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Introduction

Fishery biologists have very intensively investigated the

possibilities of a mathematical description of growth processes.

The growth of fish, unlimited and apparently not complicated by

any discontinuity after larval development, seems a particularly

suitable example for the study of growth processes. I shall not
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discuss the variety of suggested functions, but rather liﬁit myself
to the problem of the relationship between the Ford-Walford formula
and the Bertalanffy function. Both functions have proved very useful
and have been applied fairly extensively. The far-reaching agreement
between the numerical results has induced BEVERTON & HOLT (1957)

and TAYLOR (1958) to clarify the mathematical relationship between

the two formulae.

The constancy of growth rates in consecutive years,
discovered by FORD (1933) and later by WALFORD (1949), is based on
a simple representation of the lengths which are the only valués"A
with which this procedure operates. On standard graph paper (graded
in millimeters) the individual lengths are plotted on the abscissa,

with the respective next higher length values as ordinates. The

coordinate points obtained in this manner usually form in very good

approximation a straight line. According to FORD (1933) this

relationship is based on the following mathematical function:
1n +1’ a+b'1n o0 o oo o (1)

where 1 = length and n = age in years. In using a and b for the

parameters I follow the formulation by HOHENDORF (1966).
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This method of representing growth processes is not restricted

to fish growth only, but can be applied also to mammalian growth,

as already WALDORF (1949) has shown.




If weight data are ‘to be ‘evaluated, thelir ‘cube’ réots miist
be found .and -the resultantfweight-leng%hsrxﬁ;jiﬁserted5iﬁtb‘ﬁhe*f
representation-or'computaﬁion;’These—wefgﬁf”ieﬁéﬁﬁsﬁdd”ﬁbt”gliébxw*
theiactual lengths, but’can be'converted into. them by ‘a:siuitable . :
factor.: The'method’ requires’ however isometiic growth) which '
usually is the case with good approximationi’ The Ford-Walfoerd =
method assumes measuring series with the ages equally spaced.

GULLAND & HOLT (1960) have described the method for irregular age

spacing.
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“Also ‘the Bertalanffy function o I e
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perinits thé  represéntation-of lengths only. Weight valuss, as'*
with®the ‘Ford=Walford: me'thod; must be introduced as’ weight lengths.‘
In this functionthe’ computation offparameters presents ‘certain®
difficulties. Therefore BEVERTON-& HOLT:(1957) tried ‘to-deétermine”
the décisive’parameter of ‘this functién 'L - by ‘meanis” of ' the" -
Walflord ‘method. The graphical method ‘Proposéd by’ them-yields only

approximate’ valiiés. :More ‘liseful 1s-thé method aiieéd& suggesteéd' by
TAYLOR (1958)" to-'compiite Ly, 6mthe basis “ofithe ‘Felation - '

. - P |
BT S T SRR NS S AN S AL AL

L°°=Ii B ...«.. o .\... '.. (3)»
from the ‘Ford-Walford:formula. This gives the maximum value of

the function. For'the parameter K of the Bertalanffy function, = -




TAYLOR has established the following relation:

b = e"'K oo o X oo (14')

In most recent times HOHENDORF has tried to bring more
detailed proof for the relation postulated by TAYLOR (Hohendorf.
does not quote that author) between the parameters of the two
functions, and has worked out several examples with these values.
He explained his method by means of one example in_greater détail
and has made it thus accessible even to mathematically less versed

biologists.

He starts by computing the regression lines of the Fofd-
Walford relation whose parameters, according to him, can be
computed comparatively easily and with accuracy without using
function tables. Then he converts the Ford-Walford parameﬁers into

the Bertalanffy parameters by equations (3) and (4).
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For the first test of the method suggested by HOHENDORF
I used an example worked out by v.BERTALANFFY (193L4), namely
the numerical series of DERJAVIN (1922) for the longitudinal growth

of the male sturgeon (Acipenser stellatus). I found that the

parameters introduced by v,BERTALANFFY yielded considerably better



results than the parameters computed according to HOHENDORF (Table 1)..

