through median region

Laonice
Dorsal sense organ short [prostomial extension not beyond setiger 2 or 3]. Without genital pouches. Gills (as in Fig. 4a) present only anteriorly Aonides \dagger

Gills pinnate, beginning on setiger 1 [3 pairs]. Prostomium surrounded by well-developed hood (as in Fig. 4g)

Paraprionospio
Gills simple and/or pinnate, beginning on setiger 2 [2-40 pairs]. Prostomium not surrounded by hood

Prionospio

Prostomium with distinct anterolateral projections (as in Fig. 4f). Median and posterior notopodia without hooded hooks Malacoceros
Prostomium without anterolateral projections. Median and posterior noto- podia with or without hooded hooks 11

11 Prostomium anteriorly pointed (as in Fig. 6d [may be blunt in Scolelepis foliosa]). Gills beginning on setiger 2. Median and posterior notopodia usually with hooded hooks. Pygidium with oval disk

Scolelepis
Prostomium anteriorly blunt or rounded (as in Fig. $4 \mathrm{~g}, 6 \mathrm{k}$) or slightly bilobed (as in Fig. 4 m). Gills beginning on setiger 1 or 2 . Median and posterior notopodia without hooded hooks. Pygidium with cirri [4 indistinct lobes in Spio butleri]

Laonice Malmgren

The listed species have hooded hooks only in the neuropodia.
Genital pouches (as in Fig. 4e) beginning on setiger 2-7. Dorsal sense organ
extending to about setiger 25. Behind gill-bearing region, dorsal ridges con-
necting notopodia inconspicuous L. pugettensis Banse and Hobson
(See Banse and Hobson 1968)
Genital pouches beginning on setiger 12-35 [or later?]. With conspicuous eyes (Fig. 4d [may fade in preservative]). Posterior neuropodia with numerous [>10] hooded hooks. (See also Fig. 4e)
L. cirrata (Sars)

Because of differences in the shape of the neuropodial hooks, the Pacific species may not be identical with the European L. cirrata (see Banse and Hobson 1968).

Malacoceros Quatrefages

Gills beginning on setiger 1. Subgenus Malacoceros. Neuropodial hooded hooks bidentate, beginning on setiger 30-45
(See Fauvel 1927; Berkeley and Berkeley 1956
[Scolelepis fuliginosa in both])
Gills beginning on setiger 2 (as in Fig. 4f). Subgenus Rhynchospio.
Neuropodial hooded hooks tridentate, beginning on setiger 13-21 [usually
on 18-19]. (See also Fig. 4f) (..................................... glutaeus (Ehlers)
(Rhynchospio cf. arenincola Hartman in WIEsER 1959;
R. arenincola in BANSE 1963; see Foster 1971 for synonymy)

Paraprionospio Caullery
Neuropodial hooded hooks beginning on setiger 9-11. (See also Fig. 4g)
P. pinnata (Ehlers)
(Prionospio pinnata in CPF, see Foster 1971)

FIG. 4. SPIONIDAE: Aonidesi sp.: a, anterior parapodium, anterior view [setae omitted]. Dispio mncinata†: b, parapodium 1, anterior view; c. posterior parapodium, posterior view [setae omitted in both]. Laonice cirrata: d, anterior end, dorsal view [palps lost]; e, median segments, lateral view. Malacoceros glutaens: f, anterior end, dorsal view [palps omitted; setae schematically drawn on right parapodium 1 and left parapodium 2]. Paraprionospio pinnata: g, anterior end, dorsal view [showing one gill and attachment scars of lost gills and palps]. Polydora alloporis: h, tip of stout hook of setiger 5. P. armata*: i , falcate stout hooks of setiger 5, with collar; j , bundle of spines in posterior notopodium. P. brachycephala: k , anterior end, lateral view of P. caulleryi Mesnil \dagger [as adult almost indistinguishable from P. brachycephala]: l, bushy-tipped stout hook of setiger 5. P. cardalia: m, anterior end, dorsal view [palps lost]; n , posterior notopodium, dorsal view. P. columbiana: o, anterior end, dorsal view [right palp lost]. P. commensalis: p, falcate stout hook of setiger 5, with sheath. Sources: a, f, Foster (1971); b, c, l, Light (1978a); d, Moore (1907); e, CPF; g, m, o, Berkeley (1927); h, Light 1970; i, Hartman (1969); j, Mesnil (1896); k, p, Blake (1971); n, Blake (1979) [all modified].

Polydora Bosc

Blake (1971); Blake and Woodwick (1971)
To recognize bundles of small notosetae on setiger 1, palps may need to be removed. The stout hooks on setiger 5 may be worn (see Fig. 5p) so new setae [tips only formed] should be studied. Further, the hooks must be examined from all angles to determine their form. This can be accomplished by placing several excised individual setae in liquid on a microscope slide and then slowly rolling them under the coverslip during examination. Hooded [neuropodial] hooks in the listed species are bidentate (as in Fig. 6j [not uni- or tridentate]). Most recent workers regard the subgenera used here as genera. The generic revision by Blake and Kudenov (1978) was received too late to be considered.

1 Gills beginning on setiger 2 [usually absent on setiger 5]. Subgenus Boccardia
\qquad

Setiger 5 with only smooth falcate stout hooks (as in Fig. 5j). With thick recurved spines in posterior notopodia (Fig. 5b). Gills present on setigers 2, 3, 6, and subsequent segments ... P. hamata Webster in Blake 1966)

Setiger 5 with both smooth falcate (as in Fig. 5j) and bushy-tipped stout hooks (as in Fig. 5i). Without thick spines in posterior notopodia

3 Prostomium notched anteriorly (as in Fig. 5f). Bushy-tipped stout hooks with spinelets continuing basally below thickest part (as in Fig. 5k [except P. proboscidea])

Prostomium not notched anteriorly (as in Fig. 40). Bushy-tipped stout hooks without spinelets continuing basally below thickest part (as in Fig. 5i)

Setiger 1 with notosetae. Gills on setigers 2-4 extending almost to midline of dorsum. (See also Fig. 5k)

Polydora pugettensis Blake (Polydora natrix [not Söderström] in CPF and Banse et al. 1968, see Blake 1979)

Setiger 1 without notosetae
P. polybranchia Haswell

Notosetae of setiger 1 long, projecting beyond anterior edge of prostomium (Fig. 4o)
P. columbiana Berkeley
Notosetae of setiger 1 short, inconspicuous. (See also Figs. 5i, j)
P. proboscidea Hartman

Fig. 5. SPIONIDAE: Polydora giardi*: a, toothed stout hook of setiger 5. P. hamata: b, recurved spine of posterior notopodium. P. kempi japonica: c, setigers 3-6, lateral view; d, falcate stout hook of setiger 5; e, pygidium, dorsal view. P. ligni: f, anterior end, dorsal view; g, toothed stout hook and companion seta of setiger 5; h, companion seta of setiger 5. P. proboscidea: i, bushy-tipped stout hook of setiger 5; j, falcate stout hook of setiger 5. P. pugettensis: k , bushy-tipped stout hook of setiger 5. P. pygidialis: l, pygidium, lateral view. P. quadrilobata: m, bushy-tipped stout hook of setiger 5. P. socialis: n, smooth stout hook of setiger 5. P. spongicola: o, unworn stout hook of setiger 5 ; p, worn stout hook of setiger 5 . P. webster i^{*} : q, falcate stout hook of setiger 5 with sheath. Sources: a, i, Hartman (1969); b, Berkeley (1927); c-e, Okuda (1937); f, CPF; g, m, n, q, Blake (1971); h, Söderström (1920); j, Hartman (1941a); k, Blake (1979); l, Blake and Woodwick (1972); o, p, Berkeley and Berkeley (1950) [b, e, f, i, j, l-n, q, modified].

Setiger 5 not highly modified: noto- and neuropodial postsetal lobes and fascicles well developed (as in Fig. 5c). Stout hooks of setiger 5 in U-shaped line (as in Fig. 5c). Hooded hooks beginning on setiger 8. Subgenus Pseudopolydora.
Prostomium notched anteriorly, without lateral outgrowths, with median antenna. 15-20 pairs of gills. Stout hooks of setiger 5 smooth, falcate (Fig. 5d), 23-27 on each side. Pygidium funnel shaped, with small cirrus on each side of dorsal notch (Fig. 5e). (See also Fig. 5c)
P. kempi japonica Imajima and Hartman
(Neopygospio laminifera Berkeley and Berkeley 1954, see Banse 1972a)

Setiger 5 highly modified: noto- and neuropodial postsetal lobes and setal
fascicles absent or poorly developed (as in Fig. 4k). Stout hooks of setiger 5
usually in straight or only slightly curved line. Hooded hooks beginning on
setiger 7 [10-17 in P. commensalis]. Subgenus Polydora
7

7 Stout hooks of setiger 5 with bushy tip (as in Fig. 4l, 5m) 8
Stout hooks of setiger 5 without bushy tip ... 9

8 Stout hooks of setiger 5 falcate, with apical bushy ridge (Fig. 4l). (See also Fig. 4k)
P. brachycephala Hartman (P. caulleryi Mesnil?, in Banse et al. 1968, see Light 1978a)

Stout hooks of setiger 5 nearly straight, bifid, with bushy tuft between teeth (Fig. 5m)
P. quadrilobata Jacobi
(See Blake 1971; Hobson 1977)

9 Stout hooks of setiger 5 with collar, sheath, or tooth (as in Fig. 4i, p; 5a). Setiger 1 with or without notosetae10
Stout hooks of setiger 5 smooth, without collar, sheath, or tooth (as in Fig. 5 n). Setiger 1 with notosetae 18
10 Gills beginning on setiger 6; hooded hooks beginning on setiger 10-17. Stout hooks of setiger 5 falcate, with sheath (Fig. 4p). Setiger 1 with notosetae. Without dorsal sense organ. Palps very short, about length of first 4 or 5 setigers
Gills beginning on setiger 7-10; hooded hooks beginning on setiger 7 11
11 Setiger 1 with notosetae. Posterior notopodia with or without modified [non- capillary] setae 12
Setiger 1 without notosetae. Posterior notopodia with only capillary setae 13

Palps with 4-5 transverse black bars. Prostomium notched anteriorly (as in Fig. 5f) P. limicola Annenkova*
(See Hartman 1969)

Palps without black bars. Prostomium rounded anteriorly. Pygidium markedly scoop shaped (Fig. 5l) P. pygidialis Blake and Woodwick (P. ciliata [not Johnston] in CPF, see Blake and

Woodwick 1972)

16 Prostomium notched anteriorly (as in Fig. 4m). Stout hooks of setiger 5 falcate, with sheath (Fig. 5q)
P. websteri Hartman*
(See Hartman 1969)
Prostomium rounded anteriorly .. 17

Stout hooks of setiger 5 with subapical concavity bordered laterally and ventrally by a continuous flange (Fig. 4h)

Stout hooks of setiger 5 with collar (Fig. 50) [may appear apically knobbed when worn (Fig. 5p)] P. spongicola Berkeley and Berkeley (P. ciliata spongicola in CPF, see Woodwick 1963)

18 Posterior notopodia with up to about 18 nonlimbate setae much finer than limbate setae, clearly protruding from cuticula (Fig. 4n). Dorsal sense organ extending to setiger $5-6$ (Fig. 4m). Setiger 5 with 12 or more stout hooks ...
P. cardalia Berkeley
(In CPF, see also Blake 1979)
Posterior notopodia with several nonlimbate setae half to nearly as stout as limbate setae [not acicular spines]. Dorsal sense organ extending to setiger 4-12. Setiger 5 with 3-7 emergent stout hooks. (See also Fig. 5n)
P. socialis (Schmarda)
(P. caeca [not Oersted], P. socialis plena Berkeley and Berkeley, and P. magna Berkeley and Berkeley in CPF, see Blake 1979)

Prionospio Malmgren

As gills are lost easily, it may be necessary to examine several specimens to determine the true arrangement of the gills.

With $7-10$ pairs of cirriform gills. Neuropodial hooded hooks beginning on setigers 12-13. With large reddish eyes. With genital pouches (as in Fig. 4e [difficult to make out; from setiger 5 to 7 for about 20 segments in Arctic material, Söderström 1920]) P. cirrifera Wirén
An unidentified species with $10-12$ pairs of cirriform gills was found by J. M. Orensanz in an intertidal sample from Skiff Point, Bainbridge I. (approx. $47^{\circ} 40^{\prime} \mathrm{N}$; $122^{\circ} 30^{\prime} \mathrm{W}$; April 1979. K. Chew coll.). Neuropodial hooded hooks occur from setigers 17-21. The eyes are small and black (as in Fig. 4g). Genital pouches are absent. [This addition to the fauna of

Washington is not considered in the biogeographic section.]
With 4 pairs of gills: pairs 1 and 4 pinnate, pairs 2 and 3 cirriform. Neuropodial hooded hooks beginning on setiger 14-21 [usually 15-17]. About 15-25 post-branchial setigers without or with consistently low [not noticeably higher on setiger 7 , or 7 and 9] transverse ridges dorsally between notopodial postsetal lobes (see also Fig. 6a) P. steenstrupi Malmgren (P. malmgreni [not Claparède] in CPF, see also Foster 1971)
Possibly, P. fallax Söderström, with gills as in P. steenstrupi but with a high dorsal, membranous fold between gills on setiger 7, also occurs in the area (see FosTer 1971: 87).

Pygospio Claparède

Prostomium blunt or bilobed anteriorly. Gills beginning on setiger 11-13 [setiger 2 in males with gill-like cirrus]. Neuropodial hooded hooks beginning on setiger 8-9 [rarely 7]
P. elegans Claparède
(See Foster 1971; Hobson 1977)
Some specimens from British Columbia with pointed prostomia, gills beginning on setiger 14-16 and neuropodial hooded hooks beginning on setiger 11-18 are intermediate between P. elegans and P. californica Hartman \dagger (Hobson 1977).

[^4]

Scolelepis Blainville

Light (1977, 1978a); Pettibone (1963b)
Nerine Johnston is included in this genus (see Pettibone 1963b). Listed species usually have notopodial hooded hooks.

Hooded hooks unidentate or blunt. Prostomium with occipital papilla or antenna. Palps without sheath and short cirri around bases [not as in Fig. 6 e . Gills completely fused with notopodial postsetal lobe in anterior setigers (Fig. 6b), partly fused in posterior setigers (Fig. 6c). Parapodial lips of middle and posterior setigers lamelliform (similar to Fig. 4e [not short, thick, and glandular]). Neuropodial hooks from about setiger 60 [not 30]
S. foliosa (Audouin and Milne-Edwards) The phrasing is to exclude the incompletely known S. alaskensis (Treadwell 1914) which presumably occurs in Washington.

Hooded hooks bi- or tridentate [not multidentate as in Fig. 6a; rarely few unidentate]. Prostomium without antenna. All gills partly fused with notopodial postsetal lobe (Fig. 6d)
S. squamata (Müller)
(Nerine cirratulus (delle Chiaje) in CPF, see
Foster 1971, Light 1978a)
Specimens from Washington may represent a new subspecies as the gills are completely, not partially, fused with the notopodial postsetal lobe. The sole specimen collected by Berkeley and Berkeley from British Columbia (see CPF) is too poorly preserved for reidentification.

Spio Fabricius

Paraspio Czerniavsky is included in this genus (see Foster 1971; Giordanella 1969).
Gills beginning on setiger 2
Subgenus Microspio \dagger
Gills beginning on setiger 1. Subgenus Spio 2

2 Hooded hooks tridentate (one tooth minute, Fig. 6i), beginning on setiger 16 or 17. Gills on setiger 1 very small. With well-developed notopodial presetal lobe in anterior region (Fig. 6h)
S. cirrifera (Banse and Hobson)
(See Paraspio cirrifera in Banse and Hobson 1968)
Hooded hooks bidentate [side view]. Gills on setiger 1 about the same size as on following setigers [may be only half as large in Spio butleri]

Hooded hooks beginning on setiger 10-15; axes of teeth of all hooks divergent, with teeth of unequal length (Fig. 6j). Palps with simple longitudinal groove. Prostomium anteriorly blunt (as in Fig. 4g), to slightly pointed
S. filicornis (Müller)
(S. filicornis pacifica in CPF, see Hartman 1948)

Hooded hooks beginning on setiger [19] 22-24; axes of teeth of upper neuropodial hooks parallel, with teeth of nearly same length (Fig. 6g). Palps [sometimes] with two parallel, fringed membranes (Fig. 6f)
S. butleri Berkeley and Berkeley (See Berkeley and Berkeley 1954) The species is newly recorded here from the mouth of the Columbia River estuary, in fairly clean sand (R. L. Emmett coll. 1979, 1 specimen).

Spiophanes Grube

Foster (1971); Pettibone (1962)
Listed species have long, dorsally pointed postsetal lobes on setigers 1-4.

Prostomium anteriorly with elongate lateral projections, without median antenna. Neuropodial hooks bidentate [usually] or tridentate, with reduced hood (Fig. 6l). Pygidium with 2 cirri S. bombyx (Claparède)

Prostomium anteriorly with blunt lateral projections, with median antenna (as in Fig. 6k). Neuropodial hooks quadridentate [tridentate in profile], without hood

With genital pouches, beginning on setiger 15-19. With 5-7 hooks per neuropodium. Pygidium with 6 cirri
S. kroyeri Grube
(S. cirrata Sars, in part, in CPF, see Hobson 1977)

According to Pettibone (1962), S. cirrata Sars is a synonym of this species.
Without genital pouches. With 6-11 hooks per neuropodium. Pygidium with 8-12 cirri. (See also Fig. 6k) \qquad S. berkeleyorum Pettibone (S. cirrata in CPF, in part, see Pettibone 1962, also

Hobson 1977)

Streblospio Webster

As in generic diagnosis. (See also Fig. 6m) S. benedicti Webster
(See Foster 1971; Hobson 1977)

TROCHOCHAETIDAE

Table 1, fig. F

Pettibone (1976)
One recognized genus in family
Trochochaeta

Trochochaeta Levinsen

Postsetal lobes serrated from setiger 3 [setiger 2 is first one with acicular spines] (as in Table 1, fig. F). Notopodial postsetal lobe on setiger 3 with several serrations
T. multisetosa (Oersted)
(See Banse and Hobson 1968)

POECILOCHAETIDAE \dagger

Table 1, fig. G
Fauchald (1977); Pilato and Cantone (1976)

Setae of segment 1 directed forward, extending beyond prostomium

Poecilochaetus \dagger

MAGELONIDAE

Table 1, fig. H; Fig. 7
Jones (1963, 1971, 1978)

The prostomium must be flattened for study. Remove parapodia with setae for observation in plane (transverse) view. Use an oil immersion lens for examination of setae, and study hooks (as in Fig. 7i) edge-on.
Lateral lamellae are extended postsetal lobes. The posterior region starts on setiger 10 .
One recognized genus in family .. Magelona

Magelona Müller

Setae of parapodium 9 special [different from those of setigers 1-8]. Parapodia 1-8 with 2 lateral lamellae. With or without anterior prostomial horns

Setae of parapodium 9 as of parapodia 1-8 (as in Fig. 7c, n). Parapodia 1-8 with 1 or 2 lateral lamellae. With anterior prostomial horns (as in Fig. 7a, l)

2 Special setae with mucronate tips (Fig. 7s). Parapodium 9 without ventral medial lobe (Fig. 7r). Prostomium without anterior horns (Fig. 7q). With lateral pouches between setigers 10 and 11 (as in Table 1, fig. H). Hooded hooks of posterior region of about same size (Fig. 7t), with tridentate tips (Fig. 7u)
M. sacculata Hartman
(See Hartman 1961; Armstrong et al. 1977)
Special setae with pennoned tips (Fig. 7h). Parapodium 9 with ventral medial lobe (Fig. 7 g). Prostomium with truncated anterior margin, suggesting reduced anterior horns (Fig. 7f). Without lateral pouches between setigers 10 and 11. Hooded hooks of posterior region not of same size (Fig. 7i): mostly large (Fig. 7j), except for single, occasionally 2, very small (Fig. 7k) at bases of lateral lamellae; both kinds with tridentate tips
M. hobsonae Jones
(M. pitelkai [not Hartman] in CPF, see Jones 1978)

[^5]

HETEROSPIONIDAE \dagger

Table 2, fig. A
Fauchald (1977); Hartman (1956b); Imajima (1974)
One recognized genus in family ... Heterospio \dagger

CHAETOPTERIDAE

Table 2, fig. C; Fig. 8
Gitay (1969); Kudenov (1975); Potts (1914)
Three regions of the body (see Table 2, fig. C; Fig. 8a) are identified by the absence or the kind of notopodia: anterior without notopodia, middle with uni-, bi-, or trilobed notopodia (as in Fig. 8c), and posterior with unilobed notopodia. Badly torn specimens may be identified to the generic level by the acicular setae of setiger 4 (see Kudenov 1975 and note under Phyllochaetopterus herein).

Anterior end with 1 pair of small tentacular cirri at base of palps [often difficult to see] (as in Fig. 8b). Palps much longer than anterior region Phyllochaetopterus

Anterior end without tentacular cirri (as in Fig. 8a). Palps of variable length

Palps shorter than anterior region. Some notopodia of middle region fused dorsally, paddlelike (as in Fig. 8a)

Chaetopterus
Palps longer than anterior body region. Notopodia of middle region not
fused dorsally (as in Table 2, fig. C) ... 3

Notopodia of middle region unilobed (as in Table 2, fig. C). Setiger 4 with several acicular setae (as in Table 2, fig. C). Tube not semitransparent or ringed, usually covered with sand or shell Mesochaetopterus

Notopodia of middle region bi- or trilobed (as in Fig. 8c). Setiger 4 with 1, rarely 2, acicular seta. Tube semitransparent, ringed

Fig. 8. CHAETOPTERIDAE: Chaetopterus variopedatus: a, entire worm, dorsal view. Phyllochatopterus prolifica: b, anterior end, dorsal view.Spiochaetopterus costarum: c , middle parapodium; d, posterior parapodium; e, part of tube. Sources: a, Ushakov (1955); b-d, CPF; e, Fauvel (1927) [a-d, modified].

Chaetopterus Cuvier

Setiger 4 with 10-20 dark acicular setae. Notopodia of middle body region winglike on segment 1 ; cuplike on segment 2 , and paddlelike on segments 3-5 (Fig. 8a). Tube parchmentlike, U-shaped
C. variopedatus (Renier)
(See Hartman 1969)
This cosmopolitan species, known previously from Oregon (Hartman and Reish 1950), is herein recorded from British Columbia: specimens were collected subtidally, west of Promise Island, off Wright Sound, $53^{\circ} 22.5^{\prime} \mathrm{N}, 129^{\circ} 15.7^{\prime} \mathrm{W}$, Aug. 14, 1974, by A. Parkinson (identified by K. D. Hobson) and at Point Elizabeth, June 1974, by P. Lambert and G. Green (identified by P. Lambert, British Columbia Provincial Museum, Victoria, B.C., V8V 1X4).

Mesochaetopterus Potts

Middle region with 3 long, flat, dorsally glandular segments; last 2 segments each with cuplike structure formed by enlarged dorsal ciliated groove (as in Table 2, fig. C) M. taylori Potts

Phyllochaetopterus Grube

Listed species have tubes that are semitransparent and irregularly ringed anteriorly, becoming more opaque and less distinctly ringed posteriorly. The acicular setae on setiger 4 and the outline of the middle and posterior setigers resemble those of Spiochaetopterus costarum (see Fig. 8c, d).

Middle region with 2 segments. Tube straight, about 1-5 mm wide
P. claparedii McIntosh
(See Berkeley and Berkeley 1962; Dales 1961)
Middle region with 4-13 segments. Tube branched, sinuous, about 1.0-1.5 mm wide. (See also Fig. 8b)
P. prolifica Potts

Spiochaetopterus Sars

Telepsavus Costa and Leptochaetopterus Berkeley are included in this genus (see Gitay 1969).

Middle region with 20-90 segments. Tube straight, regularly ringed (Fig. 8e).
(See also Fig. 8c, d)
S. costarum (Claparède)
(Telepsavus costarum in CPF)

CIRRATULIDAE

Table 2, fig. D; Fig. 9
Day (1967); Hartman (1969)

Anterior end without appendages. Neuropodia with comblike seta (as in Fig. 9i)

Raricirrus \dagger

$$
\begin{aligned}
& \text { Anterior end with appendages (as in Table 2, fig. D; Fig. 9g). Neuropodia } \\
& \text { with capillaries (as in Fig. 9j), limbate setae, acicular setae (as in Fig. 9b, c), } \\
& \text { or acicular hooks (as in Fig. 9h) ... }
\end{aligned}
$$

With 1 pair of heavy palps (as in Table 2, fig. D [leave scars when lost]) 3
With 1 or several pairs of patches of palps (as in Fig. 9 g [if 1 pair, patches may almost coalesce to dorsal band]) 6
With gills on segment with palps and next $2-10$ setigers. Median parapodia with distally excavate hooks (as in Fig. 9h) Dodecaceria
With gills on many setigers. Without distally excavate hooks 4
With limbate or capillary setae only (as in Fig. 9d, j, k) Tharyx
With capillary setae and, in some [at least posterior] setigers, acicular setae (as in Fig. 9b, c) 5

Patches of palps apparently on setiger 1 ... Cirratulus
Patches of palps apparently on setiger 1 ... Cirratulus
Patches of palps apparently on a segment after setiger 1 [may be setiger 4, 5,
6 , or 7] ... Cirriformia**
Patches of palps apparently on a segment after setiger 1 [may be setiger 4, 5,
6 , or 7] ...Cirriformia*
Patches of palps apparently on a segment after setiger 1 [may be setiger 4, 5 ,
6 , or 7] .. Cirriformia*

Caulleriella Chamberlin

(As emended in Hartman 1961)
Acicular setae distally bifid (as in Fig. 9a, b) or serrated Caulleriella

Acicular setae distally entire (as in Fig. 9c) Chaetozone

Several segments after setiger 1 with patches of palps Timarete \dagger
Only one segment with patches of palps ... 7

With acicular setae from neuropodium 1 and from about notopodium 20 ;
with delicate wings (Fig. 9a). Neuropodia [at least anteriorly] also with
capillary setae ...ata (Southern)
(See Hartman 1969)
In Puget Sound material identified as C. alata? (Banse and Hobson 1968), notopodial acicular setae start from setiger 45-55.

With acicular setae from median [e.g., 17] neuropodia and posterior notopodia; convex margin of distal end smooth [not serrated] (Fig. 9b). Posterior neuropodia without capillary setae
C. hamata (Hartman)*
(See Hartman 1969)

Chaetozone Malmgren

(As emended in Hartman 1961)
Capillary setae of 2 kinds (Fig. 9f), except in first approximately 12 setigers: very long, threadlike (slightly twisted) and much shorter
C. spinosa Moore
(See Hartman 1969)
The record for Washington by Banse and Hobson (1968), based on an anterior end without acicular setae, needs to be confirmed.

Capillary setae of about same form [low magnification]

With neuropodial acicular setae (Fig. 9c) from setigers 18-34. Capillary setae in middle of body obliquely truncate near tips (Fig. 9d). Acicular setae not nearly encircling body posteriorly C. acuta Banse and Hobson (See Banse and Hobson 1968)

With neuropodial acicular setae from setigers 40-70. All capillary setae smoothly limbate. Acicular setae nearly encircling body posteriorly (Fig. 9e)
[capillary setae absent]
C. setosa Malmgren

Cirratulus Lamarck

The listed species lack near-globular eyes on the gills. The palps are originally presegmental and move during the ontogeny to the adult position. Therefore, juveniles of Cirriformia spp. may key out as Cirratulus spp.

1 With neuropodial acicular setae from setiger 6-12. (See also Fig. 9g)
C. cirratus (Müller)
(In CPF, see also Hartman 1961)
Caulleriella gracilis in CPF was placed by Banse and Hobson (1968) in synonymy with their newly described Chaetozone berkeleyorum. Subsequently, the latter species was found to be synonymous with C. cirratus (P. Jumars, Department of Oceanography, University of Washington, Seattle, WA 98195, personal communication).

With neuropodial acicular setae from setiger 17 to 39
C. spectabilis (Kinberg)

In CPF, C. cingulatus Johnson and C. robustus Johnson were regarded as synonyms of C. spectabilis. In contrast, Hartman (1961, 1969) recognized C. cingulatus and C. spectabilis (syn., C. robustus) as subspecies of C cirratus. Among 12 specimens in the British Columbia Provincial Museum from various sites in British Columbia, however, the diagnostic characters used by Johnson (1901: achaetous region with 7 or 3 rings; setigers of median body three- or one-ringed; and neuropodial acicular setae from [about] setiger 30 or from 19 to 20, respectively), occur in various combinations, with intergrading in the first occurrence of the acicular setae, so that the synonomies seem uncertain. Therefore, we follow CPF.

Fig. 9. CIRRATULIDAE: Caulleriella alata: a, acicular seta. C. liamata*: b, acicular seta. Chaetozone acuta: c, acicular seta; d, capillary seta from median section of body. Ch. setosa: e, cross section of posterior segment [schematic]. Ch. spinosa: f, ordinary and threadlike capillary setae. Cirratulus cirratus: g , anterior end, dorsal view [most palps lost]. Dodecaceria concharum: h , excavate hook. Raricirrus maculata Hartmant: i, comblike seta. Tharyx multifilis: j, capillary seta. T. secundus: k, capillary seta, l, posterior end. T. serratisetis: m, capillary seta. Sources: a, Southern (1914); b, Hartman (1948); c, d, k, m, Banse and Hobson (1968); e, Malmgren (1867); f, Moore (1903); g, Ushakov (1955); h, Fauvel (1927); i, Hartman (1961); j, l, original [b, e, i, modified].

