

CAMPBELL RIVER FORESHORE BIOPHYSICAL INVENTORY MARCH 1983

by

B. WADDELL AND S. MARKOWSKI (JOB CREATION PROJECT)

prepared for

WATER USE UNIT HABITAT MANAGEMENT DIVISION DEPARTMENT OF FISHERIES AND OCEANS VANCOUVER, B.C.

V6E 2P1

QH 541.5 .S7 W33

8H 541.5 ,57 W33

THE LIBRARY BEDFORD INSTITUTE OF OCEANOGRAPHY BOX 1006 DARTMOUTH, N.S. B2Y 4A2

CAMPBELL RIVER FORESHORE BIOPHYSICAL INVENTORY

MARCH 1983

by

B. WADDELL AND S. MARKOWSKI (JOB CREATION PROJECT)

prepared for

WATER USE UNIT

HABITAT MANAGEMENT DIVISION DEPARTMENT OF FISHERIES AND OCEANS

VANCOUVER, B.C.

V6E 2P1

1
1
3

TABLE OF CONTENTS

			PAGE
LIS	T OF	TABLES	iii
LIS	T OF	FIGURES	iv
LIS	T OF	APPENDICES	vii
ACK	NOWLE	EDGEMENTS	ix
1.	INTR	RODUCTION	1
2.	STUD	DY AREA	2
3.	MATE	ERIALS AND METHODS	4
	3.1	SITE SELECTION AND STUDY DESIGN	4
	3.2	SUBSTRATE MAPPING	14
	3.3	VEGETATION MAPPING	15
	3.4	ZOOPLANKTON SAMPLING	16
	3.5	BENTHIC INVERTEBRATE SAMPLING 3.5.1 FIELD METHODS 3.5.2 LABORATORY METHODS	16 16 18
	3.6	FISH SAMPLING 3.6.1 FIELD METHODS 3.6.2 LABORATORY METHODS	21 21 22
4.	RESU	LTS	24
	4.1	SUBSTRATE COMPOSITION	24
	4.2	VEGETATION DISTRIBUTION	28
	4.3	ZOOPLANKTON	34
	4.4	BENTHIC INVERTEBRATES	38
	4.5	FISH 4.5.1 TIMING AND DISTRIBUTION ON THE FORESHORE	52 52
		4.5.1.1 CHINOOK SALMON 4.5.1.2 CHUM SALMON 4.5.1.3 COHO SALMON 4.5.1.4 PINK SALMON	56 57 58

4.5.2 LENGTH DISTRIBUTION 4.5.2.1 CHINOOK SALMON	60 60
4.5.2.3 COHO SALMON	64
4.5.2.4 PINK SALMON	68
4.5.3 JUVENILE SALMON STOMACH CONTENTS	68
DISCUSSION	76
CONCLUSIONS AND RECOMMENDATIONS	83
REFERENCES	86
TAXONOMIC REFERENCES	88
APPENDICES	90

5.

6.

LIST OF TABLES

Table		Page
1	Site Locations for the Campbell River Foreshore Study	5
2	Modified Wentworth Scale	14
3	List of Invertebrates Found in Campbell River Foreshore Plankton Tows in April, May and June, 1982	35
4	List of Invertebrates Found in Campbell River Foreshore Benthic Samples in April, May and June, 1982	39
5	Species List of Fish Captured in Campbell River Foreshore by Beach Seining in April - October, 1982	53
6	List of Invertebrates Found in Salmonid Stomachs	71
	and June. 1982	

37 -*:

ą.,

LIST OF FIGURES

Figure		Page
1 1	Campbell River Foreshore; The Study Area	3
2	Campbell River Foreshore Fish Sampling (Beach Seining) Sites and Sampling Reaches	6
2A	Photos of Study Sites (i) Site 1 (v) Site 5 (ix) Between (ii) Site 3 (vi) Site 6 Site 10 & 11 (iii) Site 3 (vii) Site 7A (Underwater) (vi) Site 4 (viii) Site 7B (x) Site 11	7`
3	Campbell River Foreshore Zooplankton, Benthic, Invertebrate and Salmonid Stomach Sampling Sites	17
3A	The Galen Invertebrate Sampler (i) on land (ii) underwater	19
4	Substrate Composition (%) of the Campbell River Foreshore Using the Modified Wentworth Scale	26
5	Kelp (<u>Nereocystis luetkeana</u>) and Eelgrass (<u>Zostera marina</u>) Distribution	30
6	Vegetation Distribution (Excluding Kelp and Eelgrass)	33
7	Mean Number of Invertebrates Found in Plankton Tows Collected in April, 1982	37
8	Mean Number of Invertebrates Found in Plankton Tows Collected in May, 1982	37
9	Mean Number of Invertebrates Found in Plankton Tows Collected in June, 1982	37
10	Mean Number of Invertebrates Per Meter Squared in Campbell River Foreshore Samples Collected in April, 1982	44
11	Mean Number of Invertebrates Per Meter Squared in Campbell River Foreshore Samples Collected in May, 1982	45
12	Mean Number of Invertebrates Per Meter Squared in Campbell River Foreshore Samples Collected in	46

LIST OF FIGURES

Figure	:	Page
13	Mean Weight of Invertebrates* Per Meter Squared in Campbell River Foreshore Samples Collected in April, 1982	47
14	Mean Weight of Invertebrates* Per Meter Squared in Campbell River Foreshore Samples Collected in May, 1982	48
15	Mean Weight of Invertebrates* Per Meter Squared in Campbell River Foreshore Samples Collected in June, 1982	49
16	Salmonid Presence in Reach 1 (Campbell River Foreshore)	54
17	Salmonid Presence in Reach 2 (Campbell River Foreshore)	54
18	Salmonid Presence in Reach 3 (Campbell River Foreshore)	55
19	Salmonid Presence in Reach 4 (Campbell River Foreshore)	55
20	Length Distribution of Chinook Salmon Sampled in the Campbell River Foreshore a) May, 1982 b) June, 1982 c) July, 1982 d) August, 1982 e) September, 1982 f) October, 1982	61
21	Length Distribution of Chum Salmon Sampled in the Campbell River Foreshore a) April, 1982 b) May, 1982 c) July, 1982	65
22	Length Distribution of Coho Salmon Sampled in the Campbell River Foreshore a) May, 1982 b) June, 1982	67
* 17	udor overhead the off 2	

* Excludes organisms greater than 9.5 mm^2 or with calcareous shells.

LIST OF FIGURES

Figure		Page
23	Length Distribution of Pink Salmon Sampled in the Campbell River Foreshore a) April, 1982 b) May, 1982 c) June, 1982	69 [°]
24	Mean Number of Invertebrates Per Fish in Stomach Samples Collected in April, 1982	73
25	Mean Number of Invertebrates Per Fish in Stomach Samples Collected in May, 1982	73
26	Mean Number of Invertebrates Per Fish in Stomach Samples Collected in June, 1982 a) Site 3 b) Site 7A c) Site 11	74

LIST OF APPENDICES

Appe	endi		Page
I.	a	Invertebrate Subsampling Method	91
	b	Calculation of Benthic Standing Crop.	93
II.	a	Invertebrates Found in Campbell River Foreshore Plankton Tows Collected in April, 1982	94
	b	Invertebrates Found in Campbell River Foreshore Plankton Tows Collected in May, 1982	95
	C	Invertebrates Found in Campbell River Foreshore Plankton Tows Collected in June, 1982	96
III.	a	Invertebrates Found in Campbell Rivér Foreshore Benthic Samples in April, 1982 (#•m ⁻²); (i) Mid Tidal Zone, (ii) Low Tidal Zone	97
	b	Invertebrates Found in Campbell River Foreshore Benthic Samples in May, 1982 (#•m ⁻²); (i) Mid Tidal Zone, (ii) Low Tidal Zone	102
	С	Invertebrates Found in Campbell River Foreshore Benthic Samples in June, 1982 (#•m ⁻²); (i) Mid Tidal Zone, (ii) Low Tidal Zone	108
	đ	Polychaetes Identified in the Benthic Samples Collected From Site 7A in the Campbell River Foreshore (#•m ⁻²)	114
	e	Biomass of Invertebrates Found in Campbell River Foreshoreshore Benthic Samples (g•m ⁻²)	115
	f	Summary of Benthic Invertebrate Analyses of Variance.	117
IV.	a	Catch Data for All Fish Species Sampled From the Campbell River Foreshore From April 15 to October 27, 1982	118
	b	Quinsam Hatchery Juvenile Salmonid Release Data for 1982	128
	С	Marked Juvenile Salmonids Caught in the Campbell River Foreshore During the Study	129
	đ	Results of Salmonid Scale Analysis for Age	130

LIST OF APPENDICES

.

		Page
a	Length Distribution of Chinook Salmon Sampled in the Campbell River Foreshore (By Month)	131
b	Length Distribution of Chum Salmon Sampled in the Campbell River Foreshore (By Month)	134
С	Length Distribution of Coho Salmon Sampled in the Campbell River Foreshore (By Month)	136
đ	Length Distribution of Pink Salmon Sampled in the Campbell River Foreshore (By Month)	138
	Diets of Juvenile Salmon Collected From the Campbell River Foreshore and the Indices of Relative Importance (I.R.I.)	139
	a b c đ	 a Length Distribution of Chinook Salmon Sampled in the Campbell River Foreshore (By Month) b Length Distribution of Chum Salmon Sampled in the Campbell River Foreshore (By Month) c Length Distribution of Coho Salmon Sampled in the Campbell River Foreshore (By Month) d Length Distribution of Pink Salmon Sampled in the Campbell River Foreshore (By Month) d Length Distribution of Pink Salmon Sampled in the Campbell River Foreshore (By Month) Diets of Juvenile Salmon Collected From the Campbell River Foreshore and the Indices of Relative Importance (I.R.I.)

viii

Acknowledgements

This project was the combined efforts of the Federal Fisheries (Habitat Management Division, Water Use Unit) staff and participants of the FEBAP Project #567. We would like to thank all those involved with this study.