Table 1., Comparison between the growth values of

Kcipenser stellatus (d) computed by the method of

HOHENﬁﬁﬁF [1966) and the results obtained by
v.BERTALANFFY (1934)

Alter  pMefiwerte Werte von (' /0 Werte nach b/o
, (Jahre) 0'2 (cm) v.BErTALANFFY (Abweichung Honenborr  TAbweichung
L, = 21,10 L, = 203
L = 201, L = 2096
K = 006 K = 0,05
! 1 21,1 21,1 + 0,00 20,3 —3,79
! 2 32,0 30,6 — 4,38 30,6 — 4,38
| 3 42,3 41,5 — 1,89 40,4 — 4,49
. 4 51,4 50,8 — 1,17 49,6 —3,50
| 5 60,1 59,5 — 1,00 58,3 — 299
; 6 68,0 67,8 —0,29 66,7 — 1,91
g 7 75,3 75,5 + 0,27 74,5 — 1,06
i 8 82,3 82,8 + 0,61 81,9 — 0,49
; 9 $9,0 89,7 + 0,79 88,8 —0,22
i 10 95,3 96,2 + 1,10 95,4 + 0,11
R ! 101,6 102,3 + 0,69 101,6 + 0,00
: 12 107,6 108,1 + 0,46 107,5 — 0,09
13 112,7 113,5 + 0,71 113,2 + 0,44
14 17,7 118,6 + 0,62 118,4 + 0,59
15 122,2 123,4 +1,00 123,4 + 1,00
16 126,5 127,9 + 1,11 128,1 + 1,26
17 130,9 132,2 - + 0,99 132,5 + 1,22
18 135,3 136,2 + 0,67 136,7 + 1,03
19 140,2 140,0 — 0,14 140,7 + 0,36
20 145,0 143,5 —1,03 144,5 — 0,34
21 148,6 146,9 —1,14 - 148,1 — 0,34
22 152,0 150,0 —1,32 151,4 —0,39
; sp=*t139% sp =1 2,13%
l - age (in years) 2 - measured values (cm)
3 - v.Bertalanffy's L, - deviation (in %)
values

5 - HOHENDORF's values

This can be demonstrated very well also by the example
of the Baltic turbot (Scophtalmus maximus) computed by HOHENDORF.
The data on the longitudinal growth of that fish used by him
can very easily be represented by the Ford-Walford method, but
a much better fit to given data is obtained if 10,5 cm, instead of




the measured value of 10,6 cm, is used as the original value (1;). =

In this case the standard deviation sp = 1.52%, while the one

resulting from HOHENDORF's values is 2,44%. (The reason for my . 196 S

sp value being slightly higher than the one computed by HOHENDQRF
is the fact that, contrary to him, I subtract three degrees of - -

freedom in the computation),

However, in view of the close relationship between the
BERTALANFFY function and the WALFORD formula, it appeared likely
that with that function, too, a better fit of observed data could
be obtained than HOHENDORF had achieved. Therefore, for control
purposes, I applied the graphic method of determining L. described
by v.BERTALANFFY (1934), using the values regressed according to
the WALFORD computation procedure as a basis. I had the impreSSibn
that a slightly higher value than 33.3 cm would be more suitable,
therefore I chose 33.5 cm.as basis for all further computations.
The corresponding value for a can be computed by equation (3) and
inserted in the WALFORD formula. The goodness of fit can then be
tested by means of the values obtained in this manner. I varied
Lo, in steps of 0.1 cm, and again the mathematical optimum for L,
was 33.5, i.e., the square deviationwas a minimum, These computaﬁions
were based on a b value of 0,7682 as it resulted from the
computation by HOHENDORF., I did not vary that value since such
variation would have resulted in substantial computations which

could be worked out economically only by a computer. However,




a computer programme for this individual case would hardly have

made sense,

For T, HOHENDORF suggests a method which is mathematically
correct, but yields unsatisfactory values because it is‘influenced
by deviating measuring values and requires accurate values for the
two parameters. Via Ly, which can be easily detemmined when 1,

a and b are known, I computed Ty = 0.426 with the formula

T’o = lan - l;(LQO - LO) L) o0 LI ] (5)

Incidentally, for practical work with a computer I prefer Ly as
third parameter; the value of 1, proved to be very critical in

computations, !

No mathematical accuracy is claimed for the BERTALANFFY
parameters determined in this manner, but their fit to observed
data is still considerably better than that of the values computed
by HOHENDORF. In Table 2 the data ‘obtained are compared ahd the

inserted parameters listed.

