Tik Un:Ryy Fisheries pestakcin doaxo of camada

$A R C H I V E S$

NAMMMO, C. Co
FISHERIES RESEARCH BOARD OF CANADA
Translation Series No. 523

Contribution to our knowledge of pelagic
parasitic Crustacea and Lernaeae, and other new or previously poorly known parasitic Copepoda

By.J. Jap. Sm. Steenstrup and Chr. Fred. Lütken

Original title: Bidrag til kundskab om det aabne havs Snyltekrebs og Lemaeer samt om nogie. andre nye eller hidtil kun ufuldstaendigt kjendte parasitiske Copepoder

From: K. Danske videnskabernes Selskab, Naturvidenskabelig og Mathematisk afdeling 5, R. Vol. 5, pp. 34l-432. 1861.

Translation of paiges 341-374, + footnote on p. 397
by E. Dahl, Bureau for Translations,
Foreign Language Division,
Department of the Secretary of State of Canada

> Fisheries Research Board of Canada Biological Station, Nanaimo, B. C.

1965

NES

DIVISION
 DES
 LANGUES ETRANGERES

TRANSLATEG FROM-TRADGGION DE
Danish

SUAJEGT - SUJET

Authon onuteur
JoJap.Sm. Steenstrup and Chr. Fred. Lutken

REFERENGE - REFERENCE (NAME OF BDOK OR PUBLICATION - NOM DU LIVRE OU PUBLICATION)

og Mathematisk aficeling 5, R. Vol. 5, R1. $341-432$. 1661
PUBLISHER - EDITEUR

Our No．

Contribution tonknowledge

Lrarasitic Crustaceare and Lernaeae and $2=50$ abre
 h．čarasicic copepodá
by
J．Jap．Sm．Steesstrup，and Chs．Fred．Lutken
Professor Dre philo
－Introductory remarks about Norphology and Systematics of the Copepodae．

Before we start on our actual task，namely to describe some new，or until now not very well known species of the groups of the parasitic crustaceans（Siphonostomata）and the Lernaea，it will be convenient to advance some brief remaxks about the general morphological conditions of the Copepodae．Fiecognition of the fact that all Copepodae， parasitic as well as free－living are built according to an identicalske or basic plan，to the same extent as $t \rightarrow 0$ is the case with for instance all hedriophthalme or podoph－ thalme crustaceans，does not appear to be quite clear to
most of the zoologists who occupy themselves with these groups of animals. linis would however seem to be a necessity in order to obtain a satisfactory scientific under standing of them. Well has Dana, who also posessed a wider knowledge about the numerous groups of the freeliving Copepodae than anybody before him, aescribed the morphology of these animals in an aldetogether satisfactory way, but his work is hardly so generally known that one to advantage could limit oneself to refercing to them, even though one in every respect could applaud his terminology. In the following remarks about the Morphology of the Copepodae wo have, however, intended to give the necessary explanations of the terminology employed in the Eollowing descriptions, if it should deviate from that of eariler authors.

According to our icea, the body of all Cowepodae, freeliving or parasitic, consists of 3 main parts: The front body, the rear body and the tail.

The front body (cephalothorax) is usually undivided, only in Pontella and some closely related forns is it divided into two sections. Typically, it carries the following parts: The eyes; 2 pair of feelers (antennae), a pair of cheeks (kandibles) (in the parasitic crustaceans converted into stinging-tools and encased in a trunk or beak), a pair of jaws (Naxillae) and 2 pair of jaw.olegs (Naxilliped). It may there, just as the "heaa" of the Isopodae and the ampnipodae be considered as consisting of 7 segments. In descriptions of Lernae-types it most often, although less correctily is mentioned as the "heaa".

The rear body (abciomen) consists of 5 seements, which in the typical types each carrisa pair of legs or feet. Such a lea or "foot" consists of a two-jointed base-piece and tv:o, typicailly three-jointed branches with numerous feather-tikets. In the genis Cyclops and in numerous, although not in all parasitic crustaceans, the first abdo. minal segment is assimilated in the cephalothorax (in the Saphirini however, this condition seems to vary from species to species), and the first pair of legs is then located under the hind-most part of the cephalothorax. In the following type-descriptions therefore, by the "abdonen" we mean only the part of it that is separate from cephalathorax, and the abdominal segment carrying the second actual pair of legs is designated the "first abdominal segment" even though it actually is the second, and so forth. In many freeliving Copepodae the fifth pair of legs has been transformed in different. ways in orcier to aid in the propaçation. In others it is rudimentary, for instance in the Cyclops and in most parasitic types it disappears alltogether and with it the corresponding abdominal segment, probably because it is fused together with or assimilated into the first tail segment or genital segment which in these types is strongly devieloped. A fact in favor of this interpretation is also that one finds just in this genital segment in many Celigini and Pandarini, ${ }^{\text {a }}$ however microscopisal rudiment of a firth pair of legs. In this way, the number of distinct, free, abdominal segnents is never more than three in the parasitic crustaceans, each segment carrying its (second to
fourth) pair of legs. That the boundary between the abdominal segments in many of the parasitic, more transformad abnormal types is indistinct or unrecognizable, and that the limbs of the abdomen as well as those of the cephalothorax studied in a large number of parasitic crustaceans and Lemae undergo a retrogressive development until complete dissppearance, is so well known that. only a bare mention of the fact is necessary here. Even if there are types with very definite antennae, liaxilliped and regular less etc. that previously have been considered deprived of any trace of Iimbs-msuch as $\mathrm{Prof}^{2} \mathrm{Br} \mathrm{Br}_{2} \%^{\text {si }}$ has shown for the Lernaeocerae and we in the following will show for the Pennellae and Lernae-wit has never the less been proved there are types belonging here that lack any trace of these parts, as for instance the genus (Ekrpy110bias) so peculiar by its simple sack-shape, that lives on Annelidae and which is described later on.

Ihe tail (cadia, postabdomen) is typically consisting of five sements of which the last carries the tail-blades (foliala cañalis s. aopenaices cañdales), two un-joirted blades, each with (4) feather-tsits. They could probably be compared to the so-called "tail-adkesions" of the Isopodag and in this way be supposed to represent a pair of tail legs. Only seldom are rudimentary legs found under the foremost tail segments, unless the previously mentioned rudimentary pair of lecs on the genital segment should be considered as
d) Nitteilungen ais deri keiserliche kBaggiche Institute der Universität Pest. Wm. (Reports from the Imperial Koyal University)
 Phtifo In both sexes the genital organs open on the first tail segment and from this the egg-sacks or eggstrings are suspended. In the free-living types, where this segment is of a minor size, there can be no doubt that it actually belongs to the tail, but in many of the parasitic types, in accordance with the

considerable

power of propagation, this sowcalled genital segment (annulus genitalis) is of considerable size, and it is
(when ducurangy then convenient and easien for the survey, to recognize it as an independent part of the body. We will therefore in the following desicnate the other four tail-segments located behind the genital segment and behind the base of the egg-sacks as the tail. Their number is often reduced by being fused together. In many, more diverging types, the tail is un-jointed, without tajleblades or even completely diminjshed and only recognizable by a shight indication.

In all genuine Copepodae the body then typically consists of seventeen segments $(7+5 \times 5)$, and when one starts out from the higher crustaceans, one may state that of their 21 joints two abdominal joints and two tail-joints have disappeared completely except for some specific Copepociae that have a larger number (up to 7) tail joints. As we do not wish to give a complete detailed description of the Morphology of the Copopodae or to pursue the development of the individual pajrs of legs or antennae through the
whole series of types, it should in this respect be sufíicient for a temporary orientation to refer to tables 71, 72 and 92 of Danas ereat work on crustam ceans. We must however point out that the diagram for the build of the Copepodae set up here does not fit all Emtomostraca, nor Limulus, Prilobiti, phylIopodae, Cladocerae, or Ostracodae, nor the genus Argulus. Together with Zenker, we could not consider the last mentioned type a Copepoda at all, but would rather refer it to the Phyllopodae as the representative \$)
of the parasites in this group . That it will be applicable to the Cirripedia is more than doubtul.

The systematics of the parasitic Copepodae does not appear to us to be in a completely satisfactory state, whether one prefers to stick to the divisions given by Milbe Eawards or those by Dana: This is also felt by some authors who lately, occasionally, have been dealing with the systematic comparison of these animals and expressed an opinion about the limjts of the different genera and their mutual relationship. We think that we already here should point out a somfar less noticed condition whicn seems to us to be able to serve as a guide in the Labyrinth of types that are Ieft when one sees onesclf forced to abandon the existing attempts at grouping. There are actually a
*) With this, the only so far known parasitic Copepodae without external eध́s-sía or eséstring is eliminated, Sactulimite
because the funcorviou and the Peltogastridae are, as Liljboorg has proved, not Copepodae, but without doubt Girripedia.
number of types in which the egtomacks take the shape of strings in which the flat, slicemshaped eggs are located in a single row or stack above each other like the dollars in a roll of money, whereas they in an other number of types are actual sacks, in which the more ballw shaped eggs lie in disorder and, just as in the freem Living Saphirin' and Cyclops, not in a single row, but several, side by side ${ }^{\text {rxi }}$. "what the somealled "strings" sometimes are quite short and thick and the "sacks" on the other hand sometimes long and thin (f. inst. in Chondracanthus lophii), does of course not eliminate the importance of this division.