Cirriformia Hartman*

See note under Cirratulus (p. 52).
Neuropodial acicular setae pointed [similar to Fig. 9c], yellow [not dark or black], from about setiger 40 [not 25]; capillary setae absent on posterior segments [after segment 150] C. spirabranchia (Moore)*
(See Hartman 1969, Blake 1975 [remarks on bifid acicular setae in juveniles]; Hartman and Reish 1950)

Dodecaceria Oersted

With gills on 2 or 3 setigers. Bore in calcareous material. (See also Fig. 9h)
D. concharum Oersted

With gills on 5-10 setigers. Build calcareous tubes
D. fewkesi Berkeley and Berkeley
(D. pacifica [Fewkes] in CPF, see Berkeley and Berkeley 1954)

Tharyx Webster and Benedict

The species cannot be identified from anterior ends. In listed species, notosetae are longer than the neurosetae; the anus is dorsal; tubes are without numerous lateral extensions.

$$
\begin{aligned}
& \text { Prostomium with eyes. Posterior body inflated (as in Fig. 9l) or not inflated. } \\
& \text { Posterior neurosetae [may be after setiger 100] broad, with serrated or coarse } \\
& \text { cutting edge [visible at } 400 \mathrm{x} \text {] (as in Fig. 9k, m) .. }
\end{aligned}
$$

Prostomium without eyes. Posterior body not clearly inflated. Posterior neurosetae narrow or broad-limbate, without coarse or serrated cutting edge [at 400x] (as in Fig. 9j)

Middle segments of body beadlike, posterior body inflated (Fig. 9l). Serrated neurosetae from setiger 30-40 (Fig. 9k)
T. secundus Banse and Hobson
(See Banse and Hobson 1968)
Middle segments of body smooth, posterior body not inflated. Posterior neurosetae with coarse cutting edge from about setiger 100 (Fig. 9m)
T. serratisetis Banse and Hobson
(See Banse and Hobson 1968)

Body small, up to 1.5 cm long. Estuarine and intertidal
T. parvus Berkeley
(See Hartman 1961; T. multifilis parvus in CPF)
Body up to 6 cm long. Subtidal (see also Fig. 9j)
T. multifilis Moore
(In CPF, see also Hartman 1961, Banse and Hobson 1968)

ACROCIRRIDAE

Table 2, fig. E; Fig. 10
Banse (1969)
The first gill-bearing segment is segment 2 .
1
Body a few centimeters long, with more than 55 segments. Epidermis smooth or minutely papillated. Palps adjacent

Acrocirrus
Body less than 1.5 cm , usually with fewer than 55 segments. Epidermis densely covered with papillae. Palps separated by at least own width (as in Table 2, fig. E)

Macrochaeta

b

c

FIg. 10. ACROCIRRIDAE: Acrocirrus columbianus: a, anterior end, dorsal view [most appendages lost]. A. heterochaetus*: b, setigers $10-12$, lateral view. A. occipitalis: c, anterior end, lateral view [appendages lost; the broken line indicates the imaginary middorsal line]. Sources: a, c, Banse (1979a); b, Banse (1969) [a, modified; c is the original drawing for fig. 1d in Banse (1979a) which was incompletely reproduced].

Acrocirrus Grube

1 All but setiger 11 with compound neurosetae. Neuropodium of setiger 11 with conspicuous hook (Fig. 10b)
(See Banse 1969)
All setigers with compound neurosetae [one or two per parapodium]

2 Prostomium extending into segment 1 (Fig. 10a). Neurosetae from segment 4 , notosetae from segment 6
A. columbianus Banse
(See Banse 1979a)
Prostomium extending through segment 2 (Fig. 10c) \qquad A. occipitalis Banse
(See Banse 1979a)

Macrochaeta Grube

$$
\begin{aligned}
& \text { Segment } 1 \text { dorsally not visible [first gill-bearing segment follows prostomium] } \\
& \text { (as in Table 2, fig. E) .. Banse } \\
& \text { (See BANSE 1969) }
\end{aligned}
$$

COSSURIDAE

Table 2, fig. F
Day (1967); Fauchald (1972)

Body not divided into 2 regions; all setae limbate Cossura

Cossura Webster and Benedict

With 1 or 2 anterior achaetous rings. More than 1 anterior setiger uniramous
C. longocirrata Webster and Benedict*
(See Webster and Benedict 1887; Carey 1972)
At least three species have been described under this name (see Laubier 1964; Fauchald 1972).

With 2 anterior achaetous rings (as in Table 2, fig. F). Only setiger 1 uni
ramous

Tentacle inserted on posterior part of setiger 2. With 3 unbranched pygidial cirri

Tentacle inserted between setigers 3 and 4. Pygidium unknown
Cossura sp.
(See Banse 1981)

CTENODRILIDAE

Table 2, fig. G
Fauchald (1977); Wilfert (1973)
This family was not recognized in CPF; Ctenodrilus was included in the Cirratulidae.
Body short, with up to 15 segments. Without cirri or gills (as in Table 2, fig. G)

Ctenodrilus Claparède

Setae serrated usually on only one side
C. serratus (Schmidt)

FLABELLIGERIDAE

Table 3, fig. A; Fig. 11
Day (1967); Hartman (1969); Light (1978b); Støp-Bowitz (1948)

Abstract

Long, anteriorly directed capillary setae of the first few setigers may form a cephalic cage (as in Fig. 11f, k). The grooved palps and the gill filaments (see Fig. 11h, j) are usually retracted and can then be observed only by dissection. To determine the shape and arrangement of the dermal papillae, first remove some of the sediment from the body surface. Middle neuropodia should be studied for the diagnostic setae.

1 Worm usually encased in mucoid sheath with imbedded long papillae [ends inflated], particularly around parapodia. Epithelium smooth, or nearly so. With cephalic cage. Neuropodia with only hooks [pseudocompound or compound (as in Fig. 11e)]

Flabelligera
Worm not encased in mucoid sheath, usually covered with sand or silt. Epithelium usually densely papillose. With or without cephalic cage. Neuropodia with capillaries or hooks [simple, pseudocompound, or compound]

2 Notopodia with long papillae with inflated and balloonlike ends (as in Fig. 11d). Neuropodia with only [pseudocompound] hooks Flabelliderma \dagger

Notopodia without balloonlike papillae. Neuropodia with capillaries or hooks [simple (as in Fig. 11i, l) or pseudocompound]

3 Body cylindrical, usually short, stout [maggotlike]. Setiger 4 or 5 with ventrolateral pair of nephridial papillae (as in Fig. 11c). Cephalic cage absent or poorly developed (as in Fig. 11c). Neuropodia with capillaries

Body cylindrical, usually elongate (as in Table 2, fig. H). Setigers 4 or 5 without paired nephridial papillae [except in some species of Diplocirrus \dagger]. Cephalic cage well developed [most species] (as in Fig. 11f, k)

Neuropodia with capillaries. With 2 kinds of gills: stout [outer] and slender
[inner] ... Diplocirrus \dagger
Neuropodia with simple hooks (as in Fig. 11i, l). With 1 kind of gill (as in Fig. 11h, j)

[^6]

With several [8] to many gills arising from semicircular hood (as in Fig. 11h). Listed species with unidentate neurosetae (as in Fig. 11i)

With many gills arising from tonguelike projection (as in Fig. 11j). Listed species with bidentate neurosetae (as in Fig. 11l)

Piromis

Brada Stimpson

The listed species have 12-35 setigers, 2-5 notosetae per notopodium, and a papillose body covered with sand or silt.

Dorsum of middle segments with 2 or 3 transverse rows of broad, domelike papillae, each with filiform tip (Fig. 11a)
B. sachalina Annenkova (See Ushakov 1955; Banse and Hobson 1968)
Flabelligera essenbergae tenebricosa Berkeley, 1966, from British Columbia was referred to B. sachalina (Hobson 1977).

Dorsum of middle segments with 3-12 transverse rows of long, slender papillae (Fig. 11b). (See also Fig. 11c) B. villosa (Rathke)

Flabelligera Sars

Entire body covered with long papillae imbedded in mucus. Neuropodia with 1 or 2 neurosetae; hooks curved, with rounded tip (Fig. 11e) [not straight with flagelliform appendage]
F. affinis Sars
(F. infundibularis Johnson in CPF, see Pettibone 1954)

Pherusa Oken

In the listed species, the hooks begin on setiger 4. (Stylarioides negligens in CPF, see also Hobson 1974)
Without hooded hooks (as in Fig. 11i)

Anterior end plaque shaped (Fig. 11f). With single row of papillae encircling each segment
P. inflata (Treadwel1)*
(See Hartman 1969)
Anterior end rounded. With several irregular rows of papillae on each segment. (See also Fig. 11h, i)
P. plumosa (Müller)
(Stylarioides papillata (Johnson) and S. plumosa in CPF, see Pettibone 1956)
Specimens identified as P. neopapillata [not Hartman] by Banse et al. (1968) are referred herein to P. plumosa.

Piromis Kinberg

With bidendate hooks (Fig. 11l) from setiger 2-4 [usually 4] to posterior end. Anterior dorsum with 2 longitudinal rows of large conical papillae (Fig. 11 k). Body covered with sandy crust
P. eruca (Claparède)
(Stylarioides arenosa (Webster) in CPF, see Day 1973 [under P. eruca websteri Day])
Two subspecies, P. eruca eruca (Claparède) and P. eruca websteri Day, were recognized by Day (1973) for North Atlantic material. The characters above refer to specimens from British Columbia (USNM 40473) which are closer to the former than to the latter, by virtue of the first occurrence of neurosetae.

SCALIBREGMIDAE

Table 3, fig. C; Fig. 12
Kudenov and Blake (1978)
Spines [acicular setae], when present, occur in the first few notopodia.
With branched gills on some anterior segments (as in Fig. 12c). Without acicular spines. Median and posterior segments with well-developed dorsal and ventral cirri (as in Fig. 12d)

Scalibregma
Without gills. With or without spines. Without dorsal or ventral cirri [Asclerocheilus californicus \dagger has long fingerlike pre- and post setal lobes]

Fig. 12. SCALIBREGMIDAE: Asclerocheilus beringianus: a, anterior end, lateral view. Hyboscolex pacificus: b, anterior end, dorsal view. Scalibregma inflatum: c, anterior end, dorsal view; d, posterior parapodium, anterior view. Sources: a, c, d, original; b, Ushakov (1955).

Asclerocheilus Ashworth

First 2 notopodia with spines, 2 rows in setiger 1, 1 row in setiger 2; remaining notopodia without spines (Fig. 12a). Parapodial lobes broad and low [not long, fingerlike] A. beringianus Ushakov
(See Ushakov 1955; Hobson 1974)

Hyboscolex Schmarda

Prostomium with 2 anterolateral projections; posteriorly with 2 lateral rows of brownish eyespots on each side (Fig. 12b). With or without 4-6 blunt anal cirri
H. pacificus (Moore)
(Oncoscolex pacificus in CPF, see also Kudenov and
Blake 1978)

Scalibregma Rathke

Prostomium with 2 anterolateral projections (Fig. 12c). Tips of dorsal and ventral cirri acute [not broad, rounded] in posterior parapodia (Fig. 12d). With 4 or 5 filiform anal cirri
S. inflatum Rathke

OPHELIIDAE

Table 3, fig. D, E; Fig. 13

With ventral groove throughout4
With ventral groove only in posterior region (as in Fig. 13e) 5
Without lateral eyespots

Gills unbranched (as in Fig. 13b [North Pacific species]). Setiger 10 without
lateral ridge
Ophelia

b

C

d

Fig. 13. OPHELIIDAE [the ventral groove is stippled]: Armandia brevis: a, posterior end, ventral view; b, median setigers, lateral view. Euzonus mucronata: c, gill. E. williamsi: d, gill. Ophelia limacina: e, entire worm, ventrolateral view. Ophelina acuminata: f , posterior end, ventral view. O. breviata: g , posterior end, ventral view. Travisia brevis: h , setiger 20 , lateral view. T. forbesii: i , setiger 20, lateral view. T. pupa: j, setiger 20, lateral view. Sources: a, b, f, CPF; c, Treadwell (1914); d, Hartman (1938a); e, Støp-Bowitz (1945); g, Ehlers (1913); h-j, original [a-c, e-g, modified].

Armandia Filippi

Pygidium with short flap overhanging and nearly surrounding anus, with 4-7 small cirri on end, 1 larger on each side, and 1 long cirrus arising ventrally (Fig. 13a [cirri often lost]). Prostomium with 2 or 3 subdermal eyespots. With 29 or 30 setigers. (See also Fig. 13b)
A. brevis (Moore)
(In CPF, see also Binse et Al. 1968)

Euzonus Grube

Thoracophelia Ehlers and Pectinophelia Hartman are included in this genus. The listed species have $16-19$ pairs of gills.

Gills with 2 branches, not pectinate (Fig. 13c) E. mucronata (Treadwell)
(Thoracophelia mucronata in CPF)
Gills with 2 [rarely 3] main branches, irregularly [not neatly] pectinate (Fig. 13d)
........ E. williamsi (Hartman)
(See Hartman 1969; Hobson 1974)

Ophelia Savigny

With 33-40 setigers: 10 prebranchial, 16-24 branchial, and 4-7 [difficult to recognize] postbranchial (Fig. 13e)
O. limacina (Rathke)
(O. borealis Quatrefages in Berkeley and Berkeley 1954,
see Pettibone 1956)

Ophelina Oersted

The listed species have gills in the median body region.

Posterior region without enlarged parapodial lobes (Fig. 13j). Beading on surface small on anterior part of segmental ring, warty and much larger on posterior part (Fig. 13j). With 24-25 [rarely 21-23] pairs of gills
T. pupa Moore
(In CPF; T. carnea [not Verrill] in Berkeley 1966, see also Hobson 1977)

Posterior region with enlarged parapodial lobes (as in Fig. 13h, i). Beading on surface small, uniform in size (as in Fig. 13h, i). Number of gills variable

Body 4-7 cm long, with 26-35 pairs of gills and 33-40 setigers
T. japonica Fujiwara
(See Ushakov 1955; ?T. gigas Hartman \dagger in Berkeley 1966, see also Hobson 1977)

Body 1-3 cm long, with 18-23 pairs of gills and 23-26 setigers

Enlarged parapodial lobes tapering (Fig. 13h) T. brevis Moore
Enlarged parapodial lobes rounded (Fig. 13i) T. forbesii Johnston
(See Fauvel 1927; Pettibone 1956)

STERNASPIDAE

Table 3, fig. F
One recognized genus in family .. Sternaspis

Sternaspis Otto

Body oval or dumbbell shaped. (See also Table 3, fig. F)
S. scutata (Renier)
(S. fossor Stimpson in CPF, see Pettibone 1954)

CAPITELLIDAE

Table 3, fig. G; Fig. 14
Fauchald (1977); Hartman (1947)

The boundary between thorax and abdomen is usually marked by the shape of the segments, the texture of the epidermis [rugose or areolated in thorax, smooth in abdomen], and the position of the setal bundles [in pockets in thorax, on papillae in abdomen] (as in Table 3, fig. G). The first occurrence of hooded hooks may coincide with the boundary between the thorax and abdomen or may be anterior [or rarely posterior] to this boundary. Gills are retractable or nonretractable, epidermal modifications of or near the abdominal noto- and/or neuropodia (as in Fig. 14b, h). Examine especially posterior-most segments when determining the presence of gills.

First apparent segment with setae (as in Fig. 14a). Male with genital hooks dorsally on setiger 8 and 9 (as in Fig. 14a). Female with or without genital hooks Capitella
First apparent segment without setae (as in Table 3, fig. G). Both sexes without genital hooks 2
First 4-6 setigers with capillary notosetae 3
First $10-18$ setigers with capillary notosetae 5
With 9-10 thoracic setigers. Setigers 1-4 with capillary setae only. Posterior abdominal segments with or without capillary notosetae Mediomastus
With 11 thoracic setigers. Setigers $1-5$ or 6 with capillary setae only. Posterior abdominal segments without capillary notosetae 4

With 12 thoracic setigers Leiochrides \dagger

With 13 thoracic setigers ... Dasybranchus \dagger

Barantolla Southern

Without gills. Distribution of hooded hooks and capillary setae in setigers 6-8 highly variable ... B. americana Hartman
(See Hartman 1969, Hobson 1974)

Capitella Blainville

First 4-7 setigers with capillary setae only. Male with 3-5 pairs of genital hooks dorsally on setigers 8 and $1-3$ pairs on segment 9 (Fig. 14a). Female with hooded hooks in setigers 8 and 9 ; usually without genital hooks
C. capitata (Fabricius)

See Hartman (1969) for diagnostic characters of 4 subspecies and Reish (1977) for experimental work on C. capitata from southern California. Six sibling species have been found in material from Massachusetts. They are very difficult to distinguish morphologically from C. capitata but show markedly different patterns of reproduction and life
history; up to 5 occur in the same sample (Grassle and Grassle 1976).
First 7 setigers with capillary setae only. Notopodia of setigers 8 and 9 without any setae
C. dizonata Johnson
(Questionable species, see Hartman 1947)

Decamastus Hartman

Setiger 1 with notosetae and neurosetae. At about abdominal segment 8, notopodia nearly middorsal, each with only 9-13 notosetae, neuropodia
nearly reaching midventral line, each with about 40-55 neurosetae \qquad
D. gracilis Hartman
(See Hartman 1969, Hobson 1974)

Heteromastus Eisig

Gills conspicuous, beginning from abdominal segment $15-30$ as simple filaments, gradually increasing in number and length posteriorly (Fig. 14b)
H. filobranchus Berkeley and Berkeley

Gills inconspicuous, beginning on about abdominal segment 70 as simple extensions of parapodial lobes H. filiformis (Claparède)
(See Fauvel 1927; Berkeley 1966)

Fig. 14. CAPITELLIDAE: Capitella capitata: a, anterior end of male, dorsal view. Heteromastus filobranchus: b, abdominal segments, dorsal view. Mediomastus ambiseta: c, posterior end, lateral view; d, hooded hook, frontal view. Notomastus giganteus: e, distal part of hook with reduced hood, lateral view. N. tenuis: f, hooded hook, lateral view; g, prostomium, dorsal view. Notomastus sp : : h, abdominal seg. ment 3, dorsolateral view. Sources: a, CPF; b, Berkeley and Berkeley (1932a); c, d, f, g, Hartman (1947); e, Moore (1906b); h, original [a-g, modified].

Mediomastus Hartman

Capitita Hartman is included in this genus (see Hartmann-Schröder 1962). The listed species lack gills and do not have an acutely prolonged prostomium.

Notomastus Sars

In sexually mature individuals of the listed species, genital pores (as in Fig. 14h, from an unidentified species), if present, may be very conspicuous but are restricted to posterior thoracic [not abdominal] segments.

Hooded hooks with more than 3 teeth above main tooth. Posterior notopodia without capillary setae
 M. capensis Day

(See Hobson 1974)
Hooded hooks with 3 teeth above main tooth (as in Fig. 14d)

> Abdominal hooks with reduced hood (Fig. 14e); gills long, inconspicuous folds [not bushy, retractile tufts] ...giganteus MooreAbdominal hooks hooded (as in Fig. 14f)2
First setiger with notosetae and neurosetae. Gills formed by inflated superior edge of abdominal neuropodium (as in Fig. 14h). Prostomium with eyespots
First setiger with notosetae only. Without distinct gills 3

Prostomium with pair of oval patches of many reddish eyespots (Fig. 14 g [may fade in preservative]). Setigers 7-10 not noticeably lighter in color than rest of thorax. (See also Fig. 14f)

Without eyespots. Setigers 7-10 light [almost white] in color and opaque N. variegatus Berkeley and Berkeley

PARERGODRILIDAE

Table 3, fig. H
Karling (1958); Reisinger (1960)
Body with 10-11 setigers. With 3 kinds of setae: (1) limbate with long hairlike tip [only on setiger 1]; (2) limbate with hairlike tip; and (3) forked (as in Table 3, fig. H)

Stygocapitella Knöllner

One recognized species in genus S. subterranea Knöllner
(See Karling 1958; Hobson 1974)

ARENICOLIDAE

Table 4, fig. A; Fig. 15
Wells (1959)

To examine the oesophageal caeca (see Fig. 15b) make a dorsal longitudinal incision from setiger 4 to 8 .

1 Worms shorter than 2.5 cm , translucent. Gills simple or with few branches (as in Fig. 15e), not beginning before setiger 18 [absent in juveniles]. Without posterior achaetous portion

Branchiomaldane
Worms longer than 2.5 cm , opaque. Gills with many branches (as in Fig. 15 d), beginning on setiger 7 or 8 . With posterior achaetous portion (as in Table 4, fig. A)

Fig. 15. ARENICOLIDAE: Abarenicola claparedi oceanica: a, parapodium 7, left lateral view. A. pacifica: b, part of gut, dorsal view [setigers 4 to 8]; c , parapodium 7, left lateral view; d, setiger 16, cross section [right gill omitted]. Branchiomaldane vincenti: e, gills. Sources: a-d, original; e, Berkeley and Berkeley (1932a).

With 11-18 pairs of accessory oesophageal caeca

> A. claparedi vagabunda Healy and Wells (See A. vagabunda vagabunda in Healy and Wells 1959)

Arenicola Lamarck

With 19 setigers and 13 pairs of gills A. marina (Linnaeus)
(Fauvel 1927; Wells 1957)

Branchiomaldane Langerhans

One recognized species in genus (See also Fig. 15e) B. vincenti Langerhans

MALDANIDAE

Table 4, fig. B; Fig. 16, 17
Arwidsson (1907); Pilgrim (1977)
Glandular areas of the epidermis are lighter colored [may be whitish] (stippled in Fig. 16n, 17 m). Posterior achaetous segments may have glandular pads [in the place of setose parapodia] (Fig. 16o, 17e).Cephalic plate with conspicuous rim (as in Fig. 16e, 17h). With pygidialfunnel or plate (as in Fig. 16 m , r)2
Cephalic plate absent (as in Fig. 17c). With or without pygidial plate or funnel 12

$$
\begin{aligned}
& \text { Anus dorsal to pygidial plate (as in Fig. 16c, r). Setiger } 1 \text { without neurosetae, } \\
& \text { setigers } 2 \text { and } 3 \text { with uncini either similar to those on following setigers or } \\
& \text { slightly modified (as in Fig. 17l). MALDANINAE }
\end{aligned}
$$

Anus central, either terminal (as in Fig. 17i) or inside funnel (as in Fig. 16 in). Setiger 1 usually with neurosetae; neurosetae of first 2 or 3 setigers unmodified (as in Table 4, fig. B) or modified uncini (similar to Fig. 16l, 17l) or spines (as in Fig. 17j). EUCLYMENINAE

3 Cephalic plate with elevated rim [in listed species dentate, at least dorsal of lateral incision, as in Fig. 16a] and short, low median keel. Setiger 1 with anterior collar. Pygidial plate with wide rim [sometimes funnellike], with deep lateral incision (as in Fig. 16b, c) .. Asychis

Cephalic plate with low, smooth rim [with lateral incision] and long, high median keel (as in Fig. 16p). Seliger 1 without anterior collar. Pygidial plate with narrow rim, with weak lateral incision (as in Fig. 16q)

Maldane

4 First 3 or 4 neuropodia with few [usually 1-3] setae, usually spines or modified uncini (similar to Fig. 16l, 17l). With or without pygidial funnel
First 2 or 3 neuropodia [absent on first in Maldanella] with many [at least 5, usually >10] uncini (as in Table 4, fig. B [rarely without hairs]). With pygidial funnel (as in Fig. 16g, s [may be shallow in Axiothella]) and cirri

5 Setiger 8 with ventral triangular glandular area (as in Fig. 16h). With low or indistinct pygidial funnel

Setiger 8 without ventral triangular glandular area. With or without pygidial
funnel

6 Without pygidial funnel (as in Fig. 17i [cf. remark for Praxillella praetermissa, p. 76])

7
With pygidial funnel (as in Fig. 16 m, o) .. 8
With pygidial cirri, midventral one distinctly longer (as in Fig. 17i). First neuropodia with spines (as in Fig. 17j) or modified uncini (as in Fig. 16l, 17l)

Praxillella
Without pygidial cirri. First neuropodia with modified uncini (similar to Fig.
$16 l$ [Pacific species]) .. Microclymene \dagger
Glandular rings (as in Fig. 16n [may be cream colored]) pronounced on 5th and following setigers. First neuropodia with single straight spines. Pygidial cirri very short and of equal length (as in Fig. 160) Isocirrus

Glandular rings weakly developed. First neuropodia with spines or greatly
modified uncini (as in Fig. 16j, l)

9 Pygidial cirri conical or slender, midventral clearly longest (as in Fig. 16m). Glandular areas in weakly pronounced rings on setiger 5 and following segments. With fewer than 25 setigers

Euclymene
Pygidial cirri slender, short, uniform in length, none midventral. With more than 31 setigers Macroclymene

10 Setiger 1 without neurosetae. Pygidial cirri conical, nearly uniform in length (as in Fig. 16s)

Maldanella
Setiger 1 with 5 or more neurosetae .. 11

11 Pygidial cirri filiform, alternating in length [or several short between each long cirrus], midventral [usually clearly] the longest (as in Fig. 16g). Setiger 4 without membranous collar [segments may be telescoped (as in Fig. 16f), simulating collar] .. Axiothella

Pygidial cirri conical, nearly uniform in length. Setiger 4 with anterior membranous collar (as in Table 4, fig. B) .. Clymenella

This key excludes 2 Californian species with spines in the first 3 neuropodia but previously assigned to this genus (sec BANSE 1981).

12 With membranous collars on 2nd and 3rd (as in Fig. 17m) as well as on posterior setigers [posterior to setae] (as in Fig. 17n). Uncini from setiger 5; in double rows in middle section of body. Pygidium conical. RHODININAE

Rhodine

$$
\begin{aligned}
& \text { Without membranous collars [except Clymenopsis } \dagger \text { on setiger 4]; uncini } \\
& \text { always in single row. With or without pygidial funnel or plate } 13
\end{aligned}
$$

13 With almost normal uncini (similar to Fig. 17l) from setiger 1. With shallow
pygidial funnel
Micromaldane
With spines in first 3-7 setigers. With pygidial funnel or plate 14

With long, hairlike (twisted) capillary notosetae, often several times longer
than width of body, in median and posterior setigers (as in Fig. 17b). With
pygidial funnel or scooplike fold. NICOMACHINAE 15
Without long, hairlike capillary notosetae. Without pygidial funnel; with or without pygidial plate. LUMBRICLYMENINAE 16

Pygidium with [symmetrical] funnel and cirri (as in Fig. 17b)
Nicomache

Pygidium with asymmetrical ventral scoop, without cirri (as in Fig. 17f)
With squat pygidial plate, anus dorsal (as in Fig. 17e). First 3 or 4 setigers with acicular spines
Notoproctus
With conical pygidium, without cirri, anus terminal 17

Setiger 4 with anterior membranous collar (as in Table 4, fig. B). First 3 setigers with acicular spines. With 19 setigers Clymenopsis \dagger
Setiger 4 without collar. More than first 3 setigers with spines 18

First 4 setigers with spines. With 19 setigers. Uncini with several thin hairs below main tooth Lumbriclymene \dagger

First 6 or 7 setigers with spines. With 20 or more setigers. Uncini with single, thick hair below main tooth [not as in Table 4, fig. B] Praxillura

Asychis Kinberg

Abstract

In the listed species, the rim of the cephalic plate is divided by 2 pairs of incisions, separating the pair of lateral lobes from the dorsal [dentate] lobe and the [ventral] palpode (as in Fig. 16d); setiger 1 has a collar (as in Fig. 16a, e [sometimes not well developed]); the pygidial plate may be serrated but long, slender cirri are lacking. The revision of the genus by Light (1981) which could not be considered here, should be consulted.

Lateral lobe of cephalic plate with smooth (Fig. 16e), or nearly so, margin. Ventral lobe of pygidial plate low, moderately erect, with slightly undulating margin; dorsal lobe large and flaring, with smooth margin. Nuchal organs reaching margin of cephalic plate (as in Fig. 16a) A. similis (Moore)
Lateral lobe of cephalic plate with dentate margin (as in Fig. 16d) 2
Lobes of pygidial plate long, with smooth margins (Fig. 16c). Dorsal lobe of cephalic plate with about 12 moderately pronounced teeth
A. disparidenta Moore

Lobes of pygidial plate low, with undulating or dentate margins (as in Fig. 16b)

Margin of each pygidial lobe with 4 or more irregular teeth. Dorsal lobe of cephalic plate with about 12 strong teeth (Fig. 16d) A. lacera (Moore) (See Hartman 1969; Berkeley and Berkeley 1962)
Margin of pygidial lobes undulating or each with few weak teeth; dorsal lobe usually with fewer [2 or 3] teeth than in Fig. 16b, ventral lobe with 2 or 3. Dorsal lobe of cephalic plate short (Fig. 16a), with usually more than 12, up to 25 [50] teeth

Berkeley (1966) reported 40-50 teeth for animals from British Columbia (size not given),
whereas the maximum number of teeth in European specimens of more than 10 cm length is 25 (Arwidsson 1907).
Based on the available literature and the variability of the teeth on the cephalic plate in British Columbia material, Berkeley and Berkeley (1962) surmised that A. similis and A. lacera might be synonyms of A. biceps.