HOHENDORF's view that, taking the FORD-WALFORD parameters
as a basis, it is comparatively easy to arrive at the mathematically
accurate parameters of the BERTALANFFY function, is incorrect.
His method yields approximate values, butAno mathematically
satisfactory solution. On thecwher hand, his suggestion for the

computation of the WALFORD parameters is useful since in that manner




the uncertainty which accompanies all growth data can be eliminated
and the computed figures can be used as the basis of subsequent'
evaluations. In view of the mostly good approximation of the FORD; |
WALFORD values to given measuring series, the possibility of

regression provided by it seems permissible,

The fact that the computation of the BERTALANFFY parameters
from the WALFORD formula suggested by HOHENDORF yiélded unsatisfactory
results made it necessary to examine the mathematical foundations
of this computation in greater detail. The most essential finding - 198
was that the FORD-VALFORD function contains a third paréméter'wﬁiéh :
HOHENDORF, like the previous authors, did not recognize; In the
usual method of application the third parameter is introduced ihﬁo

the computations with the original value.

Derivation of the BERTALANFFY function from the
FORD-WALFORD formula '

The FORD-WALFORD formula (equation 1) is the equation of
a straight line in which b = the slope and a = its point of
intersection with the ordinate at the origin; a, however, is not

identical with LO. We get the value for Ly from

Ly=228 L (6



Table 2, Comparison between the values computed

y

of the Baltic turbot (

(Column 3) and the values obtaine
the parameter ¢ (Column 4) as well as the values
obtained if the parameter a is changed too. The
heading of the last column also gives the
corresponding BERTALANFFY parameters. Data accor-
ding to KANDLER (1944)

DORF (1966) for the longitudinal growth
Scophthalmus maximus)

—_—R___-—"TTTT__—__

y chandng

1 2 3 4 5
N Compolea-vates Compoledvodves - o !
Alter Mcfwerte  {Berechnete Werte /o % Beredhinete Werte %o i
(Jahre) (cm) (Houenvorr)  Abweichung Abweichung (Warrorn) Brrrataniry)  Abweichung -
. , a=7,7195 diow | a=7,7195 eviaho a==77653 K = 02637 Doviaheow
¢ Cin.. N‘““‘I”“’L b= 07682 Deviak b == 0,7682 Deviakon bw07682 L. = 3350 L ovienet
VWS) vafues c = 0,5548 ¢ = 0,4689 €52 04584 — 7y == 0,426
0 3,62 3,56
1 10,6 11,01 + 3,7 10,50 — 0,94 10,50 — 0,94
2 15,5 16,18 - 4,2 15,79 + 1,87 15,83 42,13
3 19,7 20,15 - 2,2 19,85 4076 - 19,93 4 1,17
4 23,5 23,20 — 1,3 22,97 — 2,26 23,08 — 1,79
5 25,5 25,54 +0,0 25,37 — 0,51 25,50 4 0,00
6 27,7 27,34 . — 1,3 27,21 — 1,77 27,35 — 1,26
7 28,7 28,72 40,0 28,62 —0,28 28,78 -+ 0,28
8 29,8 29,78 +00- 29,71 — 0,30 29,87 - 0,24
9 30,4 30,60 4- 0,7 30,54 - 0,46 30,71 + 1,02
sp == 1 2,58% sp=1+t152% sp s d 1,460
With the value 10.5 for 1, and 0.7682 for b and 7.7653

for a, L0 would be 3.56 cm, Starting from a, we can arrive at

Ly by multiplying with the factor ¢ = 0.4584,

we get

If

L

oo o

-
1

++o0

ar
a-b

¢ .2
+ ab «¢c, etc,

—a'(l+b+b2+ b3.....+ bn_1)+a'bn'c s e

we insert the parameter ¢ into the FORD-WALFORD formula,

(7)
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The brackets contain the descending geometrical‘progresgion of Q‘
for b < 1, already discovered by FORD (1933). The third paraﬁeter
appears only in the last member together with a as factor, so that
we could also write bn-LO. Since the value of b" decreases with
increasing exponent, the influence of S,COr“Lb,;on:thelsiZe reached

decreases correspondingly and may become O.

