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Introduction 

Fishery biologists have very intensively investigated the 

possibilities of a mathematical description of growth processes. 

The growth of fish, unlimited and apparently not complicated by 

any discontinuity after larval development, seems a particularly 

suitable example for the study of growth processes. I shall not 
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discuss the variety of suggested functions, but rather limit myself 

to the problem of the relationship between the Ford-Walford formula 

and the Bertalanffy function. Both functions have proved very useful 

and have been applied fairly extensively. The far-reaching agreement 

between the numerical results has induced BEVERTON & HOLT (1957) 

and TAYLOR (1958) to clarify the mathematical relationship between 

the two formulae. 

The constancy of growth rates in consecutive years, 

discovered by FORD (1933) and later by WALFORD (1949), is based on 

a simple representation of the lengths which are the only values 

with which this procedure operates. On standard graph paper (graded 

in millimeters) the individual lengths are plotted on the abscissa, 

with the respective next higher length  values as  ordinates. The 

coordinate points obtained in this manner usually form in very good 

approximation a straight line. According to FORD (1933) this 

relationship is based on the following mathematical function: 

1n +1 mg a + 1).1n 	• • 	• • 	• . 	(1) 

where 1 = length and n =8 age in years. In using a and b for the 	â2à 
parameters  I  follow the formulation by HOHENDORF (1966). 

This method of representing growth processes is not restricted 

to fish growth only, but can be arplied also to mammalian greath, 

as already WALDORF (1949) has shown. 
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If we ight • data are ,t o be e val mite d thei  t1erq'qt  rbe found and the resultant weight lengths 3V1, )  linsertesi into the 

representation or computation The se Wetgli-t 1éñ.dôTñ6t 	j 

the actual lengths, but' can be'-c  or Verted intothem  by -e.Suitable' 

factor.. The feet hoe require's ,  hOWe'ver' isoïnê trid' 	Whi 	' 

usually is the case with good  approximation. ' The Fôrd-Walrord '• •'' • 

method assumes measiring series with 

GULLAND 80 HOLT (l0) have described 

spacing. 

' Als6  the Bértàlàhfï'y the .lon 

yr L 	1 - e -1( (t. )) 

pertititSthe repreaéntatiôn' , 6f lenÊtha''' 

with thé 	 method ,> must bë1nrÔdücédTT Î we gIt length -S. . 

In thia';fiifictitin'-'the'•COniPutatign T of i p'rèsentS --‘'cértain'''' 

diffiCult lea .-- ThèrefOre - SEVERTOIric HOLT,',(19571' -' tried'"tO''.dStèrMirie'• • 

the deciSieparainetér ~fthifürôti6 4. 1 iiie an's -  of the'f' 	• 

Walforif i , Methodi'' The '-i'gra phical inethOd-'PrOp6Séd bthemyje ldè only' 

appro,ètrtate , .iialUe s. LMôrètiSeful isthfltè th~d  alreadY SUggé 'Ste d' .  'by 

TAYLOR  (l95) 	compitte 	e1ion 

••• 
'• 	 • 

from the To rd-Walford formula .• This  g ives the  maximum  --value of 

the funct ion J'or ,the parameter .K of ;the ,  Bertala.nffy function, ,  , 



4 

TAYLOR has established the following relation: 

b lom e -K 	 (4) 

In most recent times HOHENDORF has tried to bring more 

detailed proof for the relation postulated by TAYLOR (Rohendorf 

does not quote that author) between the parameters of the two 

functions, and has worked out several examples with these values. 

He explained his method by means of one example in greater detail 

and has made it thus accessible even to mathematically less versed 

biologists. 

He starts by computing the regression lines of the Ford-

Walford relation whose parameters, according to him, can be 

computed comparatively easily and with accuracy without using 

function tables. Then he converts the Ford-Walford parameters into 

the Bertalanffy parameters by equations (3) and (4). 

Mathematical evaluation 	 195  

For the first test of the method suggested by 'HOHENDORF 

I used an example worked out by v.BERTALANFFY (1934), namely 

the numerical series of DERJAVIN (1922) for the longitudinal growth 

of the male sturgeon (Acipenser stellatus). I found that the 

parameters introduced by v.BERTALANFFY yielded considerably better 
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results than the parameters computed according to HOHENDORF (Table 1). 