Axiothella Verrill

Rim of cephalic plate with middorsal notch. With 2 [not 3] achaetous posterior segments followed by welted ring (Fig. 16g)
A. rubrocincta (Johnson)

Clymenella Verrill

As in generic key .. C. torquata (Leidy)
(See Newell 1949; Banse 1981)

Clymenura Verrill

Rim of cephalic plate conspicuous. Pygidial cirri numerous, short except for long, midventral one. (See also Fig. 16h) C. columbiana (Berkeley)
(Leiochone columbiana in CPF)

Euclymene Verrill

1 Anterior end and setiger 1 fused, epidermis markedly reticulated. Pygidial cirri of uniform, moderate length
E. reticulata Moore*
(See Hartman 1969; Carey 1972)
Anterior end and setiger 1 not fused (segmental border distinct as in Fig. $16 i$), with epidermis smooth or annulated. Pygidial cirri uniform or alternating in length

2 Lateral notches of cephalic rim indistinct or absent (Fig. 16i). Setigers 1-3 with spines (Fig. 16j). Pygidial cirri of about equal length

Lateral notches of cephalic rim distinct (Fig. 16k). Setiger 1 with spines, 2 and 3 with modified uncini (Fig. 16l). Pygidial cirri alternating in length (Fig. 16m)
E. cf. zonalis (Verrill)
(See Banse et al. 1968)

Fig. 16. MALDANIDAE: Asychis biceps: a, anterior end, dorsal view; b, posterior end, ventral view. A. disparidenta: c, posterior end, lateral view. A. lacera: d, cephalic plate, top view [ventral side up]. A. similis: e, anterior end, lateral view. Axiothella rubrocincta: f , anterior end, lateral view; g , posterior end, lateral view. Clymenura columbiana: h, setiger 8, ventral view. Euclymene zonalis: i, anterior end, lateral view; \mathbf{j}, spine of setiger 2. Euclymene cf. zonalis: k , anterior end, lateral view; l, modified uncinus of setiger 2; m, posterior end, dorsolateral view. Isocirrus longiceps: n , anterior end, lateral view; o , posterior end, lateral view. Maldane glebifex: p , anterior end, lateral view; q , posterior end, lateral view. M. sarsi: r, posterior end, lateral view. Maldanella harai: s, posterior end, lateral view. Sources: a, b, WesenbergLund (1948); c, e, f, h-j, p, CPF; d, Hartman (1969); g, Arwidsson 1922; k-o, q, s, original; r, Ushakov (1955) [a, b, e, g, h, j, r, modified].

Isocirrus Arwidsson

With 19 setigers [not 21 or more]. Setiger 3 often markedly telescoped into 4th, simulating collar; setigers 2 and 4 sometimes telescoped into setigers 3 and 5. (See also Fig. 16n, o)
I. longiceps (Moore)

Macroclymene Verrill

Body up to 1 mm thick
Macroclymene sp.
(See Banse and Hobson 1968)

Maldane Grube

Ventral rim of pygidial plate dentate (Fig. 16q). (See also Fig. 16p)
M. glebifex Grube

Ventral rim of pygidial plate entire, essentially smooth (Fig. 16r)
M. sarsi sarsi Malmgren
(See Pettibone 1954; Berkeley 1966)

Maldanella McIntosh

With one achaetous posterior segment. Rim of cephalic plate faintly crenulated
M. robusta Moore
(See Moore 1906b; not M. robusta in CPF, see Banse 1981 under M. harai)
With two achaetous posterior segments (Fig. 16s). Rim of cephalic plate smooth
M. harai (Izuka)
(See Imajima and Hartman 1964; M. robusta [not Moore] in CPF, see Banse 1981)

Micromaldane Mesnil

Notosetae subspatulate (Fig. 17a) M. ornithochaeta Mesnil
(See Fauvel 1927; Berkeley and Berkeley 1962)
Possibly a postlarval stage, perhaps of Nicomache sp. (Fauvel 1927)

Nicomache Malmgren

The listed species have 22 setigers and a very slightly oblique pygidial funnel.
With 1 achaetous posterior segment. Anterior end with conspicuous white and chocolate-brown markings (Fig. 17c [may fade in preservative])
N. personata Johnson

Usually with 2 achaetous posterior segments (Fig. 17b). Anterior end without conspicuous white markings. First 3 [not 4] setigers with spines; setigers 4 and 5 with modified uncini
N. lumbricalis (Fabricius)

Notoproctus Arwidsson

With 1 or 2 [not 3] posterior achaetous segments (Fig. 17e). Outer limbs of nuchal organs longer than inner (Fig. 17d). With whitish ring behind frontal face of anterior end, white dorsal bands between notopodia of about first 6 setigers [may fade in preservative] \qquad N. pacificus (Moore)

Occasionally, setiger 19 may be without setae so that there are 3 posterior achaetous segments (CPF).

FIg. 17. MALDANIDAE: Micromaldane ornithochaeta: a, subspatulate notoseta. Nicomache lumbricalis: b, posterior end, lateral view. N. personata: c, anterior end, lateral view. Notoprocths pacificus: d, anterior end, lateral view; e, posterior end, lateral view. Petaloproctus tenuis borealis: f, posterior end, lateral view. P. tenuis tenuis: g, posterior end, end view. Praxillella affuis pacifica: h, cephalic plate, dorsal view; i , posterior end, lateral view; j, spine from setiger 2. Pr. gracilis: k, cephalic plate, dorsal view. Pr. praetermissa: l, slightly modified uncinus from setiger 2 . Rhodine bitorquata: m, anterior end, lateral view; n, posterior part of setiger 17, lateral view; o, uncinus. Sources: a, Fauvel (1927); b, d, e, i, n, o, original; c, f-h, j, k, CPF; l, Banse (1981); m, Hartman (1969) [h, j-l, modified].

Petaloproctus Quatrefages

```
1 With 20 setigers. Pygidial scoop with crenulate or toothed margin (Fig. 17g)
\(P\). tenuis tenuis (Théel)
```

With 21 setigers. Pygidial scoop with smooth margin (Fig. 17f)
P. tenuis borealis Arwidsson

Berkeley's (1929) description of P, tenuis borealis differs from the original description by ArWidsson (1907) in having spines on the first 2 [rather than 3] setigers.

Praxillella Verrill

The listed species do not have a distinct collar on setiger 5. The first 3 anterior neuropodia carry 1-3 spines or modified uncini [sometimes more in P. praetermissa]. The anterior 2 of the posterior achaetous segments have pads (as in Fig. 17i). The length of the pygidial cirri is much less than the width of the pygidium.

1 With 3 posterior achaetous segments. Prostomium anteriorly obtuse (as in Fig. 17h) or pointed (as in Fig. 17k)

With 4 posterior achaetous segments. Prostomium anteriorly obtuse

Prostomium anteriorly obtuse (as in Fig. 17h). With 18 setigers
P. affinis affinis (Sars)
(See Clymene affinis in Fauvel 1927; P. affinis in Berkeley and Berkeley 1962)

Prostomium with fingerlike projection (Fig. 17k) P. gracilis (Sars)

Setigers 1-3 with spines (Fig. 17j). (See also Fig. 17h, i)
P. affinis pacifica Berkeley

Setigers 1-3 with slightly modified uncini (Fig. 17l)

The posterior end if contracted simulates a pygidial funnel.

Praxillura Verrill

Anterior end and setigers with spines with abundant, mottled red-brown pigment
P. maculata Moore
(See Hartman 1969; McDaniel and Banse 1979)

Rhodine Malmgren

Uncini with long [not short] projection below principal tooth (Fig. 17o). Posterior collar from setiger 17, margin smooth [or nearly so] (Fig. 17n). Limbs of nuchal organs forming pointed angle (Fig. 17m)
R. bitorquata Moore
(See Banse and Hobson 1968)
Posterior collars start on setiger 15 according to Hartman (1969).

OWENIIDAE
 (AMMOCHARIDAE in CPF)

Table 4, fig. C; Fig. 18
Hartman (1960)

1 Anterior end with branched \cdot membranous funnel, crownlike in adult (as in Fig. 18d)

Owenia
Anterior end without branched membranous funnel (as in Fig. 18a, c)
2
Without palps (as in Fig. 18a) Myriochele
With palps (as in Fig. 18c) Myriowenia \dagger

Myriochele Malmgren

Anterior end with eyespot on each side and dorsal pigment band (Fig. 18a [may fade in preservative]); without dorsal flap extending to setiger 3 . Neuropodial hooks with 2 adjacent teeth, clearly unequal in length (Fig. 18b). With 27 setigers, the first 3 much shorter than following. Pygidium with 2 or 3 indistinct [not 7-9 distinct] lobes
M. oculata Zachs
(M. hecri [not Malmgren] in CPF, see Hobson 1977)

Owenia delle Chiaje

Anterior end with 2 ventral eyespots; collar low, dorsally barely concealing base of funnel (Fig. 18d) O. fusiformis delle Chiaje
(Ammochares fusitormis in CPF)

FIG. 18. OWENIIDAE: Myriochele oculata: a, anterior end, lateral view; b, neuropodial hook. Myriowenia \dagger sp.: c, anterior end, lateral view. Owenia fusiformis: d, anterior end, dorsal view. Sources: a, d, original; b, Blake and Dean (1973); c, Hartman (1960) [b, c, modified].

SABELLARIIDAE

Table 4, fig. E; Fig. 19
Hartman (1944)

Opercular paleae occur in 2 or 3 concentric rows on the anterior end; thoracic paleae occur on 3 segments in the listed genera (see Table 4, fig. E).

Opercular paleae dark or black, forming compact flat operculum; inner row covered by outer row Phragmatopoma \dagger

Opercular paleae yellow, in bristly rows; inner row not covered by middle [or
outer] row (as in Table 4, fig. E)

2 Anterior end with 3 visible rows of opercular paleae (as in Table 4, fig. E); without stout dorsal hooks

Sabellaria
Anterior end with 2 visible rows of opercular paleae; with stout dorsal hooks (as in Fig. 19a) Idanthyrsus

Idanthyrsus Kinberg

Outer row of opercular paleae of listed species with nearly straight [terminally not strongly curved] shaft.

1 Thoracic paleae distally widened [oar-shaped] (Fig. 19b). (See also Fig. 19a)

1. armatus Kinberg (In CPF, sce also Banse et al. 1968)

Thoracic paleae distally not widened (Fig. 19c)
I. ornamentatus Chamberlin
(See Hartman 1969) The species is regarded as a synonym of I. armatus by Pettibone (1954) but not by Hartman $(1944,1948)$ and Reish (1965).

Fig. 19. SABELLARIIDAE: Idanthyrsus armatus: a , anterior end, dorsal view; b, thoracic palea. I. ornamentatus: c, outer opercular palea. Sabellaria cementarium: d, tip of outer opercular palea; e, middle opercular palea; f, inner opercular palea. Sources: a, CPF; b, Banse et al. (1968); c, Chamberlin (1919); d-f, Hartman (1944) [c, modified].

Sabellaria Savigny

Opercular paleae of outer row with distal hairy spike (Fig. 19d); paleae of middle row (Fig. 19e) uniform in length; paleae of inner row broader than paleae of middle row, distally smooth (Fig. 19f)
S. cementarium Moore

AMPHICTENIDAE

(PECTINARIIDAE in CPF)

Table 4, fig. F; Fig. 20
Hartman (1941b); Nilsson (1928)

Scaphal hooks are inserted dorsally at the constriction between the scaphe [caudal region] and the rest of the body (as in Table 4, fig. F). The cephalic plate is placed anterodorsally (as in Table 4, fig. F). The antennular membrane is located ventrally between the paleae and the tentacles (as in Fig. 20f).

Scaphe sharply set off from rest of body (as in Table 4, fig. F). Antennular membrane with numerous slender cirri (as in Fig. 20f)

Pectinaria

Pectinaria Lamarck

Although Pectinaria is a junior objective synonym of Cistena Leach, the former name is used here. A proposal to validate Pectinaria on the basis of stability in scientific names has been requested from the Commission of Zoological Nomenclature (See Bull. Zool. Nomencl. 35: 18-29, 1978). The status of the subgeneric names, Lagis \uparrow and Pectinaria, also may be affected by the Commission's decision.

Fig. 20. AMPHICTENIDAE: Pectinaria californiensis; a, outermost paleae; b, pectinate uncinus, frontal and side view; c, scaphal hooks. P. granulata: d, scaphal hook. P. moorei: e, part of dorsal rim of cephalic plate. P. (Lagis \dagger) sp.: f, anterior end, ventral view. Sources: a-d, Hartman (1941b); e, Ushakov (1955); f, Day (1967) [b, d, f, modified].

1 Antennular membrane fused to base of first pair of tentacular cirri (as in Fig. 20f)
Antennular membrane not fused to base of tentacular cirri 2

2 Dorsal rim of cephalic plate fringed or undulating. Subgenus Amphictene. Dorsal rim of cephalic plate unevenly undulating (Fig. 20e). With 13 uncinigers. Uncini with 4 or 5 major teeth in single row. With $8-10$ weakly curved scaphal hooks on each side
P. moorei Annenkova
(P. auricoma [not Müller] in CPF, see Hobson 1977)

Dorsal rim of cephalic plate smooth (as in Table 4, fig. F)
Uncini normally with 1 row of major teeth. Subgenus Cistenides. With 12 uncinigers; uncini with 3 or 4 major teeth [side view], usually in single row. With 7-13 short, broad brassy paleae on each side, tips blunt or short, straight, hairlike. With 5-10 weakly curved scaphal hooks on each side, "shoulder" distinct (Fig. 20d). Tube of coarse sand grains
P. granulata (Linnaeus)
(P. brevicoma Johnson in CPF, see Banse and Hobson 1968) In small animals, a single neuropodium may have uncini with 2 rows of major teeth as well as those with 1 row (see Banse and Hobson 1968).

Uncini with 2 or more rows of major teeth (as in Fig. 20b). Subgenus Pectinaria.
With 13 uncinigers; uncini with 5 or 6 major teeth [side view] (Fig. 20b). With 13-18 long, slender coppery paleae on each side, tips long, recurved, hairlike (Fig. 20a). With $8-14$ weakly curved scaphal hooks on each side, without distinct "shoulder" (Fig. 20c). Tube of fine sand grains
P. californiensis Hartman
(P. belgica [not Pallas] in CPF, see Nichols 1975)

AMPHARETIDAE Malmgren

Table 5, fig. A; Fig. 21
Day (1964); Fauchald (1972)
Notosetae are present only in thoracic setigers. They may be small in setigers 4-6, partially hidden under the bases of the gills on segment 4 (as in Fig. 21k) or lacking (as in Fig. 21c). The flabellum is the bundle of setae on segment 3 [anterior to the gills; may be absent]; its setae may be capillaries or, if conspicuously larger than the notosetae on median setigers, paleae. The tips of the paleae are best studied in short (recently formed) setae as those of older paleae may be worn. The first unciniger [observe neuropodium] always is segment 7; the neuropodia are inserted posteriorly on each segment (see Fig. 21c). Note that the ventral cirrus if present inserts dorsally on the neuropodium (see Fig. 21h, m). Abdominal notopodia are rudimentary, either cirriform or papillate (as in Fig. 21h, r); they may be present, at least anteriorly, or absent.

With minute acicular neurosetae on 3 or 4 segments before segment 7 (as in
Fig. 21q). MELINNINAE.

With single pair of large hooks (as in Fig. 21o, p) dorsally behind gills

With 4 pairs of gills [detached gills leave scars]. Abdominal neuropodium with or without cirrus 5

Flabellum without paleae, setae short. With 12 thoracic uncinigers. With
dorsal transverse ridge anteriorly on unciniger 1

Melinnampharete \dagger
Flabellum absent 4
4 With 11 thoracic uncinigers Glyphanostomum \dagger
With 14 thoracic uncinigers Samytha
5 With flabellum (as in Fig. 21c) 6
Without flabellum 11
6 With 11 thoracic uncinigers. Flabellum without paleae, setae short. Abdomenwithout rudimentary notopodia; neuropodium with distinct cirrus (as in Fig.21m)Sabellides \dagger
With 12 or more thoracic uncinigers. Flabellum with paleae or thin setae 7
7
With 12 thoracic uncinigers. Flabellum with paleae 8
With 13 or 14 thoracic uncinigers. Flabellum with paleae or thin setae 9
Flabellum with paleae. With 14 thoracic uncinigers. Abdominal neuro- podium with cirrus (as in Fig. 21h) Amphicteis
Flabellum without paleae 10
$10 \begin{aligned} & \text { Flabellum with short setae. With } 13 \text { thoracic uncinigers [species in cool- } \\ & \text { temperate North Pacific]. Abdominal neuropodium without cirrus Lysippe }\end{aligned}$

> Flabellum with long setae. With 14 thoracic uncinigers. Abdominal neuropodium with long cirrus (as in Fig. 21m)

11 Third-from-last thoracic notopodium inserted dorsally, enlarged, with broad fan of setae ... Sosanopsis
\qquad

With 11 thoracic uncinigers. Abdomen with rudimentary notopodia Amage
With 12 or more thoracic uncinigers. Abdomen with or without rudimentary notopodia13

With 14 thoracic uncinigers. Ventral prostomial lip crenulated (as in Fig.
21 k). Abdomen with rudimentary notopodia
Amphisamytha
With 12 thoracic uncinigers. Ventral prostomial lip smooth. Abdomen with or without rudimentary notopodia14

14 First 2 thoracic segments without neuropodia. All gills smooth, on each side with 1 gill behind 3 in transverse row. Abdomen without rudimentary notopodia Asabellides

First 3 thoracic segments without neuropodia. One pair of gills smooth, 3 pairs lamellate. Abdomen with rudimentary notopodia (as in Fig. 21r)

Schistocomus

Amage Malmgren

With 12-15 abdominal setigers. Thoracic uncinus with 5 or 6 teeth in single row (Fig. 21a)
A. anops (Johnson)
(In CPF, see also Banse 1979b)

[^7]

Ampharete Malmgren

> Edge of prostomial upper lip (see Table 5, fig. A) with very numerous eyespots [inspect lip from ventral side]abrops Hartman (See HARTMAN 1969; BANSE 1979b)
Upper lip without eyespots 2
Anal end surrounded by numerous (about 20) cirri (Fig. 21b). With $12 \mathrm{ab}-$ dominal setigers
Anal end with two [or no] cirri, sometimes also with numerous papillae. With more than 12 abdominal setigers 3
With 13 abdominal setigers. With $12-16$ pairs of paleae [not 6], reaching only slightly beyond anterior edge of prostomium [not 2 or 3 times as long as prostomium], abruptly tapered, with short sharp tips (Fig. 21d). Gills almost in single row on each side. (See also Fig. 21c) A. finmarchica (Sars)

With 16 or 17 abdominal setigers

With 16 abdominal setigers; neuropodium with distinct cirrus (Fig. 21f). Paleae with long tips (Fig. 21e) A. goesi brazhnikovi Annenkova
(See Annenkova 1929; Banse 1979b)
With 17 abdominal setigers; neuropodium with indistinct cirrus. Paleae abruptly tapered, with short tips (as in Fig. 21d)
A. goesi goesi Malmgren
(A. goesi in CPF)

Amphicteis Grube

The listed species have 13 to 15 [not 19 or more] abdominal setigers.
Anteriomedian pair of gills foliose, with slender tips (Fig. 21j). With up to 15 abdominal setigers. Paleae gradually tapered
A. scaphobranchiata Moore

All gills cirriform. With 15 [14] abdominal setigers. With about 10 [not 20] paleae on each side

Paleae abruptly tapered, with fine tips (Fig. 21i [tips may be worn])
A. mucronata Moore

Paleae gradually tapered, with long fine tips (Fig. 21g). Abdominal rudimentary notopodium ovoid [not cylindrical], with short stem. Abdominal neuropodial cirrus very small (Fig. 21h)

Amphisamytha Hessle

Right and left groups of gills close together, separated by less than proximal diameter of single gill. With about 13-14 abdominal setigers. (See also Fig. 21 k)
A. bioculata (Moore)

Anobothrus Levinsen

Fifth-to-last notopodium (unciniger 8) very slightly displaced dorsad, often projecting differently from others. (See also Fig. 21l)
A. gracilis (Malmgren)
(In CPF, see also Berkeley 1966)
Banse (1979b) referred specimens identified by Banse and Hobson (1968) as Ampharete gagarae [not Ushakov] to this species.

Asabellides Annenkova

The listed species have more than 12 abdominal setigers.
Abdominal neuropodium with long slender cirrus (Fig. 21m)
A. lineata (Berkeley and Berkeley)
(Pseudosabellides lineata in CPF)

Hobsonia Banse
With more than 20 [23-26] abdominal setigers H. florida (Hartman)
(See Banse 1979b)

Lysippe Malmgren
Lower prostomial lip crenulated [similar to Fig. 21k]. With about 14 abdominal setigers
L. labiata Malmgren
(In CPF, see also Banse 1979b)

Melinna Malmgren

Dorsal hooks long, with slightly bent tips (Fig. 210). Transverse dorsal fold posterior to hooks with $10-20$ teeth [not 3 or 4]
M. cristata (Sars)

Dorsal hooks short, with sharply bent tips (Fig. 21p)

Samytha Malmgren

With 19-20 abdominal setigers S. californiensis Hartman
(See Hartman 1969; Banse 1979b)
The key does not distinguish this species from S. gurjanovae Ushakov \dagger (see Ushakov 1955).

Schistocomus Chamberlin
Median abdominal neuropodium with distinct cirrus [not small knob] (Fig. 21r)
S. hiltoni Chamberlin

Sosanopsis Hessle

Thoracic uncinigers 9 and 10 [latter with modified notopodium] with ridges across dorsum

TEREBELLIDAE

Table 5, fig. B; Fig. 22, 23
Day (1967); Hessle (1917)

Abstract

Eyes when present are above and behind the tentacles on the reduced, beltlike prostomium. Some anterior segments may develop lateral lappets (as in Fig. 22j, n). Gills, when present, typically begin on segment 2 [3 in Betapista; 4 in Scionella japonica]. Setae occur usually from segment 2 to 4 onwards. Notosetae in most genera are restricted to [and thus indicate] the thorax and often are arranged in a parapodium in an upper and lower series, with the setae longer in the upper series. With a few exceptions, they may be limbate with smooth (as in Fig. 22e), denticulate (as in Fig. 22g), or hairy tips (as in Fig. 23j), or may have serrate blades (as in Fig. 23I). Nephridial papillae [including gonoducts] when present are situated on some thoracic segments behind and somewhat above or below the notopodia (as in Fig. 22j). Light-colored pads, the ventral shields, occur on the ventral surface of the thorax (as in Table 5, fig. B).

1 Anterior end with large proboscislike extension (as in Fig. 22b). ARTACAMINAE.
Extension papillated. With 17 thoracic setigers
Artacama
Anterior end without extension ... 2

2 Uncini in single row [with main teeth pointing in same direction rather than alternating; row may form loop in middle and posterior thorax as in Fig. 23p] or absent

Uncini in double row from segment 11 [sometimes before 11] to at least end of thorax, usually interlocking (as in Fig. 22i), occasionally separated into 2 rows with teeth pointing in opposing directions (as in Fig. 22f); in single row elsewhere. AMPHITRITINAE
3 Without gills. Notosetae on anterior segments or absent [dissect if specimen is not transparent]. POLYCIRRINAE 21
With 2 or 3 pairs of simple [threadlike] gills. Notosetae on most segments. THELEPINAE 24
4 Gills absent 5
Gills present 9
5
Setigers 1-6 without uncini Laphania
Setiger 1 without uncini, setiger 2 with or without uncini 6
6Without lateral lappets. Long notosetae [sometimes also short] with subdistalspinose swelling (as in Fig. 23n)Spinosphaera \dagger
With lateral lappets (as in Fig. 22j, n). Long and short notosetae limbate (as in Fig. 22d, e) 8
8 Segment 3 [first uncini on segment 5] with ridge across dorsum. Notosetae with smooth tips (as in Fig. 22e) Leaena*
Segment 3 without dorsal ridge. Notosetae with denticulate tips (as in Fig. 22d) Lanassa
9 Thoracic notosetae distally smooth (as in Fig. 22e) [except in Scionella japo- nica; use high magnification] 10
Thoracic notosetae distally distinctly denticulate (as in Fig. 22g [sometimes more strongly denticulate]) 18
10 Notosetae on 13 segments. With 1 pair of gills Ramex \dagger
Notosetae on more than 13 segments. With 1-3 pairs of gills 11
11 Thoracic uncini [at least on first 3 uncinigers] with handles (as in Fig. 22k). With lateral lappets [conspicuous in listed species] 12
Thoracic uncini without handles. With or without lateral lappets 13
Gills branched (as in Fig. 22h, n) 20

Without any setae Hauchiella \dagger
With setae 22
Abdomen without uncini Lysilla
Abdomen with avicular uncini or needlelike setae, sometimes deeply im- bedded 23
23
Abdominal setae avicular uncini (as in Fig. 23e) Polycirrus
Abdominal setae straight, needlelike Amaeana
24 Notosetae from segment 2 [uncini from segment 5] Streblosoma
Notosetae from segment 3 [uncini from segment 5] Thelepus
Amaeana Hartman
Notosetae on 12 [not 10] segments A. occidentalis (Hartman)(See Hartman 1969; Banse 1980)
Amphitrite Müller
Prostomium without eyes. Nephridial papillae on segments 3 and 6-11 [not 6-8]; on latter segments inconspicuous, between notopodium and neuro- podium. (See also Fig. 22a) A. cirrata Müller
Artacama Malmgren
As in generic key. (See also Fig. 22b) A. conifera Moore
The key does not differentiate this species from A. proboscidea Malmgrent recorded fromthe Arctic and the temperate NW Pacific Ocean (Ushakov 1955).
Betapista Banse
As in generic key. (See also Fig. 22c) B. dekkerae Banse
(See Banse 1980)

Fig. 22. TEREBELLIDAE [anterior ends in lateral views]: Amphitrite cirrata: a, gill, Artacama conifera: b, anterior end. Betapista dekkerae: c, anterior end [tentacles omitted, gills partially indicated]. Lanassa venusta venusta: d, denticulate tip of notoseta. Leaena abranchiata*: e, limbate notoseta with smooth tip. Loimia medusa*: f, thoracic pectinate uncini in parapodium, lateral view. Neoamphitrite edwardsi: g, limbate notoseta with denticulate tip. N. robusta: h, gill; i, posterior thoracic uncini in parapodium, frontal view. Pista brevibranchiata: j, anterior end; k, l, anterior and posterior thoracic avicular uncini, side view. P. cristata: m, gill. P. elongata: n , anterior end. P. moorei: o, part of gill, P. pacifica: p , anterior end [tentacles omitted, gills indicated]; q, tube, anterior end. Sources: a, o, p, CPF; b, d, j, m, n, original; c, Banse (1980); e, Ushakov (1955); f, Day (1967); g, Fauvel (1927); h, i, Johnson (1901); k, l, Banse and Hobson (1968); q, Berkeley and Berkeley (1942) [e, h, l, p, q, modified].

Eupolymnia Verrill

With 3 [not 6] nephridial papillae from segment 3. Width of lateral lappets half length of segments (as on segments 4-6, Fig. 22j). Gills branched serially [not dichotomously] (as in Fig. 22j) E. heterobranchia (Johnson)
(In CPF, see also BANSE 1980)

Lanassa Malmgren

Abstract

Without eyes. Notosetae on 11 [not 12 or 15] setigers. Uncini in double row on posterior segments with notosetae, and on following 4 segments without notosetae. (See also Fig. 22d) L. venusta venusta (Malm) (See Ushakov 1955; Banse 1980)

Laphania Malmgren

As in generic key ... L. boecki Malmgren
(See Ushakov 1955; Banse 1980)

Leaena Malmgren*

Notosetae on 10 segments, broad-limbate (Fig. 22e)
L. abranchiata (Malmgren)*
(See Hartman 1948; Pereyra and Alton 1972)

Loimia Malmgren*

As in generic key. (See also Fig. 22f)
L. medusa (Savigny)*
(See Hartman 1969; Hartman and Reish 1950)

Lysilla Malmgren

With 6 pairs of notopodia; setae numerous, tapered, not emerging. Nephridial papillae below notopodia often as long as notopodia. Thorax with very numerous, large epidermal papillae
L. loveni Malmgren (See Ushakov 1955; Banse 1980)

Neoamphitrite Hessle

1 Notosetae on 19 segments. Uncini in single row from abdominal segment 2 N. groenlandica (Malmgren)*
(See Pettibone 1954; Pereyra and Alton 1972
[Amphitrite groenlandica in both])

Abdominal uncini in double row
N. californica (Moore)*
(See Banse 1980)
Abdominal uncini in single row .. 2
Abdominal uncini in single row .. 2
Terminal branches of gills relatively short. Ne
segments, from segment 3 . (See also Fig. 22g)
Neoleprea Hessle

Notosetae on about 25 segments. With about 15 ventral shields
N. japonica Hessle
(See Banse 1980)
Notosetae on about 35 [40] segments. With about 20 ventral shields
N. spiralis (Johnson)

Nicolea Malmgren

Notosetae on 15 setigers
N. zostericola (Oersted)

Fauvel (1927) noted the variability within the species and characterized the related N. venustula (Montagu)t. Mature, $1.0-1.5 \mathrm{~cm}$ long specimens collected by J. Bryan in plankton nearshore at San Juan Island, Washington, in summer 1978, and referred to N. zostericola by K. Banse have notosetae on 15 setigers as in N. zostericola; the basal stems of their gills are long, similar to those of N. venustula \dagger, rather than short as in N. zostericola (see also Reish 1965 for comments on N. zostericola from Bering Strait).