The project was designed by several staff in the foreshore group of the Water Use Unit. K. Conlin and R. Russell initially directed Water Use Unit staff with the field work before turning the project over to the FEBAP program. S. Hamilton and R. McNaughton then supervised the field work which was carried out by the following people: B. Clarke, D. DuPuis, D. Englund, C. Franks, T. Hamilton, P. Jespersen, and S. Quintrell. The lab analysis was initially organized by U. Orr and was carried out by K. Burke, G. Gainer, M. Graham, L. Grenier, J. McNicol, J. Tuytel and F. Williams.

We would also like to thank P. Dickenscheid, J. Kroeger, F. Leung and A. Montecino for drafting of maps and graphs, and L. deMoor, C. Reale, Donna Lee and the Habitat Management Support Unit for typing the manuscript.

Finally, we would like to thank C. Levings, R. Russell, G. Ennis and the Water Use Unit staff for their guidance and criticism of the manuscript. Special thanks goes to K. Conlin for guidance and support throughout the project.

> Brenda Waddell (Project Manager) Steve Markowski (Lab Supervisor)

1. INTRODUCTION

The Campbell River area has long been known as a fishing cap-It serves as an important operations base for the commerital. cial fishing industry and is noted for its recreational fishing. The marine foreshore is heavily utilized by salmon fry from Quinsam Hatchery and by wild stocks from Campbell River and other coastal rivers. Along with the increasing popularity of the area, however, there has been an increase in development. The marine foreshore north of Campbell River, including Duncan Bay and Menzies Bay, is subject to increasing industrial development pressure while the southern foreshore is subject to urbanization, including proposals for hotel and marina construction. Most of these proposals involve foreshore filling and dredging of the intertidal areas.

To date, very little biophysical habitat information has been collected in the Campbell River foreshore area. In order to augment existing biophysical information, a program was undertaken in spring and summer 1982 to assess benthic productivity and juvenile salmonid presence and utilization of the foreshore area. In addition, resource mapping of substrate composition and aquatic vegetation was undertaken. Laboratory analysis of samples of zooplankton, benthic invertebrates, fish and fish stomach contents followed the field program.

- 1 -

The purpose of this study was to enable the Department of Fisheries and Oceans to identify productive foreshore areas requiring habitat protection/management efforts, and to help direct planners and/or developers to less environmentally sensitive areas.

2. STUDY AREA

The community of Campbell River is located on the east coast of central Vancouver Island and the Campbell River flows into the southern end of Discovery Passage. The estuary is protected from the open northern waters of the Strait of Georgia by Quadra Island. (See Figure 1.)

For the purpose of this report, the study area extended from Willow Point to Seymour Narrows including Menzies Bay, but excluded the Campbell River estuary. The Quadra Island foreshore was also surveyed along this portion of Discovery Passage (Seymour Narrows to Cape Mudge).

Strong tidal streams occur in Discovery Passage with speeds of up to 10 knots (18 km/hr) (CBA Engineering Ltd., 1980). Seymour Narrows is particularly hazardous, with its treacherous eddies,

intensive turbulence and strong tidal currents, which may exceed 15 knots (27 Km/hr.) (Bell and Thompson, 1977).

The Campbell River drains an area of 1,741 km² southwest of the town, and is the third largest river on Vancouver Island. The Quinsam River flows into the Campbell River 3 km upstream from the estuary, and drains an area of 280 km² (CBA Engineering Ltd., 1980). The Quinsam Hatchery is located on the Quinsam River approximately 1.5 km upstream from where it joins the Campbell River. The five species of Pacific salmon, steelhead and cuttrout, and Dolly Varden char are all throat found in the Campbell/Quinsam River system. Sockeye salmon are present in the system only in low numbers. In addition to wild fish; the hatchery released approximately 765,500 chinook fry, 71,500 chum fry, 1,280,000 coho smolts, 5,294,000 pink fry and 17,500 steelhead smolts in the spring of 1982.

3 METHODS AND MATERIALS

3.1 Beach Seine and Benthic Site Selection and Study Design

Sites within the study area were selected for a variety of reasons. Beach seine Sites 1 to 7A and 8 to 11 were previously selected by the Habitat Management Division in conjunction with

- 4 -

another study (Raymond et al., in prep.) and the Water Use Unit added Sites 7B and 12 to these. Sites 22 to 24 correspond to sites currently being studied by Dr. C. Levings (Fisheries Research Branch, West Vancouver Laboratory). Sites M1 to M4 were located in Menzies Bay and were selected by the Water Use Unit to observe whether this area served as а long-term rearing area for juvenile salmonids. See Figure 2 and Table 1 for site locations (See also Figure 2A). All of these sites were beach seined to determine fish utilization.

Table 1 Site Locations for the Campbell River Foreshore Study

Site #

1	South of Willow Point (launching ramp)
2	Willow Point
3	South of Simm's Creek
4	Island Inn
5	Shoreline Motel (launching ramp)
6	Austrian Chalet
7A	Bay South of Hidden Harbour
7B	Hidden Harbour
8	Anchor Inn
9	South of Sewer
10	North of Ferry Berth
11	Indian Cemetery

- 5 -

Figure 2A

(i) Site 1

(ii) Site 3

m

Figure 2A (iii) Site 3 Figure 2A

(vi) Site 4

(v) Site 5

- - - ? -

Figure 2A

(vi) Site 6

l

(vii) Site 7A

Figure 2A (viii) Site 7B Figure 2A

(x) Between Sites 10 and 11 (underwater)

1

(x) Site 11

12 Tip of Tyee Spit

22 Painter's Lodge

23 Middle Point

24 Nymphe Cove

M1 Menzies Bay

M2 Menzies Bay

M3 Menzies Bay

M4 Menzies Bay

Of the above-mentioned sites, three benthic sampling sites were selected to be representatives of three broad types of habitat characteristic of the area. These were:

(1) Site 3 (sand/fine gravel);

(2) Site 7A (cobble/boulder);

(3) Site 11 (coarse gravel/cobble).

At these sites benthic samples, zooplankton samples and salmonid stomach samples were obtained concurrently with the fish sampling. This was to determine differences between the three habitats in terms of overall community structure, species differences, standing crop and juvenile salmonid utilization.

The study area was divided into four reaches in order to group the fish sampling data. In this way differences in salmonid presence in terms of distance from the estuary may be determined. Reaches 1, 2 and 3 refer to the study area south of the estuary whereas the area north of the estuary is encompassed by Reach 4. Reaches 1, 2 and 3 each include one of the sites sampled for benthos.

Reach #	<u>Beach Seine Sites</u>	Benthic Sampling Sites
1	1 - 5	3
2	6 - 9	7A
3	10 - 12	11
4	22 - 24 &	-
	M1 – M4	· · · · · · · · · · · · · · · · · · ·

3.2 Substrate Mapping

The foreshore in the entire study area was examined at low tide and its substrate composition was recorded. A modified Wentworth scale, as described in Table 2, was used to classify the different substrate types.

Table 2 - Modified Wentworth Scale

Code	Description	Size	Range	
		(mm)	(inches)	
1	Silt - Clay	0.62		
2	Sand	0.62- 2		

- 14 -

3	Pea Gravel	l	2 - 16	0.1- 0.6
	Fine Gravel			
•	Medium Gravel	J		,
4	Coarse Gravel	7	16 - 64	0.6- 2.5
	Very Coarse Gravel	J		
5	Small Cobble		64 - 125	2.5-5
6	Large Cobbl <u>e</u>		125 - 250	5 - 10
7	Boulder		250+	10+
8	Bedrock			

3.3 Vegetation Mapping

Distribution and density of aquatic vegetation was mapped over the entire study area by visual observations from a boat and from the foreshore at low tide. Low level false colour infrared photographs (Integrated Resources Photography Ltd.) (altitude 2,500 ft., scale 1:5,000) flown at 1400 hr. July 22, 1982 at an approximate 1.2 m tide (based on Campbell River tide tables) were also used as an aid to mapping the area from Willow Point to Painter's Lodge (north of the Campbell River estuary).

Kelp bed densities were noted using the following relative scale:

D1 - Sparse

D2 - Moderate

15 -

D3 - Dense

D4 - Extremely Dense

3.4 Zooplankton Sampling

Zooplankton samples were collected at Sites 3, 7A and 11 (see Figure 3) in April, May and June, 1982 (concurrent with benthic sampling). A Miller drift sampler with a 250 jum mesh collecting bag and a 12 cm diameter opening was towed horizontally for five minutes, 50 cm below the water surface. Although the volume of water sampled was not measured, the speed of the boat and the sampling time was the same for all of the samples.

Invertebrate samples were preserved in 80% isopropyl alcohol and analyzed at the DFO West Vancouver Laboratory. For lab analysis procedure, refer to Section 3.5.2.

3.5 Benthic Invertebrate Sampling

3.5.1 Field Methods

Benthic samples were collected during three sampling periods in the spring of 1982 (April, May and June) at Sites 3, 7A and 11 (as previously mentioned).

At each site, two sampling zones were established, one at the extreme low tide zone and a second at the mid tide level. Five replicate samples were collected from the two zones at each of the three sites, during the three sampling periods. Sample's were collected in water depths varying from 0.3 to 1.3 meters (1 to 4 feet).

A Galen suction sampler was used to collect both the benthic and epibenthic fauna (sampler area = 0.164 m^2). The sediment encompassed by the sampler was stirred to an approximate depth of ten cm in order to send the invertebrates into suspension. A battery powered immersible bilge pump attached to the sampler drew the suspended invertebrates into a 250 jum mesh nytex collecting bag with an attached plastic jar (see Figure 3A). Encrusting taxa, such as mussels, barnacles, etc., if present, were not scraped from enclosed rocks. Therefore, the actual standing crops may be greater than the results indicate. To standardize sampling effort all samples were collected for a two minute pumping period. The samples were then preserved in 80% isopropyl alcohol and sent to the DFO lab in West Vancouver for analysis.

3.5.2 Laboratory Methods

To facilitate sorting of fauna from debris, all invertebrate samples were stained with rose bengal for at least 24 hours prior to

- 18 -

Figure 3A The Galen Invertebrate Sampler

(i) on land

(ii) underwater

analysis. To eliminate any incidental organisms smaller than the Galen sampler's mesh collecting bag or the Miller sampler's mesh, benthic and plankton samples were poured through a 250 um sieve. When a large amount of sediment was present invertebrates were separated from the rest of the sample by elutriation, a process where the sample was placed in a shallow pan and agitated and flushed with a stream of water. This allowed all material less dense than the sediment, (ie. benthic invertebrates) to be floated out of the pan and into a collecting beaker. This was repeated several times for each sample, so that losses were less than 5 percent.