Table 1.  Comparison between the grawth values of 
Acipenser stellatus  (e) computed by the method of 
HOHENDORF (1966) and the results obtained by 

v.BERTALANFFY (1934) 

I 	Alter 	'VIefiwerte 	Werte von 	(1 	°Io c,.  . 	
v. BERTALANFFY 	

r  Werte nach 	ii 	°Io 
I 	( Jahre) 	(cm) 	...3 	 Abweichung 	‘à HOHENDORP 	/Abweichung 

L o  = 	21,10 	 L o  = 	20,3 
L 	--= 201,1 	 L 	= 209,6 
K 	=--- 	0,06 	 K=--- 	0,056 

	

1 	21,1 	 21,1 	+ 0,00 	 20,3 	- 3,79 

	

1 	32,0 	30,6 	- 4,38 	 30,6 	- 4,38 

	

3 	42,3 	 41,5 	- 1,89 	 40,4 	-4,49  

	

4 	51,4 	 50,8 	-1,17 	 49,6 	-3,50  

	

5 	60,1 	 59,5 	- 1,00 	 58,3 	- 2,99 

	

6 	68,0 	67,8 	- 0,29 	 66,7 	- 1,91 

	

7 	75,3 	 75,5 	+ 0,27 	 74,5 	- 1,06 

	

8 	82,3 	 82,8 	± 0,61 	 81,9 	- 0,49 

	

9 	89,0 	8 9,7 	+ 0,79 	 88,8 	- 0,22 

	

10 	95,3 	 96,2 	± 1,10 	 95,4 	+ 0,11 

	

11 	101,6 	102,3 	-I-  0,69 	101,6 	+ 0,00 

	

12 	107,6 	108,1 	± 0,46 	107,5 	- 0,09 

	

13 	112,7 	113,5 	± 0,71 	 113,2 	+ 0,44 

	

14 	117,7 	118,6 	-I- 0,62 	118,4 	-I- 0,59 

	

15 	122,2 	123,4 	+ 1,00 	123,4 	+ 1,00 

	

16 	126,5 	127,9 	+ 1,11 	 128,1 	+ 1,26 

	

17 	130,9 	132,2 	-I- 0,99 	132,5 	+ 1;7 2 

	

18 	135,3 	136,2 	-I- 0,67 	136,7 	+ 1,03 

	

19 	140,2 	140,0 	-0,14 	140,7 	+ 0,36 

	

20 	145,0 	143,5 	- 1,03 	144,5 	- 0,34 

	

21 	148,6 	146,9 	-1,14  • 	148,1 	-0,34  

	

22 	152,0 	150,0 	 - 1,32 	151,4 	 - 0,39 

SD = ± 1,39 0/o 	 SD .-= ± 2,13 °/o 

1 - age (in years) 	2 
3 - v.Bertalanffy's 	4 

values 
5 - HOHENDORF's 

- measured values (cm) 
- deviation (in %) 

values 

This can be demonstrated very well also by the example 

of the Baltic turbot (Scorhtalmus maximus)  computed by HOHENDORF. 

The data on the longitudinal growth of that fish used by him 

can very easily be represented by the Ford-Walford method, but 

a much better fit to given data is obtained if 10.5 cm, instead of 
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the measured value of 10.6 cm, is used as the original value (11) •  

In this case the standard deviation sD = 1.52%, while the one 

resulting from HOHENDORFts values is 2.44%. (The reason for my 

sD value being slightly higher than the one computed by HOHENDORF 

is the fact that, contrary to him, I subtract three degrees of - 

freedom in the computation). 

However, in view of the close relationship between the 

BERTALANFFY function and the WALFORD formula, it appeared likely 

that with that function, too, a better fit of observed data could 

be obtained than HOHENDORF had achieved. Therefore, for control 

purposes, I applied the graphic method of determining L„described 

by v.BERTALANFFY (1934), using the values regressed according to 

the WALFORD computation procedure as a•  basis. I had the impression 

that a slightly higher value than 33.3 cm would be more suitable, 

therefore I chose 33.5 cm.as  basis for all further computations. 