If this characteristic now is applied to all of the families of parasitic Copepodae drawn up by Minne Edwards it will show that all his Caligini, Pandarini and Dichelestini have two egg-strings of the abovementioned type, and all Ergasilini on the other hand have two eggrosacks just as the Cyclops and Saphirini. The very natural group of the Lernaeopodae in this respect join the Ergasilini and also the genera Chondracanthus, Saluis and Tucca and also Lerneocera, which up untilnow had a very un-natural place in the Pennelleri group. One will however on the other hand find that the lest mentioned, which, by excluding the genuine Iernaeoceae

3y泣) Dana has already applied this characteristic in orcier to differentiate between "Eriasiloidea" and "Calisoidea" within his "poecilopoda", but drops it alltogether as far as the second section, the "Leraeadae", is concerned where it says "egiss sometimes in bags or sacks as in the Ergasiloiaea and soretimes in slender tubes as in the Caliçoidea"!
obtains a very natural content, lies the identical snape and construction of the egg-strings as the Caligini, Panciorini and Dichelestini (the genivs Lemanthropus will have to be referred to the last mentioned) and as the genera Clavella, Peniculus and Cycnus, in whicn prof. Claus alreaoy, quite correct, has acknowledged the natural connecting lirk between the Pennellini and the Dichelestini $)$ It will finally, by dening this characteristic on the dife ferem species withinseveral of the so far described genera, be quite evident that there in certain genera have been included forejgn elements, which in this way might, and should, be eliminated. While in this way the genuine Clavella and Iernaeonema species have egg-strings, Clavella Scari frybe and Lernaeonema Murteli van Beneden have eggsacks. Eut instead of disproving our recently expressed opinion about the feasibility of using the eggmsacks as a characteristic for Larger groups of parasitic Copepodae, these apparent exceptions just confirmgit, because the two types mentioned actuaily difier so much from the typical Clavellae and Lernaeonemae, that they; even disregarding the condition of the egg-sacks, should be separated from the genera, the names of which they at present carry. The result of this is that the two old groups Siphonnstomata and Lernaeadae must be dissolved ano the parasitic Copepoda
war) One will from this see that most of the points in the re-grouping suggested by us actually are available in part already, but some had not been published and some had not yet come to our know ledge when we had reached the results published here.
genera be re~organized in two parallel series which both start with types that are quite close to the free-living typical Copepodae but end up with genera which, on account of their retrogression and the priaitive build of an early stage of zoological development even may find their place among the worms. Therefore one may be able to point out partly analogols genera in both series.
A. With 2 ege-strings. To this belong:

1) Milne Edwards Feltocephali with the two groups Galgini and Pandarini ${ }^{\text {xA }}$) the limitations of which will be discussed in the following.
2) Milne Ediwards Dichelstinj. (Pachycephali p.p.) ${ }^{\text {yixut }}$
3) The Clavella-group (Clavella, Peniculus, Cyenus), which
4) the Pennella-group (Lernaea, Lernaeonema, Lernaeonicus and Pennella, possible also Sphyrion and Lophura) will join quite naturally. (Staurosoma also seems to belong to this series, the analogous Antheacheres however to the next. As far as the first is concerned however, this undeniably needs confirmation.)
B. With 2 egg-sacks. The types belonging are, at least so far, easily separated in smaller groups.
[^0]1) The Erzasilini (Ergasilus, Bomolochus, Doridicola and Nicothoul
2) The Lernaeopodae (Tracheliastes, Basamistes, Achtheres, Erachiella, Lermaeopoda and Anchorella.)
(3) The Chondracanthini (Chondracanthus, Antheacheres, Selius, Tucea, E thon LThe eges-sacks unknown and also "Clavella Scari Yr." and "Lernaea gobina Fabr.")
3) The Lemnaeccerae (Lernaeocerae, "Lernaeonema Nusteli v. $B^{\prime \prime}(\mathcal{C})$ and ajso Herpyllobius arcticus nob.)

One will however, hardly be able to remain with this, although one probably now must acknowledge that there cannot be drawn any natural boundary between the free. living and the parasitic Copepodae, neither from their way of living nor from their external or internal construction. Professor Claus has already pojnted out that the Saphirini, the females of which live in salpae while the males live free, erase the boundary between both groups. But if.this is the case, this admission should also be expressed in the zoolosical grouping and one must therefore in our second series (B), consisting of Copepodae with egg.-sacks, besides the above indicated four groups of parasitic types also include the partly
©) The great similarity which exists between the males of this type, of the Lernaeovoda - group and the Chondracanthus - genus seems to indicate that these three groups naturally belong together. ibout the so-far unknown male fernella, see the following.

In orier to prevent misuncerstanding, we will not oriit to remark that we do not at all consider those, for the sake oi' the survey, here mentioned small groups, f. inst. the Ergasilini and the Choncracanthini or the details of the grouping on the whole as scientiffically proved, but, to the contrary, are of the opanion that too few types are yet known to dare to estabiish more than quite temporary families.
or completely free-living types that have the same characteristics, that is, the genus Cyclops (s. str..) and the Saphtrini - group. It is doubtful however, if the Monstrilli and the phaumaleus - group belong here as they have not yet been observed with egg-sacks. The Notodelphys - group sill also have its place here if the content of its peculiar eggobag may be considered as corresponding to the two egge sacks of the Gyclops and not to \dot{f}. inst. the unmated egg-sacks of the Pontelleri.

A series different from this will probably be made up by the free-diving copocase which have only one ex. ternal eggmsack or by the numerous genera grouped around號
Calanus , Fontella, Harpacticus anci Setella. This series, which actually should have been put first, cone tajns at the moment only free-living types; the series A, actually the third, only parasitic types, whereas the series B goes through the whole scale of transformation fixom Cyclops to Lernaeocera.

The following table will perhaps make it easier to conceive what we here have tried to explain.

[^1]

The material for the present treatis is mainly made up of pelagie parasitic crustaceans from the Atlantic Oceain, for the most part collected for the maseum over a number of years by Gaptain Dtimd. V. Hygonf It is in this way a contribution to the preparation of the considerable material gathered and stored by the museum of the University for the knowledge about the pelagic founa. But we have also believed that we should include in our studies several other new or less known types that may further the knowledge of
the topic treated in this article. A brief excerpt from this treatis was published in the Eeports of the Treatises of the Acadeny of Science for 1860 and an even shorter report on our idea of the natural Erouping of the Copepodae. is found in the accounts fron the convention of Scandinavian naturalists in Copenhagen in 1860.

First grond of parasitic Copepodae: With egg-strings, containing a sinele row of flat, disc-shaped eggs. (Caligidae Dana, Peltocephali M. Edwo) may be characterized by the shape of the shield and build of the antennae. The shield is almost always crescent - or horseshoe-shaped, a shape that is derived from the fact that its side-pieces continue farther back than the middle piece, so that its rear edge always is more or less concave. It is nearly always divided into two side-pieces and one middle-piece and has, as a rule, special frontal plates and brims *) The first pair of antennae almost always $\%$ () consists of only two joints, one wider base-joint that carries a number -of tufts or spikes along the upper edge and a slender - end-joint equipped with some tufts at the end. The second pair is always hook-shaped and in this way forms a tool with which to hold on to things. This section embraces the groups Caligias and Pandarini. The second main section
\therefore (Dichelestidae Dana, Pachycephali M. Edw.) which includes Dichelestini and Lernanthropodini, always has the first pair
*) This brim as well as the seams in the shield are lacking in pandarus (4) only, the frontal plates howver are present and even in P bicolor is the rear edge still concave. Perissoous (Leojidous) armatus ($\%$) hovever is an exception if it otherwise is correctly described by Dana; its shield is not crescent-shaped.
*\%) We do not know of any other exception from this rule than Laemargus muricatus, where it is three-jointed.
of antennae string-shaped and multi-jointed (5 -10 jointed), but the second forms either a pair of pincers or a band or it is hook-shaped just as in the first section. The shield here is never crescent-shaped and always lacks the brims, frontal plates and seams.

Even Milne Edwards estáblished a differentiation between Caligini and Pandarini, and Dana retained it, although with a different limitation and with other characteristics. Milne Edwards characterizes the first mentioned group by its lack of the dorsal blades (elytra), so characteristic for the last mentioned group, and he referred the genera Caligus (and Chalimus), Trebius and Nogagus to it and to the Pandarinji he referred Dinemura, Pandarus Phyllophorus, Cecrops and Laemargus. Dana was more correct in his differentiatjon between these two groups, by the proboscis (beak) of the Caligini being short and blunt ("subovatus, obtusus"), while in the Pandarini it is long, thin and pointed, but the additional sign of differentiation, taken from the shape and position of the jaws (Maxillae) seems to be based on a mistake.*) The genera (Caligus, Leneonteirus, Chalimus, Caligeria, Calistes and Trebius)

[^2]which Dana has referred to the Caligini actually belong very close together, but it is not very fortunate that Edwards and Dana have referred the Euryphorus which is very closely related to them .- and which Dana no doubt has not known by sight - to the Pandarini, from which it also seems less natural to exclude the Cecropidio But the Caligini and the Pandarini could, aside from the shape of the proboscis a which probably is connected with a modification in the way of living or a parasitic life on other fish varieties be separated by the shape of the first pair of legs which in the Caligini always has the shape and build known from the genera Caligus and Trevius, which is substantially the same, whethex the inner small branch is present or missing, where, to the contrary, the two branches always are ovenly developed in the Pandarini. Lastiy, the two foremost abdominal segments in all Caligini with the exception of Trebius are assimilated in the shield and only the last one is free, whereas in 2.ll Pandarini the three abdominal segments are free and independent of the shield.

[^3]With this limitation the group Caligini include the 9 genera mentioned below, the characteristics of which will be evident by the following analysis:
A. Fourth pair of lers single

Conly the outer branch is
developed and its tufes are never feathered)
B. Fourth pair of legs two-nronged (Only in Elytrophora (?) and Caligeria are the turts not feathered)

Without Dorsal Blades

1. Caligus Mid (O O)

The imner branch of the first pair of legs is missing or quite rudimentary. The branches of the second pair of legs are threem jointed. The base joint of the third pair form a large plate, its branahes axe quite small and two-jointed. The first two abdominal segments which carry the second and third pair of legs are assimilated in the shield of the cephalothorax.
2. Synestius nob. (0)

The genital segment extends backwards in the form of 4 long club-shaped extensions otherwise it has the characteristics of
5. Calistes Dana (q)

The first pair of legs has at least traces of an tinner branch. The branches of the third and fourth pair of legs are threem jointed. Otherwise, it has the characteristics of the genus Caligus.
6. Trebius Kröyer (9 B

The first pair of legs has a smaller two-jointed inner branch. The second abdominal segment which carries the third pair of legs is free. Otherwise as Calistes.
7. Dysgamus nob. (0^{7})

The first pair of legs as in Irebius second, third and fourth
the genus Caligus.