All of the benthic samples collected from Site 3 and all of the plankton samples collected in June were analyzed completely. However, because of high invertebrate densities, all other benthic and plankton samples were subsampled using a method developed by Dr. H. Mundie (Fisheries Research Branch, Pacific Biological Station. Nanaimo). This technique involved distributing a sample evenly over a collection of vials in the bottom of a large bucket filled with water and randomly selecting a statistically valid number of vials for analysis. This method is described in Appendix Ia.

For the method of calculation of the benthic standing crop, refer to Appendix Ib. The total number of invertebrates • m² was the standard unit used for comparative purposes.

- 20 -

Four of the five sample replicates were dried and weighed for the determination of biomass expressed as $q \cdot m^{-2}$. Invertebrates important as fish food such as gammarid amphipods, harpacticoid copepods, and cyclopoid copepods were weighed separately from the rest of the organisms present in each sample. Shelled organisms and animals which could not pass through a 9.5mm² sieve were excluded from the biomass measurements. A series of analysis of variance tests (ANOVA's) were conducted comparing invertebrate densities and biomass between the three sites and between the two tidal zones during each of the three time periods. In addition, ANOVA's were conducted to assess significant changes in densities at each specific site over time. When a significant difference was recorded the Student Neuman Keuls multiple range test was utilized to specify which sites or sampling periods were significantly different.

3.6 Fish Sampling

3.6.1 Field Methods

Fish sampling was concentrated in the area between Willow Point and Tyee Spit (see Figure 2, Sites 1 - 12). Sampling was not performed at Site 8 because the substrate was unsuitable for beach seining. Sampling was initiated in mid-April, 1982 and continued to mid-October, 1982. Sampling north of the estuary (Figure 2, Sites 22 - 23, M1 - M4) commenced in late August, 1982 and continued until mid-October, 1982. Sampling was conducted once a month from April through July, 1982 and approximately once a week from August through October, 1982.

During each sampling period, two replicate samples were obtained at each site using a 15 m (50 ft.) by 2 m (6 ft.) beach seine (1/8" mesh bunt and 1/4" mesh wings). Seining was conducted at high tide because the substrate was more suitable at this level. Most of the high tides occurred at night.

Beach seining was also conducted at Sites 3, 7A and 11 (Figure 3) concurrently with all benthic sampling in order to collect salmonids for stomach analysis. These fish were preserved in 10% formalin and analyzed in the lab.

3.6.2 Laboratory Methods

The preserved fish were rinsed with fresh water and blotted dry. Fork lengths were measured to the nearest millimeter and body weights were measured to the nearest milligram.

Scale samples were taken from a few chinook and coho salmon and analyzed by the DFO scale lab (1090 West Pender, Vancouver) to determine age. Stomach samples were taken from 10 fish of each species collected at each specific site and collecting period (unless fewer were available). The stomach region extending from the esophagus to the pyloric caeca was removed and stored in 80% isopropyl alcohol.

Prior to analysis, each full stomach was placed on a damp filter paper and suction dried for a period of two minutes in order to obtain a standard moisture content. The stomach was then weighed on a Mettler electronic balance. Following this, the food contents were removed and the empty stomach was reweighed in order to obtain the weight of the stomach contents.

All food items were measured to the nearest millimeter. Most were identified to the order level. Amphipods were identified to the species level whenever possible.

To obtain the biomass of the invertebrate orders, food items were grouped to order, dried at a temperature of 90°C for 24 to 96 hours and then weighed. Digested material which could not be identified was not weighed. Indices of relative importance (I.R.I.) of each food item were then calculated according to the formula:

- 23 -

I.R.I = (%N + %W)%FO

where %N = percent by number
%W = percent by dry weight
%FO= percent frequency of occurrence.
(from Pinkas et al. 1971)

This method of stomach analysis does not take into account varying rates of digestion and evacuation among different taxa. Soft bodied animals such as annelids can be expected to be digested at a much faster rate than harder bodied crustacea. Bias can therefore be expected to favor harder bodied prey items.

Fish stomachs were initially preserved in 10% formalin, then later transferred to 80% isopropanol. In both formalin and isopropanol soluable materials such as lipids will dissolve out of the organisms into solution (Gonor <u>et al</u>. 1978). Therefore, dry weights for preserved samples will be less than for unpreserved samples.

4. **RESULTS**

4.1 <u>Substrate Composition</u>

Substrate composition is a major factor in determining the floral

and faunal composition of a foreshore biological community. The destruction or removal of a particular substrate type means the elimination of the particular associated vegetation and invertebrates. Therefore, substrate composition is a valuable indicator of foreshore productivity.

The substrate composition of the study area is presented in Figure 4.

The strong currents of Discovery Passage have a direct influence on the substrate composition of the study area. In general, areas exposed to the current consist mainly of bedrock and large boulders. The finer substrates (<u>ie</u>. silt, sand and gravel) are swept from the exposed areas and are deposited in the more sheltered areas.

From Willow Point (Sec.1) north to the sewer (Sec. 15) the surficial substrate consists generally of large cobble and boulders. The exceptions are the beach at Site 3 (Sec. 5), which consisted of sand in the lower intertidal and sandstone in the upper intertidal zone, and Hidden Harbour (Sec. 13), a very sheltered area comprised entirely of silt.

North of the sewer there has been a man-made fill (marine breakwaters) composed of large boulders. The substrate north of the

- 25 -

ferry terminal to the tip of the Tyee Spit (Sec. 16) consists mostly of coarse gravel. The foreshore sampled south of Painter's Lodge (ie. the estuary; Sec. 17) consists generally of sand, whereas the area north of Painter's Lodge to Orange Point (Sec. 18) contains a mixture of sand, gravel and cobble. A man-made fill consisting of large boulders makes up the foreshore of the Crown Zellerbach Paper Mill (Sec. 19). Duncan Bay (Sec. 20) is composed of 100% sand and the foreshore north of this area to Huntingford Point (Sec. 30) consists of beaches with a mixture of sand, gravel, cobble and boulders. Bedrock exists at the more exposed areas of this stretch (ie. Middle Point and Race Point; Sec. 25 and 28).

The substrate of the Menzies Bay foreshore (Sec. 31 - 38) is generally of a finer consistency than the last stretch (Sec. 21-30). It is composed mostly of sand and gravel with some cobble and boulders near the booming grounds (Sec. 34 - 35a). The northeastern side of Menzies Bay and the outermost points of Nymphe Cove (Section 39 and 40b) consist of bedrock, but Nymphe Cove (Sec. 40) and Defender Shoal (Sec. 35b) consist almost entirely of silt.

The eastern side of Maud Island (Sec. 41) and the adjacent Quadra Island foreshore (Sec. 43 and 46) is comprised mostly of bedrock. The western side of Maud Island was not surveyed. Boul-

- 27 -

ders and large cobble dominate the stretch of Quadra Island foreshore that extends from the point opposite Yellow Island (Sec. 47) to north of the fish plant (Sec. 49). Bedrock again makes up a large proportion of the foreshore from the fish plant (Sec. 49c) to the southern point of Quathiaski Cove (Sec. 83) and most of the foreshore of the islands along the Quadra Island coastline.

Most of the sheltered coves on Quadra Island within the study area (ex. Saltwater Lagoon - Sec. 44 and 44a; Gowlland Harbour -Sec. 62 - 65; Unkak Cove - Sec. 66; Quathiaski Cove - Sec. 82; and other smaller coves) have sandy or silty substrates. From the point south of Quathiaski Cove (Sec. 84) to Cape Mudge (Sec. 90) the foreshore consists of a mixture of gravel, cobble and boulders. The substrate was not examined beyond this point.

4.2 Vegetation Distribution

Foreshore vegetation communities including kelp and eelgrass beds are a major contributor to biological productivity as they are the main source of detritus (decayed organic matter) on which many of the nearshore food webs are based. Vegetation may also reduce currents and bind surface sediments reducing surface erosion and accumulating inorganic and organic material within the vegetation bed. The increased surface area provided by

- 28 -

macroalgae and seagrasses support epiphytes (flora and fauna attached to the plants) which may exceed the biomass of the host plants (Odum, 1971). Microhabitats associated with holdfasts or rhizomes support an abundance of invertebrates. Finally, foreshore vegetation may provide a spawning substrate for Pacific herring and protection from predators for other fish species. For these reasons, vegetated foreshores are considered productive fish habitat for resident fish species and transient species such as juvenile salmon and herring (Dept. of Fisheries & Oceans, Habitat Management Division, Ucluelet Inlet Report, 1983).

Large kelp beds of the species <u>Nereocystis luetkeana</u> were found throughout most of the study area. Eelgrass beds (<u>Zostera</u> <u>marina</u>) were also found in several locations. Figure 5 shows the distribution of kelp and eelgrass beds and the relative densities of the kelp beds. (Note: Although two other kelp species occurred within the study area, <u>Alaria</u> sp. and <u>Laminaria</u> sp., only <u>Nereocystis</u> is shown in Figure 5. The other two species are noted in Figure 6.)

<u>Nereocystis</u> <u>luetkeana</u>, an annual kelp, may grow in waters up to 18 m deep, but is usually found from 7 - 9 m below zero tide level, attached to rocky bottoms. It is able to tolerate strong currents and exposure to surf. However, the holdfasts must attach to rocks of a size sufficiently large enough to withstand

FIG 5 - KELP (Nereocytis luetkeana) AND EELGRASS (Zostera marina) DISTRIBUTION

the stresses which waves can impose on these large plants (Dome Petroleum Ltd., 1981).

A very prominent, continuous strip of <u>Nereocystis</u> was observed to extend from Site 9 south to Willow Point and beyond. Another strip occurred slightly north of Painter's Lodge and continued northward to Orange Point. Both of these <u>Nereocystis</u> strips had several man-made pathways cut through them for boat access to public and private ramps. Another kelp strip began north of Duncan Bay and followed the coastline northward to the outer limits of Menzies Bay at Huntingford Point. Patches also occurred around Stephenson Point on the eastern side of Menzies Bay.