The corresponding value for a can be computed by equation (3) and 

inserted in the WALFORD formula. The goodness of fit can then be 

tested by means of the values obtained in this manner. I varied 

Lin  steps of 0.1 cm, and again the mathematical optimum for L c„„ 

was 33.5, i.e. the square deviationias a minimum. These computations 

were based on a b value of 0.76g2 as it resulted from the 

computation by HOHENDORF. I did not vary that value since such 

variation would have resulted in substantial computations which 

could be worked out economically only by a computer. However, 



to  - lnL - ln(L o  - Lo) 
• • 	• • .. 	 (5) 

a computer programme for this individual case would hardly have 

made sense. 

For; HOHENDORF suggests a method which is mathematically 

correct, but yields unsatisfactory values because it is influenced 

by deviating measuring values and requires accurate values for the 

two parameters. Via Lo , which can be easily determined when 

a and b are known, I computed; ,--- 0.426 with the formula 

Incidentally, for practical work with a computer I prefer Lo  as 

third parameter; the value ofiro  proved to be very critical in 

computations. 

No mathematical accuracy is claimed for the BERTALANFFY 

parameters determined in this manner, but their fit to observed 

data is still considerably better than that of the values computed 

by HOHENDORF. In Table 2 the data 'obtained are compared and the 

inserted parameters listed. 

HOHENDORF's view that, taking the FORD-WALFORD parameters 

as a basis, it is comparatively easy to arrive at the mathematically 

accurate parameters of the BERTALANFFY function, is incorrect. 

His method yields approximate values, but no mathematically 

satisfactory solution. On theceher hand, his suggestion for the 

computation of the WALFORD parameters is useful since in that manner 

/' 



L0  
li - a 

• • • • 	• • • • 	• • (6) 

the uncertainty which accompanies all growth data can be eliminated 

and the computed figures can be used as the basis of subsequent 

evaluations. In view of the mostly good approximation of the FORD-

WALFORD values to given measuring series, the possibility of 

regression provided by it seems permissible. 

The fact that the computation of the BERTALANFFY parameters 

from the WALFORD formula suggested by HOHENDORF yielded unsatisfactory 

results made it necessary to examine the mathematical foundations 

of this computation in greater detail. The most essential finding 	198 

was that the FORD-WALFORD function contains a third parameter which 

HOHENDORF, like the previous authors, did not recognize. In the 

usual method of application the third parameter is introduced into 

the computations with the original value. 

Derivation of the BERTALANFFY function from the  

FORD-WALFORD formula 

The FORD-WALFORD formula (equation 1) is the equation of 

a straight line in which b = the slope and a = its point of 

intersection with the ordinate at the origin; a, however, is not 

identical with Lo . We get the value for Lo  from 



1 	 2 	 3 	 4 	 5 

	 Cama p ,,...iert-veliv. 	5 	 oonp tik. wive-) utS 
Alter 	MeRwerte 	Ileredmete Werte 	0/0 	 0/0 	 Berecrmete Werte 	 0..t, 

(Jahre) 	(cm) 	(1-10itetsmoRr) 	Abweichtmg 	 Abweiclumg 	(WArrom)) 	(Ilmerm.ANrry) 	Abweich 
=,: 	, 	K 	- 	 ,637 	"De vio. , 

	

ti„„ stire ,t 7,7195 	e ,/,'‘,.J.,;epit,7,7195 	'N v; c1),',0 6t. 	a 	77653 	 02 
ie 6 14-:\ 	' '''``  

yae.c5i 	V41.111e$ 	c ----- 0,5548 	 c - 0,4689 	 c •,- 0,4584 	- r o  --• 	0,426 
_ 	- 