It should be possible mathematically to compute the value:
for ¢ from the difference between the measured data and the series
computed without ¢. However, the small differences between the
two series are so strongly influenced by the uncertainty of measuring
results that no satisfactory results are obtained. Therefore,there
is at first no other way than to determine the parameter LO contained
in 1, by empirical variation of 1l; in order to get the best fiﬁ
to the other measured data. In this case I varied 1; in éteps of
0.1 cm. The sum of the squares of the percent deviations was a
minimum at approx. 10.5. This value is very close to the value
measured for 1, and yields a much closer approximation to the me asured
data than the value of 11,01 computed by HOHENDORF., It seemed uséless
to me to try and achleve higher accuracy, since the measured data too,

have only one decimal,

On account of the circumstance that for n = oo the influence

of L0 = 0, TAYLOR's formula remains valid.,

Lo =7 - - . . (3)
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Table 3. Computation of length and weight of the ' 199
Baltic salmon (Salmo salar). Columns 1 and 4 contain

the garameters and values computed by HOHENDORF

(1966), column 3 the corrected values for weight

increase, and column 5 the weights corresponding to

column 1, computed by the allometric function.

Linge Geywicht :
e Len ﬁ"Hﬂ. N&et\,{f s
1 2 3 Deviods 7 4 5
Cowm Pu Compukd: ev) an led
5’!"0&)'0 gemessen bcrcd{)nc%‘l gemessen bcrfclmct Abwei- “Refocner  Abwei- Aus den Abwei-
Alters- (cm)  |(Honznnorr) (kg) ] chung (Homnvorr)  chung erredhineten chung
gruppe a = 38,961 L=V w W=I3 9 a = 1,2097 %o Lingenwerton %4
measured] | .- "0,7503 measured, | 4 = 0,99 b= 05829 Dpighion| madh sl
b = 0,685 metrisher
c = 0,265 Rezickun,;
1 53,4 53,39 1,64 - 1,179 1,64 + 0,00 1,456 -— 11,2 1,73 -|- 5,49
2 79,6 79,00 5,83 1,805 5,88 + 0,86 6,539 - 12,2 5,62 -— 3,95
3 97,4 98,21 11,30 2,234 11,15 —1,33 12,067 -+ 7,7 10,49 — 717
4 112,6 112,62 16,10 2,527 16,14 + 0,25 16,000 + 0,6 16,21 -|- 0,68
5 123,6 123,43 20,30 2,728 20,30 + 0,00 - 19,616 — 3,4 2544 -l- 5,62
sp = 1 0,64% sp = 1 1,13% sp = 110,72% sro= d 6,56 %
11
{However, the relation Lo = established earlier by FORD 200

I-b
and WALFORD and more recently by BUCKMANN (1967) is not correct).

By introducing the third parameter it becomes possible
to derive the BERTALANFFY function simply and clearly from the
FORD-WALFORD formula. As the basis we take equation (7). Since
n corresponds to the number of periods involved, we replace it by
T , and also substitute the bracket by the summation formula for

the geometrical progression of b:

U
l-:"'b?‘Lo o0 X oo e (7a)

l,t. = ge

2
l1-bD
get in accordance with the BERTALANFFY function the relation to

according to eouation (3) we can substitute by I and thus
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the maximum quantity:
1’£’ =L°°'(l-b’v)+bt"Lo o0 L) oo. (73.)
Removing the bracket we get:

1r = Lo, = Lsb® + b% Ly
=Loo -bT(LBO _LO) .o e .s . (8) |

This is nothing else but the original form of the BERTALANFFY
function if, according to TAYLOR's equation (4), we substitute

b by e~KT . This simple derivation shows again that the FORD-WALFORD

formula contains three parameters, Lo or also Ll acting as parameter..

Its value has a decisive influence on the results and must therefore

be determined as accurately as possible,

Since HOHENDORF did not recognize that aiso the WALFORD
function contains three parameters, he formulated also his
comparative measure Sp incorrectly since when computing it he
subtracted only two degrees of freedom. In the WALFORD formuia, as
in the BERTALANFFY function and in my own suggestion, three degrees
of freedom must be taken into consideration when the standard

deviation is computed, '