Maud Island vegetation was not surveyed. A long strip of individual kelp beds were observed along the Quadra Island coastline from the outer limits of Saltwater Lagoon south to the northern point of Gowlland Harbour. Most of these beds were smaller patches of kelp in relation to those found on the other side of Discovery Passage. Several small patches were also observed on the west side of Gowlland Island, around Steep and Grouse Islands, and south of Gowlland Harbour to the south side of Quathiaski Cove. From this point south to the lighthouse near Cape Mudge the beds became longer and wider. The vegetation was not examined beyond Cape Mudge.

- 31 -

In general, the eelgrass <u>Zostera marina</u> is most abundant in habi-[#] tats characterized by salinities of 10.0 to 30.0 parts per thousand, temperatures of 10^0 to 20^0 C, substrates of sand or silty sand, low exposure and in subtidal and very low intertidal zones (Campbell River, 1.2 to -4.0 meters). Desiccation of the plant, a function of tidal exposure and substrate type, determines the upper limit of <u>Z. marina</u> growth, while the lower limit is primarily controlled by light availability (Raymond <u>et al</u>., in prep.).

The most prominent eelgrass beds occurred near the Campbell River estuary, from the breakwaters north of Site 9 to Painter's Lodge (Site 22). Menzies Bay also had several large beds of eelgrass, especially on Defender Shoal. Small patches were also observed in Nymphe Cove, on the Quadra Island foreshore opposite Yellow Island and opposite Entrance Rock, in the entrances to Saltwater Lagoon and Unkak Cove, and south of Yaculta.

The presence and relative densities of aquatic vegetation other than <u>Nereocystis</u> and <u>Zostera</u> is displayed in Figure 6. (Note: In Figure 6, unidentified brown and green algae does not exclude <u>Fucus</u> and <u>Ulva</u>. Areas where observations of vegetation were not recorded are left with no vegetation designation (<u>ie.</u> blank) and areas which were void of vegetation were recorded as "x").

· 32 -

- B Brown algae
- F Fucus sp. rockweed (Brown)
- G Green algae
- GE Green epiphyte (on Kelp stipes)
- GR Grasses
- Laminaria sp. (Kelp)
- U Ulva sp. (Green)
- X Unvegetated open area
- / sparse
- 2 scattered, patchy
- 3 moderate
- 4 dense

FIG 6 - VEGETATION DISTRIBUTION (excluding Kelp and Eelgrass)

<u>Fucus</u> sp. occurred on rocky substrate in the high intertidal zone over most of the study area. <u>Ulva</u> sp. was also common, occurring in the lower intertidal zones. Several species of red algae were also observed in many locations but were not recorded in the field notes. Species identification of the vegetation was not required for the purposes of this study. However, it was noted in the Campbell River Estuary Report (Bell and Thompson, 1977) that <u>Chondrus</u>, <u>Enteromorpha</u>, <u>Porphyra</u>, <u>Iridaea</u> and <u>Petrocelis</u> were observed as well as the genera noted in our study.

4.3 Zooplankton

Invertebrates which inhabit the water column, the zooplankton, are an important part of the neritic food web, as they transfer energy from the primary producers (phytoplankton) to the higher trophic levels (planktivorous fish). The calanoid copepod, a neritic invertebrate, is particularly important as a food source for Pacific herring and juvenile salmonids (Simenstad et al., 1979).

A list of all invertebrates found in plankton tows is given in Table 3.

- 34 -

TABLE 3 - LIST OF INVERTEBRATES FOUND IN CAMPBELL RIVER FORESHORE PLANKTON TOWS IN APRIL, MAY AND JUNE, 1982

ORDER	FAMILY	GENUS SPECIES
Amphipoda	Caprellidae	
(Gammaridea)	Calliopiidae	<u>Calliopiella pratti</u>
	Pontogeniidae	Accedomoera vagor Pontogeneia rostrata
(Hyperiidea)	Unknown	
Cirrepedia **	Cyprid Larvae	
Calanoida		
Decapoda		
Diptera	Chironomidae	
Insecta *		•
Isopoda	(Cryptoniscan larvae)	
Nematoda		•
Malacostraca **		
Osteicthyes *		
Polychaeta *		
Scyphozoa		
<pre>* Class ** Subclass</pre>	· ·	

A Phylum

Figures 7, 8 and 9 show the distribution and abundance of the invertebrates found in the plankton samples collected in April, May and June, 1982 respectively. More detailed results may be found in Appendices II a, b and c.

The number of invertebrates/sample decreased by a factor of 10 in June from the two earlier samples. (Mean number of invertebrates per site $\approx 1.6 \times 10^2$ in April and May, and $\approx 1.6 \times 10^1$ in June.) In general, copepods were found to be numerically dominant in the plankton samples. Calanoid copepods were generally the dominant invertebrate in the April samples, whereas other copepods (harpacticoid and cyclopoid) appear to have dominated the samples collected in May and June. One exception to this rule is Site 11 in which the highest number of calanoid copepods were found in May. Note that only one sample was collected at each site during each sampling period.

The decline of zooplankton in June was probably due to a decline of a major food source, the phytoplankton. Cushing (1964) found that the decline of the spring bloom in the North Sea is closely related to overconsumption by <u>Calanus</u>, a calanoid copepod. With the decline of its major food source, <u>Calanus</u> populations also decline rapidly.

- 36 -

FIGURE 8.

MEAN NUMBER OF INVERTEBRATES FOUND IN Plankton tows collected in May 1982.

-37-

4.4 Benthic Invertebrates

invertebrates inhabit Benthic the surface of the aquatic substrate (epifauna) and the sediment proper (infauna). Many feed on bacteria trapped in the sediment and detritus (decayed organic matter) derived from algae and macrophytes. Similar to the zooplankton, benthic invertebrates transfer energy from the primary producers to the higher trophic levels (fish). Gammarid amphipods and harpacticoid copepods, the major detritivorous crustaceans found in the benthos, are important in juvenile salmonid diets. (Simenstad et al., 1979; Sibert et al., 1979).

38

A list of all invertebrates found in the benthic samples is shown in Table 4. Although invertebrates other than those found in the benthic and zooplankton samples were not surveyed for the purpose of this study, a few common taxa were observed. For example, barnacles and mussels were observed on the rocky shores. In the open sandy areas amongst the eelgrass beds south of the estuary (between Sites 10 and 11) there were dense populations of sanddollars. The starfish <u>Pisaster ochraceous</u> was observed in between Sites 10 and 11, above the eelgrass beds (Figure 2Aix). Other invertebrates inhabitating Discovery Passage near Campbell River are mentioned in the Campbell River Estuary Report (Bell and Thompson, 1977). TABLE 4 -

LIST

OF INVERTEBRATES FOUND TN CAMPBELL RIVER FORESHORE BENTHIC SAMPLES IN APRIL, MAY AND JUNE, 1982

ORDER

FAMILY

GENUS SPECIES

Acarina

Amphipoda

Ampithoidae

Aoridae

Calliopiidae

Caprellidae

Corophiidae Gammaridae Hyalidae

Ischyroceridae Pontogeniidae

Photidae Pleustidae

Phoxocephalidae Podoceridae Oedicerotidae Talitridae Gammaridea ..

Anthozoa *

Archaeogastropoda

Asteroidea *

Bivalvia 📥

Cardiidae

Mytilidae

Amphithoe simulans Amphithoe lacertosa Amphithoe sp.

Aoroides columbiae

Calliopiella pratti Calliopius laeviusculus

Caprella alaskana Caprella laeviuscula

Corophium sp.

Melita sp.

Hyale plumulosa Hyale frequens Allorchestes angustus

Ischyrocerus sp.

Pontogeneia rostrata Paramoera mohri Accedomoera vagor

Photis brevipes

Pleustes depressa Pleusirus secorrus

Paraphoxus spinosus

Podocerus cristatus

Synchelidium shoemakeri

Clinocardium nuttalli

TABLE 4 (con't)

ORDER	FAMILY	GENUS SPECIES
Cirripedia **		
Copepoda **	Calanoida .	
	Cyclopoida .	
· · · ·	Harpacticoida .	
Cumacea	•	Cumella sp. Lamprops sp.
Decapoda	Grapsidae	Hemigrapsus oregonensis Hemigrapsus nudus
	Majidae	Pugettia producta Pugettia richii Mimulus foliatus
	Paguridae	Pagurus sp.
	Caridea	Crangon sp.
, ,	Brachyura	
•	Hippolytidae	Heptacaspus brevirostris
Diptera	Chironomidae	

Echinoidea

Gastropoda *

Insecta *

Isopoda

Idoteidae Janiridae Bopyridae Munnidae Sphaeromatidae

Nematocera .

<u>Idotea</u> sp. Janira sp.

<u>Munna</u> sp. <u>Gnorimosphaeroma</u> sp.

Malacostraca **

ORE)ER

Nematoda

Nemertea

Nudibranchia

Oligochaeta 🕈

Ostracoda **

Ophiuroidea **

Nemertinea

Mesogastropoda

Osteichthyes *

Polychaeta * (Site 7A only) Cottidae Stichaeidae Arabellidae

Naticidae

FAMILY

.

Capitellidae

Chrysopetalidae

Dorvilleidae

Glyceridae

Goniadidae

Hesionidae

Lumbrineridae

Nereidae

Nerillidae Onuphidae Opheliidae

Phyllodocidae

Polynoidae

GENUS SPECIES

Polinices lewesii

Arabella sp.

Capitella capitata

Paleanotus bellis Paleanotus sp.

Dorvillea sp.

Hemipodus borealis

<u>Platynereis</u> <u>bicaniculata</u> <u>Nereis</u> sp.

Onuphis sp.

Armandia brevis

Eteone sp. Phyllodoce castanea TABLE 4 (con't)

ORDER

FAMILY

Siglionidae

Spionidae

Syllidae

GENUS SPECIES

Malacocerus glutaeus Spio sp.

Brania brevipharyngea Eusyllinae + Exogone sp. Syllis sp. Trypanosyllis sp.

Terebellidae

Errantia ..

Aphroditoidea ^O

Sipuncula^A

Tanaidacea

Paratanaidae

Leptochelia dubia

.