0 	 3,62 	 3,56 
1 	 10,6 	 11,01 	 + 3,7 	 10,50 	- 0,94 	 10,50 	 - 0,9 
2 	 •15,5 	 16,18 	 -I- 4,2 	 15,79 	+ 1,87 	15,83 	 -I. 2,1 
3 	 19,7 	 20,15 	 -I- 2,2 	 19,85 	 -I- 0,76 	' 	19,93 	 + 1,1 
4 	 23,5 	 23,20 	- 1,3 	 22,97 	- 2,26 	23,08 	 - 1,7 
5 	 25,5 	 25,54 	 + 0,0 	 25,37 	- 0,51 	 25,50 	 -1.  0,C 
6 	 27,7 	 27,34 	 - 1,3 	 27,21 	- 1,77 	27,35 	• 	 - 1,2 
7 	 28,7 	 28 72 . 	, 	 -1-  0,0 	 28,62 	- 0,28 	28,78 	 -I- 0,2 
8 	 29,8 	 29,78 	 + 0,0 	 29,71 	- 0,30 	29,87 	 -1- 0,2 
9 	 30,4 	 30,60 	 -1- 0,7 	 30,54 	 -I -  0,46 	30,71 	 + 1,C 

	

sp '-''' ± 2,58 °/o sp =--- ± 1,52 °/o 	 si) .--••, ± 1,4 ■ 

_ .... 	 --- - • 

4 
3 
7 
9 
0 
6 

4 
9 

fl io 

Ling 

0 

Table 2.  Comparison between the values computed 
by HOHENDORF (1966) for the longitudinal growth 
of the Baltic turbot (Scophthalmus  maximus) 
(Collimn 3) and the values obtaine-a-Wr=and.ng 
the parameter c (Column 4) as well as the values 
obtained if the  parameter a is changed too. The 
heading of the last column-also gives the 
corresponding BERTALANFFY parameters. Data accor- 

ding to KANDLER (1944) 
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With the value 10.5 for 11  and 0.7682 for b and 7.7653 

for a, Lo  would be 3.56 am. Starting from a, we can arrive at 

• Lo by multiplying with the factor c = 0.4584. 

If we insert the parameter c into the FORD-WALFORD formula, 

we get 

L0 	a•c 11  = a + a.b.c 
72 = a + a.b + ab2.c, etc. 

1 = a.(1 + b + b2  + b3 	+ bn  - 1 ) + a.bn .c 	.. 	(7) -n 



• • • 	• • 
a 

1 - b " .. 	(3) 
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The brackets contain the descending geometrical progression of b 

for b < 1, already discovered by FORD (1933). The third parameter 

appears only in the last member together with a as factor, so that 

we could also write b11 .1,0 ° Since the value of bn  decreases with 

increasing exponent, the influence of c i cor Lol .on.the.se  teached 

decreases correspondingly and may become O. 

It should be possible mathematically to compute the value 

for c from the difference between the measured data and the series 

computed without c. However, the small differences between the 

two series are so strongly influenced by the uncertainty of measuring 

results that no satisfactory results are obtained. Therefore there 

is at first no other way than to determine the parameter Lo  contained 

in 11  by empirical variation of 11 in order to get the best fit 

to the other measured data. In this case I varied 11  in steps of 

0.1 cm. The sum of the squares of the percent deviations was a 

minimum at approx. 10.5. This value is very close to the value 

measured for 1 1  and yields a much closer approximation to the measured 

data than the value of 11.01 computed by HOHENDORF. It seemed useless 

to me to try and achieve higher accuracy, since the measured data too, 

have only one decimal. 

On account of the circumstance that for n 	c the influence 

of L
0 
= 0

' 
TAYLOR's formula remains valid. 



Table 3.  Computation of length and weight of the 
Baltic salmon (Salmo salar). Columns 1 and 4 contain 
the parameters and values computed by HOHENDORF 
(1966), column 3 the corrected values for weight 
increase, and column 5 the weights corresponding to 
column 1, computed by the allometric function. 
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Iroup 
Alters- 
gruppe 

2 
gemessen 

(kg) 

V;0-14 
Abwei-
chung 

W L. 9  

Lev14-1.1.  