Parapetalus nob. (ㅇ)
The genital segment is equipped with a wide brim and the tail with a wing shaped extension on each side: Otherwise it has the characteristics of the genus Caligus.
pair of legs two-jointed. The first two abdominal segments are assimilated in the shield as in Caligus.

Abstract

With two dorsal blades (at least in the females) extending from the free abdominal segment. The two abdominal segments ahead of this, in all varieties known up until now and $\therefore \because$ belonging here are assimilatod in the shield of the cophaloo thorax just like in the Caligus.

Gloiopotes nob. (o)
The first pair of legs has no inner branch; second, third and fourth substantially as in Caligus; two large platemshaped dorsal blades cover the largest part of the genital segment, which extends backwards in the shape of two long points.
8. Caligeria Dana (p)
(First pajr of legs unknown); the outer branch of the fourth pair of legs is threewjointed, the inner is smaller and two-jointed; their tufts are not feathered; the two dorsal blades are small.
9. Elytrophora Gerstacker ($\left(\underset{8}{0} x^{x}\right)$ The first pair of legs approxim mately as in Trebius, second and third as in caligus, but the third has three-jointed branches; the fourth as in Caligeria (?). Besidos two
small dorsal blades which are to be found in both sexes, the femalof has a pair of small blades at the base of the genital segment.
10. Euryphorus Nordmann $\left(9 \sigma^{7}\right)$

All four pair of legs are subo stantially as in the previous genus, but the turts of the fourth pair of legs are feathered. Just as in Elytrophora, the Lemale has, besides the small dorsal blades, which are to be found in both sexes, also a pair of small blades at the base of the genital segment, which in the female is about the same as in Parapetalus. In the male the tafl has a wing-shaped extension on each side and in the female this has been developed into a Jarge wing-brim.

While the Pandarini for the most part must be considered as belonging to the pelagic fauna and chiefly are inhabitants of sharks $\%$, the largest number of Caligini

[^4]belong to the "fish-lice" of the littoral fauna. As pelagic Caligini we must however mention Caligus Thynni and $C_{\text {groductus Dana (from a bonito), the C. coryphaenae nob. }}^{\text {pron }}$ (from a dolphin), Caligeria bella Dana (from an albacore or tunal, Dysgamus atlanticus nob. and Gloiopotes Hygomianus nob. (from what fish is unknown) and also Euryphorus nympha nob. (from a bonito). From the data we so far have obtajned it then seens as if the relationship in the pelagic fauna between the large fish varieties of the genera Shark and mackerel and their parasites of the Copepodae group is this: The sharks are preferably pestered by numerous Pandarini, the mackerel varieties by a smaller number of Caligini. Beside these above-mentioned, in a stronger sense pelagic Caligini from the Atlantic Ocean, we will on this occasion describe two new genera (Parapetalus and Synestius) from the Indian Ocean (also from Scomberoidae) and a couple of exotic Caligus - species and also a couple of so far unknown or only incompletely known species, among them a fresh water species of the same genus belonging to the Danish fauna。

I. Caligus Mull.

The varjeties of this genus, described in the following, all have a 今̂ork (furca) with individual branches and with the exception of C. branchialis, all have the front edge equipped with "lunulae". Besides the characteristics, which ove predecessors have pointed out, we have found two conditions that are particularly well suited as
variety characteristics, namely the shape of the spikes or hooks located at the base of the outer branches of the third pair of legs, and that there besides the end tufts of the fourth pair of legs also exist two or even only one similar tuft on the outer edge, regarding these conditions there is never any difference between the two sexies of the same variety.

Of the varieties we ourselves have had occasion to study, we have established the following survey:

A Survey of the Species of the genus Caligi known to us.
A. Provided with lunulae; palpi are simple a. The tail blades extend past the anus.
*) The fourth pair of abdominal legs is provided with four tufts. The tail is short, not segmented.

1。 Co curtus Mull. Kr. C. Mulleri Leach, Nordmam, Baird;
C. Tricuspidatus Nordm; C. elegans V. Senden; **
C. diaphanus Baird? *** C. Americanus Dana。

The female's genital segment has a rectangular shape with rounded corners, the rear edge is concave; in the male it is wider and shorter with several incisions at the rear; very short tail; the end-bristles on the fourth pair of legs are very long, and serrated.
2. C. lacustris nob. ((7)

The female's genital segment is shorter and wider, its rear edge is straight; the tail is longer and slimmer, and
the endmitufts on the fourth pajr of legs are very long, not serrated.
3. C. Balistoe nob. ($\boldsymbol{o n}^{*}$ ㅇ)

The shape of the genital segment of the female 1.s about the same as of the previous species described above, with more accentuated concavity in the reax edge, the male's genital segment has a semimerescent shape, with very concave and incised edge, and sharp outer angleso The tail is short and wide. The tufts on the fourth pair of legs have about the same length; they axe slender and very long.
(rx) The fourth pair of abiominal legs are provided with five tufts, the tail is more or less elongated, two jointed, or atajointed.
4.
C. Productus Dana (8)

The genital segment is barrel-shaped, the reax edge is daeply incised; the tail is elongated and twomjointed. The fourth pair of legs is two jointed; the tufts are slightly curved, they increase gradually in length and at the end they are longer than the rest.

There are no feather-tufds on the first pair of Legs.
5. C, isonyx nob. (i)

The genital segment is barrel-shaped/straight rear egge, shorter tajl, not jojnted; the inner branches of the
fourth pair of legs are three-jointed, the tufts slightly curved, their length increasing somewhat unevenly, but not to any great extent.

6! C. rapax M. Edw. Baird $\left(\% \sigma^{\prime}\right)$
The female's genjtal segment is barrel-shaped, With straight rear edge; the male's segment is oval shaped; the tail of the female is shorter and unjointed; the male's Longer and two jointed, the first joint shorter. The first tuft on the fourt pair of legs is nearly straight, others are slightly curved, the rest generally is more chan twice as long.

b. Tail blades never extending past the anus.

7. C. Coryphoenoe nob. (\%)

The hooklike accessories of the antennae are missing here; the spike at the hase of the outer branch of the third pair of legs is quite straight, the genital segment of the female is elongated, dorsal shieldike shape is noticeable, with rear comers developed into rather big lobes. The male's is broad, short, with prominent rear corners. The female's taill is elongated, four-jointed, the male's js short and two jointed; the tail tuftes are very long; the feather-tufts are threadilke, in the apex of the first pair of antennae they are very long, and also in the rear corners of the genital segment similar in both sexes. The branches of the fourth pair of legs are threejointer ${ }^{f}$, with five bristies slightly curved and comblike.
B. No lunulae, palpi divided (lepeophtheirus Nordm.)
a: Fork with simple prongs, the fourth pair of abdominal legs are provided with four or five tufts. The topmost (the fideth) is rudimentary.
*) Elongated tail, at least in the female is
uniointed nossibly two iointed with distinct anal segment.
8. Caligus sturionis. Kr. *) (8)

The genital segment of the female is barrelwshaped and truncated at rear, the last segment of the abdomen is Iess distinct; the fourth pair of legs is fairly large, With slender branches, where the two last tufts are fairly even, and the length of the others is often considexably Ionger.
9. \quad Caligus salmonis Kro (Ge vespa M. Bdw depeophtheirus Stromis Bajrd) (0^{*})
$\because: . \quad$ The genital segment of the female is elongated, rectangular with rounded corners, and the rear edge is deeply concave, in the male it is small and oval; tho female!s tail is elongated and narrow. The male's is short and broad; the last tuft on the fourth pair of legs is not more than twice as long as the others.
10. Caligus branchialis Mlm. (C. gracilis v. Beneden) (8)

The genital segment of the female is barrel-shaped with slightly concave, rear edge. The fourth pair of legs is insignificant, almost straight the last tuft very
often is longer than the other three tufts which are very short.
**) Very short tail in both sexes.
11. Caligus pectoralis Mull. (96)

The genital segment of the female is very large. broad, and barrel-shaped and truncated in rear, the male's is small and round; minute tail, fourth pair of legs is insignificant, the last tuft somewhat longer than the others.
b。 . Fork with divided prongs, the fourth pair of abdominal legs is provided with five tufts.
12. Galigus hippoglossi ($\%$ ©

The genital segment of the female is of medium size, oval, bi-lobed at rear. The male's has the same shape, but smaller; the tail is very short. The fourth pair of legs is big, with slender branches, the last tuft twice as long as the others.
I. Caligus lacustris. Stp. \& Ltk (\%)

Tab. I .- III. 2.

As far as we know, it has not previously been established that any Caligus variety lived in fresh water. It was therefore an interesting addition to the genus and to our. fauna when Mr. R. Conradsen, curator at the Zoological Museum of the University, reported that a few
specimens of this small species, all female, but of a somewhat varying size, some (6 mm . long) off a pike from lake Fuux, others (4 mm .) taken from perch and shells in lake Tlustrup, also here in Sjaelland.
C. Lacustris is closest to C. curtus Mull., but Lt is already In its size so different from this, that a mistake is nearly impossible; the shape of the whole body, of the "palpae": of the "fork" and of the slightly curved spike located at the base of the outer branch of the third pair of legs are substantially the same. As differences we note that the genital segment in C. lacustris ($\%$) is somewhat shorter and wider and the tail a little longer than in C. curtus (P); that the first pair of maxilliped in C. curtus has a much longer, more slender "underarm"; that the free abdominal segment is qui.te indistinct in C. lacustris, while: it, to the contrary, in C. curtus is sharply defined, and that the fourch pair of legs in $C_{\text {e lacustris }}$ is relatively longer and more slender and the long end-tuft of its two-jointed end branch is without saw-teeth. Otherwise, we refer to the illustrations. The length of the egg-strings may be considerable, but tha) conform somewhat to size of the individual. The museum also is in possession of a couple of young ones in the Chalimus:-:stage, attached by their frontal strings to the tail-fin of a smald Cyprinoid, the genital segment is relatively very narro/and the limbs, for instance first pair of Maxilliped and fourth pair of legs only clumsily and incompletely developed; the auxilliary hooks are
present, but we did not succeed in observing the fork. ${ }^{*}$)

2. Galigus Balistae Sto. \& Lik. $\left(O^{\prime} \sigma^{x}\right)$

Tab: I M I11. 1

Of this species we have found some specimens on the body and fins of a West Indian Balistes.