Anatanais normani

*	Class
**	Subclass
	Phylum
••	Suborder
-	Order
	Section
0	Super Family

+ Subfamily

, Tanaidae

Figures 10, 11 and 12 display the dominant invertebrates and show numbers found in the benthic samples collected in April, May and June, 1982 respectively. Appendices III a, b and c and d give more detailed results. Figures 13, 14 and 15 display the biomass results of the dominant invertebrates in April, May and June respectively; more detailed results are in Appendix IIIe. Appendix IIIf summarizes the results of the analyses of variance.

T-tests comparing invertebrate abundances revealed that consistent differences did not occur between the mid and low intertidal zones.

Harpacticoid copepods, cyclopoid copepods, and gammarid amphipods were the numerically predominant organisms present in the benthos. These taxa also formed the major portion of the biomass present at all three sites, except at the Site 7A mid tidal zone (large cobble/boulder site), where most of the biomass was composed of the shore crab <u>Hemigrapsus</u> sp. Other taxa consistently present in relatively small numbers at all benthic sites were cumacea, nematoda, oligochaeta, ostracoda, and polychaeta.

Except for the Site 7A mid tidal zone, total numbers of invertebrates increased from April to June at all three sites.

- 43 -

SITE 3

SITE 7A

SITE 11

APRIL 1982 CAMPBELL RIVER FORESHORE

30 -

2.8

MEAN WEIGHT OF INVERTEBRATES PER METER SQUARED IN BENTHIC SAMPLES * TOTAL GAMMARID AMPHIPODS COPEPODS HARPACTICOID & CYCLOPOID OTHERS

-47

SITE 3"

SITE 7A

SITE 11

LOW

49-

Total biomass* significantly increased from April to June at both the mid and low intertidal zones at Site #3.

In April, the highest densities of benchic invertebrates occurred at Site 7A (large cobble/boulder site) and Site 11 (coarse gravel/small cobble site), invertebrates at the Site 7A mid station being most abundant, (ave. $98,486/m^2$). Biomass totals were greatest at Site 11, with gammarid amphipods accounting for most of the weight.

In May, invertebrates were significantly more abundant at the Site 3 low tidal zone that either of the Site 7A or Site 11 low tidal zones. This was unusual because in general the Site 3 samples were devoid of vegetation and had low invertebrate densities in relation to Sites 7A and 11. However, the samples collected at Site 3 at the low tidal zone in May contained a great deal of eelgrass. It is not known whether the samples were taken in close proximity to a small patch of eelgrass or if this was drift vegetation, but it may partially explain the high invertebrate densities at Site 3. At the mid intertidal zones in May, invertebrates were most abundant at Site 7A and least abundant at Site 3.

* Excludes organisms greater than 9.5 mm² or with calcareous shells.

In June, Sites 7A and 11 tide low zones had greater numbers of invertebrates than the Site 3 low tide zone. At the mid intertidal zones invertebrates were most abundant at Site 11, with progressively less numbers at Site 3 and at Site 7A.

Epibenthic harpacticoid and cyclopoid copepods were the most abundant taxa numerically at all but one of the benthic stations, comprising from 34.7% to 85.5% of the invertebrate total. They also accounted for a sizeable portion of the biomass at each site. Abundance of epibenthic copepods increased at all sites from April to June reaching peak levels in June at Site 7A low tide (avg. $201,576 \cdot m^{-2}$), and Site 11 mid tide level (avg. $202,865 \cdot m^{-2}$). Copepod densities appeared to be related to the amount of algal debris present in the benthic samples.

Gammarid amphipods were much less abundant than the epibenthic copepods but still constituted a large portion of the biomass, particularly at Sites 7A and 11. At the Site 11 low tide station gammarid amphipods constituted the majority of the biomass in all three months. At Site 11 biomass due to gammarid amphipods did not sufficiently increase from April to June despite the fact that amphipods were far more abundant in June, indicating the recruitment of a large number of juveniles at the site. Twentytwo gammarid amphipod taxa were identified at the three sites. <u>Allorchestes angustus</u> was the most common amphipod present at

- 51 -

Site 3 while <u>Pontogeneia</u> sp., <u>Calliopiella pratti</u>, and <u>Ischyro-</u> <u>cerus</u> sp. were the dominant species present at Site 7A. <u>Accedo-</u> <u>moera vagor</u>, <u>Pontogeneia</u> sp., and <u>Calliopiella pratti</u> were most abundant at Site 11.

4.5 Fish

At least 26 species of fish were collected in the study area between April 14 and October 27, 1982 (Table 5). Included in the catches were chinook, chum, coho and pink salmon, pacific herring and coastal cutthroat trout. Appendix IVa gives the catch data for all fish species sampled from the Campbell River foreshore from April 15 to October 27, 1982. The Pacific Biological Station also carried out an extensive study, under the direction of Drs. C. Levings and C. McAllister, in the Campbell River area, concentrating on migration and rearing of hatchery fish stocks.

4.5.1 <u>Timing and Distribution on the Foreshore</u>

The timing of abundance of juvenile salmonids found in Reaches 1 - 4 is given in Figures 16 to 19 respectively; since beach seining was only undertaken once in each month of April, May, June and July, the data are incomplete and an accurate determination of the peak in migration from the estuary could not be obtained for any of the salmonid species.

TABLE 5 - SPECIES LIST OF FISH CAPTURED IN CAMPBELL RIVER FORESHORE BY BEACH SEINING IN APRIL - OCTOBER, 1982

COMMON NAME	FAMILY	GENUS SPECIES
Docific Howning	01	
Pacific Herring	Clupeidae	<u>Clupea harengus</u>
Pink Salmon	Salmonidae	Oncorhynchus gorbuscha
Chum Salmon	Salmonidae	Oncorhynchus keta
Coho Salmon	Salmonidae	Oncorhynchus kisutch
Chinook Salmon	Salmonidae	Oncorhynchus tshawytscha
Coastal Cutthroat Trout	Salmonidae	Salmo <u>clarki</u>
Pacific Tomcod	Gadidae	Microgadus proximus
Threespine Stickleback	Gasterosteidae	<u>Gasterosteus</u> <u>aculeatus</u>
Bay Pipefish	Syngnathidae	Syngnathus griseolineatus
Shiner Perch	Embiotocidae	Cymatogaster aggregata
Striped Seaperch	Embiotocidae	Embiotoca lateralis
Unidentified Surfperch	Embiotocidae	Unknown
Unidentified Blenny	Stichaeidae	Unknown
Penpoint Gunnel	Pholidae	Apodichthys flavidus
Pacific Sand Lance	Ammodytidae	Ammodytes hexapterus
Unidentified Rockfish	Scorpaenidae	Unknown
Kelp Greenling	Hexagrammidae	Hexagrammos decagrammus
Buffalo Sculpin	Cottidae	Enophrys bison
Pacific Staghorn Sculpin	Cottidae	Leptocottus armatus
Tidepool Sculpin	Cottidae	<u>Oligocottus maculosus</u>
Unidentified Sculpin	Cottidae	Unknown
Smooth Alligatorfish	Agonidae	Anoplagonus inermis
Unidentified Liparis	Cyclopteridae	Unknown (2 sp.)
Unidentified Sanddab	Bothidae	Citharichthys sp.
Starry Flounder	Pleuronectidae	<u>Platichthys</u> <u>stellatus</u>
C-O Sole	Pleuronectidae,	Pleuronichthys coenosus

FIGURE 17

250

0

APR.

5

2

躙

TOTAL CHINOOK

12.13 OCT.

11

10

SEP.

JUN. 2 MAY 6 AUG. PERIODS SAMPLING ANYTHING BELOW FISH / CATCH IS NOT SHOWN 2

4

JUL

-54-

4.5.1.1 Chinook Salmon

Chinook salmon were abundant from the June 21 - 23 (14.4-set $^{-1}$) to the August 6 - 7, 1982 (11.1-set $^{-1}$) sampling periods in the overall southern foreshore (Sites 1 to 12). If each reach is examined individually however, the results appear quite different. The catch per unit effort (CPUE = #/beach seine set) was high in all three reaches during the June 21 - 23 sampling period (Reach 1 = 14.5-set $^{-1}$; Reach 2 = 15.2-set $^{-1}$; Reach 3 = 27.0-set $^{-1}$), and remained high in the July 6 - 7 sampling period in Reach 1 (16.8-set $^{-1}$) and Reach 3 (15.8-set $^{-1}$). The juvenile chinook were most abundant in the foreshore in Reach 3 during the August 6 - 7 sampling period (29.3-set $^{-1}$). This was directly due to the fact that the highest single catch (67-set $^{-1}$) was obtained at Site 12 (closest to the estuary) during this time period.

A total of approximately 765,500 juvenile chinook were released from the Quinsam Hatchery on six occasions between May 5 and July 7, 1982 (from summary of hatchery release data; Appendix IV b).

Only one hatchery chinook with a coded-wire nosetag was recovered in May from the foreshore, but several more were captured from June to September, 1982 (Appendix IVc). Juvenile chinook were observed at all sampling sites in the southern foreshore at some time during the study. Unlike other salmonid species, chinook were still observed in the foreshore until mid-October, 1982 (end of sampling), although their numbers were very low $(0.25 - 1.0 \cdot \text{set}^{-1})$. After mid-September, 1982, most of the chinook observed were found in Menzies Bay.

Juvenile chinook scales were analyzed to determine age (Appendix IVd). Five chinook collected from Site 7B on June 21, 1982 were aged 0^+ (fry of the year). The scales revealed an even, fast, smooth growth with low stress, indicating a hatchery type of growth.

4.5.1.2 Chum Salmon

Chum salmon were most abundant in the southern foreshore in the June sampling period (103.7•set $^{-1}$ for the overall southern foreshore; Reach 1 = 108.8•set $^{-1}$; Reach 2 = 134.6•set $^{-1}$; Reach 3 = 120.5•set $^{-1}$), and were rare in the August 6 - 9 sampling period (0.07•set $^{-1}$ overall). There was also a high catch per unit effort in the July sampling period in Reach 1 (150.8•set $^{-1}$). The largest single catch was obtained in Reach 2 at Site 9 during June (370•set $^{-1}$). Chum were observed throughout the southern foreshore at some point during the study (the northern foreshore was only examined during the fall).