gemessen 	berechnet 
(cm) 	(HonENnoar) 

a ra 38,961 
b 	0,7503 

Comp ‘./ *4,3 
 beréchnet 

L 
= 0,998 

b = 0,685 
C  = 0,265 

Ge ■vidit 

"0-  
44,4  

"treânet Abwei- 
(Ho' IENDORE) chung 

= 1,2097 
b = 0,5829  

Am 	Abwei- 
errechn:-:en 	chung 

Lingtmwertm 	Va 

metrier 
WItaSUP 

1,456 

6,539 

12,167 

16,000 

19,616 

1 	53,4 	53,39 	1,64 

2 	79,6 	79,00 	5,83 

3 	97,4 	98,21 	11,30 

4 	112,6 	112,62 	16,10 

5 	123,6 	123,43 	20,30 

	

1,179 	1,64 	± 0,00 

	

1,805 	5,88 	0,86 

	

2,234 	11,15 	- 1,33 

	

2,527 	16,14 	0,25 

	

2,728 	20,30 	± 0,00 

-11,2 	1, - 3 

12,2 

-F 7,7 	1C, 4 9 

+ 0,6 	16,21 

- 3,4 	21..44 

5, •19 

-- 3,95 

7,17 

0,68 

-1- 5,62 

51)=- ± 0,64% SD  = ±  1,13°/u  si) = ± 10,72 Vo s: r  + 6,56 MI 

11 
fti owever, the relation L„,Q  = l 

	

established earlier by FORD 

and WALFORD and more recentlyby BÜCKMANN (1967) is not correct). 

By introducing the third parameter it becomes possible 

to derive the BERTALANFFY function simply and clearly from the 

FORD-WALFORD formula. As the basis we take equation (7). Since 

n corresponds to the number of periods involved, we replace it by 

't-  , and also substitute the bracket by the summation formula for 

the geometrical progression of b: 

1 -  l 	a 	
be
+ be.L 	. 

	

t = . 	 (7e) 
1 - b 	0 

a according to enuation (3) we can substitute 
1 b 

by L and thus 
-  

get in accordance with the BERTALANFFY function the relation to 



(7a) • • 	• • 

=- 	+ bt• Lo  

=  L  - 	- Lo ) (8) • • 	• • 

the maximum quantity: 

lr =•(1 - 1)1') + be . Lo  

Removing the bracket we get: 

12 

This is nothing else but the original form of the BERTALANFFY 

function if, according to TAYLOR's equation (4), we substitute 

h by e -Kv . This simple derivation shows again that the FORD-WALFORD 

formula contains three parameters, Lo  or also L1  acting as parameten.. 

Its value has a decisive influence on the results and must therefore 

be determined as accurately as possible. 

Since HOHENDORF did not recognize that also the WALFORD 

function contains three parameters, he formulated also his 

comparative measure sp  incorrectly since when computing it he 

subtracted only two degrees of freedom. In the WALFORD formula, as 

in the BERTALANFFY function and in my own suggestion, three degrees 

of freedom must be taken into consideration when the standard 

deviation is computed. 

If even in the relatively simple computation of lengths 

HOHENDORF's parameters do not give really satisfactory results, 

this applies in particular to the weight computations carried out 
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by him. Since in the latter case the results enter the final results 

in the third power, even the slightest deviations become extremely 

noticeable. 

HOHENDORF uses the Baltic salmon (Salmo salar)(Table 3) as 

an example to demonstrate his method. His parameters yield very 

good valueà for longitudinal growth; if they are used to compute 

the corresponding weights via the allometric length-weight relation, 

the approximation to given data is noticeably better than the one 

achieved by HOHENDORF. For this reason I worked out this example 

again. The parameter values I obtained for the weight lengths were 

different from those used by HOHENDORF. A graphical check confirmed 

the correctness of the WALFORD parameters I had used; they are 

listed in Table 3. It was to be expected that in this case the third 

parameter must not be disregarded because Lo  differs greatly from a. 

Graphically, an approximate value of 0.3 was found for Le . A 	201 

variation of L0  resulted in a surprisingly good fit to the cube roots 

of the weights with Lo  = 0.265. Since in this case a is almost 1.000, 

L and Lo  are practically identical. The weight lengths computed 

from these three parameters hardly differ from the observed data 

even in the weights. HOHENDORF's evaluation, on the other hand, 

yielded very great deviations (Table 3). I did not determine the 

BERTALANFFY parameters in this case, but they presumably would 

result in a similarly good approximation. Apparently the method 

suggested already by BERTALANFFY (1934) makes a very good representation 



of weight data possible. 