The male reaches a length of 4 mme, the female
$4 \frac{1}{5}$ mo The shield of the male is as usual larger than
that of the female, white the gendtal segment is less
dereloped. It may, in the male be described as crescentoshaped with sharp, pointed horns protruding backwards, ending

竍
The number of the feather.otufts and the hooks on each separate joint of the first three pair of legs seems to be pretty constant in the Caligus species, namely: first pair of legs has 3 feather..tufts and 4 shorter end-tufts or hooks; the outer branch of the second pair of legs has 4 spikes and $6 i \neq 1=8$ feathere-tufts;
\therefore while the inner branch of same has $6+2+1=9$ feather-tufts; the outer branch of the third pair of legs has 4 spikes (besides the large one at jts base) and 4 - 15 feather-tufts; while its inner branch has 6 t $1: 7$ feather-tufts.
As exceptions from this rule, we may report that we, in C. lacustris and C. isonyx, ronly Lfound 5 feather-tufts on the end-joint of the outer branch of the second pair of legs and in the last mentioned only 4 on the same joint of the inner branch of the same pair of legs.
in a pair of quite short tufts. A similar group of tufts is located on a small wart on either side of the concave rear edge, close to the root of the wide and quite short, unjointed tail. In the female the genital segment i.s larger and thicker; it has, just like in the male, rounded side-edges and concave back edge, from the middle of which the tail protrudes; but its rear corners are thick and rounded, not sharp and pointed as in the male and under the microscope show traces of some tiny spikes close to their edge. The tail blades are attached to the rear edge of the tail: in the male they are a little more elongated, in the female relatively shorter and wider. In both. they are equipped with three thin feathen-tufts (besides a smalier one on each sidel, but these are in the female only half as long as in the male. Quite contrary to what is the case in other species, the free aboominal. segment is a little more developed in the female than in the male, because the fourth pair of legs is somewnat stronger in the female than in the male. The end joint of the first antenna pair is longer and more slender than usual, but its tufts are not particularly long. The illustration shows the second pair of antennae and its well developed auxiliary hooks, indicating the difference between the two sexes. The first pair of maxilliped has the spike on the upper (inner) side of the "under-arm" located quite close to the so-called "hand". Second pair of maxilliped here shows a marked. difference between the two sexes as the base joint is shorter
and wider in the male and on its upper edge equipped with a protuberance which meets the point of the end hook. This protuberance is not developed in the female. The "palpi" are slender, curved and pointed. The branches of the fork are likewise quite slender. The spike at the base of the outer branch of the third pair of legs is curved. The fourth'pair of legs is, here, more slender and elongated in the male than in the female, its end branch two-jointed and equipped with only four thin and long, slightly curved tufts, of which the last is only slightly longer than the rest. The eggestrings are not much longer than the total length of the anmal itsolfo Several specimens are still attached by is frontal stringrof quite:different types, and among these Chalimuswaike individuals are even males of 3 mm 。 length. These probably still have not genital seginents of full size, but are fully developed in other respects, f. inst., equipped with both lunulae, furca, hamuli, etc.

In "Histoire naturelle des Crustacés" Vol III, page 452 (no. 4) one Diodon has a description, 2 Lines long of a C. Kröyeri Edvr; but, however short the description may be, the expression "tronque postérieurement" about the genital segment seems to exclude the possibility that it could be the variety described here.
3. Caligus productus Dana (o)

Table IIJ:' - TII. 6

United States Exploring Expedition, Crustacea Vol. II, pg. 1354, Table 94, I21. 4.

We have found a few specimens of this species on the inside of the gill-cover of a barracuda *) that Captain Hygom had caught at $30^{\circ} \mathrm{N}$. Lat. and $76^{\circ} \mathrm{W}$. Long. **) (Danas were from $27^{\circ} \mathrm{N}$. Lat. and $19^{\circ} \mathrm{W}$. Long), and of which some parts had been preserved. They were all females (Dana does not know the male ejther") and hate a length of only 405 mm . The tufts at che end of the first pair of antemnae are short; the second pair has the customary slender shape. The "palpi" at the base of the first pair of maxilliped are. slender and undivided. Second pair of maxilliped is quite tiny, the branches of the fork are long, slender and undivided. The first pair of legs has no feather-tufts at a.lI as Dana has already mentioned. It has, however, three hook-tufts, decreasing in length from the uppermost to the lowest, and a somewhat longer and straighter tuft. The spike located at the base of the third pair of legs is curved. The end-branch of the fourth pair of legs is only twomjointed; it is, however, equipped with five smooth hook-tufts of which the outermost is not much longer than the others. The abdominal segment to which it is attached is small but distinct. The genital segment is of medium size, elliptic, narrowing towards the front, deeply indented at the rear or extended into two
*) A large mackerel fish of the Thynnus group is, by the seafarer called "Barracuda".
**) It should be unnecessary to state that all longitudes in this treatise are counted from Greenwich.
lobes, between which the tail protrudes. We have looked for groups of tufts in vain, even though Dana in his illustrations pictures one at the point of each of the lobes of the genital segrent. The tail is long about as long as the genital segment - more or less distinctily two-jointed, so that the articulation falls about in the middle, wider at the rear than at the root. The tailmblades - between which the anus is not extended - each caxry 3 featherwtufts besides some smaller tufts. Some specimens have short eggostrings, about as long as the taill, others have them approximatelly twice as long. Dana shows them even longer in his illustrations. The eggs are very thick and therefore rolatively few.

The differences one may be able to point out between Danas description of this species and ours, appears to us to be, all together, too insignificant to provoke any doubt about the identity of ours and his varieties. The name is rather unfortunate as it may cause a confusion with O.F. Milllers Caligus productus, in spite of this now being a Dinematura, but we have not wanted to change it as this might cause even greater confusion.

$$
\therefore \text { 4e } \frac{\text { Caligus isonyx Sto. \& Ltk }}{\text { Table IfII }- \text { Ill. } 5}
$$

Regrettably only one specimen of this species exists. It is $4 \frac{1}{2} \mathrm{~mm}$. long and without doubt a female,
although it lacks egg-strings. It is taken from a Sphyrtena barracuda from the West Indjes.

The front edge does not, as in most of the other species, form an even arch with a small indentation in the middile, but an obtuse angle turned inward between the "lunulae". The genital segment is quite large, nearly inversely heart-shaped or botitie-shaped, wider at the rear where it has a straight. (only very slightly concave) rear edge and rounded corners and narmowing from there with regular curved outline until it reaches the free abdominal segment. The tail is quite long and unjointed. The end joint of the first pair of antennae is slender, the second pair is equipped with auxiliary hooks. The palpi appears to have a small thorn/point at the base on their inner side. Second pair of maxilliped is quite slender. The spike at the base of the third pair of legs is curved. Fourth pair of legs is short and powerful, the end branch three-jointed and equipped with five slightly curved tufts, all quite short and of about the same length, the uppermost a little larger than the others. A fifth pair of legs is possibly indicated by the groups of two or three small tufts located not very far from the rear corners and in these themselves in the sidewedges of the genital segment. Attached to its rear edge the tail carries two small wide tail-blades, each with three longer feather tuits and one smaller located some distance from the others on the side of the blade.
5. Caligus rapax M. Edw. $\left(\% \delta^{\prime \prime}\right)$

Table II - III. 4
? C. elongatus Nordmann, Mikrographische Beitrage Vol. II : page 24 (German)
C. rapax M, Edwards, Histoire des Crustacés III page 453 Table 38 - III. 9-12. C rapax Baird, History of British Entomostraca page 270, Table 32, I11. 2-3.

3 C Ieptochilus Leuckart, in Frey und Leuckart, Beitrage zur Kenntniss wirbelloser Thiere, page 165.

Lieutenant Koch of the Marine Department has submitted 6 specimens of this species to the musew 2 male and 4 female -. These were taken from a shark which he caught in the Atlantic on a trip to South America and the West Indies. Captain Hygom has aiso collected a few specimens for the museum, but they are all females taken from a cod at $57^{\circ} \mathrm{N}$. Lat. and 70 W . Longo, that is, close to the Hebrides islands, also curator Malm has submitted some specimens (female) to us, taken from the mouth of a cod (Gadus morhua) in Bohusiän (Sweden) Lastly, we must also refer to this species some small specimens ($4 \frac{1}{2}-6 \mathrm{~mm}$.) taken from the skin of a cyclopterus lumpus which also have been submitted to us from Mr. Malm, and some similarly quite small specimens taken from Gurnards in the Christianiafjord (now Oslo-fjord), and which we owe to a teacher, Mr. Koch. There can be no doubt that it is the same species Baird has had before him and which, according to his statements may be encountered on quite
different species of fish. The circumstance that some of our specimens were taken from a shark, just li.ike Milne Edwards, also seems to indicate that it actually is this author's C. rapax. The differences one may find between our description and Milne Edwards' are probably sufficiently explained by the last mentioned obviously being incomplete and quite superficial. Whether the mentioned species from Leuckart and Nordmann belong here which seems quite plausible at least as fax as the first is concerned, is a thing we will let remain undecided.

The female attain a length of $6 \frac{1}{2} \mathrm{~mm}$. They vary quite a bit - even specimens taken at the same time from the same fish _ in regards to the shield being more or less elongated and is the free abdominal segment and the genital segment ${ }_{\text {currg }}$ more or less developed. But in most of then the shape of the body gives the impression of being quite elongated. The genital segment is quite large, almost equally wide in front and rear, rounded in front, straight across or slightly concave at the rear with rounded rear corners. The small tufts on its edge which are indicated in our illustration do not always seem to be present. The tail is quite wide, unjointed, shorter than the genital segment, about twice as long as it, is wide, or a little longer. The feather-tufts on the tail-blades are quite long: The antennae, maxilliped and leg-pairs do not offer any particular characteristics. There is a distinct thorn inside at the base of the second pair of antennae. The "palpi" and "the fork" are undivided. The hook or spike located at the base of the third pair
of legs is slightly curved. The fourth pair of legs is small, its endmbranch two--jointed and equipped with five tufts of which the uppermost is almost straight and cone-shapod, the next three slightly curved but of about the same length. The fifth jis longer, as a rule more than twice as long. None of them are serrated. The egg-string may be as long as the body of the animal, but is often also relatively short. They contain numerous, very flat eggs.