Pista Malmgren

Listed species possess notosetae on 17 segments. Paired gills may be very unequal in size; occasionally one may be missing.
P. fratrella [not Chamberlin] in CPF is not included here (see Pista sp. I, in Banse 1980).

1 Gills long and trailing, with well-separated groups of short branches (Fig. 220) .. P. moorei Berkeley and Berkeley

$$
\text { Gills otherwise .. } 2
$$

With 2 [or 1] pairs of clublike or arborescent gills. Tube with wall of mud or sand
With 3 pairs of clearly arborescent gills. Tube membranous [often with shell fragments]

4 Lappets ventrolateral on segment 1, lateral on segment 3 (Fig. 22n). Posterior thoracic uncini with reduced handles. Anterior end of tube spongelike with many branched filaments covered with fine shell fragments
P. elongata Moore

Lappets ventrolateral on segment 1, lateral on segments 3 and 4 (Fig. 22p). Posterior thoracic uncini with long handles (as in Fig. 22k). Anterior end of tube with hood bordered by [essentially unbranched] filaments (Fig. 22q) P. pacifica Berkeley and Berkeley

Polycirrus Grube

Identification of the members of the genus is very difficult. Further the genus is in need of revision so that only preliminary diagnoses exist for five of the listed species (Banse 1980); hence, the provisional designation of the taxa.
Use method on p. 5 for viewing uncini in frontal view. Lateral shields occupying the position of the neuropodia in the thorax are similar in structure to the ventral shields (as in Table 5, fig. B).
Polycirrus eous Annenkova \dagger with 20 notopodia is not differentiated clearly here (see Annenkova-Chlopina 1924; Ushakov 1955).

1 Notosetae mainly plumose (Fig. 23d); some limbate. With 10-14 pairs of notopodia [rarely 15]

Polycirvus sp. I
(Lysilla pacifica [not Hessle] in Banse and Nichols 1968, see Banse 1980)

Notosetae limbate [may appear under oil immersion lens as weakly serrate as
in Fig. 23g, or with fine hairs] 2
With $10-15$ pairs of notopodia 3
With 20-25 [40] pairs of notopodia 5

Notosetae weakly serrate (Fig. 23g [serration may appear only on one side of seta]). Uncinus with semicircle of large teeth above secondary tooth (Fig. 23h)

Uncinus with numerous small teeth above and to side of secondary tooth (Fig. 23k). Paired lateral shields on 6-8 segments. (See also Fig. 23j)

Polycirrus sp. V
(See Banse 1980)

Fig. 23. TEREBELLIDAE [frontal views of uncini sketched]. Polycirus californicus: a, anterior notopodium, posterior view; b, posterior notopodium, dorsal view [setae schematic in both]; c, crest of uncinus, frontal view. Polycirrus sp. I: d, middle part of plumose notoseta. Polycirrus sp. II: e, avicular uncinus, lateral view; f, crest of uncinus, frontal view. Polycirus sp. III: g, middle part of limbate notoseta; h, crest of uncinus, frontal view. Polycirrus sp. IV: i, crest of uncinus, frontal view. Polycirrus sp. V: j, tip of notoseta; k, crest of uncinus, frontal view. Proclea graffi: l, comblike notoseta. Scionella japonica: m, anterior end, lateral view. Spinosphaera \dagger sp.: n, long notoseta. Sireblosoma bairdi: o, crest of abdominal uncinus, frontal view. Thelepus crispus: p, abdominal neuropodium. Sources: a-k, Banse (1980); l, n, Hessle (1917); m, p, CPF; o, original [a, b, e, l, m, p, modified].

Notopodium with usually conspicuous posterior lobe (Fig. 23a, b). Uncinus with semicircle of small teeth above secondary tooth (Fig. 23c)
P. californicus Moore
(P. perplexus Moore in Weese 1933; P. caliendrum [not Claparède] in part, in CPF, see Banse 1980)

Notopodium without conspicuous posterior lobe. Uncinus without teeth above 1 or 2 small teeth above principal tooth (Fig. 23i) Polycirrus sp. IV
(See Banse 1980)

Proclea St.-Joseph

Notosetae on 16 [not 20-23] setigers. Uncini on abdominal segment 1 in single row (see also Fig. 23i)
P. graffi (Langerhans)
(See Ushakov 1955; Banse and Hobson 1968)

Scionella Moore

Gills on segment 2, bottle-brush shaped [with densely packed whorls]
S. estevanica Berkeley and Berkeley

Gills on segment 4, otherwise (Fig. 23m) \qquad S. japonica Moore
(In CPF, see also Banse and Hobson 1968)

Streblosoma Sars

Posterior [middle abdomen] uncini with at least 4 or 5 smaller teeth above 3 secondary teeth (Fig. 230) S. bairdi (Malmgren)

Terebella Linnaeus

Notosetae absent from last $30-40$ segments. With about 13 ventral shields T. ehrenbergi Grube

Thelepus Leuckart

Records of T. triserialis (Grube) by Berkeley (1929) and Berkeley and Berkeley (1932b) from British Columbia should be considered as erroneous (C. Berkeley, personal communication).

With 2 pairs of gills [setiger 2 without gills] .. 2
With 3 pairs of gills [setiger 2 with gills] 3

First 4 thoracic segments glandular ventrally and laterally, similar to following segments. Ventral shields indistinct
T. cincinnatus (Fabricius)
(See Fauvel 1927; T. hamatus [not Moore] in CPF, see Berkeley 1968)

First 4 thoracic segments fully encircled by thick glandular layer, following segments glandular only ventrally and laterally
T. hamatus Moore*
(See Hartman 1969; not T. hamatus in CPF, see Berkeley 1968)to Fig. 22a, or longer)4

4 Notosetae absent from about last 40 [possibly 80] segments. Gill filaments usually slender T. setosus (Quatrefages)

Notosetae absent from about last 10 segments. Gill filaments usually coiled T. japonicus Marenzeller
(See Imajima and Hartman 1964; doubtful record in Banse et al. 1968) The key does not clearly distinguish this species from T. plagiostoma (Schmarda) \dagger which is widely distributed elsewhere, including the Sea of Okhotsk. T. japonicus and T. setosus were regarded as synonyms of T. plagiostoma \dagger by Hessle (1917) and Ushakov (1955), whereas Fauvel (1927) considered only T. setosus as synonymous with T. plagiostoma \dagger. We follow Imajima and Hartman (1964) who recognized japonicus and plagiostoma as valid species.

TRICHOBRANCHIDAE

Table 5, fig. C; Fig. 24
Hessle (1917); Ushakov (1955)

The family was not recognized in CPF: Terebellides and Trichobranchus were included in the Terebellidae. The external morphology is similar to that of the Terebellidae except that ventral shields are absent. The principal external diagnostic character on the family level is provided by the thoracic neurosetae which may be acicular uncini (as in Table 5, fig. C [not as in Fig. 22k]) or spines (as in Fig. 24d [on 1st thoracic neuropodium]).

With single, middorsal gill (as in Fig. 24c [sometimes as in Table 5, fig. C]). All tentacles of one kind \qquad Terebellides

With 2-4 pairs of gills. Tentacles of two kinds: long, threadlike and short, heavy

a

d

e

Fig. 24. TRICHOBRANCHIDAE: Novobranchus pacificus: a, gill of segment 3; b, gill of segment 5 . Terebellides stroemi: c, gill; d, spine of thoracic neuropodium 1. Trichobranchus glacialis: e , anterior end, lateral view. Sources: a, b, Berkeley and Berkeley (1954); c-e, original [b, modified].

Gills on 4 segments, lanceolate (as in Fig. 24a) anteriorly and rosettelike (as in Fig. 24b) posteriorly [at least on 4th gillbearing segment]

Novobranchus
Gills on 2 or 3 segments, simple filiform. Origin of tentacles partly covered by lateral lappets on 1st segment (as in Fig. 24e)

Trichobranchus

Novobranchus Berkeley and Berkeley

As in generic key. (See also Fig. 24a, b) N. pacificus Berkeley and Berkeley
(See Berkeley nnd Berkeley 1954)

Terebellides Sars

Gills with four branches nearly fused, with common origin [not serially arranged] on thick stem (Fig. 24c). Spines of 1st thoracic neuropodium [setiger 6] bent, with straight [not recurved] tips (Fig. 24d) T. stroemi Sars

The key does not distinguish this species from T. moori Hesslet, 1917 which was based on the Alaskan form of T. stroemi of Moore (1908).

Trichobranchus Malmgren

With 3 pairs of gills (Fig. 24e)
T. glacialis Malmgren

Figure 155 in CPF shows thoracic neuropodial uncini with hoods which have not been noted by others.

SABELLIDAE

Table 5, fig. E; Fig. 25, 26
Johansson (1927); Banse (1957)

The tentacular crown ["gills"; mainly a feeding organ] consists of a pair of lobes (as in Fig. 25a, 26n), each with [usually numerous] radioles. Typically, each radiole carries many secondary branches [pinnules] on the inner side; sometimes radioles at dorsal and ventral ends of the lobes lack pinnules (as in Fig. 25s, 26d). Radioles may on their outer side bear eyes that usually protrude and/or eyespots in or below the epidermis [pigment may fade in preservative]. The radioles may be connected to varying heights by a thin membrane (as in Fig. 26c) that is often difficult to see. In animals fixed in their tubes, the entire tentacular crown may appear twisted around the longitudinal axis. The diagnostic character "crown spirally coiled" refers, however, to the ventral part of the base of each lobe which usually can be seen only by pulling the radioles gently apart (cf. Fig. 25a [coiled] and Fig. 26n [semicircular]). The character "coiled" indicates that the ventral base of the tentacular lobe has taken at least a half $\left(180^{\circ}\right)$ turn [usually a few full turns]. Note that in the semicircular arrangement, a few radioles may be turned to the inside at both ends of the tentacular lobe.
The thorax normally has 8 setigers; deviations usually do not constitute a diagnostic character. Look for diagnostic characters of thoracic setae only from setiger 2 onward, unless setiger 1 is named. Note that subspatulate setae (as in Fig. 26g) occasionally may appear in side view similar to knifelike setae (see Fig. 26p).

Anterior [5 or 6] thoracic neuropodia with avicular uncini (as in Fig. 25t, 26j), with or without pennoned (pickax-shaped) setae (as in Fig. 25b) [excepting Potamethus \dagger, with long-handled uncini (as in Fig. 25p) and pennoned setae]. SABELLINAEAnterior thoracic neuropodia with long-handled uncini (as in Fig. 25p),without pennoned setae13

2 Anterior thoracic neuropodia with long-handled uncini and pennoned setae Potamethus \dagger
Anterior thoracic neuropodia with avicular uncini, with or without pennoned setae 3
All thoracic neuropodia with only avicular uncini 4
All thoracic neuropodia with avicular uncini and pennoned setae 64 Thoracic notopodia with limbate (as in Fig. 26e) and spatulate setae (as inFig. 25g). Uncini with broad bases (similar to Fig. 25h)Laonome
Thoracic notopodia with only limbate setae [may be subspatulate in Sabel- lastarte]. Uncini with S-shaped bases (as in Fig. 25t) 525c)Radioles without appendages on outer sideSabellastarte
Some or all radioles with subdistal eyes (as in Fig. 26b). Thoracic notopodiawith only limbate setae in adults; also with spatulate (as in Fig. 25g) or sub-spatulate (as in Fig. 26g) setae in juvenilesMegalomma
Radioles without subdistal eyes 7
Collar reduced to 2 conical ventral lobes. Adult worms up to 2 cm long
Collar at least ventrally and laterally well developed. Adult worms more than 2 cm long 8
8 Setae of setiger 1 in slanted row. Abdominal neurosetae limbate and spatulate
9 All [except few unbranched in small specimens] radioles dichotomously branched (as in Fig. 26q); tentacular lobes semicircular in cross section (as in Fig. 26n) Schizobranchia
All radioles unbranched [except several in Eudistylia vancouveri]; tentacular lobes spirally coiled (as in Fig. 25a [usually 2 to 3 turns]) or semicircular in cross section 10

With high, transverse wavy ridge on dorsal surface of posterior abdominal segments, in center on midabdomen, extending across dorsal surface posteriorly. Tentacular lobes spirally coiled [about $11 / 4$ turns] Distylidia \dagger

> Tentacular lobes spirally coiled [see note on p. 103]. Thoracic notopodia with limbate and spatulate (as in Fig. 25g) setaeEudistylia
Tentacular lobes semicircular. Thoracic notopodia with limbate, with or
without subspatulate (as in Fig. 26g), knifelike (as in Fig. 26p), or spatulate
setae

Thoracic notopodia with limbate and spatulate (as in Fig. 25g) setae

Thoracic notopodia with limbate, with or without subspatulate (as in Fig. 26g) or knifelike (as in Fig. 26p) setae ... Sabella

Abdominal uncini in long rows, almost encircling body. With very pro-
nounced membrane connecting radioles (as in Fig. 26c). MYXICOLINAE
Myxicola
Abdominal uncini in short rows. With or without membrane connecting
radioles. FABRICIINAE ... 1414

With ventral anal furrow (as in Fig. 25k) of variable length Euchone
Without anal furrow .. 15

With 3 abdominal setigers; abdominal uncini brushlike with long, straight handles (as in Fig. 25q). Worms much shorter than 1 cm16

With usually more than 3 abdominal setigers; abdominal uncini without long,
straight handles [examine anterior abdominal segments]. Worms of variable
but usually moderate length 18

Tentacular crown with conspicuous [at least in life] pair of ventral filaments, each with blood vessel (as in Fig. 26a [green in life, usually brownish in preserved specimens]) and 2 pairs of radioles; each radiole with 2 (as in Fig. 26a) or several pinnules. Pygidium without eyespots

Manayunkia
Tentacular crown with 3 pairs of radioles with many pinnules (as in Fig. 25s
[1 pair of radioles not shown]). Pygidium with eyespots [at least in life] 17

> Collar high also on dorsal side (as in Fig. 25r). Tentacular crown with ventral pair of [unbranched] filaments, as long as radioles (as in Fig. 25s), without conspicuous blood vessel [used like palps; difficult to see in preserved material]

> Fabriciola

Collar essentially only a ventral lip (as in Fig. 25n, o). Tentacular crown
without pair of long ventral filaments ... Fabricia

> Abdominal uncini S-shaped, middle part longer than wide (as in Fig. 25 t). Radioles not connected by membrane. With postsetal glandular [whitish] ring on setiger 2 (as in Fig. 25i)

Abdominal uncini with broad bases (as in Fig. 25e, h; 26f [study anterior segments])

With postsetal glandular [whitish] ring on setiger 2. Radioles connected by membrane (as in Fig. 26c [or only to $1 / 4$ of their length]). Anterior abdominal uncini with bases similar to Fig. 25e, h. Adult worms usually more than 1 cm long

Chone

Without postsetal glandular ring on setiger 2. Radioles not connected by membrane, but with a flange (as in Fig. 26d). All abdominal uncini with bases similar to Fig. 26f. Adult worms less than 1 cm long Oriopsis

Chone Kröyer

The collar of the listed species lacks a midventral notch. Tips of the thoracic, spatulate notosetae often are broken off; thus, several notopodia should be examined. Lightcolored pads of glandular cells occupying the ventral side of the body are called ventral shields.
Small species may be identified from the distribution of mucus cells on the body. Immerse specimens for a few minutes in a very dark solution of methyl green in $70-80 \%$ ethyl alcohol with water, then differentiate for $5-20 \mathrm{~min}$ in $70-80 \%$ alcohol. See Banse (1972b) for patterns.

Without ventral shields, with glandularized epidermis encircling entire thorax. Large worms

[^8]

2 Free ends [beyond pinnules] of lateral radioles short, broad (as in Fig. 25f)

$$
\begin{aligned}
& \text { Free ends of lateral radioles long or very long. Usually, collar clearly longer } \\
& \text { ventrally than laterally .. } 4
\end{aligned}
$$

Spatulate setae with long pointed tips (Fig. 25g). Setal tuft typically inserted more dorsally on setiger 1 than on 2 , of about the same size. Abdominal uncini with fine teeth above rostrum (Fig. 25h). (See also Fig. 25f)
C. infundibuliformis Kröyer
(In CPF, see also Banse 1972b)
Spatulate setae without pointed tips, sometimes with fine single hairs distally (Fig. 25d). Setal tuft on setiger 1 inserted at same level as following notopodia, small. Abdominal uncini with a few coarse teeth above rostrum (Fig. 25e)
C. aurantiaca (Johnson)
(See Banse 1972b)

4 Setal tuft on setiger 1 inserted in short longitudinal furrow [continuation of anterior segmental border of setiger 1] extending to anterior border of setiger 2 (Fig. 25i)
C. mollis (Bush)*
(See Banse 1972b; Hartman and Reish 1950)
Setal tuft on setiger 1 inserted in collar (as in Fig. 26h [not in a long trans-
verse furrow])

Spatulate setae without pointed tips (as in Fig. 25d [sometimes with fine single hairs distally])
C. magna (Moore)
(See Banse 1972b)
Spatulate setae with long pointed tips (as in Fig. 25g) C. duneri Malmgren
(C. bimaculata Banse and Nichols, 1968, see Banse 1972b)

Euchone Malmgren

Listed species have a well-developed collar of about equal height dorsally and ventrally, without a deep midventral incision.

> With $34-40$ setigers. Anal depression involving $9-12$ setigers. With $10-15$ pairs of radioles with pinnules. Anterior abdominal segments with 2 pairs of ventral, almost rectangular glandular areas close together (Fig. 25j [not round and separated by wide spaces into anterior and posterior pairs])
E. analis (Kröyer)
(In CPF, see also Banse 1972b)
With 16 or 17 setigers. Anal depression involving 3 setigers (as in Fig. 25k). With 3 or 4 pairs of radioles with pinnules

With 9 abdominal setigers. Intermediate length thoracic notosetae subspatulate [mount animals]. (See also Fig. 25k) E. incolor Hartman
(See Banse 1970)
With 8 abdominal setigers. Intermediate-length thoracic notosetae limbate [like long setae]
E. hancocki Banse*
(See Banse 1970; questionable record from off Oregon in Banse 1979c)

Eudistylia Bush

The tentacular lobes of juveniles (body length 10 cm) of Eudistylia spp. that have just started to coil may be confused with those of Potamilla spp. Examine the basal part of the lobes which in Eudistylia juveniles is already raised and rotated about 90°. Also the tentacular lobes of adult Potamilla myriops are ventrally turned inward.

Notopodia [with uncini] of first abdominal segments clearly shorter than tori of posterior thoracic segments
E. catharinae Banse
(E. polymorpha, in part, in CPF, see Banse 1979c)

Notopodia of first abdominal segments longer than tori of posterior thoracic
segments ... 2

Dorsal edges of tentacular lobes proximally flared, turned away from body; longitudinal edges clearly cleft (Fig. 25l)
E. polymorpha (Johnson)
(E. polymorpha, in part, in CPF, see Banse 1979c)

Dorsal [longitudinal] edges of tentacular lobes nearly straight, not cleft (Fig. 25m)

Fabricia Blainville

Collar with squarish outline (Fig. 25n). Short thoracic notosetae subspatulate (as in Fig. 26g)
F. oregonica Banse
(See Banse 1979c)
Collar with round outline (Fig. 250). Short thoracic notosetae spatulate (as in Fig. 25g). (See also Fig. 25p, q)
F. sabella (Ehrenberg)

Fabriciola Friedrich

Collar with middorsal gap (Fig. 25r). Radioles without flanges [not as in Fig. 26d]. (See also Fig. 25s)
F. berkeleyi Banse
(See Fabricia berkeleyi in Hartman 1969; Fabricia pacifica [not Annenkova] in CPF)
The key does not distinguish this species from Fabricia pacifica Annenkovat from the
Bering Sea.

Jasmineira Langerhans

Collar ventrally broadly protruding, incised midventrally. Pygidium with small appendix
J. pacifica Annenkova
(See Banse 1979c)

Laonome Malmgren

Collar with broad middorsal gap [similar to Fig. 26n] L. kroyeri Malmgren

(See Banse 1963)

Manayunkia Leidy

1 | Tentacular crown with 4 pairs of pinnules [note ventral pairs of filaments] |
| :--- |
| (Fig. 26a) .. M. aestuarina (Bourne) |

(See Light 1969)
Tentacular crown with 10 or more pairs of pinnules. Principally in fresh
water ..osa Leidy*
(See Pettibone 1953, Mackie and Qadri 1971)

Megalomma Johansson

Branchiomma Claparède (nom. praeoccup.) in CPF. This genus differs from Branchiomma Kölliker†.

Collar with ventrolateral incision. Subdistal eyes only on some dorsal radioles, spiraled (Fig. 26b)
M. splendida (Moore)
(Branchiomma burrardum Berkeley in CPF, see
Fauchald 1972)

Myxicola Koch

With 1-4 thoracic setigers. (See also Fig. 26c) M. aesthetica (Claparède)
With 8 or 9 thoracic setigers ... M. infundibulum (Renier)
(In CPF, see also Berkeley 1972)

[^9]

Oriopsis Caullery and Mesnil

Listed species have 2 or 3 pairs of radioles and 3-7 abdominal setigers.

Dorsal lobes of collar low, each separated from lateral part by wide gap (Fig. 26i). Each radiole with more than 10 eyespots. (See also Fig. 26j and note on p. 103)
P. myriops Marenzeller (See Banse and Hobson 1968)
Dorsal lobes of collar high, each separated from lateral part by rather narrow gap (Fig. 26h). Radioles with few, or no, eyespots. Handles of uncini in last 2 or 3 thoracic neuropodia almost twice length of those in anterior setigers
P. intermedia Moore (Pseudopotamilla reniformis [not Linnaeus] in CPF, see also Hartman 1938b, Berkeley and Berkeley 1942). Moore (1905) described a slight notch [cleft] on the dorsal edge of the branchial lobe.

Sabella Linnaeus

Demonax Kinberg is considered here as a subgenus.
1 Collar with lateral incision, varying from slight to deep. All thoracic notosetae limbate. Subgenus Sabella.
Lateral incision distinct but shallow. Outer side of radioles winged over entire length (Fig. 26m), usually with eyespots; free ends [beyond pinnules] typically very short
S. crassicornis Sars

Collar without lateral incision [but deep pockets in S. pacifica, Fig. 260]. Short thoracic notosetae subspatulate or knifelike (as in Fig. 26g, p). Subgenus Demonax

Collar arising dorsad, or at the level of setae of setiger 1 , with wide middorsal gap (Fig. 26n). Short thoracic notosetae subspatulate (as in Fig. 26g). Radioles without eyes but with many spots of brown or yellow pigment [may fade in preservative]
S. media (Bush)
(Demonax medius and Distylia rugosa [not Moore], in CPF, see Banse 1979c)

Collar middorsally with narrow gap; each lobe with pockets (Fig. 260). Short thoracic notosetae knifelike (Fig. 26p). Radioles with eyes on outer side [?]
S. pacifica (Berkeley and Berkeley)
(See Banse 1979c)

Sabellastarte Savigny

An unidentifiable Sabellastarte sp. was recorded from the Strait of Juan de Fuca (Banse 1979c).

Schizobranchia Bush
Radioles dichotomously branched, up to 4 or 5 times in large individuals (body length, without tentacular crown, $10-15 \mathrm{~cm}$) (Fig. 26q)
S. insignis Bush

SERPULIDAE

Table 5, fig. G; Fig. 27, 28
Ushикоv (1955)
As in the Sabellidae, the tentacular crown consists of a pair of lobes, each with usually numerous radioles bearing shorter secondary branches [pinnules] on the inner side (as in Table 5, fig. G). Usually one [rarely 2] radiole is transformed into an operculum (as in Fig. 27c) that plugs the entrance to the tube when the worm withdraws; it is sometimes used for brooding eggs (as in Fig. 28i). The membranous collar (see Table 5, fig. G) usually bears an anterior bundle of special setae (collar setae) which may differ greatly in size and shape; blades of heavy setae may have large proximal teeth somewhat separated from the others (fin, as in Fig. 27m, n).
The revision by Uchida (1978) was received too late to be considered.
With fewer than 5 thoracic setigers. Body asymmetrical. SPIRORBINAE. This taxon is regarded by several recent authors (e.g., KnightJones et al. 1980) as a family.
Tube small, spirally coiled (as in Fig. 28m)
Spirorbis
With at least 5 thoracic setigers. Body symmetrical 2
Operculum absent, or at tip of unmodified [with pinnules] radiole (as in Fig.27c). FILOGRANINAE3
Operculum present, at tip of modified [without pinnules] radiole (as in Fig. 27d). SERPULINAE 5

4 Operculum globular (as in Fig. 27c), transparent \qquad Apomatus

Operculum absent
Protula

5 Collar setae absent [setiger 1 with uncini]
Collar setae present (as in Table 5, fig. G [may be very small; setiger 1 without uncini])

Opercular stalk not winged (similar to Fig. 27g), smooth Placostegus \dagger
Opercular stalk winged (similar to Fig. 28a)
Pomatoleios \dagger

7 Blades of heavy collar setae with 2 or more large proximal teeth (as in Fig. $27 \mathrm{~m}, \mathrm{p}$)8
Blades of all collar setae without large teeth or fin (as in Fig. 27h, 28b) 11

8 Operculum double, with crown of spines projecting from middle of funnelshaped proximal part (as in Fig. 27f)

Hydroides \dagger
Operculum single (as in Fig. 27d) 9

9 Operculum nearly globular, with distal brown, chitinous plate (as in Fig. 27l). Heavy collar setae with several proximal teeth (as in Fig. 27m)

Pseudochitinopoma
Operculum funnel shaped (as in Fig. 27o). Heavy collar setae with 2 proximal teeth (as in Fig. 27p)

Operculum with conspicuous basal processes (as in Fig. 27d, e) Crucigera

Operculum without conspicuous basal processes (as in Fig. 27o) Serpula

Fig. 27. SERPULIDAE: Apomatus geniculatus: a, abdominal geniculate neuroseta. A. timmsii: b, abdominal serrated neuroseta; c, operculum. Crucigera irregularis: d, operculum. C. zygophora: e, operculum. Hydroides \dagger sp.: f, operculum. Mercierella enigmatica Fauvel \dagger : g, operculum; h, collar seta with coarse teeth; i, abdominal geniculate neuroseta. Pomatocerost sp.: j, limbate collar seta. Protula pacifica: k, limbate collar seta. Pseudochitinopoma occidentalis: l, operculum; m, collar seta with many proximal teeth. Salmacina tribranchiata: n, collar seta with fin. Serpula vermicularis: o, operculum; p, collar seta with few proximal teeth. Sources: a, Moore and Bush (1904); b, d, o, p, original; c, e, k, l, n, CPF; f, Ushakov (1955); g, Hartmann-Schröder (1967); h-j, Fauvel (1927); m, Zibrowius (1969) [c, g, m, modified].