If the maximum weight of the Baltic salmon is computed from 

the weight-length relationship, the approximate value is 31.64 kg. 

If, however, the maximum value of longitudinal growth is taken as 

the starting point, the maximum weight computed via the allometric 

function is 43.68 kg. Thus the two methods for computing the maximum 

weight differ greatly from each other. Neither do the other parameters 

of the length and weight functions reveal any clear mathematical 

relations, a fact which already HOHENDORF had pointed out. In this 

respect the function suggested by me (KRÜGER 1965) has a distinct 

advantage since the allometric parameters can be inserted into it. 

Discussion 

The above statements have shown that by introducing the 

third parameter Lo  (= a.c) the relationship between the FORD-WALFORD 

formula and the BERTALANFFY function can be demonstrated very 

easily. The relationship between the parameters of the two functions 

formulated by TAYLOR also becomes clear. In spite of this, several 

facts complicate the mathematical relation between the parameters 

of the two functions. 

The first complication is caused by the presence of the 

third parameter. In the usual application of the FORD-WALFORDformula 
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it is contained in the original value 11  and is introduced into 

the computations by the latter. HOHENDORF then tries to compute 

the value of 11  by means of the BERTALANFFY function, making the 

mistake of inserting the parameter a of the WALFORD function in 

the place of 11  in the course of his derivation (his equation 4). 

In this manner he does arrive at a value for 11  which deviates from 

a, but is in no way optimal. It cannot be optimal for the simple 

reason that its WALFORD parameters are optimal only for the growth 

series on which the computation is based, but not for a series 

with a deviating original value. In this way it changes the value 

of the third parameter which has a functional relationship with 11. 

The theoretical possibility of computing the value for c 

from the measured data fails on account of its inevitable uncertainty. 

There remains only the possibility of determining on a completely 

empirical basis, by inserting different values for 11, the value 

which will yield the smallest square deviations from the measured 

values. With a given slope b, an approximate value for 11  is found 

which can be used as a basis for computing the approximate value 

for L0  = a.c. Then a is varied in order to obtain an even better 

fit to the measured data, if possible. In this manner it was possible 

to reduce almost to half of HOHENDORF's evaluation the mean square 

deviation of the data of the given example. I took only the value 

for b from the parameters computed by HOHENDORF, For technical 

reasons I was not in a position to examine whether it was optimal. 
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HOHENDORF has made still another mistake. The FORD-WALFORD 

formula is a linear function and therefore the regression computation 

used by him yields the parameters for a minimum linear deviation 

from the measured values. He, however, tests the goodness of fit 

with the percent deviation, although the regression line for the 

relative deviations does not coincide with that for the linear 

deviations. In this respect logarithmic functions are better. The 

WALFORD formula depends mainly on the values of the classes of greater 

magnitude, while the classes of smaller magnitudes are decisive for 

the relative approach. It is an indication of a very,  accurate 

control of the growth process if even in linear formulation the 

computed figures show such good approximation to the growth curves. 

However, as long as no mathematical solution has been found which 

minimizes the relative déviations in the FORD-WALFORD formula, 

its parameters can be regarded merely as approximate solutions for 

the parameters of the BERTALANFFY function on the basis of which 

the accurate parameters can be found only empirically by iterative 

computations. 

We have seen that in some instances a purely mathematical 

approach did not yield satisfactory results. Only with the necessary 

adjustments do the deviations of observed biological data from the 

mathematically accurate values permit purely formal computations. 

The measured values deviating from the theoretical course of the 

curve influence the computations in a manner which is difficult to 
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to follow; therefore in most cases only approximate values are 

determined. However, from the latter, 	can be obtained, by 

gradual systematic alteration of the parameters, which provide 

a better fit to observed data. 