The male attains a length of 9 mm . It appears, according to the few specimens in evidence, that also in this there is a not insignificant difference regarding the width of the shield and the development of the genital segments. It is noticeably different from the female by a much smaller, oval genital segment and by a comparatively longer two-jointed tail *), the second joint of which is considerably longer than the first. Also by the narrower tail-blades and the longer feather-tufts of these and by the massive development of the base-joint and shaft of the second pair of maxilliped.

6. Caligus Coryphaenae Stp. \& Ltk $\left(0^{8}\right.$ Q $)$
 Table IV - Ill. 7)

At $27^{\circ} \mathrm{N}$. Lat. and $19^{\circ} 30^{\circ} \mathrm{W}$. Long. Dana found a Caligus species (C. Thynni D.) on the body of the same "Bonito" under the gill covers of which he found the just mentioned C. productus. From a related type of
*) That the tail is two-jointod is not indicated in Baird's jllustration, but is mentioned in the description
fish, the so-called "Dolphin" (Coryphaena), Capt. Hygom has in the same waters ($30^{\circ} \mathrm{N}$. Lat., 380 W . Long.) taken a couple of specimens of a species that undeniably is very close to Danas C. Thynni; but which, however, according to our opinion it is not possible to refer to this species, as certain differences that will be difficult to explain away are evident. L'ater on, ship's surgeon Mr. Stybe has submitted to the museum. 3 males of the same species, taken at $23031^{\circ} \mathrm{N}$. Lat. and $2204^{\circ} \mathrm{W}$ Long.

The male, of which we have had the opportunity to study 5 specimens, has a length of 7 mm of which the shield take up 4, with a width of about 3a mm_{e}. The free body segment is quite large and wide. Its outline looking like the crossusection of a lens. The genital segment is short and wide and widest between the sharply protruding rear corners **) from which two long, thin feather wtufts and one very short tuft extend. Within this tuft-group, about midway between it and the first tail-joint, a similar group weaker feather-tufts *) may be seen on each side. The tail is approximately as long as the genital segment and distinctly two-jointed. The tail blades are not as usual situated freely in the rear edge of the last tajl joint, but fill in cut-outs in its rear corners, so that the anal section extends out between both tail blades.
**) That the genital segment otherwise may vary
considerably in shape is evident from Ill. 70
and 7 ©g.in Table IV.
*) These tuft groups, of which traces may be found also in other species, are without doubs rudiments of a fifth pair of legs (Compare pg. 344).

They each carry 3 very wide, but not noticeably long feathermufts situated close together and on both sides of these a few (4 at the most) smaller ones, the presence and number of which does not seem to be constant. The short end joint of the first pair of antemae is partly equipped with some bent, shorter or longer tufts, partily with some long string-like feathermiufts. Some such also occur anong the other trinming of short feather-tufts of the base joint. The hook of the second pair of antennae has a strong conemshaped tooth in the middle of the inside edge; the somcalled auxiliary hooks seem to be missing. the "palpi" $\%$ (x) between the proboscis and the first pair of maxilliped are wide and pointed. Second pair of maxilliped has a powerful: base joint and medium end hook, but otherwise the usual regular shape. The first pair of legs has three wide, slightly bent end tufts of which the outer is serrated along the inner edge, the others feathered; the fourth, which is located between them and the actual feather tufts is quite slender. The next two pairs of

[^5]legs have the ordinary number of feather-tufts $\% * \%$; the spike, located at the base of the outer branch of the third pair of legs is straight and surrounded by a flat brim, thereby giving it a blunt shape. The fourth pair of legs is quite big and powerfin, a fine featheretuft may be found at the end of the base-joint. The leg branch is clearly three-jointed, the two other joints carry at the point of their outer edge a spike, somewhat bent at the point and serrated at both edges. This spike is a little longer than the corresponding joint. The end joint has three such spikes of which the second is longer than the first and the third again somewhat longer than the second, although, not twice as long.

The female, of which we have been able to study only one specimen, attains a length of $8 \mathrm{~mm} .$, of which the shield takes up 3.5 mm ., with a width of 3 mm . Although it; then, definitely is larger than the male, its cephalothorax shield is both absolutely smaller and relatively narrower. (Studies of a number of specimens of other species have, however, taught us that this condition, if the shield is wider or longer, may vary not only with the sex, but also within this and that it, therefore, should not be included in a species diagnosis. Also, the shape of the genital segment may vary somewhat in the same sex of the same species.)

[^6]The free body segnent and its pair of legs are somewhat smaller than in the male. The genital segment, on the other hand, is thicker and much longer and it extends backwards into two thick, somewhat outwardi-turned flaps or extensions, in the outer edge of which we have noticed a small group of two short and two longer feather-tufts. The tail is longer than in the male - also in this case about as long as the genital segment and according to our opinion definftely fourmjointed. In all other details - even to the shape of the second pair of maxilliped... we have not been able to discover any difference between male and female, with the exception that in the female the inner tooth on the end hook of the second pair of antennae is missing, but there is a protruding edge or spike outside at its base, which, however, must not be regarded as corresponding to the otherwise always occurring auxiliary hook.

If we compare this type with Danas description and illustration of C. Thynni, of which both sexes also are known, we will find - besides differences in the shape of the tail and genital segments in both sexes that C. Thynni, has much longer and thinner tail-tufts, but lack the long feather-tufts on the genital segment and the antennae: In several other more important characteristics one will, however, find a quite accurate conformity and perhaps the future will prove that we should not have separated them. Our C. Coryonaenae also seems closely related to C. scutatus M. Edw. (Hist. de Crust. Vol III page 453 No. 7) but as this is from the

Indian Ocea; it does not seem probable to us that it is the same species.

7. Caligus branchialis Malm (mscr.) (I)
 Table II. III. 3

C. gracilis van Beneden, Annales des sciences naturelles, VoI. XVI (1852) pg. 90 - Table 2

Curator Malm has under the above name submitted to us some specimens (all females), taken from the gills of a Rhombus maximus from Bohuslian (Sweden). It is without doubt van Benedens C. gracilis, which also has been taken from. flounder species, but the name can hardly be retained if Danas similar name for an other species, as we suppose ${ }^{*} j$, will take precedence. It is probably this type also, that Krobyer has encountered on the gills of Rhombus maximus and which he mentions as a stilll undiagnosed type $*$) that has some resemblance to $\mathrm{C}_{\text {. }}$ pectoralis Mul.

The available specimens had a length of $\delta \mathrm{mm}$. and are then a little larger than van Benedens. In habits, in regards to the shape of the shield, the size of the fourth pair of legs and the shape of the genital segment, they come very close to C . pectoralis Mill.j just like this, they lack the lunulae and have divided "palpi" and an ordinary furca, but the tail, that is slender and elongated,
*) Danas species seems to have been made known in 2850 , van Benedens in 1855.
**) Fishes of Denmark $2^{\text {nd }}$ Vol. pg . 444.
inmediately, at first glance distinguish them from Mullers type. The tailublades are small and their feather-tufts quite long. The end branch of the fourth pair of legs is three-jointed, but equipped with only 4. spikes, three of them short and almost straight, the fourth 3 to 4 times as long. The eggestrings are long and contain numerous flat eggs.' The spike located at the base of the third pair of legs is quite straight ... in itcs outen paxt Lin any dase just like in Copectoralis. Otherwise we refer to our detailed illustration in Table II, which we thought necessary to submit, as van Benedens illuserations are quite faulty.

 The Qloiopotes nob. is distinguished (female) from the genus Caljgus, although they also have the first two abdominal segments contained in the cephalothorax and similarly shaped abdominal maxillipeds; they have two very large dorsal blades (elytrum) almost rectangular in shape, which are covering the genital segment as far as the base of the tail, the rear of the genital segments extending backwards in two slender protuberances everl with the end of the tail. The taill blades are cylindrical, with one stylet, without Ieather-tuft。Typical Sp. G. Hygomianus nob.
Habitat: the equatorial regions of the Atlantic
Ocean.

8. Gloiopotes Hygomianus Stp. \& Itk (오)

Table V - IIJ. 9

Of this distinguished and peculiar type one specimen has been brought to us by Capt. Hygom from one of his trips across the Atlantic Ocean, but regrettably, we are unable to state from what fish it was taken.

It is 14 mm . long; quite wide and flat. A sharp line across the approximate middle divjdes it in two halves of which one consists of the cephalothorax shield, the second of the dorsal blades, the genital segment and the tail. The shield is oval and quite flat. The front plates are divided by a slight incision in the midale. The side pieces of the shield are separated from the middle piece and again by curved crosiostripes each divided in three pieces. The foremost of these crossmstripes continue right across the middle piece an in doing so pass a dark double-spot, the pigment-mass $\%$) of the eye. At the rear of the shield - which, similar to the Caligus shiewd has assimilated the two first abdominal segments there are as usual two deep, but narrow incisions. The genital segment is consideradly narrower than the shield and not very plump. It extends backwards in the shape of two somewhat flat, tapering and at the end rounded extensions that are just as long as the narrow, unjointed tail located

[^7]between them and which continues into two (slightly converging) nearly cylindrical tail-blades, each ending In a quite long and strong tuft without hair. Under the microscope one will notice a row of fine spikes along the outer edges of the extensions of the genital segment. This row is terminated by a large and peculiar, knife-shaped tool that is blade-like with a thicker, straight edge turned outward and forward and a thin, sharp, serrated and curved edge towards the rear. The genital segment is otherwise almost completely covered - not including those extensions - by two large, flat dorsal-blades, the shapes of which are nearly rectangulax. They do, however, taper slightly towards the rear and are at the sides bordered by curved lines. As they diverge a little and reach a little beyond the sides of the genital segment, the body here attains almost the same width as the shield. The antennae and the maxilliped do not present anything extraordinary. The second pair of maxilliped is very large and quite slender, the "palpi" narrow and pointed. Auxiliary hooks and lunulae are missing but there is a fork. The abdominal legs mainly present a similar structure as in the Caligus species; the branches of the third pair of legs are small compared to the size of the animal. One single and two forked, quite short spikes are located at the end of the first pair of legs. The spike at the base of the outer branch of the third pair of legs is short, thick and bent *). The fourth

[^8]
Abstract

pair of legs has a flat, three-jointed end-branch, that besides the ordinary five tufts which here, however, are quite short, wide and blunt, also is armed with a close row of blunt small spikes of only half the size.