Quinsam Hatchery released approximately 71,500 untagged juvenile chum on June 9, 1982. The marked increase in the chum catch in the foreshore during the June sampling period was probably highly influenced by this release.

4.5.1.3 Coho Salmon

L___

Ē

------| | Coho salmon were abundant in the southern foreshore in the May $(70.5 \cdot \text{set}^{-1})$ and June $(42.0 \cdot \text{set}^{-1})$ sampling periods. This corresponds to the Quinsam Hatchery's release of approximately 1,280,000 coho from May 18 to June 2, 1982 (Appendix IVb). Reaches 3 and 2 showed their highest CPUE's in the May sampling period (168.5 \cdot \text{set}^{-1} and 68.3 \cdot \text{set}^{-1} respectively), whereas Reach 1 did not reach a peak in abundance until the June sampling period (108.0 \cdot \text{set}^{-1}). Coho were not observed in the foreshore after June 21 - 23, 1982 in Reaches 2 and 3, and were rare in Reach 1 in the July sampling period (0.8 \cdot \text{set}^{-1}). This indicates that the coho were probably travelling in large schools and moving quickly through the estuary and shallower foreshore areas. However, stomach samples indicate that the coho did utilize the food resources of the area.

Coho were observed in all areas of the southern foreshore during some time in the study. The highest single catch was obtained at
Reach 1, Site 1 in the June sampling period $(430 \cdot \text{set}^{-1})$. A few wild stock coho were observed in the foreshore in the April sampling period, but only in Reach 3 $(0.9 \cdot \text{set}^{-1})$.

Scale samples were analyzed and juvenile coho from Sites 7A and 11 collected on April 16 and May 26-27, 1982 were found to be aged 1⁺ (overwintered in freshwater, including hatchery fish). The scales revealed that those coho captured at Site 11 on May 27, 1982 had an even, fast, smooth growth with low stress, indicating a hatchery type of growth situation.

4.5.1.4 Pink Salmon

The highest CPUE'S for pink salmon in the foreshore were obtained in the April sampling period $(9.69 \cdot \text{set}^{-1})$ in the overall southern foreshore). However, beach seining should have commenced prior to this, and been undertaken more frequently to increase the accuracy in the determination of the peak migration from the estuary. The numbers were low in Reach 3 in April $(1.6 \cdot \text{set}^{-1})$ and higher in Reach 2 and 1 $(21.8 \cdot \text{set}^{-1})$ and $11.1 \cdot \text{set}^{-1}$ respectively), which indicates the majority of the pinks may have already migrated from the estuary by this time. The number of juvenile pink decreased in the May sampling period and were non-existent in Reach 3 at this time. However, the mean catch was $4.5 \cdot \text{set}^{-1}$ in Reach 3 during the June sampling period. Similar results were observed in 1980 (Raymond <u>et al.</u>, in prep.) and it was suggested that these were possibly fish from another river system.

Juvenile pinks were found in all areas sampled in April. The highest single catch was in Reach 2, at Site 7A in the April sampling period $(56 \cdot \text{set}^{-1})$.

Quinsam Hatchery released approximately 3,478,000 pinks from March 23 to April 20, 1982, and another 60,000 on April 30, 1982.

4.5.2 Length Distribution

4.5.2.1 Chinook Salmon

The length distribution of juvenile chinook salmon collected in the study area between April 14 and October 27, 1982 is given in Appendix Va and shown in Figure 20.

In April there was a small size range for juvenile chinook, their sizes varying from 35 to 45 mm standard length (avg. 41 mm). These data represent wild stocks only since the first hatchery release was not until May 5, 1982. FIGURE 20 LENGTH DISTRIBUTION OF CHINOOK SALMON

SAMPLED IN THE CAMPBELL RIVER FORESHORE

120 125 130 135 LENGTH (mm)

HO

145 150

0

10 115

The size range increased in May with standard lengths of 35 to 109 mm (avg. 67.3 mm). There was a large variation in the sizes which formed more than one size class rather than a normal distribution. Since the Quinsam Hatchery released chinook in May, the size classes may represent both hatchery and wild populations.

In June the lengths varied from 50 to 119 mm (avg. 85.7 mm) and were similar to the July data (55 to 119 mm) (avg. 95.9 mm). As in May, the lengths of juvenile chinook captured in June and July do not appear to fit a normal distribution pattern. The Quinsam Hatchery released juvenile chinook on six different occasions between May 5 and July 7, so the length data were probably comprised of wild stocks and hatchery fish from several different releases.

In August the chinook lengths varied from 70 to 169 mm (avg. 107.9 mm). At this time there appears to be a normal length distribution, indicating only a single population of fish was sampled. The majority of larger hatchery fish may have left the estuary and foreshore so that those remaining in August were mainly the wild stocks.

The lengths of the juvenile chinook captured in September varied from 80 to 154 mm (avg. 115.3 mm), whereas the lengths in October

\$

varied from 110 to 149 mm (avg. 127.3 mm). The data from these two months again suggest a normal distribution, indicating a "single" population of chinook was present in the foreshore at these times.

4.5.2.2 Chum Salmon

The length distribution of juvenile chum salmon collected in the study area between April 14 and July 7, 1982 is given in Appendix Vb and shown in Figure 21.

In April the size range of juvenile chum was very small. The lengths varied from 30 to 49 mm for 121 sampled fish, of which 71% were between 35 and 39 mm(ave. 38.2mm). By May the size range increased with standard lengths of 35 to 99mm (ave. 57.1 mm). The data for these two months appear to fit a normal distribution and were represented only by wild stocks (hatchery chum were not released until June 9, 1982).

Although the length data collected in June and July was minimal, (ie. low number of fish available), the size distribution was quite variable, and probably represented both wild and hatchery populations.

FIGURE 21 LENGTH DISTRIBUTION OF CHUM SALMON

SAMPLED IN THE CAMPBELL RIVER FORESHORE

35 40 45 50 55 .

LENGTH

(mm)

4.5.2.3 Coho Salmon

The length distribution of juvenile coho salmon collected in the study area between April 14 and July 7, 1982 is given in Appendix Vc and shown in Figure 22.

The lengths of five coho captured in April varied from 100 to 134 mm (avg. 118.6 mm). In May, however, the lengths ranged from 80 to 159 mm (avg. 119.1 mm) with an irregular distribution. The apparent size classes may indicate that more than one population of coho was sampled. During this period four different hatchery releases took place (between May 18 and June 2) and coho sampled from the foreshore during May probably originated from both hatchery and wild stocks. Additionally, scale analysis was performed on sixteen juvenile coho captured in May (Appendix IVd) and results indicated they all had growth patterns typical of a hatchery environment. Their lengths ranged from 120 to 144 mm, which is on the larger end of the length distribution scale (See Figure 22).

In June the range of lengths was smaller than in May and varied from 75 to 124 mm (97.9 mm), but only 13 fish were measured. Only 2 coho were captured in July.

-67-

SAMPLED IN CAMPBELL RIVER FORESHORE

4.5.2.4 Pink Salmon

1

1

The length distribution of juvenile pink salmon collected in the study area between April 14 and June 23 is given in Appendix Vd and shown in Figure 23.

The lengths of 80 juvenile pinks sampled in April ranged from 25 to 49 mm (avg. 33.3 mm) and the distribution appears to be normal. In May the lengths ranged from 35 to 64 mm (avg. 46.3; from 20 sampled fish) whereas in June the lengths varied from 40 to 124 mm (avg. 68.6 mm; from 45 sampled fish).

It is difficult to determine from the graphs alone the type of distribution pattern that exists for juvenile pinks in May and June. The Quinsam hatchery released pink from March 23 to April 20, and on April 30, 1982. The data may be representative of wild or hatchery fish alone or of a combination of these. As suggested previously, the fish sampled in June may be from another river system because of the increase in numbers from May to June (see Section 4.5.1.4).

4.5.3 Juvenile Salmon Stomach Contents

A list of all the invertebrate taxa identified in the juvenile salmon stomachs sampled between April 14 and June 23, 1982 is

68 -

-69-

LENGTH (mm)

shown in Table 6. Appendix VIa shows the stomach contents found in each salmon species collected in April, May and June at Sites 3, 7A and 11. Figures 24 to 26 display the same information.

Harpacticoid and cyclopoid copepods, calanoid copepods, gammarid amphipods, and juvenile chironomids were the dominant food items consumed by all four species of salmon utilizing the foreshore area. Chironomids were an important component of the diet only at Site #3 in June, when their percent Indices of Relative Importance (%I.R.I.) values were high for the three salmonid species caught at the site (Chinook avg. 65.6%, Chum avg. 56.9%, and Pink avg. 50.2%). At all other sites and times the dominant food items were calanoid copepods, gammarid amphipods. harpacticoid and cyclopoid copepods. (Refer to Appendix VI). In June, chinook and coho juveniles began selecting larger prey items such as mysids, decapod megalops, and fish larvae. These prey items often comprised the major portion of the total biomass consumed.

Juvenile chinook salmon stomachs were sampled only at Site 7A in May and at all sites in June. The chinook caught in May at Site 7A fed on relatively equal numbers of gammarid amphipods, calanoid copepods and epibenthic harpacticoid and cyclopoid copepods. TABLE 6 - LIST OF INVERTEBRATES FOUND IN SALMONID STOMACHS FROM THE CAMPBELL RIVER FORESHORE IN APRIL, MAY AND JUNE, 1982

ORDER	FAMILY	GENUS SPECIES	STAGE
Acarina			
Amphipoda (Gammaridea)	•		
	Aoridae	Aoroides columbiae	. ,
	Ampithoidae	Ampithoe sp.	
	Calliopiidae	Calliopiella pratti Calliopius laeviuscula	•
	Hyalidæ	Hyale sp.	
	Photidae	Photis brevipes	-
· .	Pontogeniidae	Accedamoera vagor Paramoera mohri Pontogeneia rostrata	
	Phoxocephalidae	Paraphoxus spinosus	
	Ischyroceridae	Ischyrocerus sp.	
	Corophiidae	Corophium sp.	
	Gammaridae	Eogannarus sp.	
	Talitridae	Orchestia sp.	•
Amphipoda (Caprellidea)	Caprellidae	· · ·	
Amphipoda			
(Hyperidea)	•	Parathemisto sp. Primno sp.	

cyprid larvae nauplius

Copepoda **

Cirrepedia

Calanoida

Harpacticoida

Cyclopoida

- 71 -

TABLE 6 - (Con't)

Cumacea

Decapoda

Diptera (Nematocera)

Euphausiacea?