In general, biomathematics require approximation methods 

for useful solutions. This necessitates very frequent.repetition 

of highly complicated  computations and  is therefore very time-

consuming. Modern electronic computers are indispensable aids for 

the solution of biomathematical problems. Computer programmes for 

the BERTALANFFY function have been developed e.g. by FABENS (1965) 

and RADWAY (1966). It would have been an advantage if HOHENDORF 

had used them to check his method. 

Today, with several equally efficient solutions at hand, 

it is no longer possible to overlook or deny the basic possibility 

of reproducing animal growth data by a mathematical model. 

The present study confirms the identity of the BERTALANFFY 

function and the WALFORD formula in a very simple and clear manner. 

I myself suggested a new growth function (KRUGER 1965) which 
largely 

apparently runs/parallel to the BERTALANFFY function. Even with 

regard to the mathematical values, its goodness of fit to growth 

data is at least equal to that of the BERTALANFFY function. I pointed 

that out already previously, and HOHENDORF confirmed that parallel. 



18 

Mathematically, however, its basis is completely different. 

Therefore at present there exist at least two functions 

which are suitable in practice for representing the growth of fish. 

The GOMPERTZ function, also mentioned very frequently, shall be 

disregarded here. It has been applied only fairly rarely, since 

the determination of its parameters, and therefore the assessment 

of its usefulness, is difficult. It is therefore not the goodness 

of fit to measuring series which decides on-the suitability of a 

growth function, but its mathematical properties and the informative 

value of the parameters to be used. 

My suggestion has two essential advantages over the 

BERTALANFFY function. For one thing, it contains an inflection point 

also for the length values, as was to be expected theoretically. 

For another, and this is the more important advantage, there exiàts 

a mathematically determined relationship between its parameters and 

the allometric function. This permits also a direct evaluation of 

weight data without the detour via the weight length (V-v,T ). 

This advantage plays an even more decisive role when physiological 

problems are involved (KRUGER 1967). 

The mathematical structuresof the BERTALANFFY function and of 

my suggestion: 

Yx  - 	1 
N 

Ymax 
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are very similar. Both contain a maximum quantity as parameter 

which the organism approaches when growth is unlimited; both also 

contain a parametér of rate which expresses the slope of the growth 

curve, and an additive  time  value t,  or . However, a direct com- 

parison of the parameters is not possible. In my function the maximum 

value is considerably higher than in the BERTALANFFY function, but 

on account of the greater distance from the measured data it does 

not so easily run the risk of lying below actually occurring maximum 

quantities, as HOHENDORF reports for the North Sea turbot. 

All parameters which we insert in our computations are at 

first purely numerical values, and in my opinion it seems pointless 

to attach too much Importance to their biological interpretation. 

That interpretation islanerely a secondary task. 

In the BERTALANFFY function the exponent K is the parameter 

of rate. However, its relation to the rate of growth is not as simple 

as HOHENDORF (1966) assumes. This is shown by his example for the 

longitudinal growth of the North Sea turbot (SumbhaLmusinaxi.mus) 

(his Table 5). 

He reports that for the male turbot the value for K is 

0.2690, 'for the female, 0.2594. Judging from these figures, the males 

would grow faster than the females. In reality, the females grew 

erom 8.3 cm to 60.82 cm in the observed period, the males only to 

53.5 cm. Female gragth is therefore undoubtedly faster. This contra- 
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diction is explained by the fact that K determines the speed with 	204 

which growth approaches the terminal point. The value for K contains 

the maximum quantity which differs greatly in the two sexes. 

According to HOHENDORF it is 53.88 cm for males and 62.17 cm for . 

females. Since in growth comparisons on the basis of the BERTALANFFY 

function the value for L 	different species or sexes cannot be 

kept at a constant level, K is not a definite expression of the rate 

of growth. In this respect the b value of the FORD-WALFORD formula 

is a more useful basis for comparison since it is based on the 

original value 1 1  which is the same for both sexes. In this case 

the b value is 0.7642 for males and 0.7715 for females. Thus it•

reflects the relation of the rate of growth more accurately. 

While the parameters of rate of the BERTALANFFY function - and 

the WALFORD function permit accurate comparison, such a comparisbn 

is not possible with the parameter of rate of my function, since 

in it the rate of growth is expressed by two parameters: log N and 	. 