Even though the eggostrings are missing, we take it for granted that specimen in evidence is a female.

IMI. SYNESTIUS Stp. \& Itk (9)

Synestius nob differs (female) from the Caligi. Their identical characteristics with the Caligi are the same mentioned above in the description of the Gloiopotes; they have at the rear of the genital segrent fous subclaviau extensions, as long as the elongated tail.

Typical species: S. caligimus nob。
Habitat: In the gilis of the Stromateus parus (B1.) Fish Index.

9. Synestius caliginus Sto. \& Ltk (9)

Table VI - III。II

We have found some specimens of this type, all females, on the gills of a stromateus paru (BI.) at one time submitted from Dro K8nig in Trankebar.

The total length of the animal is only $4 \frac{1}{2} \mathrm{~mm}$. The shield is almost circular, strongly arched and shows the ordinary H-shape. The front plates are equipped with lunulae. The genital segment is thick, in circunference
somewhat larger than the shield and emits at the rear four somewhat cliub-shaped extensions, two long and two shorter. The tail originates between the two longer, and in regards to length and shape, it corresponds quite well to them, but is flatter and narrower at the base. The hindmost part of it seems to be isolated as a separate small joint. The tail-blades each carry 4 feather-tufts of different length but all quite short. Auxiliary hooks and fork are present. The antennae, maxilliped and legs $*$) are shaped as in the Caligus-family. The spike located at the base of the outer branch of the third pair of legs is strong and curved. The end branch of the fourth pair of legs is three-jointed and equipped with five slightly curved not very long tufts of even length. About one third of the egg-strings extend pas the end of the tail.
*) The number of feather-tufts in:

Synestius caliginus
Second pair of legs outer br. 5 - 1 , inner br. 7-2-1

Third pair of legs outer br. 4-1, inner br. 6-1.

Parapetalus orientalis
$6-1-1$ and $4-1-1$
$3-1$ and 6-1
IV. Paraperalus Stp. \& Ltk (S)

Parapetalus nob. differs (remales) from the Caligi. Their identical characteristics with the Caligi however, are the same mentioned above in the description of the previous genera, with genital segment surrounded by a winglike membrane and with, a tail provided with two elongated wings turning backward, fairly simulating a halfomoon.

Typical species: Po orientalis nob.
Habitat: In the gills of the Menes maculatae, Fish Index.

10. Parapetalus orientalis Stp. \& Itk (P) Table $V=111.10$.

Some females of this smail type, only 3 mmolong, were found on the gills of a Mene maculata, also at some time sent home from the East Indies by Dr. Konig.

It is just like many Caligus-species equipped with lunulae and furca. The antennae, maxilliped and abdominal legs are quite Caligus-like. The spike located at the outer branch of the third pair of legs is strong and curved. The end branch of the fourth pair of legs is three-jointed and equipped with five almost straight tuits that increase in length from the upper to the lower. The genital segment is circular and equipped with a thin brim, quite wide at the rear. From each side of the front part of the tail a flat brim or wing extends. It is directed
towards the rear and rounded off, wider at the end. These two wings together form approximately a crescent with wide rounded horns which extend out past the tail itself, which carry two tail-blades, each equipped with four featherwtufts.

 Table VI m [21. 12

Until a short while ago, only the female of the genus Euryphorus was known. It was briefly described and illustrated not quite successfully however in Milne Edwards Histoire des Crustaces (Vol. III, Pg. 462, Table 39, III. 1). As the specimens in the Paris Museum were from the "Asiatic Oceans" and as the illustrations would give one the impression that E. Nordmanni has a more developed first pair of antemase than the type that Capt. Hygom repeatedly has taken in large quantities from the gili-caves on "DoLphins" (f. inst. on Lampugus punctulatus Cuv. Va..) between the equator and $30^{\circ} \mathrm{N}$. Lat. and 24° and 40° W. Long. *), we considared this to be a new suecies which wh named E. nympha. By getiting acquainted with a treatise by professor Kner "About male and female of Euryphorus Nordmannj Edy.". (Of the Vienna Academy's "Sitzungsberichte" for 1859). We, later on, have become very uncertain regarding this. In this treatise the author

[^9]gives information about the genus according to five specimens from Zanzibar and, although there is very much in prof. Kner's description of the characteristics of this type of animal that is different from what we have noticed we do have a feeling that he has been dealing with the same species as we did, and as the Vienna Museum's specimens were from the Indian Oceang the same as those in the Paris Museum, it seems to us quite probable that it is the same species that has been encountered in both Oceans **)。 Regrettably, prof. Kneris material has not been large enough to allow him to make any exhaustive studies; he has certainly not been very fortunate, but does not seem to have had the necessary knowledge beforehand either about the most closely related types. His analysis of the build of the different pairs of legs is unfortunate for both sexes. It is, therefore, not at all out of place to submit a new description and illustration of the animal. It will from this be quite evident without making any further proof necessary _ that the genus belong to the Caligini group and not to the Pandarini group. It has its place beside Caligeri and Elytrophora.

[^10]The female is $1.1-12 \mathrm{~mm}$ 。 long．The shield of the cephalothorax is almost circular，slightly domemshaped； otherwise，of the shape and build common in the Caligini and particularly it has assimilated the first 2 abdominal． segments just as in the Caligusagenus．The location of the eyes is not quite clear to us，as different formations are visible on the dorsal side＇of the shield that could be assumed to be eyes，but most likely they are just two round spots located close together a little in front of the crossebar in the H 米米）。 The free abdominal segment carizes two such dorsal blades，rounded off at the rear． The genital segment is circular，disc－shaped and is similax in siae to the shield of the cephalothorax，but owes its size to a＇ring－shaped skin－brim which，on either side of the base of the tail also forms a small protruding blade． The tailit is almost as long as a．11 of the rest of the bodys slim，but for the most part of its length equipped with a quite wide，flat sinmbrim that，like a down－hanging drape， extends out past the rearmost free part of the tajl，but which otherwise may show some individual variation as regards shape and size．The length of the egg．strings may be somewhat longer than the total length of the animal．

The male is only $6-7 \mathrm{~mm}$ ．long，the shield and dorsal blades do not appear particularly different from those of the female，but the genital．segment is narrow and elongated and lack both the brim and the small blades at the rear．The tail is short and wide and may be doscribed
＊＊＊ Prof．Kner considers to be the eyes，are not．
as made up by three joints of which the first, just as in the female, has a wide brim, but this is also so short that it takes on a crescent-shape similar to the Parapetalus ($\%$). - The antennae, proboscis and mouth parts are similar to those of the Caligini: lunulae and hamuli are missing. .There is, however, a fork. The "palpi". are wide. The first pair of legs are similar to those of the genus Trebis and has besides the outer, Caligus.-like branch an inner, smaller, with three small feather-tufts. Second and third pair of legs have two well developed three-jointed leg-branches with numerous featherutufts *)。 On the fourth pair of legs the outer branch is three-jointed and equipped with five spikes and several feather-tufts, the inner is, however, only two jointed, but also equipped with feather-otufts. The connecting middlempiece is as usual most developed in the third pair of legs, less so in the second and is practically missing in the fourth. All these parts are alike in both sexes. Several males still hold the females embraced by the genital segment as they hold the underside against each other and a spermatophore - of the type known for this genus as well as
*) Outer branch of first pair of legs has 4, its inner branch
" $"$ has 3 featier-tufits
for the Caligeri and Elytrophorae $* \%$) - is then often placed on each side between the first pair of legs and the second pair of maxilliped.

1. Euryphorus. Nordm. differs from the genus Caligus, by two small dorsal blades (elytrum) on the third abdominal segment having two two-jointed branches on the first pair of abdominal legs, with branches of the second and third pair of legs being three-jointeds the fourth pair with branches two-jointed and adapted to swimming supplied with feather-tufts, the inner branch is two-jointed the outer is three-jointed.

The female is distinguished by having disk-like genital segment, surrounded by a winglike membrane from which two small blades extend to the rear. The tail is very long. Most of the taill is covered by a very wide winglike membrane.

The male's genital segment is almost rectangular, no wings or blades are visible. The tajl is short, and wide. The first segment is equipped with a short, wide wing fairly simulating a half-moon shape.

The species observed by us, dwells in the gill cavities of Lampugi punctulati and perhaps also of another species named Coryphoenidae, in the equatorial waters of the Atlantic Ocean, always adhering to the clavicular wall of the gill cavity.
**) See Milne Edwards 1.c. . 462, Dana 1.c.p. 1361, Tab. $94 \mathrm{~F}, \mathrm{Bh}$, Gerstäcier, Archiv. fir Naturgeschichto XIX, 1 (1853) p. 60, Tab. XII 513.

VI. DYSGMMS Stn. \& Ltk $\left(b^{\prime}\right)$

Dysgamus nod. differs (male) from the genus Caligus by having all abdominal legs_s two--branched, with two joints each, adapted for swimming provided with feather-tufts.

Bypical specjes: Dysgamus atlanticus nob。
Habitat: In the equatorial waters of the Atlantic

Ocean.