If even in the relatively simple computation of lengths
HOHENDORF's parameters do not give really satisfactory results,

this applies in particular to the weight computations carried out
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by him. Since in the latter case the results enter the final results
in the third power, even the slightest deviations become extremely

noticeable,

HOHENDORF uses the Baltic salmon (Salmo salar)(Table 3) as

an example to demonstrate his method. His parameters yield very

good walues for longitudinal growth; if they are used to compute

the corresponding weights via the allometric length-weight relation,

the approximation to given data is noticeably better than the one
achieved by HOHENDORF. For this reason I worked out this example

again, The parameter values I obtained for the weight lengths were
different from those used by HOHENDORF. A graphical check confirmed

the correctness of the WALFORD parameters I had used; they aré

listed in Table 3. It was to be expected that in this case the third
parameter must not be disregarded because Ly differs greatly from a.
Graphically, an approximate value of 0.3 was found for Lg. A 201
variation of L0 resulted in a surprisingly good fit to the cube roots

of the weights with Ly = 0,265. Since in this case a is almost 1.000,

¢ and L0 are practically identical. The weight lengths computed

from these three parameters hardly differ from the observed data

even in the weights. HOHENDORF's evaluation, on the other hand,

yielded very great deviations (Table 3). I did not determine the
BERTALANFFY parameters in this case, but they presumably would

result in a similarly good approximation. Apparently the method
suggested already by BERTALANFFY (193L4) makes a very good representation
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of weight data possible.

If the maximum weight of the Baltic salmon is cdmpuﬁed from
the weight-length relationship, the approximate value is 31.64 kg.
If, however, the maximum value of longitudinal growth is taken as
the starting point, the maximum weight computed via the allometric

function is 43.68 kg. Thus the two methods for computing the maximum

weight differ greatly from each other., Neither do the other parameters

of the length and weight functions reveal any clear mathematical'_
relations, a fact which already HOHENDORF had pointed out. In this
respect the function suggested by me (KRUGER 1965) has a distinct

advantage since the allometric parameters can be inserted into it,v

Discussion

The above statements have shown that by introducing the
third parameter L, (= a-c) the relationship between the FORD-WALFORD
formula and the BERTALANFFY function can be demonstrated very
easily. The relationship between the parameters of the two functions
formulated by TAYLOR also becomes clear. In spite of this, several
facts complicate the mathematical relation between the parameters

of the two functions.

The first complication is caused by the presence of the

third parameter. In the usual application of the FORD-WALFORDformula
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it is contained in the original value 1, and is introduced into '
the computations by the latter. HOHENDORF then tries to compute

the value of 1, by means of the BERTALANFFY function, making the
mistake of inserting the parameter a of the WALFORD function in

the place of 1, in the course of his derivation (his equation 4).
In this manner he does arrive at a value for 1l; which deviates from
a, but is in no way optimal. It cannot be optimal for the simple
reason that its WALFORD parameters are optimal only for the growth
series on which the computation is based, but not for a series

with a deviating original value. In this way it changes the value

of the third parameter which has a functional relationship with 17

The theoretical possibility of computing the value for ¢
from the measured data fails on account of its inevitable uncertainty.
There remains only the possibility of determining on a completely
empirical basis, by inserting different values for 1l;, the value
which will yield the smallest square deviations from the measured
values. With a given slope b, an approximate value for 1, is found
. which can be used as a basis for computing the approximate value 202
for Ly = a:c. Then a is varied in order to obtain an even better
fit to the measured data, 1if possible. In this manner it was possible
to reduce almost to half of HOHENDORF's evaluation the mean square
deviation of the data of the given example. I took only the value
for b from the parameters computed by HOHENDORF, For technical

reasons I was not in a position to examine whether it was optimal.
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HOHENDORF has made still another mistake. The FORD-WALFORD ‘
formula is a linear function and therefore the regression coﬁputéﬁion
used by him yields the parameters for a minimum 1ineaf deviation.f
from the measured values. He, however, tests the goodness of fit
with the percent deviation, although the regression line for the-
relative deviations does not coincide with that for the linear
deviations. In this respect logarithmic functions are better. The
WALFORD formula depends mainly on the values of the classes of greater
magnitude, while the classes of smaller magnitudes are decisive for
the relative approach. It is an indication of a very accurate
control of the growth process if even in linear formulation the
computed figures show such good approximation to the growth curves.
However, as long as no mathematical solution has been found which
minimizes the relative d#viations in the FORD-WALFORD formula, .
its parameters can be regarded merely as approximate solutions for
the parameters of the BERTALANFFY function on the basis of which
the accurate parameters can be found only empirically by iterative

computations.