Abdominal neurosetae geniculate, with smooth blades (Fig. 27a)
A. geniculatus (Moore and Bush)

Abdominal neurosetae not geniculate, with serrated blades (Fig. 27b). (See also Fig. 27c)
A. timmsii Pixell

Crucigera Benedict

1 Operculum with 2 basal processes and irregular distal margin [longer dorsally than ventrally, laterally compressed] (Fig. 27d) C. irregularis Bush

Operculum with 3 basal processes; distal end not laterally compressed (Fig. 27e)
C. zygophora (Johnson)

Protula Risso

With about 60 [not 300] pairs of radioles. Abdominal uncini toothed [not smooth]. (See also Fig. 27k)
P. pacifica Pixell

Pseudochitinopoma Zibrowius

Heavy collar setae with numerous, large basal teeth continuous with distal limbate part (Fig. 27m). (See also Fig. 27l) P. occidentalis (Bush)
(Chitinopoma groenlandica [not Mörch] in CPF, see
Zibrowius 1969)

Salmacina Claparède

With 3 pairs of radioles. Tubes small, slender, occurring in masses. (See also Fig. 27n) S. tribranchiata (Moore)
(S. dysteri var. tribranchiata in CPF, see Hartman 1969)

Serpula Linnaeus

Operculum with finely toothed distal margin (Fig. 27o). Gills and operculum usually red or red and white [may fade in preservative]. (See also Fig. 27p)
S. vermicularis Linnaeus

Spirorbis Daudin

Bailey (1969); Fauchald (1977); Prxell (1912); Uchida (1971a, b).
After this key was completed, Knight-Jones et al. (1980) made nomenclatorical changes for many of the listed species and added five new records (three for British Columbia and Washington, two for adjoining areas). Their key is recommended for future use.
To determine the direction in which the tube is coiling, view from above; if coiled clockwise from the aperture inwards, it is called dextral and if coiled counterclockwise (as in Fig. 28 m), it is called sinistral. This character seems to be constant within the majority of taxa but occasionally may fail even at the species level (see e.g., Vine 1972). To help use the key where direction of coiling is a diagnostic character, many specimens should be inspected and Fauchald (1977) be consulted.
To remove a worm from the tube, J. H. Bailey-Brock (Department of Biology, University of Hawaii, Honolulu, HI, 96822, personal communication) suggests separating the tube from the substratum and gently chipping away the side that was attached, being careful not to damage the operculum or thorax. For identification of some species, it is necessary to use a clearing agent for the operculum, such as clove oil or glycerin, or polyvinyl lactophenol [see p. 5] for mounting the entire worm. The latter reagent dissolves the calcareous opercular plate [storage in formalin also may dissolve it]. Animals kept for many years in alcohol are difficult to clear so that details of setae may be overlooked. To deternine whether sickle setae [blades sickle shaped, distally usually serrated (as in Fig. 28k)] are present, examine setiger 3 which also has limbate setae.
The remarks under S. ambilateralis, S. langerhansi, and S. nakamurai, and the new record of Spirorbis (Spirorbella) sp. are based on incompleted work by K. D. Hobson. The record of Spirorbis spinosa from Washington by Schoener et al. (1978) is based on a typographical error (for Spirorbis sp.).
1 Tube usually dextral 2
Tube usually sinistral (as in Fig. 28m) 6
Thorax with 3 setigers. With (as in Fig. 28k) or without sickle setae. Eggs incubated in tube or operculum 3
Thorax with $31 / 4$ setigers [setiger 4 represented only by uncini on concave side of body]. With sickle setae. Eggs incubated in tube 5

Collar setae without fin (as in Fig. 28h). With or without sickle setae

Fig. 28. SERPULIDAE: Spirobranchus \dagger sp.: a, operculum; b, serrated collar seta; c, funnel-shaped abdominal neuroseta. Spirorbis ambilateralis: d, operculum. S. granulatus: e, collar seta with basal teeth. S. langerhansi: f, opercular plate. S. medius: g, operculum; h, collar setae with fine teeth. S. moerchi: i, operculum; j, collar seta with basal teeth. S. nakamurai: k, sickle seta. S. validus: l, opercular plate. S. variabilis: m, tube. S. (Protolaeospira) sp.t: n, entire worm with eggs, dorsolateral view [schematic]. Vermiliopsis \dagger sp.: o, operculum. Sources: a-c, Hartman (1969); d, Pixell (1912); e-h, CPF; i, original; j, l, Bush (1904); k, Uchida (1971a); m, Rioja (1942); n, Knight-Jones et al. (1974); o, Fauvel (1927) [c, d, $\mathrm{f}, \mathrm{g}, \mathrm{m}-\mathrm{o}$, modified].

Without sickle setae. Eggs incubated in tube. Subgenus Circeis. Tube smooth, cylindrical, last whorl erect when crowded
S. spirillum (Linnaeus)

5 Collar setae with fin (as in Fig. 28e). Subgenus Paradexiospira. Sickle setae with bulge opposite serration of distal third (Fig. 28k)
S. nakamurai (Uchida)
(S. vitreus [not Fabricius] in CPF)

Both sinistral and dextral populations occur in Washington
(Potswald 1965 [as S. vitreus]).
Collar setae without fin (as in Fig. 28h). Subgenus Prodexiospira.
As for the subgenus
S. violaceus Levinsen
(See Fauvel 1927; Bush 1904)

Thorax with more than 3 setigers [setiger 4 represented at least by uncini on concave side of body]. Collar setae with fin. With sickle setae. Eggs incubated in tube, attached by stalk to dorsum of setiger 1 or 2 (as in Fig. 28n). Operculum with several large irregular basal processes (as in Fig. 28d). Subgenus Protolacospira
Thorax with 3 setigers 8

Thorax with $31 / 4$ setigers [setiger 4 represented only by uncini on concave side of body]
S. racemosus (Pixell)

Thorax with $33 / 4$ setigers [setiger 4 represented by uncini on both sides and notosetae on convex side of body]. (See also Fig. 28d)
S. ambilateralis Pixell

On a single rock, specimens have been found with $31 / 4,31 / 2$, and $33 / 4$ thoracic setigers. This suggests that S. racemosus is a synonym of S. ambilateralis.

Collar setae without fin (as in Fig. 28h)9
Collar setae with fin (as in Fig. 28e, j) 10

9 With sickle setae. Eggs incubated in tube. Subgenus Romanchella.
Operculum basally with 2 winglike expansions; distally concave, spinose [when unworn] (Fig. 28g). (See also Fig. 28h) S. medius Pixell

Without sickle setae. Eggs incubated in operculum. Subgenus Leodora. Operculum basally with wide wings; distally convex, without spines (Fig. 28l) S. validus Verrill
With sickle setae. Thoracic uncini with single row of teeth. Eggs incubated in operculum. Subgenus Pileolaria 11
With or without sickle setae. Thoracic uncini with several rows of teeth. Eggs incubated in tube 13
Middle section of blades of collar setae finely serrated (Fig. 28e). Thoracic uncini of right side 70 [not 100] $\mu \mathrm{m}$ in length S. granulatus (Linnaeus)
Middle section of blades of collar setae coarsely serrated (as in Fig. 28j) 12

Operculum distally an almost regular inverted cone (Fig. 28f)
S. langerhansi (Caullery and Mesnil) Pixell's (1912) record of this species, included in CPF, has not been confirmed and may be based on nonbreeding specimens of S. moerchi.

Operculum funnellike, opaque terminal plate extending on one side nearly to opercular base (Fig. 28i). Thorax without pink pigment on ventral surface. (See also Fig. 28j)
S. moerchi Levinsen

With sickle setae (as in Fig. 28k). Subgenus Spirorbis. As for the subgenus
S. borealis Daudin (See Hartman 1969)

Without sickle setae. Subgenus Eulaeospira. As for the subgenus. (See also Fig. 28m) S. variabilis Bush

ARCHIANNELIDA

Table 6, fig. A-E; Fig. 29
Journ (1971)
Whenever possible, living specimens should be examined in order to observe the ciliation patterns. Members of the Protodrilidae and Saccocirridae must be sexually mature to be identified to species.

1 Anterior end without appendages (Fig. 29f). Without setae [except Parapodrilus \dagger]

DINOPHILIDAE
Anterior end with appendages. With or without setae

[^10]Pygidium bilobed (as in Table 6, fig. B, C) 4

4 With cylindrical parapodia (as in Table 6, fig. C [insert]), with simple forked setae

Without parapodia or setae [except Protodriloides chaetifer]
PROTODRILIDAE

POLYGORDIIDAE

Table 6, fig. A
Without setae [examine posterior body]
Polygordius

Polygordius Schneider

Pygidium bulb shaped (as in Table 6, fig. A), with 8 indistinct lobes [not cirri]. Pigmentation lacking [when preserved in alcohol]. Body 3 cm long

Polygordius sp.
An unidentified species of Polygordius is mentioned by MORSE (1979: 252) from coarse sand off Friday Harbor, WA. A single specimen [not observed alive] was collected on Aug. 9, 1973, at 12 m , on boulders with Laminaria and Macrocystis, on the west coast of Nancouver Island, B.C. $\left(48^{\circ} 55.7^{\prime} \mathrm{N}, 125^{\circ} 16.9^{\prime} \mathrm{W}\right.$) by B. Cooke and P. Lambert.

PROTODRILIDAE

Table 6, fig. B; Fig. 29a-d
Jouin (1970); Wieser (1957)
With setae or with segmental adhesive organs. Epidermis with yellowishgreen inclusions. Without eyes. Tentacles solid, pointing forward (as in Fig. 29a)

Without setae or segmental adhesive organs. Epidermis without yellowishgreen inclusions. Often with eyespots. Tentacles hollow (as in Fig. 29c), moveable in many directions

Protodrilus

Protodriloides Jouin

Each setiger with 4 bifid setae (Fig. 29b). Body 8-13 mm long. (See also Fig. 29a) P. chaetifer (Remane)
(See Jouin 1966; Wieser 1957)

a

e

b

f

g

Fig. 29. PROTODRILIDAE: Protodriloides chaetifer: a, anterior end, dorsal view; b, bifid seta. Protodrilus fabelliger: c, anterior end, dorsal view. Protodrilus sp.: d, salivary gland. SACCOCIRRIDAE: Saccocirrus eroticus: e, anterior end, ventral view. DINOPHILIDAE: Dinophilus kincaidi: f, entire worm, dorsal view. Trilobodrilus nipponicus: g, entire worm, ventral view [longitudinal ciliary band not shown]. NERILLIDAE: Nerilla inopinata: h , entire worm, dorsal view [left side setae and cirri omitted]. Sources: a, c, g, Wieser (1957); b, Jouin (1966); d, Fauvel (1927); e, Gray (1969), f, Jones and Ferguson (1957); h, Gray (1968) [c, e-h, modified].

Protodrilus Hatschek

Salivary glands (as in Fig. 29d) are located on both sides of the digestive tract in some anterior segments.

Without eyespots. Body $2-3 \mathrm{~mm}$ long. Anterior end with numerous ciliary tufts and bands, with ciliated round nuchal organs (Fig. 29c). Segments 2-9 with salivary glands (as in Fig. 29d)
P. flabelliger Wieser
(See Wieser 1957)

SACCOCIRRIDAE

Table 6, fig. C; Fig. 29e
Jouin (1971)

As in family key (see also Table 6, fig. C)
Saccocirrus

Saccocirrus Bobretzky

Setigers $1-7$ with midventral longitudinal, ciliary band (Fig. 29e). Gonads unilateral, from setiger 11-13. Pygidium lobed (as in Table 6, fig. C) with $7-22$ ridges of adhesive papillae. Worms $10-20 \mathrm{~cm}$ long S. eroticus Gray
(See Gray 1969, Martin 1977: 103)

DINOPHILIDAE

Table 6, fig. D; Fig. 29f, g
The listed genera possess a muscular pharynx (as in Fig. 29g).
1 Prostomium trilobed (as in Fig. 29g), without eyes. With ciliated rings anteriorly. Pygidium round, truncate (as in Fig. 29g)

Trilobodrilus
Prostomium rounded in dorsal view (as in Fig. 29f). With or without ciliary rings. Pygidium conical or bilobed (as in Table 6, fig. D) 2

Pygidium conical (as in Fig. 29f). With eyes. With ciliary rings on all segments Dinophilus

Pygidium with 2 pair of forked, adhesive lobes (as in Table 6, fig. D). Without eyes and ciliated rings

Diurodrilus

Dinophilus Schmidt

Adult with 6 segments, first 5 each with 1 dorsal ciliary ring, segment 6 with 2 (Fig. 29f). Epidermal glands banana shaped, scattered on most of body, few or absent on head and posterior regions (Fig. 29f). Colorless except for 2 red eyespots. Female with unpaired ovary, male unknown
D. kincaidi Jones and Ferguson
(See Jones and Ferguson 1957)

Diurodrilus Remane

Pygidial lobes with 2 unequal forks, the longer thick and sturdy (As in Table 6, fig. D). Adults $0.4-0.5 \mathrm{~mm}$ long

Trilobodrilus Remane

> Pygidium spoon shaped, ventrally with many tactile hairs and cilia [extension of ventral ciliary band] (Fig. 29 g)................ T. nipponicus Uchida and Okuda Only one specimen has been recorded from the arca (Puget Sound). It possibly should be referred to T. heideri Remanet, which is closely related to T. nipponicus (Westheide 1967).

NERILLIDAE

Table 6, fig. E; Fig. 29h
Jouin (1971)

Listed genera have 9 setigers.
All setae simple. With 3 antennae and 1 pair of palps (as in Table 6, fig. E)

All setae composite spinigers
Mesonerilla

Mesonerilla Remane

A species of Mesonerilla was found off San Juan Island, Washington, in summer 1979 by J. L. Norenburg, Marine Science Inst., Northeastern University, Nahant Br., Lynn, MA 01908.

Nerilla Schmidt

In the listed species, the antennae are about equal in length. Several specimens should be examined to determine the length of the antennae and cirri as they break easily.

Without eyes. Pygidial cirri shorter than setae of setiger 9 (as in Table 6, fig. E). Tentacular cirri only slightly longer than following cirri (as in Table 6, fig. E)
N. digitata Wieser
(See Wieser 1957)
With eyes. Pygidial cirri as long or much longer than setae of setiger 9 . Tentacular cirri at least twice as long as following cirri (as in Fig. 29h)

Setiger 2 with cirri shorter than setae. Setigers after first with about 9-16 setae per bundle. Pygidial cirri as long or longer than setae on setiger 9. Each segment with well-developed dorsal ciliary ring N. antennata Schmidt (See Marcus 1947; Wieser 1957)

Setiger 2 with cirri about as long as setae (Fig. 29h). With about 6 setae per bundle. Pygidial cirri much longer than setae on setiger 9 (Fig. 29h). Only setiger 9 with well-developed dorsal ciliary ring (Fig. 29h) N. inopinata Gray
(See Gray 1968)

Acknowledgments

The preparation of the present volume was preceded by the study of both our own and museum collections. We are particularly grateful for help received from our colleagues in the British Columbia Provincial Museum and the National Museum of Natural History, Smithsonian Institution. Further, R. L. Emmett and P. Lambert permitted us to include new records of material collected by them and identified by us. J. A. Blake, D. G. Cook, K. Fauchald, P. A. Jumars, J. D. Kudenov, R. O'Clair, and J. M. Orensanz made numerous comments on parts or all of earlier stages of the manuscript, and C. O. Hermans provided literature references. Our principal indebtedness, however, is to D. P. Henry, who gently inquired every now and then about the progress of the project. Later, she pointed out inconsistencies in terminology among families caused by long-standing usage among polychaete workers in general and by the present authors in particular, and especially marked the all-too-many instances
of opaque phrasing in the keys proper. The uniformity in style of the present volume is, to an appreciable degree, due to her unstinting efforts. The main load of typing, both of drafts and of the final manuscript, was borne by J. Baker.

The British Columbia Provincial Museum and the U.S. Department of Energy (under current contract number DE-AT06-76-EV-75026 [ref. DE-EV-75026-90]; formerly U.S. Atomic Energy Commission) gave initial, partial support to the work. Its completion was possible only because of the financial aid, since 1976, by the Washington Sea Grant Program (grant number NA 79AA-D-00054 from the National Oceanic and Atmospheric Administration). Last but not least, a substantial sum was provided as a printing subsidy by the Friends of the Provincial Museum, Victoria, B.C.

Contribution No. 1209 from the Department of Oceanography, University of Washington, Seattle, WA, USA 98195.

Explanation of Abbreviations and Symbols

Arabic numerals indicate body segments.

ab	abdomen	nucO	nuchal organ
ach	achaetous	${ }_{0} \mathrm{C}$	oesophageal caeca
acS	acicular seta	op	operculum
ant	antenna	p	palp
ant'ly	anteriorly	pal	palea
antM	antennular membrane	pap	papilla
bV	blood vessel	ph	pharynx
col	collar	pi	pinnule
colS	collar seta	postL	postsetal lobe
cP	cephatic plate	post'ly	posteriorly
cpd	compound	preL	presetal lobe
CPF	Canadian Pacific Fauna	pro	prostomium
	(Berkeley and Berkeley 19.52)	prob	proboscis
dC	dorsal cirrus	pscp	pseudocompound
dSO	dorsal sense organ	pyg	pygidium
e	eggs	pygC	pygidial cirrus
f	filament	rad	radiole
fl	flange	sc	scaphe
g	gill	scH	scaphal hook
genH	genital hook	set	setiger
genP	genital pore	sL	subpodial lobe
genPch	genital pouch	sp	spine
gl	glands	spl	simple
gIR	glandular ring	tC	tentacular cirrus
iC	interramal cirrus	tent	tentacle
lap	lappet	tF	transverse furrow
lat	lateral	tL	tentacular lobe
IF	longitudinal furrow	th	thorax
mL	medial lobe	thM	thoracic membrane
mu	mucus	uL	upper lip
ne	neuropodium	vC	ventral cirrus
neL	neuropodial lobe	vF	ventral fringe
neS	neuroseta	vG	ventral groove
nF	neuropodial fringe	vS	ventral shield
no	notopodium	* \}	see Use of Keys,
noS	notoseta	\dagger ¢	p. 6
$n \mathrm{P}$	nephridial papilla		

Glossary

The terms below are defined as they are employed in the key. The usage may differ slightly from that of other authors. Words referring to position, such as "subacicular," as well as basic zoological terms, such as "segments," are usually omitted. Adjectives denoting shape, such as "clavate" that can be found in a dictionary, are not included either.
abdomen - the posterior body region in some sedentariate polychaetes, usually distinguished from the thorax by the segmental structure, or the form of the parapodia or setae (see Table 1, fig. A; Table 5, fig. A-C, E-G).
achaetous - anterior (see Fig. 9g) or posterior (see Fig. 16g, s) segments without setae.
acicula - a stout internal chitinous rod supporting the noto- or neuropodium [rarely present in sedentariate and archiannelid polychaetes].
acicular seta - a stout simple [rarely compound, as in Fig. 3k] projecting seta with more or less smooth tip (see Table 3, fig. B; Fig. 1d, 9a-c) [see also spine].
acicular uncinus - a uncinus with a long thick shaft (see Table 5, fig. C).
antenna - a paired or unpaired sensory appendage of the prostomium (see Table 1, fig. G; Table 6, fig. E; Fig. 6k).
antennular membrane - a delicate membrane between the paleae and the tentacles in the Amphictenidae (see Fig. 20f).
avicular uncinus - a beaked uncinus, with a prominent basal tooth and several small teeth above it (see Table 4, fig. D; Fig. 25t, 26j).
biramous - a parapodium with a noto- and neuropodium, each bearing setae (see Fig. 7b, 12d, 15a).
capillary seta - any thin seta tapering to a fine point (see Table 3, fig. A; Fig. 9j, 22e, g) [see also limbate seta].
cephalic cage - the long, anteriorly-directed capillary setae of the first few setigers of some Flabelligeridae (see Table 3, fig. A).
cephalic plate - the platelike anterodorsal surface of the head region in some Maldanidae (see Fig. 16d-f) and the Amphictenidae (see Table 4, fig. F).
cirrus - a projection from segments of the head region, the parapodium, or pygidium [see dorsal, interramal, tentacular, and ventral cirrus].
collar - a thin membrane on anterior or posterior segments (see Table 4, fig. B; Fig. 17m, n, 25a) or on modified setae (see Fig. 4i).
compound seta - a seta having a distal blade which articulates with the shaft (see Table 2, fig. E; Fig. 11e) [see also pseudocompound and simple seta].
dorsal cirrus - a projection emerging from the notopodium or the dorsal side of a uniramous parapodium (see Fig. 12d).
dorsal sense organ - a middorsal ridge on anterior segments in some Spionidae (see Fig. 4m).
flabellum - the first bundle of capillary setae or paleae, anterior of the gills and directed forward, in some Ampharetidae (see Fig. 21c).
forked seta - a seta with long apical prongs (see Table 3, fig. C; Fig. 1i, 3j).
geniculate seta - a seta bent like a knee (see Fig. 27a, i).
genital hook - a modified seta in males and sometimes females in some Capitellidae (see Fig. 14a).
genital pore - a modified nephridial opening (see Fig. 14h).
genital pouch - a pocketlike skin fold between neuropodia in median [sometimes anterior] segments of some Spionidae (see Fig. 4e).
gill - a respiratory structure emerging from the anterior end, segmental body wall, or parapodium (see Table 2, fig. E; Fig. 1j, 13e, 14b).
hooded hook - a hook bearing a distal hoodlike membrane (see Table 1, fig. E; Fig. 6g, l).
hook - a long-shafted, distally hooked seta (see Table 1, fig. E; Fig. 3a, 11e, i, 14d). It may bear 2 or more apical teeth (bi-, tridentate, etc.) [see also acicular, genital, hooded, and scaphal hooks].
interramal cirrus - a slender lobe between the notopodium and neuropodium in some Orbiniidae (see Fig. 1k).
lateral lamella - an extended postsetal lobe in the Magelonidae (see Fig. 7g).
lateral lappet - a skin fold inserted laterally on anterior segments of some Terebellidae and Trichobranchidae (see Fig. 22j, n).
lateral shield - a pad of glandular tissue in the position of the thoracic neuropodium in Polycirrus, sometimes covering the ventrum.
limbate seta - a capillary seta with one or two flattened margins along much of its distal half (see Fig. 22e, g).
modified or special setae - setae on one or more segments being modified and therefore of diagnostic value, e.g., acicular (Fig. 3e) and hooked (Fig. 3i, p).
nephridial papilla - a projection carrying the external opening of a nephridium. It is usually associated with the parapodium (see Fig. 11c, 22j).
neuropodial fringe - a row of papillae on the margin of the neuropodial postsetal lobe of some Orbiniidae (see Fig. 1j).
neuropodium - the ventral branch of the parapodium (see Fig. 1k, 12d, 15a).
neuroseta - a seta of the neuropodium.
notopodium - the dorsal branch of the parapodium (see Fig. 12d, 15a, 21h).
notoseta - a seta of the notopodium.
nuchal organ - a sensory structure on the posterior margin of the prostomium in the form of a pit, groove, outgrowth, or backward projection (see Table 1, fig. D, G; Fig. 3b, 17m).
oesophageal caecum - a paired glandular pouch of the oesophagus in the Arenicolidae (see Fig. 15b).
operculum - a structure of the anterior end of some sedentariate polychaetes plugging the opening of the tube when the worm retracts (see Table 4, fig. E; Table 5, fig. G; Fig. 27f).
palea - a broad flat seta, often with a metallic sheen (see Fig. 19a, 20f, 21i).
palp - a paired appendage of the anterior end. It is usually borne on the first segment (see Table 1, fig. D-H) and may appear to be inserted below the prostomium (see Table 2, fig. E; Table 6, fig. E).
parapodium - the paired segmental structure bearing the setae and often also the gills. Typically it is biramous [with a notopodium and neuropodium, each with projecting setae] (see Fig. 7 m). However, in sedentariate polychaetes, the parapodial lobes are often reduced to low ridges with imbedded setae (see Fig. 15a, 21f).
pectinate uncinus - an uncinus with comblike arranged [side view] teeth of about equal size (see Fig. 20b; 22f).
pennoned seta - a special, winged seta of some Magelonidae (see Fig. 7h) and a pickaxe-shaped seta of some Sabellidae (see Fig. 25b).
pinnule - the serially arranged appendage of the radiole in the Sabellidae and Serpulidae (see Fig. 25c; 26d).
postsetal lobe - a parapodial lamella posterior to the setae (see Table 1, fig. D; Fig. 1c, 3g, 6d).
presetal lobe - a parapodial lamella anterior to the setae (see Fig. 6h).
prostomium - the anterior presegmental region (see Fig. Ig). It is often not externally recognizable in sedentariate polychaetes.
pseudocompound seta - a seta superficially appearing articulated (see Fig. 3d) or with secondarily reduced articulation [see also compound seta].
pygidial funnel or scoop - the membranous structure enclosing the anus in some Maldanidae (see Fig. 16s, 17g).
pygidial plate - the platelike posterior end in some Maldanidae (see Fig. 16r, 17e).
pygidium - the posterior postsegmental region bearing the anus and sometimes cirri or membranous structures.
radiole - the primary branch of a tentacular lobe of the Sabellidae and Serpulidae.
scaphal hook - a stout hooked seta at the base of the scaphe in the Amphictenidae (see Table 4, fig. F; Fig. 20c).
scaphe - the flattened caudal region bearing the anus in the Amphictenidae (see Table 4, fig. F).
seta - a chitinous bristle emerging from or imbedded in the parapodium [see also compound, geniculate, pseudocompound, simple, spatulate, and subspatulate; hook, palea, spine, subuluncinus, uncinus; and modified or special setae].
setiger - any segment that bears setae.
sickle seta - a seta on thoracic setiger 3 with sickle-shaped blade, often serrated, of some Spirorbinae (see Fig. 28k).
simple seta - an unjointed seta (see Fig. $11,3 \mathrm{p}, 6 \mathrm{~g}, 17 \mathrm{o}$) [see also compound and pseudocompound seta].
spatulate seta - a seta with distally broadly expanded margin (see Fig. 25d, g) [see also subspatulate seta].
spine - a thick acicular or spear-shaped seta (see Table 2, fig. C; Fig. 1j, 5b, 16j, 24d).
spiniger - a compound seta with a straight, pointed distal appendage.
subpodial lobe - a projection ventrad to the neuropodium of some Orbiniidae (see Fig. 1a).
subspatulate seta - a seta intermediate in form between a limbate and spatulate seta (see Fig. 26 g) [see also spatulate seta].
subuluncinus - a simple seta with a stout shaft tapering to a slender distal section (see Fig. 1e)
tentacle - a [often grooved] slender appendage of the anterior end (see Table 4, fig. E, F; Table 5, fig. A-C) [also applied to the paired, not grooved, appendages of the anterior end of some Archiannelida (see Table 6, fig. A-C].
tentacular cirrus - a paired [not grooved] appendage borne on modified segments of the head region (see Table 4, fig. F).
tentacular crown - the usually stiff, pinnate filaments at the anterior end of Sabellidae and Serpulidae composed of two [usually symmetrical] tentacular lobes (see Table 5, fig. E, G).
tentacular lobe - one half the tentacular crown of the Sabellidae and Serpulidae (see Fig. 25a, 26n).
thoracic membrane - a thin fold extending from the dorsal part of the collar to the ventral side of the posterior thorax in most Serpulidae (see Table 5, fig. G).
thorax - the anterior body region in some sedentariate polychaetes, usually distinguished from the abdomen by the segmental structure, or the form of the parapodia or setae (see Table 1, fig. A; Table 5, fig. A-C, E-G).
torus - a noto- or neuropodium reduced to a ridge or fold, with imbedded uncini (see Fig. 15a, 23p).
unciniger - any segment that bears uncini.
uncinus - a flattened seta with apical teeth, usually without a shaft (see Fig. 20b, 22k, l) [see also acicular, avicular, and pectinate uncini].
uniramous - a parapodium without notosetae or notopodial acicula.
upper lip - the skin fold above the mouth in the Ampharetidae (see Table 5, fig. A).
ventral cirrus - a projection from the neuropodium (see Fig. 12d, 21m).
ventral fringe - a row of papillae ventrad to the neuropodium in some Orbiniidae (see Fig. 1j).
ventral shield - a glandular [usually light-colored], segmentally arranged pad ventrally in the thorax in some Terebellidae (see Table 5, fig. B) and Sabellidae.

References

Annenkova-Chlopina, N. 1924. Neues über die Verbreitung einiger Arten der Polychaeten. Dokl. Ross. Akad. Nauk f. 1924: 125-128.
Annenkova, N. 1929. Beiträge zur Kenntnis der Polychaeten-Fauna der USSR. I. Fam. Pectinariidae Quatrefages (Amphictenidae Malmgren) and Ampharetidae Malmgren. Ezheg. Zool. Muz. Akad. Nauk SSSR 30: 477-502.
Armstrong, J. W., C. P. Staude, R. M. Thom, and K. K. Chew. 1977. Habitats and relative abundances of the intertidal macrofauna at five Puget Sound beaches in the Seattle area. Syesis 9: 277-290.
Armstrong, J. W., and P. A. Jumars. 1978. Branchiate Dorvilleidae (Polychaeta) from the North Pacific. Bull. South. Calif. Acad. Sci. 77: 133-138.
Arwidsson, I. 1907. Studien über die skandinavischen und arktischen Maldaniden. Zool. Jahrb. Suppl. 9: 1-308.
Arwidsson, I. 1922. Systematic notes on some maldanids. K. Sven. Vetenskaps Akad. Handl. 63(7): 46 p.
Ax, P. 1967. Diurodrilus ankeli nov. spec. (Archiannelida) von der nordamerikanischen Pazifikküste. Z. Morphol. Ökol. Tiere 60: 5-16.
Bailey, J. H. 1969. Methods of brood protection as a basis for the reclassification of the Spirorbinae (Serpulidae). Zool. J. Linn. Soc. 48: 387-407.
Banse, K. 1956. Beiträge zur Kenntnis der Gattungen Fabricia, Manayunkia, und Fabriciola (Sabellidae, Polychaeta). Zool. Jahrb. Abt. Syst. 84: 415-438.
1957. Die Gattungen Oriopsis, Desdemona und Augeneriella (Sabellidae, Polychaeta). Vidensk. Medd. Dan. Naturhist. Foren. 119: 67-105.
1963. Polychaetous annelids from Puget Sound and the San Juan Archipelago, Washington. Proc. Biol. Soc. Wash. 76: 197-208.
1969. Acrocirridae n.fam. (Polychaeta Sedentaria). J. Fish. Res. Board Can. 26: 25952620.
1970. The small species of Euchone Malmgren (Sabellidae, Polychaeta). Proc. Biol. Soc. Wash. 83: 387-408.

1972a. On some species of Phyllodocidae, Syllidae, Nephtyidae, Goniadidae, Apistobranchidae, and Spionidae (Polychaeta) from the northeast Pacific Ocean. Pac. Sci. 26: 191222.

1972b. Redescription of some species of Chone Kröyer and Euchone Malmgren, and three new species (Sabellidae, Polychaeta). Fish. Bull. U.S. 70: 459-495.

1979a. Acrocirrus columbianus and A. occipitalis, two new polychaetes (Acrocirridae)
from the northeast Pacific Ocean. Proc. Biol. Soc. Wash. 91: 923-928.