> 12. Dysgamus atlanticus sto. \& Lek (0^{3})
> \therefore Table IV, III. \&

About half a score of specimens of this species have been available. They have been collected at different location between $8^{\circ} \mathrm{N}$. Lat. and $28^{\circ} \mathrm{N}$. Lat, and between 21° and $36^{\circ} \mathrm{W}$. Long. **) probably swimming free in the water. They are all of about the same size, about 3.5 mm . long (not counting the tail. tufits) and 2 mm . wide across the widest part of the shield. The shape is quite plump, thick and somewhat arched. The abdomen and tail little developed in comparison with the shield which has the shape common to the Caligini. The free abdominal segment is oval. The genital segment is poorly developed and is of a rounded off hexagonal, somewhat drawn out shape. The first, tajll segrent is smell and short. The second hexagonal, so that the two wide tail-blades, equipped with four long feather-tufts, are attached to the two sides turning outwards and backwards. The frontal plates are large, but without Iunuzae. The first pair of antennae are equipped with ca.

 $360 \mathrm{~W} ; 280 \mathrm{~N}$, and $21^{\circ} \mathrm{W}$.

6 quite long feather-tufts along the upper edge of its base-joint and i.ts short end-joint carry at its end, besides a few short ones, ca. \& quite respectable feathertufts. Tere are no auxiliary hooks. The proboscis is blunt and short as in the Galigus. The second pair of maxilliped has a thick base- joint with a protruding node or somalled "thumb". There is also a fork。 The first pair of legs is as in Euryphorus and Trebius. The next three are equipped with two well developed, two-jointed branches equipped qith numerous feather-世ufics, $* * \%$) the outer branch also, as usual with a number of spikes along the edge. In regard to the development of the middle piece on the different pairs of legs, the usual rule, valia for the Caligini and Pandarini has been followed. A rudiment of a fifth pair of legs may be visible at about the middle of the side edge of the genital segment.

Contrary to the previous group, the Pandarini group distinguish themsezver by thect long, pointed proboscis or trunk and by the branches of the first pair of legs being evenly developed- at least in all types
*; ;

known to us. Any assimilation in the shield by the first two abdominal segment that carry the second and third pair of legs never occurs; these segments are ajways free, even though they.sometimes are fused together. The females always have from l. to 3 pairs of dorsal blades which extend from the abdominal segments. They may, however, be missing in the male, and this condition can, therefore, not be used as a general identification characteristic for the group. The females may also have smaller dorsal blades extending from the tail section. Through the whole group _ but as far as. is known only in the females and disregarding the genera Cecrops and Laemargus (Cecropidae Dana) - there is a certain trend towards a transformation of the legs so that they either become completely rudimentary or are transformed into blade-like, soft, tuftless plates which perhaps directly serve the respiratory process. Sometines, however, this is not the case with any of the leg pairs (as for instance in the female of Nogagus paradoxus), often only with the last (Dinematura-females), but in other types more or less with them all. The genital segment is in most females of quite a cons:derable size and the egg-strings are often much longer than those of the Caligini. With the exception of the Cecropidi all Pandarini have so far been found on sharks as far as it has ever been wiitten down on what fish they were found and as far as they have not been found swimming free in the water, which probably is the case with several of the male types.

A very regrettable void in the knowledge about this group is the factone not counting the Cecropidi, knows both sexes of only one single species, namely of the somcalled Nogagus paradoxus (Otto). Of all other described types of the species only either the male or the female ${ }^{*}$) is known, and the fact j.s that of the genera noted by MiIne Edwards in his "Histoire des Crustacés" 3 of them, namely Dinemura, Phyllophorus and Pandarus include only females (to these however are later added the genera Gangliopus and Lepiclopus): while Nogagus and Soecilligus Dana include only male (with the exception of Noparadoxus which only hypothetically is referred to this genus). We are sorry we are not able to fill this gap, but we could, however, not omit to further and discuss the question: Could the types gathered together in the Nogagus genus possibly be the males of the female types referred to in the above-mentioned 5 genera? One will find that all the so-called Nogagi with the exception of course of N. paradoxus ($\%$) - are regularly developed types with four well developed pairis of swimming legs, whereas the female types have this particular characteristics in the development of dorsal blades, in a strong and abnormal development of the genital segment and in the more or less complete transformation of the legs. And, if one maintains that a similar, although not always ṣo marked a difference is generally present in the number of types of parasitic copepodae, so that
*) We will in the following explain the occasions where the opposite has been stated and show that it could hardly survive a criticism.
the females are less mobille and more stationary and the males more lively and free moving, there does not seem, from this point of view to be any objections to regarding the Nogagus species as the males, not only of the animals that are like the \mathbb{N} 。 paradoxus (\mathcal{G}), but also to the females of the Dinematura, Pandarus and the other genera mentioned above. We should, however, not deny that there otherwise still usually is a habitual simjlarity between male and female, as for instance in Euryohorus, Cecrops, Laemargus, Lernanthropus, a similarity that perhaps mostly is based on a certain conformity in the development of the exterior skeleton, and which here in most cases is lacking. When one, for instance, repeatedly has observed Pandarus Cranchii (8) together with Nogaqus fatreiliti (c) and still is unable to point out other, more corresponding sex-types to these supposed species, it is easy to see the same species in them both, however different they otherwise may be. But, even though this is not the only instance where the conformity in the occurrence of the respective types would seem to indicate their specific jdentity, one must however at the present stage refer this point to further study. One must still classify all male types as species of Nogagus and the female types as species of Dinematura, Pandarus etc., until a direct observation may give a definite answer to the question.
VII. About Caligus productus O. Pr. Muller and the genus Dinematura Latreille.
O. Fr. Miller did in his work "Entomostraca seu Insecta testacea, quae etc.," (1785) as may be known, describe 2 species of parasitic copepodae, the "shor" and the "long fishmlouse", Caligus curtus and Coproductus. This latter, which later became typus for the one by Latreille $\%$) established, genus Dinemura (or Dinematura, to which Burmeister, probably correctly has changed it), has regrettably never later been recognized by any zoologist, and in this way an uncertainty and confusion has developed, which threatens to be so involved and persistent that we must consider it our duty to give our contribution to the solution of the problem, as circumatances have enabled us, as we think, to acknowledge Maller's species and explain its symonymy。

Dinematura producta has been already/described and illustrated no less than five times. The first time in 1780 by Herbst in "Schriften der Berlinischen Gesellschaft naturforschender Freunde" ("Publications of the Berlin Society of naturalist Friends") First Volume: in a treatise "Beschraibung einer sohr" sonderbaren Seelaus vom Hemorifishe" pg. 560057 ("Description of a very strange sea-louse from porbeagle"). The copper-plate (Table III)
*) In the $2^{\text {nd }}$ edition of Cuviers "Règne animal" t. 4 p. 197 . Regarding the history of this genus, we otherwise refer to Burneisters (where stated below) and Kröyers (Journal of Natural History, Vol. $2, \mathrm{pg} .45$ and following) remarks about it.
gives one, considering the time, not bad and quite descriptica of the animal. Herbst got his specimens from pastor Chemnitz here in Copenhagen and he, in turn, got them from the Faroe islands with the information that they had been located on the taill of a specimen of "the fish hemor", three ells long and thick as a bag", which is described as "a very large predatory fish with very sharp teeth that is very seldom caught because it bites off the lines". The "Haemor" from the Faroes, is evidently the well known nordic "Haamaer" (Haabrann), by which designation several shark-species are know, but which, however, according to what judge Muller in Thorshavn has told us, is not used for Havkalen (Haaskjaerdingen) (The Greenland Shark), but for a smaller sharkwspecies which he is certain he recognizes as our Sildehai (Herring-shark), Lamna cornubica (Por*beagle). The zoological museum of the University has now actually received several specimens (females) of this figholouse just from the Faroe islands and the sender of these, judge Miller" has, on a later request, declared definitely that he is convinced that they have been taken just from the so-called "Haemar" or "Haamaer" and not from the "Havkal" (Greenland Shark). The physiological museum of the University further is in possession of a nice group of Dinematura producta sitting close together on a piece of skin from a shark. This is given on the Label as being from Seymnus glacialis, that is, from Havkalen or Haaskjardingen (the Greenland Shark), but the shape of the scales shows that this is not correct. When a Lamna cornubica, a short time'ago, was caught in Oresund (Strait.
between Denmark and Sweden, Leading from Cathegat into the Baltic) and exhibited here in the city and bought by the zoological museum of the University, we had occasion to convince ourselves that the piece of sharkwskin in question actually belonged to just this species and also from which part of the body it had been taken. The fish carried numerous marks after fish-lice, but at the time it was exhibited here in the city there remained only one specimen and this was just a Dinematura producta *) 。 From this species we have also finally had the opportunity to study a piece that curator Maln has taken from a Lamna cornubica himself.
o
O.F. Mulder does not state from where he obtained his specimen, but his book is only 5 years younger than Herbst treatise, it seems quite probable to us that they come from the same shipment from the Faroe islands. Muller's illustrations and the whole of his descriptions are less satisfactory than those by Herbst, he only states that the species first was discovered on a shark, "from this, the name Femorlans", and later on the salmon. This last, incorrect statement comes from Miller referring also Binoculus salmoneus Fabr. (Caligus salmonis Kr.) to his Caligus productus on account of Fabricis expression: cauda tretraphylla.

Under the name of Pandarus Lamnae we meet it again in a number of descriptions of British animals (Illustrations in British Zoology), that Johnston published in 1835 in the London Mragazine of natural history (Vol. VIIII ps. 203).

[^11]Johnston's specimens were taken from a "Beaumaris Shark" ("Lamna monensis"x), in Berwich Bay. Baird has, under the name of Dinemoura Lamnae recorded it in his "Natural history of the British Entomostraca" (Ray Society 1850) pg. 286, Tab. 33 f 6 m . He has acknowledged that it was Herbst "Sea-louse from the Hemor fish, but strange enough, without this leading him to acknowledge that it was Mullers Caligus productus he had before him. Baixd does not report any other discoveries of this parasitic crustacean than those by Johnstone and it does not appear as if he had the opportunity to examine the specimens of this author; he seems only to have ladled from Johnston's descriptions and limited himself to give an improved copy of his wood-cut print.