Ye have seen that in some instances a purely mathematical
approach did not yield satisfactory results. Only with the necessary
adjustments do the deviations of observed biological data from the
mathematically accurate values permit purely formal computations.
The measured values deviating from the theoretical coufse of the

curve influence the computations in a manner which is difficult to
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to follow; therefore in most cases only approximate values are
determined. However, from the latter, values can be obtained, by
gradual systematic alteration of the parameters, which provide

a better fit to observed data.

In general, biomathematics require approximation methods
for useful solutions. This necessitates very frequent. repetition
of highly complicated computations and is therefore very time-
consuming. Modern electronic computers are indispensable aids for
the solution of biomathematical problems. Computer programmes for

the BERTALANFFY function have been developed e.g. by FABENS (1965)

and RADWAY (1966). It would have been an advantage if HOHENDORF
had used them to check his method.

Today, with several equally efficient solutions at hand,
it is no longer possible to overlook or deny the basic possibility

of reproducing animal growth data by a mathematical model.

The present study confirms the identity of the BERTALANFFY
fuhction and the WALFORD formula in a very simple and clear manner.
I myself suggested a new growth function (KRUGER 1965) which |
apparently rtig giiallel to the BERTALANFFY function. Even with 20 i
regard to the mathematical values, its goodness of fit to growth i
data is at least equal to that of the BERTALANFFY function. I pointed

that out already previously, and HOHENDORF confirmed that parallel.
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Mathematically, however, its basis is completely different.

Therefore at present there exist at least two functions |
which are suitable in practice for representing the growth of fish.
The GOMPERTZ function, also mentioned very frequently, shall be
disregarded here. It\has been applied only fairly rarely, since
the determination of its parameters, and therefore the assessment
of its usefulness, is difficult. It is therefore not the goodness :
of fit to measuring series which decides on the suitability of a
growth function, but its mathematical properties and the informative

value of the parameters to be used.

My suggestion has two essential advantages over the
BERTALANFFY function. For one thing, it contains an inflection‘pdint,
also for the length values, as was to be expected theoretically.

For another, and this is the more important advantage, there exists
a mathematically determined relationship between its parameters and
the allometric function. This permits also a direct evaluation of
weight data without the detour via the weight length (é\/zf ).

This advantage plays an even more decisive role when physiologicai

problems are involved (KRUGER 1967).

The mathematical structures of the BERTALANFFY function and of

my suggestion:

_ Ymax

Yx 1
Nx+t
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are very similar. Both contain a maximum quantity as parameter
which the organism approaches when growth is unlimited; both also
contain a parameter of rate which expresses the slope of the growth.
curve, and an additive time value T, or£ . However, a direct com-
parison of the parameters is not possible. In my function the maximum
value is considerably higher than in the BERTALANFFY function, but

on account of the greater distance from the measured data it does

not so easily run the risk of lying below actually occurring maximum

quantities, as HOHENDORF reports for the North Sea turbot.

All parameters which we insert in our computations are at
first purely numerical values, and in my opinion it seems pointless
to attach too much importance to their biological interpretation} |

That interpretation iswmerely a secondary task,

In the BERTALANFFY function the exponent K is the parameter
of rate. However, its relation to the rate of growth is not as simple
as HOHENDORF (1966) assumes. This is shown by his example for the.
longitudinal growth of the North Sea turbot (Scophthalmus maximus)
(his Table 5).

He reports that for the male turbot the value for K is
0.2690, for the female, 0.2594. Judging from these figures, the males
would grow faster than the females. In reality, the females grew
from 8,3 cm to 60,82 cm in the observed period, the males only to

53.5 cm. Female growth is therefore undoubtedly faster. This contra-
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diction is explained by the fact that K determines the Speed'with  - gg&f:
which growth approaches the terminal point. The value for K.COﬁﬁains
the maximum quantity which differs greatly in the two sexes. |
According to HOHENDORF it is 53.88 cm for maleé and 62,17 cm for
females. Since in growth comparisons on the basis of the BERTALANFFY
function the value for L. in different species or sexes cannot be
kept at a constant level, K is not a definite expression-of‘thé rate
of growth, In this respect the b value of the FORD-WALFORD’fdrmula
is a more useful bhasis for éomparison since it is based on the :
original value ll which is the same for both sexes, In this cas§A
the b value is 0.7642 for males and 0.7715 for females. Thus it..

reflects the relation of the rate of growth more accurately.