Gastrapoda

Homoptera

Insecta 🛎 Isopoda

Malacostraca **

Mysidacea

Nematoda

Oligochaeta

Ostracoda (Pelagic Form)

Osteicthyes (Fish)

Polychaeta

Sylliðae

Nereidae

Tanaidaicea

Thysanoptera

Class

** Subclass

• Section

<u>Cumella</u> sp.

GENUS SPECIES

Brachyura O

Chironomidae

FAMILY

Zoea larvae Megalops larvae

Pupae Adult Larvae

STAGE

Adult

Cryptoniscan larvae

FIGURE: 25 - MEAN NUMBER OF INVERTEBRATES PER FISH IN STOMACH SAMPLES COLLECTED IN MAY, 1982.

-73-

FIGURE:26 - MEAN NUMBER OF INVERTEBRATES PER FISH IN

. . 1.3

In June, the chinook exhibited a wide variation in the types of food consumed between the three sites. As mentioned previously, the single chinook caught Site at 3 fed exclusively on juvenile chironomids and gammarid amphipods. At Site 7A gammarid amphipods and epibenthic copepods were the dominant food items, while fish larvae, calanoid copepods and mysids were of secondary importance. Calanoid copepods were the most important food item at Site 11 followed by gammarid amphipods, and harpacticoid and cyclopoid copepods.

Chum I.R.I. values indicated that calanoid, harpacticoid and cyclopoid copepods were the most important prey items during all three months at all sites. Gammarid amphipods were utilized more in June than in the preceeding two months.

Juvenile coho fed primarily on calanoid copepods in May (only collected at Sites 7A and 11) and on relatively equal numbers of gammarid amphipods, mysids, calanoid copepods and epibenthic harpacticoid and cyclopoid copepods in June (only collected at Site 11).

Juvenile pink salmon stomachs were only sampled in June. At Sites 7A and 11 calanoid copepods were the most important prey items (<u>ie.</u> had the highest I.R.I. values), followed by harpacticoid and cyclopoid copepods. Juvenile chironomids were the dominant food items consumed at Site 3.

The data collected in this study were similar to other studies undertaken in marine nearshore areas of Puget Sound where it was shown that epibenthic detritivores, particularly harpacticoid copepods and gammarid amphipods are the dominant prey items consumed by pink and chum salmon fry during the spring months (Feller <u>et al.</u>, 1975; Kaczynski <u>et al.</u>, 1973).

5. DISCUSSION

It was observed in our study that the upper reaches of sandy areas in the Campbell River foreshore did not usually support vegetation. In comparison, the lower intertidal zone of sandy areas often supported eelgrass (Figures 4 and 5). Larger substrates (such as cobble and boulder), have greater stability and supported common intertidal algae such as <u>Fucus</u> and <u>Ulva</u> (Figures 4 and 5). Boulders in subtidal areas support larger vegetation, such as kelp (Figures 4 and 5).

There are many large, extensive kelp beds in the study area and where these are absent, other algal mats, eelgrass beds, or mudflats generally exist (Figure 5). These habitats have the potential to support large populations of detritivores, in particular harpacticoid copepods and gammarid amphipods, which are major food items for juvenile salmonids (Simenstad, 1979). Vegetated areas also offer a protective habitat for juvenile fishes and a spawning habitat for herring. This indicates, therefore, that the majority of the Campbell River foreshore may be considered productive fish habitat. Of all the vegetated areas, Simenstad (1979) has indicated that eelgrass is one of the most productive nearshore habitats.

Zooplankton populations especially calanoid copepods, were abundant in the water column in April and May, but declined drammatically in June (Figures 7, 8 and 9). One explanation for the trend is offered by Cushing (1964), who observed that <u>Calanus</u>, a calanoid copepod, overconsumed its major food source, phytoplankton. The decline of phytoplankton populations resulted in the subsequent decline of Calanus populations.

Harpacticoid and cyclopoid copepods, and gammarid amphipods had the highest densities and represented the largest proportion of the biomass at all three benthic sites (Figures 10, 11, 12, 13, 14 and 15). Other taxa consistently present in relatively small numbers at all benthic sites where cumacea, nematoda, oligochaeta, ostracoda and polychaeta (Appendix IIIa, b and c). The total number of benthic invertebrates generally increased

- 77 -

from April to June. T-tests comparing benthic invertebrate abundances revealed that no consistent differences occurred between the mid and low intertidal zones.

Samples collected from Site 7A (large cobble/boulder site) and Site 11 (coarse gravel/small cobble site) typically had larger amounts of algae, whereas samples collected from Site 3 were usually devoid of any vegetation. Sites 7A and 11 each had a significantly denser population and larger biomass of benthic invertebrates most commonly consumed by juvenile salmonids than did Site 3. Therefore, invertebrate populations appear to be correlated to the amount of vegetation present at each site. This is further supported by the fact that when sampling was conducted at Site 3 in May in the low tide zone, there was a great deal of eelgrass collected and invertebrate numbers were extremely high, even significantly larger than Sites 7A and 11 during the same time period.

Benthic data were not collected in the high intertidal area during this study. Results from limited sampling in Hidden Harbour (Site 7B) (Habitat Management, unpublished data) indicate invertebrate densities from the high intertidal zone were less dense than in the mid and low intertidal zones. However, the scope of the sampling was limited, the study area fairly protected and not typical of the Campbell River foreshore,

1

suggesting that a further study should be initiated. In particular, invertebrate densities should be more thoroughly compared at the three different tide heights, especially since most foreshore development involving fill would produce the most detrimental effects on the uppermost tidal area where sampling has currently been limited. The generally lower vegetation densities in the high intertidal zones indicate that invertebrate populations are probably less dense than in the lower zones, but this should be supported with data.

Juvenile chinook salmon were most abundant in the Campbell River foreshore from the June 21 - 23, 1982 (avg. $14.4 \cdot \text{set}^{-1}$) to the August 6 - 7, 1982 (avg. $11.1 \cdot \text{set}^{-1}$) sampling periods. Their average lengths were 85.7 mm in June, 95.9 mm in July and 107.9 mm in August (Appendix Va). Juveniles were observed in the foreshore until mid - October, 1982 (end of sampling), although their numbers were very low (0.25 - 1.0°set -1). After mid-September, 1982 most of the chinook observed were found in Menzies Bay. In a study in the Nanaimo area from 1975 to 1977, Healey (1980a) observed that underyearling chinook began migrating from the rivers and estuaries into the foreshore in late May. In the same study, it was also observed that underyearling fish were more abundant than yearling fish and numbers remained high through the summer and fall.

- 79 -

Juvenile chum were most abundant in the June sampling period (avg. 103.7•set $^{-1}$) and were rare by the August 6 - 9 sampling period (avg. 0.07•set $^{-1}$). Healey (1980b) found that most chum in the Nanaimo area occupy water of one meter or less in depth until late May. Then most of the juvenile chum move away from the beaches into open water in May and June. In our study, the average length of juvenile chum was 57.1 mm in May and 63.9 in June (Appendix Vb).

Coho smolts were abundant in the foreshore in the May (avg. 70.5° set $^{-1}$) and June (avg. 42.0°set $^{-1}$) sampling periods. Results indicated that the coho were probably travelling in large schools and moved quickly through the estuary and along the shallower foreshore areas. The stomach samples indicated that they utilized the food resources of the foreshore area. The average length was 119.1 mm in May (Appendix Vc). Healey (1980b) also found that coho smolts enter Georgia Strait in May and June at an average length of 100 - 120 mm, and disperse rapdily throughout the strait.

The highest CPUE's for juvenile pink salmon in the foreshore was in the April 15 - 20 sampling period (avg. $9.7 \cdot \text{set}^{-1}$). However, results may have been different if the sampling was undertaken more frequently throughout the study. The average length was 33.3 mm in April, 46.3 mm in May and 68.6 mm in June (no data for

- 80 -

July (Appendix Vd). Healey (1980b) observed that the offshore movement of juvenile pinks in late May was size dependent, with larger juveniles moving offshore first. Juveniles captured in the Fraser River plume averaged 34.6 mm in length in April, 62 mm at the beginning of June and 100 mm at the beginning of July (Phillips and Barraclough, 1978), and may therefore grow faster than the Campbell River pinks.

Harpacticoid and cyclopoid copepods, and gammarid amphipods had high percent indices of relative importance in the stomachs of juvenile chinook, chum, coho and pink salmon (Appendix VI). As previously mentioned, these taxa were also the most abundant invertebrates found in the intertidal benthos. These results along with other studies indicate that juvenile salmon are opportunistic feeders, feeding on the more abundant prey species in an area.

Calanoid copepods were also an important food item for all four salmon species. Although the percent I.R.I.'s for calanoid copepods fluctuated erractically between sites and between months, they were also an important food item for all four salmon species. All food items consumed by the juvenile salmon (except juvenile chironomids) were found either in the water column or in the intertidal benthos. Therefore the Campbell River foreshore

÷.,

- 81

plays an important role in the survival of juvenile salmon by providing essential food items.

There was also evidence that fish in the Campbell River foreshore occassionally relied on food produced in freshwater. In June at Site 3 juvenile chironomids were the dominant food item consumed by juvenile chinook, chum and pink salmon (Figure 26a). Since chironomid populations were extremely low in all benthic samples it seems likely that this source of food originated from Simm's Creek, located slightly north of Site 3. Therefore, drift insects from freshwater streams may provide a valuable food resource for juvenile salmon in late spring at some areas of the Campbell River foreshore.

This study has illustrated the importance of the Campbell River vegetated foreshore areas in terms of fish production. These areas provide not only protective cover for juvenile fish but supply optimum habitats for benthic and epibenthic invertebrates, which are essential juvenile salmon food items. This study has provided some insight as to where foreshore development will cause the most amount of damage to fish habitat.