And finally, van Beneden in 1857, in a treatise "sur un nouveau Dinemoure provenant du Scymnus glacialis"
 c Tab., has described and illustrated the same animal under a different designation, namely Dinemoura elongata. In case one should be inclined to believe that he was dealing with another species, it will be of importance to learn that van Beneden had obtained his specimens from Councillor of State Eschricht and that they were taken from the piece of skin from the Faeroo islands mentioned
*) English as well as Scandinavian ichtyologists presume that Lamna monensis and cornubica are not different species, and chere is hardly any valid reason to maintain the opposite idea.
above. The incorrect statement in the headine of
the article may be caused by the wrong labeling of this
piece of skin as being from Scymnus glaicalis \%\%).
What may, to some extent, count as an excuse for
van Beneden when he believed to have discovered a new
species in the animals submitted to him by Counsellor of
State Eschricht, is a previous mistake by dr. Gerstacher
who in a treatises: "Veber eine neve und eine weniger
gekannte Siphonostomen-Gattung" in "hrchiv für Natuxgeschichte
**) It is hardly worth-while to engage in any criticism of Herbst and Millier's presentations of this animal, but as they both agree on the division of the underside of the shield by cross-lines into three sections and picture a button or node in front of the base of the proboscis close to the edge of the shield, we must, however, expressely point out that we have not found any such things. They have both described the underside surface of the tail incompletely and willers description of the swinming-legs (swimmerets) is even more confusing Chan Herbstis. We find Kröyers theory Naturh. Tidsskr. (Journal of Natural history) Vo. 2, pgo 47 in the footnote 7 that Mixler has had a dried specimen from an Insect collection in Copenhagen before him, very plausible; but we can not quite understand how Krbyer has arrived at the conclusion, "that it is because miller has misunderstood Fabricius that he classes this animal as belonging to the nordic fauna", as Herbsts specimen expressly was stated as coming from the Faeroes.

We will not dwell with Johnstons description either as we have no doubts about the identity of the type in question, although certain points (mainly concerning the construction of the shield and the body segments assimilated in its rearmost incision is inaccurate. In many respects van Benedens description is incomplete and its superficialness is immediately evident when he relates that Caligus productus serve as typus for Rafinesques genus Dinemurus, which, as know, has nothing to do with Latreille's. Kost jncomplete is his description of the shield and the free abdominal segments. His illustration does not give one the vaguest iciea about their actual condition. The lovest of the three tail cover-blades is not mentioned in the description, although it shows in the illustration. The presentation of sidewings of tail-joints is very unclear and "that the genital segment ("abdomen") is not particularly sharply separated from the segment carrying the dorsal blades" is a very incorrect statement.

XIX Jahrig." p. 63, Tab. 4, "("About a new and less
known Siphonostome-genus" in "Archive for Natural
History 19th year) described and illustrated under the name of Nogagus productus namely because he, in this; believed to recognize Mullers Caligus productus - the species and probably also the identical specimens of this, which :at one time had supplied material for the estaw blishment of Ottos Cajigus hentapus *), later by the same author rechristened Caligus paradoxus *\%) and of Nordmanns Binoculus sexcetaceus ***). Trapped in this error dr. Gerstacker therefore thinks he can reproach' Milne Edwards that he has referred Caligus productus to the genus Dinematura, "with which it has only a remote likeness". Mr. Gerstacker has not been very fortunate here. His Nocagus productus is not the Muller Caljgus productus and must then maintain the name Nogagus t) paradoxus (Otto),
*) Description of animals that have not yet been written about part. I (1821) pg. 15. (Quoted after Burmeister I.c.) (from Latin).
**) Description of some new crustaceans discovered jn the Mediteranean in 1818 and 1819 (from German). Nova Acta Acad. Caes. Leop. Carol. Nat. Cur. VoI XIV, pg. 352, Table XXII, III. 5-6.
\%*\%) Micrographic contributions to the natural history of invertebrate animals, second installment (1832) pg. 32 (from German).
() To this we must remark that the typus for the genus Nogagus is \mathbb{N}. Latreillii, of which only the male is know, and as long as the female form is unknow, one cannot be certain that C. paracoxus can be placed in. the same gorus as this, it isneven probable. Even if the genus-name Noqagus became vacant by all species, m
as male-types were distributed over all the other genera established for the females, it would be incorrect to transier it to Caligus paracoxus otto (σ) . The most correct would be to establish a new genus for this type.

```
                                    6 2
if one would not go back to the species-name under which
it was originally classed and although the author in
several places expresses himself with very great certainty
about the identity of the types in question, Muller's
description of the last pair of legs ought to have
convinced him about the opposite. Another case is that
Qaligus productus Mull. cannot very well renain in the
genus with the Edwardian Dinemura (Echthrogaleus nob.)
but more about that later. But as Latreille, who has
established the genus Dinemura, has based it just on
Caligus productus, it is not reasonable to blame Milne
Edwards for giving this species a place within the genus.
And to the same extent has prof. Kr夕yer been correct in
referring the new species discovered by him (D. Eerox)
to the genus Dinematura - which has also been stated by
Gerstacker -. as D. ferox Kr. just is the only of the..
other somfar described so-called Dinematura, which
actually comes so close to the typical species (D.
producta) of the genus that one may say there is a true
genus-fellowship between them. .
```

Kight this condition vary in the females or might prof. Krfyer's observation in regard to this point perhaps pertain to a male without the author being aware of the difference in sex??

The young dichelestium, depicted by prof. Kroyer in second volume of Naturhistorisk Tidsskrift, table III fif. 8 a; is probably a young male. Especially the shape of the third (last) pair of hindlegs seems to indicate this with thejr width, characteristic for the male. With this assumption, however, prof. Kroyer's interpretation of the indentations and segments of the young dichelestium in question does not appear quite successful when compared with a young male of approx. $4 \frac{1}{2} \mathrm{~cm}$ length (incl. the forward stretching second pair of hooks). Undoubtedly d and e on fig. हa represeat the reproductive segment so that f and g together would be the tail on the fully grown animal. The same impression is given when observing the taill and reproductive organ of the available males. The grown male, first described and depicted by Rathke a couple of years afterwards (Noca Acta A. C. I. N. C. t. XIX p. 127 etc., tab. XVII f. 1), was unknown to Kroyer in 1838. It was, therefore, natural for Kroyer to define the young animal on the basis of the fenale ~ known to hime who has one additional hindbody segment (a fourth) which in the middle is more or less obviously indented.

[^0]: i) Caligus, Synestius nob., Parapetalus nob., Caljstes, Trebius, Dysgamus nob., Caligeria, Elytrochora and Euryphorus.
 4i) Pandarus, Nogagus, Dinematura, Echthrogaleus nob., Pnylophus, Gangliopus, perissopus nob., Cecrops and Laerargus.
 (Hixy) Krótaria (Lonchidium), Pagodina, Eudactylina, Congericola, Ercassilina (the egs-sacks wi-known), $\frac{\text { Lernantlirnous, Dichelestiun }}{\text { and Anthoscma }}$, Nemesis, Lamoroslina and Anthosoma.

[^1]: i) Even if one does not know of genuine Calani with egesack, one in any case know very closely related genera of the Calen-group itself with single un-mated eggmack.

[^2]: *) It is in our opinion not the same part that Dana in both instances designate as such. What he in the Caligini defines as "maxillae" are presumably lacking in several Pandarini but are also often found in them in a more or less developed state and always in the same place as in the Caligini. In our opinion this part is an appendix to the base part of the second pair of maxilliped, just as "hamule" is to the second pair of antennae, and not any transformed independent pair of limbs.

[^3]: **) Under this also the subgenus Lepeophtheirus (Caligi "lunulis srallis" and the Chalimus - varieties (Caligi appendice frontali affixi); even if it should be proved that there were Caliguswarieties, the females of which all through their life were attached by a frontal string, they would at the most form only a subgenus of Caligus. All Caligini known to us have the so-called "furca" (fork); but it doas not seem of any generic significance if the "lunulae" . and the auxiliary hooks of the antennae are present. We, therefore, have not included these conditions in the genus characteristics, but mostly considered the difference in the build of the legs. We, therefore still, for the time being consider Sciaenophilus von Bened with its very elongated genital ring and tail as a somewhat diverging Caligus variety, that perhaps may form a separate suogenus.
 (The two asterisks of this footnote could not be found in the original text. - Translator's notel.

[^4]: *) Only Cecrops and Laemargus, who live on moon fish (Orthagoriscus, sensu latiore), make an exception in this respect.

[^5]: **) Even though we have retained this designation for lack of something better, we do believe that when one traces this organ further than the Caligus.-group, in the Pandarini, one will find that it actually is only an appendix, a growth from the base of the second pair of maxilliped. (Compare pg. 350, first footnote).

[^6]: ***) Regarding these details we refer to the illustrations. We must, however, remark that in spite of the inner branch of the third pair of legs usually is described as unjointed, we have been made to believe that the uppermost feather--tuft extends from a short upper joint.

[^7]: *) How it actually is with the eyes, has not become quite clear to us, but it almost seems as if they have a somewhat similar development and build as in the Saphirini.

[^8]: *) The number of feather-tufts: Second pair of legs outer - branch 8, inner 9. Third pair of legs outer branch 6, inner 5.

[^9]: *) The individual locations are: 300 N . Lat, and 380 W . Long.; 00 Lati, and $24^{\circ} \mathrm{W}$. Long. 133 N . Lat. and 300 V. Longo ; 210 N. Lat. and 400 W . Long.

[^10]: **) . Regrettably, there are hardly any precedents for judging whether one should reject the reference of a specimen to a species aporoved in the literature just because one is from the Atlantic Ocean while the other is from the Indian or Pacific Ocean or vice versa. Are the larger pelagic fish types alfogethe: common for these two large seambasins or do they each have their characteristic species? So far, so little is known about this that one theory at present is as good as the other. We, however, are most inclined towards the latter and are therefore not ready to assume that the same species of parasitic crustaceans occur in both oceans as long as this has not been established by direct comparison. In this particular instance, horever, Milne Edwards' expression: "des mers d'Asie", somewhat, is vague and well suited to cause considerable doubt.

[^11]: *) We owe it to Councellor of Justice Mr. Olrik, who had occasion to examine the fish before any of us, that the Museum got possession of this specimen.