1979b. Ampharetidae (Polychaeta) from British Columbia and Washington. Can. J. Zool. 57: 1543-1552.

1979c. Sabellidae (Polychaeta) principally from the northeast Pacific Ocean. J. Fish. Res. Board Can. 36: 869-882.
1980. Terebellidae (Polychaeta) from the northeast Pacific Ocean. Can. J. Fish. Aquat. Sci. 37: 20-40.
1981. On some Cossuridae and Maldanidae (Polychaeta) from Washington and British Columbia. Can. J. Fish. Aquat. Sci. 38: 633-637.
Banse, K., and K. D. Hobson. 1968. Benthic polychaetes from Puget Sound, Washington, with remarks on four other species. Proc. U.S. Natl. Mus. 125(3667): 53 p .
1974. Benthic errantiate polychaetes of British Columbia and Washington. Bull. Fish. Res. Board Can. 185: 111 p.
Banse, K., K. D. Hobson, and F. H. Nichols. 1968. Annotated list of polychaetes, p. 521548, Appendix II. In U. Lie. A quantitative study of benthic infauna in Puget Sound, Washington, USA, in 1963-1964. Fiskeridir. Skr. Ser. Havunders. 14.
Banse, K., and F. H. Nichols. 1968. Two new species and three new records of benthic polychaetes from Puget Sound (Washington). Proc. Biol. Soc. Wash. 81: 223-230.
Berkeley, C. 1966. Records of some species of Polychaeta new to British Columbia and of extensions in distribution of some others. Can. J. Zool. 44: 839-849.
1967. A checklist of Polychaeta recorded from British Columbia since 1923, with references to name changes, descriptions, and synonymies. I. Errantia. Can. J. Zool. 45: 1049-1059.
1968. A checklist of Polychaeta recorded from British Columbia since 1923, with reference to name changes, descriptions, and synonymies. II. Sedentaria. Can. J. Zool. 46: 557-567.
1972. Further records of Polychaeta new to British Columbia with comments on some others. Can. J. Zool. 50: 451-456.
Berkeley, E. 1927. Polychaetous annelids from the Nanaimo district. Part. 3. Leodicidae to Spionidae. Contrib. Can. Biol. Fish. N.S. 3: 405-422.
1929. Polychaetous annelids from the Nanaimo District. Part 4. Chaetopteridae to Maldanidae. Contrib. Can. Biol. Fish. N.S. 4: 305-316.
Berkeley, E., and C. Berkeley. 1932a. Some Capitellidae (Polychaeta) from the N.E. Paci-
fic: with a description of a new genus. Proc. Zool. Soc. London 1932: 669-675.

1932b. On a collection of littoral Polychaeta from the west coast of Vancouver Island. Contrib. Can. Biol. Fish. N.S. 7: 309318.
1942. North Pacific Polychaeta, chiefly from the west coast of Vancouver Island, Alaska, and Bering Sea. Can. J. Res. Sect. D 20: 183-208.
1948. Annelida. Polychaeta Errantia. Can. Pac. Fauna 9b(1): 100 p.
1950. Notes on Polychaeta from the coast of western Canada. IV. Polychaeta Sedentaria. Ann. Mag. Natur. Hist. Ser. 12, 3: 50-69.
1952. Annelida. Polychaeta Sedentaria. Can. Pac. Fauna 9b(2): 139 p.
1954. Additions to the polychaete fauna of Canada, with comments on some older records. J. Fish. Res. Board Can. 11: 454-471.
1956. Notes on Polychaeta from the east coast of Vancouver Island and from adjacent waters, with a description of a new species of Aricidea. J. Fish. Res. Board Can. 13: 541546.
1962. Polychaeta from British Columbia; with a note on some western Canadian Arctic forms. Can. J. Zool. 40: 571-577.
Blake, J. A. 1966. On Boccardia hamata (Webster), new combination (Polychaeta, Spionidae). Bull. South. Calif. Acad. Sci. 65: 176-184.
1971. Revision of the genus Polydora from the east coast of North America (Polychaeta: Spionidae). Smithson. Contrib. Zool. 75: 32 p .
1975. The larval development of Polychaeta from the northern California const. I. Cirriformia spirabrancha (Family Cirratulidae). Trans. Am. Microsc. Soc. 94: 179-188.
1979. Revision of some polydorids (Polychaeta: Spionidae) described and recorded from British Columbia by Edith and Cyril Berkeley. Proc. Biol. Soc. Wash. 92: 606-617.
Blake, J., and D. Dean. 1973. Polychaetous annelids collected by the R/V Hero from Baffin Island, Davis Strait, and West Greenland in 1968. Bull. South. Calif. Acad. Sci. 72: 31-39.

Blake, J. A., and J. D. Kudenov. 1978. The Spionidae (Polychaeta) from southeastern Australia and adjacent areas with a revision of the genera. Mem. Natl. Mus. Victoria, Melbourne 39: 171-280.
Blake, J. A., and C. P. Walton. 1977. New species and rccords of Polychaeta from the Gulf of the Farallones, California, p. 307-321. In D. J. Reish, and K. Fauchald [ed.], Essays on polychaetous annelids, in memory of Dr. Olga Hartman. Allan Hancock Found. Los Angeles, Calif.
Blake, J. A., and K. H. Woodwick. 1971. A review of the genus Boccardia Carazzi (Polychaeta: Spionidae) with descriptions of two new
species. Bull. South. Calif. Acad. Sci. 70: 3142.
1972. New species of Polydora (Polychaeta: Spionidae) from the coast of California. Bull. South. Calif. Acad. Sci. 70: 72-79.
Briggs, J. C. 1974. Marine zoogeography. McGrawHill, New York/Toronto, 475 p.
Brown, B. 1979. A redescription of Scoloplos simplex (Hutchings, 1974) (Polychaeta: Orbiniidae) from Australia. Proc. Biol. Soc. Wash. 92: 762-768.
Brusca, R. C. 1973. A handbook to the common intertidal invertebrates of the Gulf of California. Univ. Arizona Press, Tucson, Ariz. 427 p.
Bush, K. J. 1904. Tubicolous annelids of the tribes Sabellides and Serpulides from the Pacific Ocean. Harriman Alaska Exp. 12: 167-355. Doubleday, New York/Smithson. Inst., Washington, D.C.
Cameron, A. T., and I. Mounce. 1922. Some physical and chemical factors influencing the distribution of marine flora and fauna in the Strait of Georgia and adjacent waters. Contrib. Can. Biol. Fish. N.S. 1: 39-70.
Carey, Jr., A. G. 1972. Ecological observations on the benthic invertebrates from the central Oregon continental shelf, p. 422-443. In A. T. Pruter, and D. L. Alverson [ed.] The Columbia River estuary and adjacent ocean waters. Univ. Washington Press, Seattle, Wash.
Chamberlin, R. V. 1919. Pacific coast Polychaeta collected by Alexander Agassiz. Bull. Mus. Comp. Zool. 63: 249-270.
Chlebovitch, V. V. 1961. Littoral polychaetes from the Kurile Islands. Zool. Inst. Akad. Nauk SSSR, Issled. Dal'nevost. Morei SSSR 7: 151-260. (In Russian)
Clark, R. B. 1978. Composition and relationships, p. 1-32. In P. J. Mill, [ed.] Physiology of annelids. Academic Press, London-New York.
Dales, R. P. 1961. Occurrence of Phyllochatopterus claparedii McIntosh in the north-east Pacific. Nature 192; 1208-1209.
1977. The polychaete stomodeum and phylogeny. p. 525-546 In D. J. Reish, and K. Fauchald [ed.] Essays on polychaetous annelids, in memory of Dr. Olga Hartman. Allan Hancock Found. Los Angeles, Calif.
Day, J. H. 1964. A review of the family Ampharetidae (Polychaeta). Ann. S. Afr. Mus. 48: 97120.
1967. A monograph on the Polychaeta of southern Africa. Pt. 2. Sedentaria. Br. Mus. Natur. Hist. Publ. 656: 459-878.
1973. New Polychaeta from Beaufort, with a key to all species recorded from North Carolina. NOAA Tech. Rep. NMFS Circ. 375: 140 p.
Ehlers, E. 1913. Die Polychaeten-Sammlungen der deutschen Südpolar-Expedition 1901-1903. Dtsch. Südpolar-Exped. 13: 397-598.

Ekman, S. 1953. Zoogeography of the sea. Sidgwick and Jackson, London. 417 p.
Fauchald, K. 1972. Benthic polychaetous annelids from deep water off western Mexico and adjacent areas in the Eastern Pacific Ocean. Allan Hancock Monogr. Mar. Biol. 7: 575 p.
1977. The polychaete worms - definitions and keys to the orders, families, and genera. Nat. Hist. Mus. Los Angeles Cty Sci. Ser. 28: 190 p .
Fauvel, P. 1927. Polychètes sédentaires. Faune Fr. 16. Lechevalier, Paris. 494 p.

Foster, N. M. 1971. Spionidae (Polychaeta) of the Gulf of Mexico and the Caribbean Sea. Stud. Fauna Curaçao Other Caribb. Isl. 36(129): 183 p.
Giordanella, E. 1969. Contribution a l'étude de quelques Spionidae. Recl. Tray. Stn. Mar. Endoume Bull. 45 Fasc. 61: 325-349.
Gitay, A. 1969. A contribution to the revision of Spiochaetopterus (Chaetopteridae, Polychaeta). Sarsia 37: 9-20.
Grassé, P.-P. 1959. Traité de zoologic. Anatomie, systématique, biologie. Vol. V (1). Annélides, Myzostomides, Sipunculiens, Echiuriens, Priapuliens, Endoproctes, Phoronidiens. Masson, Paris. 1053 p.
Grassle, J. P., and J. F. Grassle. 1976. Sibling species in the marine pollution indicator Capitella (Polychaeta). Science 192: 567-569.
Gray, J. S. 1968. Nerilla inopinata, a new species of archiannelid, from the west coast of North America. Cah. Biol. Mar. 9: 441-448.
1969. A new species of Saccocirrus (Archiannelida) from the west coast of North America. Pac. Sci. 23: 238-251.
Hartman, O. 1936. New species of Spionidae (Annelida Polychaeta) from the coast of California. Univ. Calif. Publ. Zool. 41: 45-52.

1938a. Descriptions of new species and new generic records of polychaetous annelids from California of the families Glyceridae, Eunicidae, Stauronereidae, and Opheliidae. Uniy. Calif. Publ. Zool. 43: 93-111.

1938b. Annotated list of the types of polychaetous annelids in the Museum of Comparative Zoology. Bull. Mus. Comp. Zool. 85: 1-31.

1941a. Some contributions to the biology and life history of Spionidae from California. Allan Hancock Pacif. Exped. 7: 289-323.

1941b. Polychaetous annelids. Part IV. Pectinariidae, with a review of all species from the western hemisphere. Allan Hancock Pac. Exped. 7: 325-345.
1944. Polychaetous annelids. Part VI. Paraonidae, Magelonidae, Longosomidae, Ctenodrilidae, and Sabellariidae. Allan Hancock Pac. Exped. 10: 311-389.
1945. The marine annelids of North Carolina. Duke Univ. Mar. Stn. Bull. 2: 53 p. 1947. Polychaetous annelids. Part VII.

Capitelidae. Allan Hancock Pac. Exped. 10: 391-481.
1948. The polychactous annelids of Alaska. Pac. Sci. 2: 3-58.
1952. On the identity of Stylarioides inflata (Treadwell) and its extended distribution (Annelida). Pac. Sci. 6: 71-74.
1957. Orbiniidae, Apistobranchidae, Paraonidae, and Longosomidae. Allan Hancock Pac. Exped. 15: 211-393.
1959. Catalogue of the polychaetous annelids of the world. Part II. Allan Hancock Found. Occas. Pap. 23: 355-628.
1960. Systematic account of some invertebrate animals from the deep basins off southern California. Allan Hancock Pac. Exped. 22: 69-215.
1961. Polychaetous annelids from California. Allan Hancock Pac. Exped. 25: 1-226.

1965a. Catalogue of the polychaetous annelids of the world. Supplement 1960-1965 and Index. Allan Hancock Found. Occas. Pap. 23: 197 p .

1965b. Deep-water benthic polychaetous annelids off New England to Bermuda and other North Atlantic areas. Allan Hancock Found. Occas. Pap. 28: 378 p.
1966. Quantitative survey of the benthos of San Pedro Basin, southern California. Part II. Final results and conclusions. Allan Hancock Found. Occas. Pap. 19: 187-456.
1968. Atlas of the errantiate polychaetous annelids from California. Allan Hancock Found. Los Angeles, Calif. 828 p.
1969. Atlas of the sedentariate polychactous annelids from California. Allan Hancock Found. Los Angeles, Calif. 812 p.
Hartman, O., and K. Fauchald. 1971. Deep-water benthic polychaetous annelids off New England to Bermuda and other North Atlantic areas. Part II. Allan Hancock Monogr. Mar. Biol. 6: 327 p.
Hartman, O., and D. J. Reish. 1950. The marine annelids of Oregon. Oreg. State Monogr. Stud. Zool. 6: 64 p.
Hartmann-Schröder, G. 1962. Zweiter Beitrag zur Polychaetenfauna von Peru. Kiel. Meeresforsch. 18: 109-147.
1967. Zur Morphologie, Ökologie und Biologie von Mercierella enigmatica (Serpulidae, Polychaeta) und ihrer Röhre. Zool. Anz. 179: 421-456.
1971. Annelida, Borstenwürmer, Polychaeta. Tierwelt DtschI. 58: 1-594.
Healy, E. A., and G. P. Wells. 1959. Three new lugworms (Arenicolidae, Polychaeta) from the North Pacific area. Proc. Zool. Soc. Lond. 133: 315-335.
Hessle, C. 1917. Zur Kenntnis der terebellomorphen Polychaeten. Zool. Bidr. Uppsala 5: 39258.

Hobson, K. D. 1970. Novaquesta trifurcata, a new
genus and species of the family Questidae (Annelida, Polychaeta) from Cape Cod Bay, Massachusetts. Proc. Biol. Soc. Wash. 83: 191-194.
1972. Two new species and two new records of the family Paraonidae (Annelida, Polychaeta) from the northeastern Pacific Ocean. Proc. Biol. Soc. Wash. 85: 549-555.
1974. Orbiniella muda new species (Orbiniidae) and nine new records of other sedentariate polychaetous annelids from Washington and British Columbia. Can. J. Zool. 52: 6975.
1976. Protoariciella oligobranchia new species (Orbiniidae) and six new records of Orbiniidae, Questidae, and Paraonidae (Annelida, Polychaeta) from British Columbia. Can. J. Zool. 54: 591-596.
1977. Notes on benthic sedentariate Polychaeta (Annelida) from British Columbia and Washington. Syesis 9: 135-142.
Hove, H. A. ten, and J. C. A. Weerdenburg. 1978. A generic revision of the brackish-water serpulid Ficopomatus Southern 1921 (Polychaeta: Serpulinae), including Mercierella Fauvel 1923, Sphaeropomatus Treadwell 1934, Mercierellopsis Rioja 1945 and Neopomatus Pillai 1960. Biol. Bull. Woods Hole, Mass. 154: 96-120.
Imajima, M. 1959. A description of a new species of the Spionidae (Polychaeta), Nerinides yamaguchii n. sp., with notes on its development. J. Hokkaido Gakugei Univ. 10: 155-165.
1967. The Syllidae (polychaetous annelids) from Japan (VI). Distribution and literature. Publ. Seto Mar. Biol. Lab. 14: 351368.
1969. Three species of the family Sphaerodoridae (polychaetous annelids) from Japan. Bull. Natl. Sci. Mus. Tokyo 12: 151-156.
1972. Review of the annelid worms of the family Nereidae of Japan, with descriptions of five new species or subspecies. Bull. Natl. Sci. Mus. Tokyo 15: 37-153.
1973. Paraonidae (Polychaeta) from Japan. Bull. Natl. Sci. Mus. Tokyo 16: 253-292.
1974. Occurrence of species of three families, Eulepethidae, Apistobranchidae, and Heterospionidae (Polychaeta) from Japan. Bull. Natl. Sci. Mus. Tokyo 17: 57-64.
1976. Serpulinae (Annelida, Polychaeta) from Japan. I. The genus Hydroides. Bull. Natl. Sci. Mus. Tokyo, Ser. A (Zool.) 2: 229248.

Imajima, M., and O. Hartman. 1964. The Polychaetous Annelids of Japan - Part II. Allan Hancock Found. Occas. Pap. 26: 239-452.
Imajima, M., and M. Higuchi. 1975. Lumbrineridae of polychaetous annelids from Japan, with descriptions of six new species. Bull. Natl. Sci. Mus. Tokyo, Ser. A (Zool.) 1: 5-37.
Johansson, K. E. 1927. Beiträge zur Kenntnis der

Polychaeten-Familien Hermellidae, Sabellidae und Serpulidae. Zool. Bidr. Uppsala 11: 1184.

Johnson, H. P. 1901. The Polychaeta of the Puget Sound region. Proc. Boston Soc. Nat. Hist. 29: 381-437.
Jones, M. L. 1963. Four new species of Magelona (Annelida, Polychaeta) and a redescription of Magelona longicornis Johnson. Am. Mus. Novit. 2164: 31 p .
1971. Magelona berkeleyi n.sp. from Puget Sound (Annelida: Polychaeta), with a further redescription of Magelona longicornis Johnson and a consideration of recently described species of Magelona. J. Fish. Res. Board Can. 28: 1445-1454.
1974. On the Caobangiidae, a new family of the Polychaeta, with a redescription of Caobangia billeti Giard. Smithson. Contrib. Zool. 175: 55 p .
1978. Three new species of Magelona (Annelida, Polychaeta) and a redescription of Magelona pitelkai Hartman. Proc. Biol. Soc. Wash. 91: 336-363.
Jones, E. R., and F. F. Ferguson. 1957. The genus Dinophilus (Archiannelida) in the United States. Am. Midl. Nat. 57: 440-449.
Jouin, C. 1966. Morphologie et anatomie comparée de Protodrilus chaetifer Remane et Protodrilus symbioticus Giard; création du nouveau genre Protodriloides (Archiannélides). Cah. Biol. Mar. 7: 139-155.
1970. Recherches sur les Protodrilidae (Archiannélides): 1. Etude morphologique et systématique du genre Protodrilus. Cah. Biol. Mar. 11: 367-434.
1971. Status of the knowledge of the systematics and ecology of Archiannelida, p. 47-56. In N. C. Hulings [ed.] Proceedings of the First International Conference on Meiofauna. Smithson. Contrib, Zool. 76.
Karling, T. G. 1958. Zur Kenntnis von Stygocapitella subterranea Knöllner und Parergodrilus heideri Reisinger (Annelida). Ark. Zool., Ser. 2, 11: 307-342.
Katzmann, W., and L. Laubier. 1974. Le genre Fauveliopsis (Polychète sédentaire) en Méditerranée. Akad. Wiss. Lit. Mainz, Math. Naturwiss. K1., Mikrofauna Meeresboden 50: 16 p .
Knight-Jones, P., E. W. Knight-Jones, and R. P. Dales. 1980. Spirorbidae (Polychacta Sedentaria) from Alaska to Panama. J. Zool. Soc. Lond. 189: 419-458.
Knight-Jones, E. W., P. Knight-Jones, and L. C. Llewellyn. 1974. Spirorbinae (Polychaeta: Serpulidae) from southeastern Australia. Notes on their taxonomy, ecology, and distribution. Rec. Aust. Mus. 29: 107-151.
Kohn, A. J., ind M. C. Lloyd. 1973. Marine polychaete annelids of Easter Island. Int. Rev. Gesamten Hydrobiol. 58: 691-712.

Kravits, M. J., and H. R. Jones. 1979. Systematics and ecology of benthic Phyllodocidae (Annelida: Polychaeta) off the Columbia River, U.S.A. Bull. South. Calif. Acad. Sci. 78: 1-19.

Kudenov, J. D. 1975. Sedentary polychaetes from the Gulf of California, Mexico. J. Nat. Hist. 9: 205-231.
Kudenov, J. D., and J. A. Blake. 1978. A review of the genera and species of the Scalibregmidae (Polychaeta) with descriptions of one new genus and three new species from Australia. J. Nat. Hist. 12: 427-444.

Laubier, L. 1964. Découverte du genre Cossura (Polychète, Cossuridae) en Méditerranée: Cossura soyeri sp . n . Vie Milieu 14: 833-842.
Levenstein, R. I. 1970. New and rare species of the abyssal genus Fauveliopsis McIntosh (Polychaeta Annelida) and the peculiarities of its distribution. Tr. Inst. Okeanol. Akad. Nauk SSSR 80: 227-253. (In Russian)
Light, W. J. 1969. Extension of range for Manayunkia aestuarina (Polychaeta: Sabellidae) to British Columbia. J. Fish. Res. Board Can. 26: 3088-3091.
1970. Polydora alloporis, new species, a commensal spionid (Annelida, Polychaeta) from a hydrocoral off central California. Proc. Calif. Acad. Sci. Ser. 4, 37: 459-471.
1977. Spionidae (Annelida: Polychaeta) from San Francisco Bay, California: A revised list with nomenclatural changes, new records, and comments on related species from the northeastern Pacific Ocean. Proc. Biol. Soc. Wash. 90: 66-88.

1978a. Spionidae. Polychaeta Annelida. Boxwood Press, Pacific Grove, Calif. 211 p.

1978b. Reexamination of the species referred to the genus Flabelliderma Hartman (Polychaeta: Flabelligeridae and Acrocirridae). Proc. Biol. Soc. Wash. 91: 681-690.
1981. Revision of the subfamily Maldaninae (Polychaeta), with a review of the species referred to the genus Asychis Kinberg. Occ. Pap. Calif. Acad. Sci. 136. (In press)
Mackie, G. L., and S. U. Qadri. 1971. A polychaete, Manayunkia speciosa, from the Ottawa River, and its North American distribution. Can. J. Zool. 49: 780-782.
Malmgren, A. J. 1867. Annulata polychaeta Spetsbergiae, Grönlandiae, Islandiae et Scandinaviae hactenus cognita. Ofv. K. Vetensk. Akad. Forh. 27: 127-235.
Mangum, C. P. 1962 . Studies on speciation in maldanid polychaetes of the North American Atlantic coast. Postilla (Yale Peabody Mus. Nat. Hist.) 65: 12 p.
Marcus, E. du Bois-Reymond. 1947. Nerilla mediterranea from Brazil. Comun. Zool. Mus. Hist. Nat. Montevideo 45: 8 p .
Martin, G. G. 1977. Saccocirrus sonomacus n. sp., a new archiannelid from California. Trans. Am. Micros. Soc. 96: 97-103.

McDaniel, N., and K. Banse. 1979. A novel method of suspension feeding by the maldanid polychaete Praxillura maculata. Mar. Biol. 55: 129-132.
McHardy, R. A. 1966. Polyvinyl lactophenol microscope preparations made permanent with Turtox CMC-10. Turtox News 44: 63.
Mesnil, F. 1896. Etudes de morphologie externe chez les Annélides. I. Les Spionidiens des côtes de la Manche. Bull. Sci. Fr. Belg. 29: 110287.

Mileikovsky, S. A. 1977. On the systematic interrelationships within the Polychaeta and Annelida - an attempt to create an integrated system based on their larval morphology, p. 503-524. In D. J. Reish and K. Fauchald [ed.] Essays on polychaetous annelids, in memory of Dr. Olga Hartman. Allan Hancock Found. Los Angeles, Calif.
Moore, J. P. 1903. Polychaeta from the coastal slope of Japan and from Kamchatka and Bering Sea. Proc. Acad. Nat. Sci. Philadelphia 55: 401-490.
1905. Five new species of Pseudopotamilla from the Pacific coast of North America. Proc. Acad. Nat. Sci. Philadelphia 57: 555569.

1906a. New species of Ampharetidae and Terebellidae from the North Pacific. Proc. Acad. Nat. Sci. Philadelphia 57: 846-860.

1906b. Additional new species of Polychaeta from the North Pacific. Proc. Acad. Nat. Sci. Philadelphia 58: 217-260.
1907. Descriptions of new species of spioniform annelids. Proc. Acad. Nat. Sci. Philadelphia 59: 195-207.
1908. Some polychaetous annelids of the northern Pacific coast of North America. Proc. Acad. Nat. Sci. Philadelphia 60: 321-364.
Moore, J. P., and K. J. Bush. 1904. Sabellidae and Serpulidae from Japan, with descriptions of new species of Spirorbis. Proc. Acad. Nat. Sci. Philadelphia 56: 157-179.
Morse, M. P. 1979. Meiomenia swedmarki gen. et sp. n., a new interstitial solenogaster from Washington, USA. Zool. Scr. 8: 249-253.
Newell, G. E. 1949. Clymenella torquata (Leidy), a polychaete new to Britain. Ann. Mag. Natur. Hist. Ser. 12, 2: 147-155.
Nichols, F. H. 1975. Dynamics and energetics of three deposit-feeding benthic invertebrate populations in Puget Sound, Washington. Ecol. Monogr. 45: 57-82.
Nilsson, D. 1928. Neue und alte Amphicteniden. Göteb. K. Vetensk. VitterhSamh. Handl. Ser. 4, 33(4): 96 p.
Okuda, S. 1937. Spioniform polychaetes from Japan. J. Fac. Sci. Hokkaido Univ. Ser. 6 Zool. 5: 217-254.
Orrhage, L. 1962. Uber die äussere Morphologie der Familie Apistobranchidae Mesnil and Caullery (Polychaeta Sedentaria). Zool. Bidr. Uppsala 33: 423-446.
1980. On the structure and homologues of the anterior end of the polychaete families Sabellidae and Serpulidae. Zoomorphology 96: 113-168.
Pereyra, W. T., and M. S. Alton. 1972. Distribution and relative abundance of invertebrates off the northern Oregon coast, p. 444-474. In A. T. Pruter and D. L. Alverson [ed.] The Columbia River estuary and adjacent ocean waters. Univ. Washington Press, Seattle, Wash.
Pettibone, M. H. 1953. Fresh-water polychaetous annelid, Manayunkia speciosa Leidy, from Lake Erie. Biol. Bull. Woods Hole, Mass. 105: 149-153.
1954. Marine polychaete worms from Point Barrow, Alaska, with additional records from the North Atlantic and North Pacific. Proc. U.S. Natl. Mus. 103: 203-356.
1956. Marine polychaete worms from Labrador. Proc. U.S. Natl. Mus. 105: 531584.
1957. North American genera of the family Orbiniidae (Annelida: Polychaeta), with descriptions of new species. J. Wash. Acad. Sci. 47: 159-167.
1962. New species of polychaete worms (Spionidae: Spiophanes) from the east and west coast of North America. Proc. Biol. Soc. Wash. 75: 77-87.

1963a. Marine polychaete worms of the New England region. 1. Families Aphroditidae through Trochochaetidae. Bull. U.S. Natl. Mus. 227, Pt. 1: 356 p.

1963b. Revision of some genera of polychaete worms of the family Spionidae, including the description of a new species of Scolelepis. Proc. Biol. Soc. Wash. 76: 89-103.
1965. Two new species of Aricidea (Polychaeta, Paraonidae) from Virginia and Florida, and redescription of Aricidea fragilis Webster. Proc. Biol. Soc. Wash. 78: 127-140.
1976. Contribution to the polychaete family Trochochaetidae Pettibone. Smithson. Contrib. Zool. 230: 21 p .
Pilato, G., and G. Cantone. 1976. Nuove specie di Poecilochaetus e considerazioni sulla famiglia dei Poecilochactidae (Annelida, Polychaeta). Animalia 3: 29-63.
Pilgrim, M. 1977. The functional morphology and possible taxonomic significance of the parapodia of the maldanid polychactes Clymenella torquata and Euclymene oerstedi. J. Morphol. 152: 281-302.
Pixell, H. L. M. 1912. Polychaeta from the Pacific coast of North America. Part I. Serpulidae with a revised table of classification of the genus Spirorbis. Proc. Zool. Soc. London 1912: 784-805.
Potts, F. A. 1914. Polychaeta from the N.E. Pacific. The Chaetopteridae. With an account of the phenomenon of asexual reproduction in Phyllochactopterus and the description of two
new species of Chaetopteridae from the Atlantic. Proc. Zool. Soc. Lond. 1914: 955994.

Potswald, H. E. 1965. Reproductive biology and development of Spirorbis (Serpulidae, Polychaeta). Ph.D. Thesis, Univ. Washington, Seattle, Wash. 330 p.
Reish, D. J. 1965. Benthic polychaetous annelids from Bering, Chukchi, and Beaufort Seas. Proc. U.S. Natl. Mus. 117: 131-158.
1977. The role of life history studies in polychaete systematics, p. 461-476. In D. J. Reish and K. Fauchald [ed.] Essays on polychaetous annelids in memory of Dr. Olga Hartman. Allan Hancock Found. Los Angeles, Calif.
Reisinger, E. 1960. Die Lösung des ParergodrilusProblems. Z. Morph. Ökol. Tiere 48: 517544.