In mathematical terms the third parameter which the 

BERTALANFFY function and my own suggestion contain is the period 

during which the organism develops from the dimension 0 to the first 

measured length. Since, however, in both functions.the parameters 

of postlarval growth do not include larval and embryonic development, 

this "pre-natal" age represents a purely mathematical value which is 

determined by the mathematical interpretation of the growth curve. 
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Due to the fact that the BERTALANFFY function has no inflection 

point, it declines much more steeply in the prenatal range, which 

results in lower values for the prenatal age than in my function. 

Therefore the; values lie rather in the dimension of prenatal age, 

but also HOHENDORF is rather hesitant about this interpretation. 

It is the principal significance of the e value of my 
function that it designates the curvature of the relative growth 

curve; mathematically it is therefore a parameter of curvature. 

It also has the advantage of being only slightly critical and lying 

at comparable magnitudes in more rapidly growing fish. This facilitates 

a comparison of rates of growth by means of the parameter of rate. 

I shall discuss this elsewhere. In the BERTALANFFY function; is 

very critical and its relation to the curvature of the curve not 

as clear .  

The mathematical interpretation of the parameters of the 

FORD-WALFORD function still awaits further analysis. Changes of the 

parameter c cause a displacement of the values on the regression line, 

while changes of the a value displace the regression line parallel 

to itself. It cannot be said off-hand what influence this has on 

the growth curves. 

My explanations and mathematical demonstrations have shown 

that the relationship existing between the parameters of the 

BERTALANFFY function and the FORD-WALFORD formula cannot be evaltrated 
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for the determination of the BERTALANFFY parameters in as simple a 

manner as suggested by HOHENDORF. 

HOHENDORFts statement in his summary (1966) "that a simple 

and easily applicable method for the accurate determination of the 

parameter values and growth values by purely mathematical procedures 

can be established by using this linear relationship as recurrence 

formula for the BERTALANFFY function" was not confirmed. To clarify 205 

the connection betaeen the BERTALANFFY function and my can suggestion, 

I was interested in a really accurate determination of the BERTALANFFY 

parameters. Unfortunately, HOHENDORF's suggestion did not meet this 

requirement. If time-consuming  •.iterative computations on mechanical 

computers are to be avoided, the only way - at least at present - 

is the graphical solution which I used for the determination of L.  

Parameter computations are further facilitated by the utilization of 

the relations with the FORD-WALFORD formula. I thought it was 

important to publish my experiences with HOHENDORF's suggestion in 

order to inform future users on the limitations of his method and 

its applicability. His method is completely unsuitable for computing 

Ile Only the original value is mathematically correct. For a better — 
percent approximation the optimal value for Lo , or c, must be 

determined and given as third parameter. 

Again and again, the treatment of biomathematical questions 

has revealed erroneous formulations in various authors. It will be 

possible to use mathematical methods for the study of biological 
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phenomena only if all efforts are made to achieve on a mathematically 

satisfactory basis the best possible fit to observed data. Rough 

approximations must not be expected to contribute to the progress 

of our knowledge. 

Summary 

1. For the characterization of fish growth, HOHENDORF (1966) 

tried to use the relation between the parameters of the BERTALANFFY 

function and the FORD-WALFORD formula: L    andK= lnb, 

formulated by TAYLOR, for computing the BERTALANFFY parameters. 

By working out several mathematical examples it is shown that his 

method does not yield parameters which can be regarded as accurate. 

2. The FORD-WALFORD formula contains a third parameter, c, 

which is introduced into the computation with 11 . 

3. The third parameter permits a very simple derivation of 

the BERTALANFFY function from the FORD-WALFORD formula and confirms 

the relationship between the parameters established by TAYLOR. 

4. The reasons are studied on account of which HOHENDORF's 

method yields only approximate values. 

5. In this respect the decisive fact is that the parameters of 
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the regression lines of the FORD-WALFORD formula minimize the 

linear differences between the computed and measured values, while 

in growth computations the minimum of the percent deviations lathe 

desired quantity. 
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