While the parameters of rate of the BERTALANFFY function and
the WALFORD function permit accurate comparison, such a comparison
is not possible with the parameter of rate of my function, Sinée

in it the rate of growth 1s expressed by two parameters: Iog N and & .,

In mathematical terms the third parameter which the °
BERTALANFFY function and my own suggestion contain is the period
during which the organiém develops from the dimension O to the first
measured length. Since, however, in both functions.the parametérs
of postlarval growth do not include larval and embryonic development,
this "pre-natal" age represents a purely mathematical.value which is

determined by the mathematical interpretation of the growth curve.
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Due to the fact that the BERTALANFFY function has no inflection
point, it declines much more steeply.in the prenatal range, which 
results in lower values for the prenatal age than in my function,
Therefore the 7, values lie father in the dimension of prenatal age,

but also HOHENDORF is rather hesitant about this interpretation.

It is the principal significance of the & value of my
function that it designates the curvature of the relative growth
curve; mathematically it is therefore a parameter of‘curvature.
It also has the advantage of being only slightly critical and lying
at comparable magnitudes in more rapidly growing fish. This facilitates
a comparison of rates of growth by means of the parametér of rate.
I shall discuss this elsewherg. In the BERTALANFFY function‘n is
. very critical and its relation to the curvature of the curve not

as clear,

The mathematical interpretation of the parameters of the
FORD-WALFORD function still awaits further analysis. Changes of the
parameter ¢ cause a displacement of the values on the regression line,
while changes of the a value displace the regression line parallel
to itself. It cannot be said off-hand what influence this has on

the growth curves.

My explanations and mathematical demonstrations have shown
that the relationship existing between the parameters of the
BERTALANFFY function and the FORD-WALFORD formula cannot be evalutated
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for the determination of the BERTALANFFY parameters in as simple a
manner as suggested by HOHENDORF.

HOHENDORF's statement in his summary (1966) "that a simple»
and easily applicable method for the accurate determination of the
parameter values and growth values by purely mathematical procedufes
can be established by using this linear relationship as recurrence
formula for the BERTALANFFY function" was not éonfirmed. To clarify
the connection between the BERTALANFFY function and my own suggestion,
I was interested in a really accurate determination of the BERTALANFFY
parameters, Unfortunately, HOHENDORF's suggestion did not meet this
requirement. If time-consuming . iterative computations on mechanical
computers are to be avoided, the only way - at least at present -
is the graphiéal solution which I used for the determination of L. .
Parameter computations are further facilitated by the utilization 6f
the relations with the FORD-WALFORD formula. I thought it was
important to publish my experiences with HOHENDORF's suggestion in
order to inform future users on the limitations of his method and
its applicability. His method is completely unsuitable for computing
ll' Only the original value is mathematically correct. For a better
percent approximation the optimal value for LO, or ¢, must be

determined and given as third parameter,

Again and again, the treatment of biomathematical questions
has revealed erroneous formulations in various authors. It wili be

possible to use mathematical methods for the study of biological
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phenomena only if all efforts are made to achieve on a mathematically
satisfactory basis the best possible fit to observed data. Rough

approximations must not be expected to contribute to the progress

~of our knowledge., -

Summary

1. For the characterization of fish growth, HOHENDORF (1966)
tried to use the relation between the parameters of the BERTALANFFY
function and the FORD-WALFORD formula: L., = y—— and K = lnb,
formulated by TAYLOR, for computing the BERTALANFFY parameters.

By working out several mathematical examples it is shown that his

method does not yield parameters which can be regarded as accurate.

2, The FORD-WALFORD formula contains a third parameter, c,

which is introduced into the computation with 1,.

3. The third parameter permits a very simple derivation of
the BERTALANFFY function from the FORD-WALFORD formula and confirms
the relationship between the parameters established by TAYLOR,

L, The'reasons are studied on account of which HOHENDORF's

method ylelds only approximate values,

5 In this respecf the decisive fact is that the parameters of
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the regression lines of the FORD-WALFORD formula minimize the -
linear differences between the computed and measured values, while
in growth computations the minimum of the percent deviations is:the

desired quantity.
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