Rioja, E. 1942. Estudios anelidológicos. V. Observaciones acerca de algunas especies del genero Spirorbis Daudin, de las costas Mexicanas del Pacífico. An. Inst. Biol. Univ. Nac. Auton. Mex. 13: 137-153.
Schoener, A., E. R. Long, and J. R. DePalma. 1978. Geographic variation in artificial island colonization curves. Ecology 59: 367-382.
Söderström, A. 1920. Studien über die Polychätenfamilie Spionidae. Inaug. Diss. Uppsala. Almquist and Wicksell, Uppsala. 286 p.
Southern, R. 1914. Clare Island Survey, Part 47. Archiannelida and Polychaeta. Proc. R. Ir. Acad. 31: 1-160.
Støp-Bowitz, C. 1945. Les Ophéliens Norvégiens. Nytt Mag. Naturvidensk. 85: 21-61.
1948. Les Flabelligériens Norvégiens. Bergens, Mus. Aarb. f. 1946 and 1947. Naturvit. R. 2: 59 p.
Strelzov, V. E. 1973. Polychaete worms of the family Paraonidae Cerruti, 1909 (Polychaeta, Sedentaria). Izd-vo. "Nauka" Leningrad. 1973. 170 p . (Transl. from Russian by Oxonian Press, New Delhi, No. TT 76-52002, 1979).
Swedmark, B. 1958. Psammodriloides fauveli n. gen., n. sp. et la famille des Psammodrilidae (Polychaeta Sedentaria). Ark. Zool. Ser. 2, 12: 55-64.
1964. The interstitial fauna of marine sand. Biol. Rev. 39: 1-42.
Thorson, G. 1961. Length of pelagic larval life in marine bottom invertebrates as related to larval transport by ocean currents, p. 455474. In M. Sears [ed.] Oceanography. Am. Assn. Adv. Sci. Publ. 67.
Treadwell, A. 1914. Polychaetous annelids of the Pacific coast in the collections of the zoological museum of the University of California. Univ. Calif. Publ. Zool. 13: 175-234.
Uchids, H. 1971a. Spirorbinae (Polychaeta, Serpulidae) from Hokkaido I. J. Fac. Sci. Hokkaido Univ. Ser. 6 Zool. 17: 628-662.

1971b. Spirorbinae (Polychaeta, Serpuli-
dae) from Hokkaido II. J. Fac. Sci. Hokkaido Univ. Ser. 6 Zool. 18: 193-226.
1978. Serpulid tube worms (Polychaeta, Sedentaria) from Japan with the systematic review of the group. Bull. Mar. Park Res. Stn. 2: 1-98.
Ushakov, P. 1955. Polychaeta of the far-eastern seas of the U.S.S.R. Opred. Faune SSSR 56: 445 p. (Transl. from Russian by Israel Program for Sci. Transl. Jerusalem, No. 1259, 1965). (NITS No. TT 65-50020).
1972. Polychaetes of the suborder Phyllodociformia of the Polar Basin and the northwestern part of the Pacific Ocean. Akad. Nauk SSSR, Zool. Inst., Fauna SSSR, N.S. 102: 272 p. (Transl. from Russian by Israel Program for Sci. Transl. Jerusalem, ISBN 070651448 3, 1974).

Valentine, J. W. 1966. Numerical analysis of marine molluscan ranges on the extratropical northeastern Pacific shelf. Limnol. Oceanogr. 11: 198-211.
Vine, P. J. 1972. Spirorbinae (Polychaeta: Serpulidae) from the Red Sea, including descriptions of a new genus and four new species. Zool. J. Linn. Soc. 51: 177-201.
Webster, H. E., and J. E. Benedict. 1887. The Annelida Chaetopoda from Eastport, Maine. Rep. U.S. Comm. Fish. 1885: 707-755.
Weese, A. O. 1933. The annelids of a marine sere. Proc. Okla. Acad. Sci. 13: 18-21.
Wells, G. P. 1957. Variation in Arenicola marina (L.) and the status of Arenicola glacialis Murdoch. Proc. Zool. Soc. Lond. 129: 397-419.
1959. The genera of Arenicolidae (Polychaeta). Proc. Zool. Soc. Lond. 133: 301-314.
Wesenberg-Lund, E. 1948. Maldanidae (Polychaeta) from West Greenland waters. Medd. Grønl. 134(9): 58 p .

Westheide, W. 1967. Die Gattung Trilobodrilus (Archiannelida, Polychaeta) von der deutschen Nordseeküste. Helgol. Wiss. Meeresunters. 16: 207-215.
1971. Apharyngtus punicus nov. gen. nov. spec., ein aberranter Archiannelide aus dem Mesopsammal der tunesischen Mittelmeerküste. Akad. Wiss. Lit. Mainz, Math. Naturwiss. K1., Mikrofauna Meeresbodens 6: 19 p .
Wieser, W. 1957. Archiannelids from the intertidal of Puget Sound. Trans. Am. Microsc. Soc. 76: 275-285.
1959. Free-living nematodes and other small invertebrates of Puget Sound beaches. Univ. Wash. Publ. Biol. 19: 179 p.
Wilfert, M. 1973. Ein Beitrag zur Morphologie, Biologie und systematischen Stellung des Polychaeten Ctenodrilus serratus. Helgol. Wiss. Meeresunters. 25: 332-346.
Wollebaek, A. 1912. Nordeuropaeiske Annulata Polychaeta. I. Ammocharidae, Amphictenidae, Ampharetidae, Terebellidae og Serpulidae. Skr. Nor. Vidensk. Selsk. Christiania, Mat. Naturvidensk. K1., 18: 144 p.
Woodwick, K. H. 1963. Taxonomic revision of two polydorid species. (Annelida, Polychaeta, Spionidae). Proc. Biol. Soc. Wash. 76: 209215.

Wu, B. L., and D. J. Yang. 1962. The taxonomy and distribution of the genus Saccocirrus Bobretzky 1871 (Archiannelida). Oceanol. Limnol. Sin. 4: 169-179. [In Chinese]
Zibrowius, H. 1969. Review of some little known genera of Serpulidae (Annelida: Polychaeta). Smithsonian Contrib. Zool. 42: 22 p.

Credits

The copyright release for the many figures by publishers and institutions is gratefully acknowledged. Specific recognition for the permission is due to the Allan Hancock Foundation for 28 figures from Hartman (1941; 1947; 1957; 1960; 1961; 1969), the Southern California Academy of Science for one figure each from Blake and Dean (1973) and Blake and Woodwick (1971), to Mssrs Taylor and Francis Ltd. for one figure from Berkeley and Berkeley (1950), and the University Press of Hawaii (formerly University of Hawaii Press) for one figure each from Gray (1969) and Hartman (1948; 1952).

Index to Polychaete Taxa

Names in italics are synonyms. Boldface indicates page numbers for figures.
For explanations of superscripts, see page 6.

Abarenicola 68
claparedi oceanica $10,67,68$
claparedi vagabunda 10,68
pacifica $10,67,68$
vagabunda oceanica 68
vagabunda vagabunda 68
abranchiata, Leaena* 90, 91
acmeceps, Scoloplos 9, 29
Acrocirridae $10,16,17,54,54$
Acrocirrus 54
columbianus $10,54,54$
heterochaetus* 54,54
occipitalis $10,54,54$
acuminata, Ophelina 10, 61, 62
acuta, Chaetozone 10, 51, 52
acutifrons, Ampharete 11, 83, 84
aesthetica, Myxicola 12, 104, 105
aestuarina, Manayunkia 12, 104, 105
affinis affinis, Praxillella 11,76
affinis, Clymene 76
affinis, Flabelligera 10, 57, 58
affinis pacifica, Praxillella 11, 75, 76
affinis, Praxillella 76
affinis, Praxillella affinis 11, 76
alaskensis, Scolelepis 44
alata, Caulleriella 51, 52
alata?, Caulleriella 10,51
alloporis, Polydora 9, 36, 41
Amaeana 89
occidentalis 11,89
Amage 82
anops $11,82,83$
ambilateralis, Spirorbis $12,111,112,113$
ambiseta, Capitita 66
ambiseta, Mediomastus 10, 65, 66
americana, Barantolla 10,64
Ammochares fusiformis 77
Ammocharidae 77
Ammotrypane aulogaster 62
breviata 62
Ampharete 81,84
acutifrons $11,83,84$
arctica 84
finmarchica $11,83,84$
gagarae 85
goesi 84
goesi brazhnikovi 11, 83, 84
goesi goesi 11, 84
labrops 11, 84
Ampharetidae 2, 3, 11, 22, 22, 80, 83
Ampharetinae 80
Amphicteis 81, 84
glabra* 83, 84
mucronata 11, 83, 84
scaphobranchiata 11,83, 84
Amphictene 80
Amphictenidae 11, 20, 21, 79, 79
Amphiglena $\dagger 98$
Amphisamytha 82, 85
bioculata 11,83, 85
Amphitrite 88, 89
cirrata 11,89,90
groenlandica 91
Amphitritinae 86
analis, Euchone 12, 101, 102
ankeli, Diurodrilus 12, 117
Anobothrus 81, 85
gracilis $11, \mathbf{8 3}, 85$
anops, Amage 11, 82, 83
Anotomastus $\dagger 64$
antennata, Nerilla 12, 118
Aonides $广$ 35, 36
Apistobranchidae 9, 14, 14, 34
Apistobranchus 34
ornatus 9,34
tullbergi 34
tullbergi? 9
Apomatus 108, 110
geniculatus $12,109,110$
timmsii $12, \mathbf{1 0 9}, 110$
Archiannelida 2, 6, 12, 25, 114
arctica, Ampharete 84
Arenicola 68
marina 10,68
pusilla 68
Arenicolidae 10, 20, 20, 67, 67
arenincola, Rhynchospio 37
arenincola, Rhynchospio cf. 37
arenosa, Stylarioides 59
arenosus \dagger, Piromis 56
Aricia michaelseni 29
Aricidea 30, 32
assimilis 9, 31, 33
branchiata 33
jeffreysii 32
longicornuta 32
lopezi 9, 31, 33
minuta 9, 31, 32
neosuecica 9,31, 32
quadrilobata $9,31,32$
ramosa $9,31,32$
wassi* 31, 32
Ariciidae 26
Armandia 60, 61
brevis $10,61,61$
armata*, Polydora 36, 41
armatus, Idanthyrsus 11,78,78
armiger, Scoloplos 9, 27, 29
Artacama 86, 89
conifera $11,89,90$
proboscidea $\dagger 89$
Artacaminae 86
Asabellides 82, 85
lineata $11,83,85$
sibirica $11,83,85$
Asclerocheilus 60
beringianus 10, 59, 60
californicus $\dagger 59$
assimilis, Aricidea 9, 31, 33
Asychis 69, 71
biceps 11, 71, 72
disparidenta 11,71,72
lacera 11,71, 72
similis 11,71,72
aulogaster, Ammotrypane 62
aurantiaca, Chone 12, 101, 102
auricoma, Pectinaria 80
Axiothella 69,70,73
rubrocincta $11,72,73$
bairdi, Streblosoma 11, 94, 95
balanoglossi, Notomastus lineatus 66
Barantolla 64
americana 10,64
belgica, Pectinaria 80
benedicti, Streblospio 9, 43, 45
beringianus, Asclerocheilus 10, 59, 60
berkeleyi, Fabricia 103
berkeleyi, Fabriciola 12, 101, 103
berkeleyi, Magelona 9, 47, 48
berkeleyorum, Chaetozone 52
berkeleyorum, Naineris 28
berkeleyorum, Spiophanes 9, 43, 45
Betapista 86, 89
dekkerae 11, 89,90
biceps, Asychis 10, 71, 72
bimaculata, Chone 102
bioculata, Amphisamytha 11, 83, 85
bitorquata, Rhodine 11,75,76, 82, 85
Boccardia 38
Boccardia hamata 38
boecki, Laphania 11, 91
Bogueidae \dagger 20, 21
bombyx, Spiophanes 9, 43, 45
borealis, Ophelia 62
borealis, Petaloproctus tenuis 11, 75, 76
borealis, Spirorbis 12, 114
brachycephala, Polydora 9, 36, 40
Brada 56, 58
sachalina $10,57,58$
villosa 10, 57, 58
branchiata, Aricidea 33
branchiatus, Cirrophorus 9, 31, 33
Branchiomaldane 67, 68
vincenti 10, 67, 68
brazhnikovi, Ampharete goesi 11, 83, 84
Branchiommat 98, 104
sp. 101
Branchiomma 104
burrardum 104
breviata, Ammotrypane 62
breviata, Ophelina $10,61,62$
brevibranchiata, Pista 11, 90, 93
brevicoma, Pectinaria 80
brevis, Armandia 10, 61, 61
brevis, Travisia 10, 61, 63
burrardum, Branchiomma 104
butleri, Spio 9, 35, 43, 44, 45
caeca, Polydora 42
caliendrum, Polycirrus 95
californica*, Neoleprea 92
californicat, Pygospio 42
californicus \dagger, Asclerocheilus 59
californicus, Polycirrus 11, 94, 95
californiensis*, Mediomastus 66
californiensis, Pectinaria 11, 79, 80
californiensis, Samytha 11,86
Caobangiidae \dagger 22, 23
capensis, Mediomastus 10, 66
capitata, Capitella 10, 64, 65
Capitella 63,64
capitata $10,64,65$
dizonata 10,64
Capitellidae 3, 10, 18, 19, 63, 65
Capitita 66
ambiseta 66
cardalia, Polydora 9, 36, 42
carnea, Travisia 62
catharinae, Eudistylia 12, 103
caudicirra, Questa 9, 30, 30
caulleryi \dagger, Polydora 36
caulleryi?, Polydora 40
Caulleriella 51
alata 51, 52
alata? 10,51
gracilis 52
hamata* 51,52
cementarium, Sabellaria 11,78, 79
chaetifer, Protodriloides 12, 24, 115, 116
Chaetogordius $\dagger 24$
Chaetopteridae 10, 16, 16, 48, 49
Chaetopterus 48, 49
variopedatus $10,49,49$
Chaetozone 51
acuta 10,51,52
berkeleyorum 52
setosa 10, 51, 52
spinosa 51,52
spinosa? 10
Chitinopoma groenlandica 111
Chone 100
aurantiaca $12,101,102$
bimaculata 102
duneri 12, 102
ecaudata 12,100
gracilis 100
infundibuliformis $12, \mathbf{1 0 1}, 102$
magna 12,102
mollis* 101, 102
ciliata, Polydora 41
ciliata spongicola, Polydora 41
cincinnatus, Thelepus 11, 95
cingulatus, Cirratulus 52
Circeis 113
cirrata, Amphitrite 11, 89, 90
cirrata, Laonice 36, 37
cirrata?, Laonice 9
cirrata, Spiophanes 45
Cirratulidae $1,3,10,16,16,50,52$
Cirratulus 51,52, 52, 53
cingulatus 52
cirratus $10,52,52$
robustus 52
spectabilis 10,52
spp. 52
cirratulus, Nerine 44
cirratus, Cirratulus 10, 52, 52
cirrifera, Paraspio 44
cirrifera, Prionospio 9,42
cirrifera, Spio 9, 43, 44
Cirriformia* 51,53
spirabranchia 53
spp. 52
Cirrophorus 30, 33
branchiatus 9, 31, 33
lyra 9, 31, 33
Cistena 79
Cistenides 80
claparedii, Phyllochaetopterus 10,50
claparedi oceanica, Abarenicola 10, 67,68
claparedi vagabunda, Abarenicola 10,68
Clymene affinis 76
Clymenella 70,73
torquata 11,73
Clymenella zonalis 73
Clymenopsis \dagger 70, 71
Clymenura 69,73
columbiana 11,72,73
columbiana, Clymenura 11, 72, 73
columbiana, Leiochone 73
columbiana, Polydora 9, 36, 38
columbianus, Acrocirrus 10,54, 54
commensalis, Polydora 9, 36, 40
concharum, Dodecaceria 10, 52, 53
conifera, Artacama 11,89, 90
Cossura 55
longocirrata* 55
soyeri 10,55
sp. 10, 55
Cossuridae 10, 16, 17, 55
costarum, Spiochaetopterus 10,49,50
costarum, Telepsavas 50
crassicornis, Sabella 12, 105, 106
crispus, Thelepus 11,94,96
cristata, Melinna 11, 83, 85
cristata, Pista 11, 90, 93
Crucigera 108, 110
irregularis $12, \mathbf{1 0 9}, 110$
zygophora $12,109,110$
Ctenodrilidae 10, 16, 17, 55
Ctenodrilus 55
serratus 10,55
Dasybranchus $\dagger 64$
Decamastus 64
gracilis 10,65
dekkerae, Betapista 11,89,90

Demonax 106
Demonax medius 107
dendritica, Naineris 9, 27, 28
digitata, Nerilla 12, 118
Dinophilidae 12, 24, 25, 114, 116, 117
Dinophilus 117
kincaidi 12, 116, 117
Diplocirrus $\dagger 56$
disparidenta, Asychis 11, 71, 72
Dispiò 35
uncinata 36
Distylia rugosa 107
Distylidiat 99
Diurodrilus 117
ankeli 12, 117
dizonata,Capitella 10,64
Dodecaceria 50, 53
concharum 10,52,53
fewkesi 10, 53
pacifica 53
duneri, Chone 12, 102
dysteri var. tribranchiata, Salmacina 111
ecaudata, Chone 12, 110
edwardsi, Neoamphitrite 11, 90, 92
ehrenbergi, Terebella 11,95
elegans, Pygospio 9, 42
Elicodasia \dagger 14, 15
elisabethae, Melinna $11, \mathbf{8 3}, 85$
elongata, Haploscoloplos 28
elongata, Pista $11,90,93$
enigmatica, Mercierella $\dagger 109$
eous \dagger, Polycirrus 93
eroticus, Saccocirrus 12, 116, 117
Errantia 2
eruca eruca, Piromis 59
eruca, Piromis $10,57,59$
eruca, Piromis eruca 59
eruca websteri, Piromis 59
essenbergae, Flabelliderma $\dagger 57$
essenbergae tenebricosa, Flabelligera 58
estevanica, Scionella 1-1, 95
Euchone 99, 102
analis $12,101,102$
hancocki* 103
incolor 12, 101, 103
Euclymene 70,73
reticulata* 73
zonalis $11,72,73$
cf. zonalis 11, 72,73
Euclymeninae 69

Eudistylia 99, 103, 106
catharinae 12, 103
polymorpha $12,101,103$
polymorpha 103
vancouveri $12,98, \mathbf{1 0 1}, 103$
spp. 103
Eulaeospira 114
Eunicidae 3
Eupolymnia 88, 91
heterobranchia 11,91
Euzonus 61, 62
mucronata $10,61,62$
williamsi $10,61,62$
Fabricia 100, 103
berkeleyi 103
minuta 106
oregonica 12, 101, 103
pacifica 103
pacifica $\dagger 103$
sabella 12, 101, 103
Fabriciinae 99
Fabriciola 100, 103
berkeleyi 12, 101, 103
fallax, Prionospio 42
fasciata, Pista 93
Fauveliopsidae \dagger 18, 18
felix, Orbinia 9, 27, 29
felix, Phylo 29
fewkesi, Dodecaceria 10,53
Ficopomatus $\dagger 110$
filicornis, Spio 9, 43, 44
filicornis pacifica, Spio 44
filiformis, Heteromastus 10, 65, 65
filobranchus, Heteromastus 10,65
Filograninae 107
finmarchica, Ampharete $11, \mathbf{8 3}, 84$
Flabelliderma $\dagger 56$
essenbergae 57
Flabelligera 56, 58
affinis $10,57,58$
essenbergae tenebricosa 58
infundibularis 58
Flabelligeridae $10,18,18,56,57$
flabelliger, Protodrilus 12, 116, 116
florida, Hobsonia 2, 11, 85
foliosa, Scolelepis 9, 35, 43, 44
forbesii, Travisia 10, 61, 63
fossor, Sternaspis 63
fratrella, Pista 92
fuliginosa, Scolelepis 37
fuliginosus, Malacoceros 9, 37
fusiformis, Ammochares 77
fusiformis, Owenia 11,77,77
gagarae, Ampharete 85
geniculatus, Apomatus $12,109,110$
giardi, Polydora 9, 39, 41
giganteus, Notomastus 10,66
?gigas \dagger, Travisia 62
glabra*, Amphicteis 83, 84
glacialis, Trichobranchus 12, 96, 97
glebifex, Maldane 11, 72, 74
glutaeus, Malacoceros 9, 36, 37
Glyphanostomum $\dagger 81$
goesi, Ampharete 84
goesi, Ampharete goesi 11,84
goesi brazhnikovi, Ampharete 11, 83, 84
goesi goesi, Ampharete 11,84
gracilis, Anobothrus 11, 83, 85
gracilis, Caulleriella 52
gracilis, Chone 100
gracilis, Decamastus 10,65
gracilis minuta, Paraonides 33
gracilis minuta, Tauberia 33
gracilis, Oriopsis 12, 106
gracilis, Praxillella 11,75,76
gracilis, Tauberia 9, 31, 33
graffii, Proclea 11, 94, 95
granulata, Pectinaria 11,79,80
granulatus, Spirorbis 11, 112, 114
groenlandica, Amphitrite 91
groenlandica, Chitinopoma 111
groenlandica*, Neoamphitrite 91
gurjanovae \dagger, Samytha 86
hamata, Boccardia 38
hamata*, Caulleriella 51, 52
hamata, Polydora 9, 38, 39
hamatus, Thelepus 95
hamatus*, Thelepus 95
hancocki*, Euchone 103
Haploscoloplos elongata 28
panamensis 28
harai, Maldanella 11, 72, 74
Hauchiellat 89
heeri, Myriochele 77
heideri \dagger, Trilobodrilus 118
hesslei, Sosanopsis 11,86
heterobranchia, Eupolymnia 11,91
heterochaetus*, Acrocirrus 54, 54
Heteromastus 64, 65
filiformis $10,65,65$
filobranchus 10,65
Heterospio $\dagger 48$
Heterospionidae \dagger 16, 16
hiltoni, Schistocomus 11, 83, 86
hobsonae, Magelona 9, 46, 47
Hobsonia 82, 85
florida 2, 11, 85
Hyboscolex 60
pacificus $10, \mathbf{5 9}, 60$
Hydroides \dagger 3, 108
sp. 109
Hypsicomus $\dagger 98$
Idanthyrsus 78
armatus $11,78,78$
ornamentatus $11,78,78$
incolor, Euchone 12, 101, 103
inflata*, Pherusa 57, 58
inflatum, Scalibregma 10, 59, 60
infundibularis, Flabelligera 58
infundibuliformis, Chone 12, 101, 102
infundibulum, Myxicola 12, 104
inopinata, Nerilla $12,116,118$
insignis, Schizobranchia $12,105,107$
intermedia, Potamilla 12, 105, 106
irregularis, Crucigera $12,109,110$
Isocirrus 69,74
longiceps 11,72,74
ivanovi, Paraonis 33
Janua 113
japonica, Magelona 48
japonica, Neoleprea 11, 92
japonica, Polydora kempi 9, 39, 40
japonica, Scionella 11,86, 94, 95
japonica, Travisia 10, 62
japonica?, Thelepus 11
japonicus, Thelepus 96
Jasmineira 100, 104
pacifica 12, 104
sp. 101
jeffreysii, Aricidea 32
kempi japonica, Polydora 9, 39, 40
kerguelensis, Polycirrus 93
kincaidi, Dinophilus 12, 116, 117
kroyeri, Laonome 12, 104
kroyeri, Spiophanes 9, 45
labiata, Lysippe 11,85
labrops, Ampharete 11, 84
lacera, Asychis 11, 71, 72
laevigata, Naineris 28
laevigata \dagger, Naineris 28
Lagis \dagger 79, 79, 80
laminifera, Neopygospio 40
Lanassa 87,91
venusta venusta $11,90,91$
langerhansi, Spirorbis $12,111,112,114$
Lanice* 87,88
Laonice 35, 37
cirrata 36,37
cirrata? 9
pugettensis 9,37
Laonome 98, 104
kroyeri 12, 104
Laphania 91
boecki 11,91
Leaena* 87,91
abranchiata 90,91
Leiochone columbiana 73
Leiochrides $\dagger 64$
Leitoscoloplos 28
panamensis $9,27,28$
pugettensis $9,27,28$
Leodora 113
Leptochaetopterus 50
Levinsenia 33
ligni, Polydora 9, 39, 41
limacina, Ophelia $10, \mathbf{6 1}, 62$
limicola*, Polydora 41
lineata, Asabellides 11,83, 85
lineata, Pseudosabellides 85
lineatus balanoglossi, Notomastus 66
lineatus, Notomastus 10, 66
littoralis, Pseudosabellides 85
Loimia* 88,91
medusa 90,91
longiceps, Isocirrus 11, 72,74
longicornis, Magelona 9, 47, 48
longicornuta, Aricidea 32
longocirrata*, Cossura 55
lopezi, Aricidea 9, 31, 33
loveni, Lysilla 11,91
lumbricalis, Nicomache 11,74,75
Lumbriclymene $\dagger 71$
Lumbriclymeninae 70
Lumbrineridae 3, 4
lyra, Cirrophorus 9, 31, 33
lyra, Paraonis 33
Lysilla 89,91
loveni 11,91
pacifica 93
Lysippe 82,85
labiata 11,85
Macrochaeta 54, 55
pege 10,55
Macroclymene 70, 74
sp. 11, 74
maculata, Praxillura 11,76
maculata, Raricirrus $\dagger 52$
Magelona 46
berkeleyi $9,47,48$
hobsonae $9,46,47$
japonica 48
longicornis $9,47,48$
pitelkai 46
sacculata 9,46,47
Magelonidae 1, 9, 14, 15, 46, 47
magna, Chone 12,102
magna, Polydora 42
Malacoceros 35, 37
fuliginosus 9,37
glutaeus 9, 36, 37
Maldane 69,74
glebifex 11, 72, 74
sarsi 11, 72
sarsi sarsi 11,74
Maldanella 69,70,74
harai 11, 72, 74
robusta 11,74
robusta 74
Maldanidae $1,2,3,11,20,20,68,72,75$
Maldaninae 69
malmgreni, Prionospio 42
Manayunkia 99,104
aestuarina $12,104,105$
speciosa* 104
marina, Arenicola 10,68
media, Sabella 12, 105, 107
Mediomastus 63,66
ambiseta $10,65,66$
californiensis* 66
capensis 10,66
spp. 19
medius, Demonax 107
medius, Spirorbis $12,112,113$
medusa, Loimia* 90, 91
medusa, Polycirrus 94
Megalomma 98, 104
splendida $12,104,105$

Melinna 80, 85
cristata $11, \mathbf{8 3}, 85$
elisabethae $11,83,85$
sp. 83
Melinnampharete $\dagger 81$
Melinninae 80
Mercierella $\dagger 110$
enigmatica 109
Mesochaetopterus 48, 49
taylori 10, 49
Mesonerilla 118
sp. 118
michaelseni, Aricia 29
Microclymene $\dagger 69$
Micromaldane 70, 74
ornithochaeta 11,74,75
Microspio $\dagger 44$
minuta, Aricidea 9, 31, 32
minuta, Fabricia 106
minuta, Oriopsis 12, 105, 106
minuta, Paraonides gracilis 33
minuta, Tauberia gracilis 33
moerchi, Spirorbis 12, 112, 114
mollis*, Chone 101, 102
moorei, Pectinaria 11,79,80
moorei, Pista 11, 90, 92
moori†, Terebellides 97
mucronata, Amphicteis 11, 83, 84
mucronata, Euzonus 10, 61, 62
mucronata, Thoracophelia 62
multifilis parvus, Tharyx 53
multifilis, Tharyx $10,52,53$
multisetosa, Trochochaeta 9, 45
myriops, Potamilla 12, 103, 105, 106
Myxicola 99, 104
aesthetica $12,104,105$
infundibulum 12, 104
Myxicolinae 99
Myriochele 77
heeri 77
oculata 11,77,77
Myriowenia $\dagger 77$
sp. 77
Naineris 26,28
berkeleyorum 28
dendritica 9, 27, 28
laevigata 28
laevigata $\dagger 28$
quadricuspida 9, 27,28
uncinata $9,27,28$
nakamurai, Spirorbis 12, 111, 112, 113
natrix, Polydora 38
neglecta, Potamilla $12, \mathbf{1 0 5}, 106$
negligens, Pherusa 10, 57, 58
negligens, Stylarioides 58
Neoamphitrite 89, 91
edwardsi 11, 90, 92
groenlandica* 91
robusta $11,90,92$
Neoleprea 88, 92
californica* 92
japonica 11,92
spiralis 11,92
neopapillata, Pherusa 58
Neopygospio laminifera 40
neosuecica, Aricidea 9, 31, 32
Nephtyidae 3
Nereidae 2, 3, 4
Nerilla 118
antennata 12,118
digitata 12,118
inopinata $12, \mathbf{1 1 6}, 118$
Nerillidae $12,24,25,114,116,118$
Nerine 44
cirratulus 44
Nicolea 88, 92
venustula $\dagger 92$
zostericola 11,92
Nicomache 70, 74
lumbricalis 11,74,75
personata $11,74,75$
sp. 74
Nicomachinae 70
nipponicus, Trilobodrilus 12, 116, 118
Notomastus 64, 66
giganteus $10,65,66$
Iineatus 10,66
lineatus balanoglossi 66
sp. 65
tenuis $10,65,66$
variegatus 10,66
Notoproctus 71, 75
pacificus 11,75, 75
Novobranchus 97
pacificus $12,96,97$
nuda, Orbiniella 9, 27, 29
occelata, Potamilla $12, \mathbf{1 0 5}, 106$
occelata, Pseudopotamilla 106
ocidentalis, Amaeana 11,89
occidentalis, Pseudochitinopoma 12, 109, 111
occipitalis, Acrocirrus $10,54,54$
oceanica, Abarenicola claparedi 10, 67, 68
oceanica, Abarenicola vagabunda 68
oculata, Myriochele 11,77, 77
oligobranchia, Protoariciella 9,27,29
Oncoscolex pacificus 60
Onuphidae 3
Ophelia 61, 62
borealis 62
limacina $10,61,62$
Opheliidae $3,10,18,18,19,60,61$
Ophelina 60, 62
acuminata $10,61,62$
breviata 10, 61, 62
Orbinia 28, 29
felix $9, \mathbf{2 7}, 29$
Orbiniat 29
Orbiniella 26, 29
nuda 9, 27, 29
Orbiniidae $3,9,14,14,26,27$
Orbiniinae 26
oregonica, Fabricia 12, 101, 103
Oriopsis 100, 106
gracilis 12, 106
minuta $12, \mathbf{1 0 5}, 106$
sp. 105
ornamentatus, Idanthyrsus 11, 78, 78
ornatus, Apistobranchus 9,34
ornithochaeta, Micromaldane 11,74, 75
Owenia 77
fusiformis 11,77,77
Oweniidae $11,20,20,77,77$
pacifica, Abarenicola $10,67,68$
pacifica, Dodecaceria 53
pacifica, Fabricia 103
pacifica \dagger, Fabricia 103
pacifica, Jasmineira 12, 104
pacifica, Lysilla 93
pacifica, Pista 11, 90, 93
pacifica, Praxillella affinis $11,75,76$
pacifica, Protula 12, 109, 110
pacifica, Sabella 12, 105, 106, 107
pacifica, Spio filicornis 44
pacificus, Hyboscolex $10,59,60$
pacificus, Notoproctus $11,75,75$
pacificus, Novobranchus 12, 96, 97
pacificus, Oncoscolex 60
panamensis, Haploscoloplos 28
panamensis, Leitoscoloplos 9, 27, 28
panamensis, Scoloplos 28
papillata, Stylarioides 58
Paradexiospira 113
Paranerilla $\dagger 114$
Paraonella 32, 33
platybranchia 9, 31, 33
spinifera 9, 31, 33
Paraonidae 4, 9, 14, 14, 30, 31
Paraonides gracilis minuta 33
Paraonis ivanovi 33
lyra 33
spinifera 33
Parapodrilus \dagger 24, 114
Paraprionospio 35, 37 pinnata $9,36,37$
Paraspio 44 cirvifera 44
Parergodrilidae $10,18, \mathbf{1 9}, 67$
parvus, Tharyx 10,53
parvus, Tharyx multifilis 53
Pectinaria 79
auricoma 80
belgica 80
brevicoma 80
californiensis 11,79,80
granulata 11,79, 80
moorei $11,79,80$
Pectinaria (Lagis \dagger) sp. 79
Pectinariidae 79
Pectinophelia 62
pege, Macrochaeta 10,55
perplexus, Polycirrus 95
personata, Nicomache 11,74, 75
Petaloproctus 70,76
tenuis borealis $11,75,76$
tenuis tenuis $11,75,76$
Phalacrostemmat. 20
Pherusa 58
inflata* 57, 58
negligens $10,57,58$
neopapillata 58
plumosa 10, 57, 58
Phragmatopoma† 78
Phyllochaetopterus 48, 50
claparedii 10,50
prolifica $10,49,50$
Phyllodocidae 2, 3, 4
Phylo 29
Phylo felix 29
Pileolaria 114
pinnata, Paraprionospio 9, 36, 37
pinnata, Prionospio 37
Piromis 58, 59
arenosus $\dagger \mathbf{5 7}$
eruca $10,57,59$
eruca eruca 59
eruca websteri 59
Pista 88, 92
brevibranchiata II, 90, 93
cristata $11,90,93$
elongata $11,90,93$
fasciata 93
fratrella 92
moorei $11,90,92$
pacifica $11,90,93$
sp. I 92
pitelkai, Magelona 46
Placostegus $\dagger 108$
plagiostomat, Thelepus 96
platybranchia, Paraonella 9, 31, 33
plena, Polydora socialis 42
plumosa, Pherusa 10, 57, 58
plumosa, Stylarioides 58
Poecilochaetidae \dagger 14, 15, 46
Poecilochaetus $\dagger 46$
polybranchia, Polydora 9,38
Polycirrinae 87
Polycirrus 89,93
caliendrum 95
californicus $11,94,95$
eous $\dagger 93$
kerguelensis 93
medusa 94
perplexus 95
sp. I 11, 93, 94
sp. II 11, 94, 94
sp. III 11,93, 94
sp. IV 11, 94, 95
sp. V 11, 94, 94
Polydora 34, 38, 40
alloporis 9, 36, 41
armata* 36,41
brachycephala 9, 36, 40
caeca 42
cardalia 9, 36, 42
caulleryi 36
caulleryi? 40
ciliata 41
ciliata spongicola 41
columbiana 9, 36, 38
commensalis 9, 36, 40
giardi 9, 39, 41
hamata $9,38,39$
kempi japonica 9, 39, 40
ligni $9, \mathbf{3 9}, 41$
limicola* 41
magna 42
natrix 48
polybranchia 9,38
proboscidea 9, 38, 39
pugettensis 9, 38, 39
pygidialis $9,39,41$
quadrilobata $9,39,40$
socialis $9,39,42$
socialis plena 42
spongicola 9, 39,41
uncata 38
websteri** 39, 41
Polygordiidae 24, 24, 115
Polygordius 115
sp. 115
polymorpha, Eudistylia $12,101,103$
polymorpha, Eudistylia 103
Polynoidae 3
Polyopthalmus $\dagger 60$
Pomatoceros $\dagger 110$
sp. 109
Pomatoleios $\dagger 108$
Potamethus \dagger 97, 98
Potamilla 99, 106
intermedia 12, 105, 106
myriops 12, 103, 105, 106
neglecta $12, \mathbf{1 0 5}, 106$
occelata $12, \mathbf{1 0 5}, 106$
praetermissa, Praxillella $11,69,75,76$
Praxillella 69,76
affinis 76
affinis affinis 11,76
affinis pacifica 11, 75, 76
gracilis $11,75,76$
praetermissa 11, 69, 75, 76
Praxillura 71, 76
maculata 11,76
Prionospio 35, 42
cirrifera 9,42
fallax 42
malmgreni 42
pinnata 37
steenstrupi 9, 42, 43
proboscidea \dagger, Artacama 89
proboscidea, Polydora 9, 38, 39
Proclea 87, 95
graffii 11,94,95
Prodexiospira 113
prolifica, Phyllochaetopterus 10, 49, 50
Protoaricia $\dagger 26$
Protoariciella 26, 29
oligobranchia 9, 27, 29
Protoariciinae 26
Protolaeospira 113
Protodrilidae $12,24,24,114,115,116$
Protodriloides 115
chaetifer $12,24,115,116$
Protodrilus 115, 116
flagelliger $12,116,116$
sp. 116
Protula 108, 110
pacifica $12, \mathbf{1 0 9}, 110$
Psammodrilidae \dagger 16, 16
Pseudochitinopoma 108, 111
occidentalis $12, \mathbf{1 0 9}, 111$
Pseudopolydora 40
Pseudopotamilla occelata 106
occelata 106
reniformis 106
Pseudovermilia $\dagger 110$
Pseudosabellides lineata 85
littoralis 85
pugettensis, Laonice 9,37
pugettensis, Leitoscoloplos 9, 27, 28
pugettensis, Polydora 9, 38, 39
pugettensis, Scoloplos 28
pupa, Travisia 10, 61, 62
pusilla, Arenicola 68
pusilloides, Spirorbis 12, 113
pygidialis, Polydora 9, 39, 41
Pygospio 34, 42
californica $\dagger 42$
elegans 9,42
quadricuspida, Naineris $9,27,28$
quadrilobata, Aricidea 9, 31, 32
quadrilobata, Polydora 9, 39, 40
Questa 29, 30
caudicirra 9, 30, 30
Questidae 9, 14, 14, 29, 30
racemosus, Spirorbis 12,113
Ramex $\dagger 87$
ramosa, Aricidea 9, 31, 32
Raphidrilus $\dagger 17$
Raricirrus \dagger 16,50
maculata 52
reniformis, Pseudopotamilla 106
reticulata*, Euclymene 73
Rhodine 70, 76
bitorquata 11, 75, 76
Rhodininae 70
Rhynchospio 37
Rhynchospio arenincola 37
cf. arenincola 37
robusta, Maldanella 11,74
robusta, Maldanella 74
robusta, Neoamphitrite 11, 90, 92
robusta, Terebella 92
robustus, Cirratulus 52
Romanchella 113
rubrocincta, Axiothella 11, 72, 73
rugosa, Distylia 107
Sabella 99, 106
crassicornis $12, \mathbf{1 0 5}, 106$
media $12,105,107$
pacifica $12, \mathbf{1 0 5}, 106,107$
sabella, Fabricia 12, 101, 103
Sabellaria 78, 79
cementarium 11,78,79
Sabellariidae 11, 20, 21, 78, 78
Sabellastarte 98, 107
sp. 12,107
Sabellidae 2, 3, 12, 22, 23, 97, 101, 105
Sabellides $\dagger 81$
Sabellinae 97
Sabellongidae \dagger 22, 23
Saccocirrus 117
eroticus 12, 116, 117
Saccocirridae 12, 24, 24, 114, 115, 116, 117
sacculata, Magelona 9, 46, 47
sachalina, Brada 10, 57, 58
Salmacina 108, 111
dysteri var. tribranchiata 111
tribranchiata $12,109,111$
Samytha 81, 86
californiensis 11,86
gurjanovae $\dagger 86$
sarsi, Maldane 72
sarsi, Maldane sarsi 11,74
sarsi sarsi, Maldane 11,74
Scalibregma 59, 60
inflatum $10,59,60$
Scalibregmidae $10,18,18,59,59$
Scalispinigera $\dagger 18$
scaphobranchiata, Amphicteis $11, \mathbf{8 3}, 84$

Schistocomus 82, 86 hiltoni 11, 83, 86
Schizobranchia 98, 107 insignis $12, \mathbf{1 0 5}, 107$
Scionella 88, 95
estevanica 11,95
japonica $11,86,94,95$
Scolelepsis 35, 44
alaskensis 44
foliosa $9,35,43,44$
fuliginosa 37
squamata $9,43,44$
yamaguchii $\dagger 43$
Scoloplos 28, 29
acmeceps 9, 29
armiger 9, 27, 29
panamensis 28
pugettensis 28
scutata, Sternaspis 10,63
secundus, Tharyx $10,52,53$
Sedentaria 2, 6, 9, 13, 26
Serpula 108, 111
vermicularis $12, \mathbf{1 0 9}, 111$
Serpulidae 3, 5, 12, 22, 23, 107, 109, 112
Serpulinae 107
serratisetis, Tharyx 10, 52, 53
serratus, Ctenodrilus 10,55
setosa, Chaetozone 10, 51, 52
setosus, Thelepus 11,96
sibirica, Asabellides $11, \mathbf{8 3}, 85$
similis, Asychis 11, 71, 72
Sosanopsis 82, 86
hesslei 11,86
socialis, Polydora 9, 39, 42
socialis plena, Polydora 42
soyeri, Cossura 10, 55
speciosa*, Manayunkia 104
spectabilis, Cirratulus 10,52
Sphaerodoridae 4
spinifera, Paraonella 9, 31, 33
spinifera, Paraonis 33
spinosa, Chaetozone 51, 52
spinosa?, Chaetozone 10,51
spinosa, Spirorbis 111
Spinosphaera $\dagger 87$
sp. 94
Spio 35, 44
butleri 9, 43, 45
cirrifera $9,43,44$
filicornis $9,43,44$
filicornis pacifica 44

Spiochaetopterus 48,50
costarum 10, 49, 50
Spionidae $1,3,9,14,15,34,36,39,43$
Spiophanes 34,45
berkeleyorum 9, 43, 45
bombyx 9, 43, 45
cirrata 45
kroyeri 9,45
spp. 15
spirabranchia, Cirriformia* 53
spiralis, Neoleprea 11, 92
spirillum, Spirorbis 12, 113
Spirobranchus $\dagger 110$
sp. 112
Spirorbella 111,112
Spirorbinae 1, 107
Spirorbis 107, 111, 112, 114
ambilateralis 12, 111,112, 113
borealis 12, 114
granulatus 12, 112, 114
langerhansi 12,111, 112, 114
medius $12,112,113$
moerchi 12, 112, 114
nakamurai $12,111,112,113$
pusilloides 12, 113
racemosus 12,113
sp. 112
spinosa 111
spirillum 12,113
validus $12,112,113$
variabilis $12, \mathbf{1 1 2}, 114$
violaceus 12,113
vitreus 113
Spirorbis (Spirorbella) sp. 111, 112
Spirorbis (Protolaeospira) sp. $\dagger 112$
Spirovermat $\dagger 8$
splendida, Megalomma 12, 104, 105
spongicola, Polydora 9, 39,41
squamata, Scolelepis 9, 43, 44
steenstrupi, Prionospio 9, 42, 43
Sternaspidae 10, 18, 19, 63
Sternaspis 63
fossor 63
scutata 10,63
Streblosoma 89, 95
bairdi 11, 94, 95
Streblospio 34, 45
benedicti 9, 43, 45
stroemi, Terebellides 12, 96, 97
Stygocapitella 67
subterranea 10,67

Stylarioides arenosa 59
negligens 58
papillata 58
plumosa 58
subterranea, Stygocapitella 10,67
Syllidae 3, 4
Tauberia 32, 33
gracilis 9, 31, 33
gracilis minuta 33
taylori, Mesochaetopterus 10, 49
Telepsavus 50
costarum 50
tenebricosa, Flabelligera essenbergae 58
tenuis borealis, Petaloproctus 11, 75, 76
tenuis, Notomastus 10, 65, 66
tenuis, Petaloproctus tenuis 11,75,76
tenuis tenuis, Petaloproctus 11,75,76
Terebella 89, 95
ehrenbergi 11,95
robusta 92
Terebellidae 2, 3, 11, 22, 22, 86, 90, 94
Terebellides 96, 97
moorit 97
stroemi 12, 96, 97
Tharyx 50, 53
multifilis $10,52,53$
multifilis parvus 53
parvus 10, 53
secundus $10, \mathbf{5 2}, 53$
serratisetis $10, \mathbf{5 2}, 53$
Thelepinae 87
Thelepus 89, 95
cincinnatus 11,95
crispus $11,94,95$
hamatus* 95
hamatus 95
japonicus 96
japonicus? 11
plagiostoma $\dagger 96$
setosus 11,96
triserialis 95
Thoracophelia 62
mucronata 62
Timarete $\dagger 51$
timmsii, Apomatus 12, 109, 110
torquata, Clymenella 11,73
Travisia 60, 62
brevis 10, 61, 63
carnea 62
forbesii 10, 61, 63
?gigas $\dagger 62$
japonica 10, 62
pupa 10, 61, 62
tribranchiata, Salmaciña $12, \mathbf{1 0 9}, 111$
tribranchiata, Salmacina dysteri var. 111
Trichobranchidae 12, 22, 22, 96, 96
Trichobranchus 96,97
glacialis 12, 96, 97
Trilobodrilus 117, 118
heideri† 118
nipponicus 12, 116, 118
triserialis, Thelepus 95
Trochochaeta 45
multisetosa 9,45
Trochochaetidae 9, 14, 15, 45
tullbergi, Apistobranchus 34
tullbergi?, Apistobranchus 9
uncata, Polydora 38
uncinata, Naineris 9, 27, 28
vagabunda, Abarenicola claparedi 10, 68
vagabunda, Abarenicola vagabunda 68
vagabunda oceanica, Abarenicola 68
vagabunda vagabunda, Abarenicola 68
validus, Spirorbis 12, 112, 113
vancouveri, Eudistylia 12, 98, 101, 103
variabilis, Spirorbis 12, 112, 114
variegatus, Notomastus 10,66
variopedatus, Chaetopterus $10,49,49$
venusta, Lanassa venusta $11,90,91$
venusta venusta, Lanassa 11,90,91
venustulà̇, Nicolea 92
vermicularis, Serpula 12, 109, 111
Vermiliopsis $\dagger 110$
sp. 112
villosa, Brada 57, 58
vincenti, Branchiomaldane $10,67,68$
violaceus, Spirorbis 12, 113
vitreus, Spirorbis 113
wassi*, Aricidea 31, 32
websteri, Piromis eruca 59
websteri*, Polydora 39, 41
williamsi, Euzonus 61, 62
yamaguchii \uparrow, Scolelepis 43
zonalis, Clymenella 73
zonalis, Euclymene 11, 72, 73
cf. zonalis, Euclymene 11, 72, 73
zostericola, Nicolea 11, 92
zygophora, Crucigera $12,109,110$

Recent Bulletins

195 Revision of Hydrobaenus, Trissocladius, Zalutschia. Paratrissocladius, and some related genera (Diptera: Chironomidae)
Ole A. Sether
(1976, 287, p., cat. no. Fs 94-195; Canada: $\$ 7.00 /$ Other countries: $\$ 8.40$)
196 Taxonomical studies on Chironomidae: Nanocladius, Pseudochironomus, and the Harnischia complex
Ole A. Sether
(1977, 155 p., cat. no. Fs 94-196; Canada: $\$ 5.00 /$ Other countries: $\$ 6.00$)
197 Female genitalia in Chironomidae and other Nematocera: morphology, phylogenies, keys Ole A. Sether
(1977, 209 p., cat. no. Fs 94-197; Canada: \$6.00/Other countries: \$7.20)
198 Seismic sea waves-tsunamis
T. S. Murty
(1978, 337 p., cat. no. Fs 94-198; Canada: \$10.00/Other countries: $\$ 12.00$)
199 Synopsis of the parasites of fishes of Canada
L. Margolis and J. R. Arthur
(1979, 269 p., cat. no. Fs 94-199; Canada: \$12.95/Other countries: $\$ 15.55$)
200 Biology of the harbor seal, Phoca vitulina, in eastern Canada
J. Boulva and I. A. McLaren
(1979, 24 p., cat. no. Fs 94-200; Canada: $\$ 3.00 /$ Other countries: $\$ 3.60$)
201 Biosystematic revision of the genus Stenonema (Ephermeroptera: Heptageniidae)
A. F. Bednarik and W. P. McCafferty
(1979, 73 p., cat. no. Fs 94-201; Canada: $\$ 8.50 /$ Other countries: $\$ 10.20$)
202 Shrimps of the Pacific coast of Canada
T. H. Butler
(1980, 280 p., cat. no. Fs 94-202; Canada: \$18.00/Other countries: $\$ 21.60$)
203 Circulation models of lakes and inland seas
T. J. Simons
(1980, 146 p., cat. no. Fs 94-203; Canada: $\$ 12.00 /$ Other countries: $\$ 14.00$)
204 Hydromedusae of British Columbia and Puget Sound
M. N. Arai and A. Brinckmann-Voss
(1980, 192 p., cat. no. Fs 94-204; Canada: \$13.00/Other countries: $\$ 15.60$)
205 Environmental effects of dams and impoundments in Canada: experience and prospects
R. M. Baxter and P. Claude
(1980, 34 p., cat. no. Fs 94-205; Canada: $\$ 2.50 /$ Other countries: $\$ 3.00$)
206 Palaeolimnology of the Bay of Quinte, Lake Ontario: 2800 years of cultural influence W. F. Warwick
(1980, 117 p., cat. no. Fs 94-206; Canada: $\$ 11.00 /$ Other countries: $\$ 13.20$)
207 Marine bivalve molluscs of the Canadian Central and Eastern Arctic: faunal composition and zoogeography
Irene Lubinsky
(1980, 111 p., cat. no. Fs 94-207; Canada: $\$ 9.75 /$ Other countries: $\$ 11.70$)
208 Revision of the Snailfish genus Liparis
K. W. Able and D. E. McAllister
(1980, 52 p., cat. no. Fs 94-208; Canada: $\$ 3.00 /$ Other countries: $\$ 3.60$)

To obtain the publications listed above, at the prices indicated, write to:
Supply and Services Canada
Canadian Government Pitblishing Centre
Hull, Que., Canada K1 A 0S9

Please make cheques and money orders payable to the Receiver General for Canada.
Advance payment is required.

Date Due

[^0]: ${ }^{1}$ The Psammodrilidae are not known from the cold-temperate North Pacific. Reference: SwEdMARK (1958).

[^1]: ${ }^{3}$ The Bogueidae are not known from the cold-temperate North Pacific. Reference: Hartman and Fauchald (1971).

[^2]: ${ }^{4}$ The Sabellongidae are not known from the cold-temperate North Pacific. Reference: Hartman (1969).
 ${ }^{5}$ The Caobangiidae are not known from the cold-temperate North Pacific. Reference: Jones (1974).

[^3]: Fig. 1. ORBINIIDAE: Leitoscoloplos panamensis: a, thoracic parapodium 17, posterior view. L. pugettensis: b, thoracic parapodium 20, posterior view. Naineris dendritica: c , thoracic parapodium 16, anterior view [distal parts of capillary setae in middle part of neuropodium omitted]; d, acicular neuroseta; e, subuluncinus. N. quadricuspida: f , thoracic parapodium 11, anterior view. N. uncinata: g, anterior end, dorsal view; h, thoracic parapodium, posterior view; \mathbf{i}, forked notoseta. Orbinia felix: \mathfrak{j}, thoracic parapodium 15, anterior view [most neuropodial setae omitted]; k , median abdominal parapodium, anterior view. Orbiniella nuda: l, capillary seta and spines, neuropodium 18, anterior view. Protoariciella oligobranchia: m, anterior end, dorsal view. Scoloplos armiger: n , acicular neuroseta. Sources: a, b, d, e, i-k, n, Hartman (1957); c, g, original; f, Fauvel (1927); h, Pettibone (1957); l, Hobson (1974); m, Hobson (1976) [a, b, d, e, h-k, n, modified].

[^4]: Fig. 6. SPIONIDAE: Prionospio steenstrupi: a, notopodial multidentate hooded hook. Scolelepis foliosa: b, anterior parapodium, anterior view; c, posterior parapodium, anterior view. S. squamata; d, anterior end, dorsal view [left palp lost]; e, S. yamaguchii Imajimat, base of palp. Spio butleri: f, palp; g, hooded hook. S. cirrifera: h, parapodium 10, anterior view [setae omitted]; i, tridentate hooded hook. S. filicornis: j, bidentate hooded hook. Spiophanes berkeleyorum: k, anterior end, dorsal view [palps lost]. S. bombyx: l, bidentate hooded hook. Streblospio benedicti: m, anterior end, lateral view [left palp and gill lost]. Sources: a, j, Söderström (1920); b-d, Hartmann-Schröder (1971); e, Imajima (1959); f, g, Berkeley and Berkeley (1954); h, i, Banse and Hobson (1968); k, CPF; l, Fauvel (1927); m, combined from Hartman (1936) and Foster (1971) [b-e, h, l, modified].

[^5]: Fig. 7. MAGELONIDAE: Magelona berkeleyi: a, anterior end, dorsal view [palps lost]; b, parapodium 9, anterior view; c, seta from same; d, parapodium 10, anterior view; e, tridentate hooded hook. M. hobsonae: f, anterior end, dorsal view [left palp lost]; g, parapodium 9, anterior view; h, pennoned seta from same; i , parapodium 10, anterior view; \mathfrak{j}, large tridentate hooded hook, k , tip of small tridentate hooded hook. M. longicornis: l, anterior end, dorsal view [left palp lost]; m, parapodium 9, anterior view; n , seta from same; o, parapodium 10, anterior view; p, bidentate hooded hook. Magelona sacculata: q, anterior end, dorsal view [body with setigers 1 and 2 twisted to right; right parapodia removed, palps lost]; \mathbf{r}, parapodium 9, anterior view; s, mucronate seta from same; \mathfrak{t}, parapodium 10 , anterior view; u, tridentate hooded hook. Sources: a-e, $l-\mathrm{p}$, Jones (1971); f-k, Jones (1978); q-u, original (specimen from southern California) [m, o, modified].

[^6]: Fig. 11. FLABELLIGERIDAE: Brada sachalina: a, dermal papilla. B. villosa: b, dermal papillae; c, anterior end, lateral view. Flabelliderma essenbergae (Hartman)†: d, notopodium. Flabelligera affinis: e, compound hook. Pherusa inflata*: f, anterior end, lateral view. P. negligens: g, tip of median hooded hook. P. plumosa: h, anterior end [dissected], anterioventral view; i, tip of simple unidentate hook. Piromis arcnosus Kinberg \dagger : \mathfrak{j}, anterior end [dissected], ventral view. P. eruca: k , anterior end, dorsal view; l, posterior simple bidentate hook. Sources: a, b, Ushakov (1955); c, Støp-Bowitz (1948); d, h, Hartman (1961); e, l, CPF; f, Hartman (1952); g, Hobson (1974); i, Banse et al. (1968); j, Day (1967); k, original [b-d, f, h, j, modified].

[^7]: Fig. 21. AMPHARETIDAE: Amage anops: a, thoracic uncinus. Ampharete acutifrons: b , posterior end, ventral view. A. finmarchica: c, anterior end, lateral view; d, tip of palea. A. goesi brazhnikovi: e, tip of palea; f , anterior abdominal parapodium. Amphicteis glabra*: g, tip of palea; h , abdominal parapodium. Am. mucronata: i, tip of palea. Am. scaphobranchiata: j, tip of foliose gill. Amphisamytha bioculata: k , anterior end, ventral view [most gills lost]. Anobothrus gracilis: l, notoseta of unciniger 8. Asabellides lineata: m, abdominal segments, lateral view. As. sibirica: n, abdominal segments, lateral view. Melinna cristata: o, dorsal hook. M. elisabethae: p, dorsal hooks. Melinna sp.: q, anterior end, lateral view [tentacles and gills lost]. Schistocomus hiltoni: r, abdominal parapodium. Sources: a, e, f, Banse (1979b); b, o, p, Ushakov (1955); c, Hartmann-Schröder (1971); d, l, Hessle (1917); g, h, Moore (1906a); i, m, n, CPF; j, Moore (1906b); k, r, Hartman (1969); q, combined from Hartman (1969) and Ushakov (1955) [b, c, $\mathfrak{j}, \mathrm{k}, \mathrm{n}-\mathrm{p}, \mathrm{r}$, modified].

[^8]: Fig. 25. SABELLIDAE: a, schematic dorsal view of anterior end [tentacular crown cut off, left tentacular lobe largely omitted]; b, pennoned seta [two views]. Branchiommat sp.: c, appendices and pinnules on radiole. Chone aurantiaca: d, thoracic spatulate seta; e, abdominal uncinus. C. infundibuliformis: f , tip of radiole; g , thoracic spatulate seta; h , abdominal uncinus. C. mollis*: i, anterior end, dorsolateral view [tentacular crown omitted]. Euchone analis: j, ventral shields of abdominal segment [schematic]. E. incolor: k, posterior end, ventrolateral view. Eudistylia polymorpha: l, collar and edges of dorsal bases of tentacular lobes. E. vancouveri: m, collar and edges of dorsal bases of tentacular lobes. Fabricia oregonica: n, anterior end, dorsal view [tentacular crown omitted]. F. sabella: o, anterior end, dorsal view [tentacular crown omitted]; p, thoracic long-handled uncinus; q, abdominal brushlike uncinus. Fabriciola berkeleyi: \mathbf{r}, anterior end, dorsal view [tentacular crown omitted]; s, anterior end, ventral view. Jasmineira sp.: t, abdominal avicular uncinus. Sources: a, b, j, o, r, original; c, t, Fauvel (1927); d-i, Banse (1972b); k, Reish (1965); l, m, Banse (1979c); n, Banse (1963); p, q, Banse (1956); s, Hartman (1969) [f, k, n, q, s, modified].

[^9]: Fig. 26. SABELLIDAE: Manayunkia aestuarina: a, right tentacular lobe [from the inner side]. Megalomma splendida: b, tip of radiole, with eye. Myxicola aesthetica: c, tentacular lobe. Oriopsis sp. [schematic]: d, typical radiole, and radiole without pinnules; e, thoracic limbate seta; f , abdominal uncinus. O. minuta: g , thoracic subspatulate seta. Potamilla intermedia: h , anterior end, dorsal view [tentacular crown cut off]. P. myriops: i, anterior end, dorsal view [tentacular crown cut off]; j, thoracic avicular uncinus. P. neglecta: k , anterior end, dorsal view [tentacular crown cut off]. P. occelata: l, anterior end, dorsal view [tentacular crown cut off]. Sabella crassicornis: m, cross section of radiole. S. media: n, anterior end, dorsal view [tentacular crown cut off, palps omitted]. S. pacifica: o, anterior end, dorsal view [tentacular crown cut off]; p, lower thoracic knifelike seta. Schizobranchia insignis: q, radioles. Sources: a, Banse (1956); b, h, k, l, m, q, CPF; c, Fauvel (1927); d, Banse (1957); e, f, original; g, Berkeley and Berkeley (1932b); i, j, Banse and Hobson (1968); $\mathrm{n}-\mathrm{p}$, Banse (1979c) [c, d, g, j, m-p, modified].

[^10]: With 1 pair of tentacles, without palps, antennae, or parapodial cirri (as in Table 6, fig. A-C). With simple setae (as in Table 6, fig. C [insert]; Fig. 29b) or without setae