82 -

6. CONCLUSIONS AND RECOMMENDATIONS

- The sandy/fine gravel site (Site 3) did not support as 1. much vegetation as the coarse gravel/small cobble site (Site 11) and large cobble/boulder site (Site 7A). Furthermore, the mid to high intertidal zone of the sandy /fine gravel site was devoid of vegetation (except some drift algae) and supported a significantly lower population of benthic invertebrates than the other two more vegetated sites. The sandy site was sampled in the low intertidal zone in May near a small eelgrass patch and it was found these samples were more productive than the other two sites during the same time period. We concluded that vegetated areas are more productive than nonvegetated areas in terms of providing a habitat for benthic and epibenthic invertebrates important in juvenile salmonid diets, such as harpacticoid and cyclopoid copepods and gammarid amphipods. The low intertidal zone generally had higher vegetation densities than the highintertidal zone. We conclude that habitat protection/ management efforts should to applied to the vegetated foreshore areas of Campbell River.
- 2. Juvenile chinook, chum, coho and pink salmon all utilize the Campbell River foreshore for various periods of time on their migration from the estuary to deeper, open

waters. Juvenile chinook rear in Menzies Bay in the fall, but only in low numbers.

Main food items for juvenile chinook, chum, coho and pink salmon were found in the Campbell River foreshore area. Harpacticoid and cyclopoid copepods and gammarid amphipods were found in the intertidal benthos at all three substrate sites, while calanoid copepods were found in the water column. Juvenile chironomids, possibly entering the foreshore from freshwater streams (ex. Simm's Creek), were an important food item for juvenile chinook, chum and pink salmon at Site 3.

The biophysical data gathered give a general indication of the importance of each of the three different substrate types studied in terms of juvenile salmon utilization. These biophysical data were used as an aid in the development of the Ministry of Lands, Parks and Housing foreshore plan for the Campbell River area.

Since only one site of each substrate type was examined, this information may not be directly applied to other unstudied areas. Therefore, any review of development proposals affecting the foreshore should be accompanied by a thorough biological study of the area in question. Furthermore data collecting were limited in the high

1

- 84 -

3.

4.

intertidal zones. All that is known is that the vegetation is generally sparser in this area than lower zones, and low vegetation usually indicates low benthic invertebrate populations. Since foreshore development, especially filling the intertidal section, is most likely to involve the high intertidal zone, further investigations should be carried out in this area to see if the above pattern exists here.

\$

REFERENCES

- Anderson, E.D. et al. 1981. Environmental effects of harbour construction activities at Steveston, British Columbia. Part I Main report. Can. Tech. Rep. of Fish. and Aqua. Sci. No 1070.
- Bell, L.M. and J.M. Thompson. 1977. The Campbell River estuary, status of environmental knowledge to 1977. Fisheries and Environment Canada, Pacific Environment Institute, West Vancouver, B.C. Special Estuary Series No. 7
- CBA Engineering Ltd. 1980. Master plan for Port of Campbell River. Prepared for the British Columbia Harbours Board, Vancouver, B.C. Report No. 7911.
- Cushing, D.M. 1964. The work of grazing in the sea. Brit. Ecol. Soc. Symp. 4:207-226
- Dome Petroleum Ltd., 1981. Vol. 3. Environmental setting and assessment for a liquefied natural gas terminal at Grassy Point, Port Simpson Bay, Northern British Columbia. Dome Petroleum Ltd., Calgary, Alberta.
- Feller, R.J., and V.W Kaczynski. 1975. Size selective predation by juvenile chum salmon (<u>Oncorhynchus keta</u>) on epibenthic prey in Puget Sound. J. Fish. Res. Board Can. <u>32</u>:1419-1429.
- Gerke, R.J. 1972. Food of juvenile pink and chum salmon in Puget Sound, Washington. Tech Rept. #10 Wa. Dept. 'Fish. 27 pp.
- Gonor, J.J. and P.F. Kemp., 1978. Procedures for quantitative ecological assessments in intertidal environments. U.S. Environmental Protection Agency, Corvallis, Oregon.
- Healey, M.C. 1979. Detritus and juvenile salmon production in the Nanaimo estuary: 1. Production and feeding rates of juvenile chum salmon (<u>Oncorchynchus keta</u>). J. Fish. Res. Board Can. 36:488-496.
- Healey, M.C. 1980a. Utilization of the Nanaimo estuary by juvenile chinook salmon, <u>Oncorhynchus</u> <u>tshawytscha</u>. Fish. Bull. 77:653-668.
- Healey, M.C. 1980b. The ecology of juvenile salmon in Georgia Strait, British Columbia. In: McNeil, W.J. and D.C. Himsworth, 1980. Salmonid Ecosystems of the North Pacific. Oregon State Univ. Press, Oregon State Univ. Sea Grant College Prog., Corvallis, Oregon.

- Kaczynski, V.M., R.J. Feller, J. Clayton and R.J. Gerke. 1973. Trophic analysis of juvenile pink and chum salmon (<u>Oncorhynchus gorbuscha</u> and <u>O. keta</u>) in Puget Sound. J. Fish. Res. Bd. Can. <u>30</u>: 1003-1008.
- Odum, E.P. 1971. Fundaments of Ecology, Ed. 3 W.B. Saunders Co.
- Parker, R.R. 1965. Estimation of sea mortality rates for the 1961 broad year pink salmon salmon in the Bella Coola Area, British Columbia. J. Fish. Res. Bd. Can. 22:1523-1554.
- Pinkas, L., M.S. Oliphant, and I.L.K. Iverson. 1971. Food habits of albacore, bluefin tuna and bonito in California water. Calif. Fish and Game, Fish. Bull. 151:1-105.
- Raymond, B.A., M.M. Wayne, J.A. Morrison and K. Conlin. 1983. Vegetation and invertebrate distribition and fish utilization of the Campbell River estuary, British Columbia. Department of Fisheries and Oceans, Field Services Branch, Vancouver, B.C. Canadian Manuscript Report of Fisheries and Aquatic Sciences, #
- Simenstad, C.A. et al., 1979. Food web relationships of northern Puget Sound and the Strait of Juan de Fuca. NOAA, MESA Puget Sound Office, NOAA.

TAXONOMIC REFERENCES

- Banner, A.H. 1950. A taxonomic study of the mysidacea and euphausiacea of the north eastern Pacific. Part III Euphausiacea + key.
- Banse, K. and K.D. Hobson. 1974. Benthic errantiate polychaetes of B.C. and Washington. Bulletin of the Fisheries Research Board of Canada. Bulletin 185. Ottawa, 111 pages.
- Banse, K. and K.D. Hobson, 1981. Sedentariate and archiannelid polychaetes of British Columbia and Washington. Bulletin of the Fisheries Research Board of Canada. Bulletin 209, Ottawa.
- Barnard, J.L., 1954. <u>Marine Amphipoda of Oregon</u>. Oregon state college press.
- Barnes, R.D., 1974. Invertebrate Zoology, 3rd ed. W.B. Saunders Co., Philadelphia, PA., USA.
- Bousfield, E.L., 1973. Shallow-water Gammaridean Amphipoda of New England. Cornell University Press.
- Bousfield, E.L., 1979. The amphipod superfamily Gammaroidea in the north eastern Pacific region: Systematics and distributional ecology. Bull. Biol. Soc. Wash. 3:297-357.
- Butler, T.H., 1980. Shrimps of the Pacific Coast of Canada. Canadian Bulletin of Fisheries and Aquatic Sciences. Bulletin 202.
- Fulton, J.D., Laboratory Zooplankton atlas for the Strait of Georgia. Fisheries Research Board of Canada, Nanaimo, B.C.
- Fulton, J.D., 1968. A laboratory manual for the identification of British Columbia marine zooplankton. Fisheries Research Board of Canada. Technical Report #55.
- Gotshall, D.W. 1981. <u>Pacific Coast Inshore Fishes</u>. Sea Challengers and Western Marine Enterprises, California, U.S.A.
- Hart, J.F.L., 1974. Some cumacea of the Vancouver Island Region. Dept. of the Environment Fisheries Service. Pacific Regional Library. No. 3.
- Kozloff, E.N., 1974. Keys to the Marine Invertebrates of Puget Sound, the Sand Juan Archipelago and Adjacent Regions. University of Washington Press. 226 pp.

- Morris, P.A., 1966. <u>A Field Guide to Pacific Coast Shells</u> (including shells of Hawaii and the Gulf of California). Houghton Mifflin Company. Boston.
- Scagel, R.F. 1978. <u>Guideline to Common Seaweeds of British</u> <u>Columbia</u>. British Columbia Provincial Museum, Victoria, B.C., Canada. Handbook No. 27.
- Smith, R.I. and J.T. Carlton (eds) 1975. Lights Manual -Intertidal Invertebrates of the Central California Coast. 3rd edition. University of California Press.
- Somerton, D. and C. Murrary, 1980. Field Guide to the Fish of Puget Sound and the Northwest Coast. University of Washington Press, USA.
- Waaland, J.R. 1977. <u>Common Seaweeds of the Pacific Coast</u>. J.J. Douglas Ltd., North Vancouver, B.C., Canada

APPENDICES

APPENDIX Ia - Invertebrate Subsampling Method

The following is a description of our invertebrate subsampling method which was developed by Dr. Mundie (Pacific Biological Station, Nanaimo):

First, each sample was passed through a 9.5 mm sieve in order to remove material which would not freely pass through the diameter of the vials. Fauna passing through the 9.5 mm sieve were retained for subsampling. Fauna retained by the sieve were sorted, counted, identified at least to the order level and later added to the total sample count (see Section 3.4.3 for calculations).

Ninety-three 25 mm diameter flat bottom shell vials were placed in a herring bucket with a bottom diameter of 26.5 cm. The bucket was then filled with water until the top of the water column stood approximately 25 cm above the tops of the vials. Eight mls of standard dishwashing detergent was added to the bucket water and gently stirred in to decrease the water's surface tension. The invertebrate sample was placed into a beaker and enough water was added to allow the sample to float freely. The sample was agitated and poured into the bucket. Simultaneously, another technician stirred the solution in the bucket in a figure eight fashion in order to randomly distribute the invertebrates throughout the water column. The invertebrates were allowed to

settle for a period of at least four hours.

After the sample had settled, six* (or ten**) vials were randomly removed from the bucket. All invertebrates in these vials were sorted, counted and identified usually to the order level using a dissecting microscope. Amphipods, cumaceans, isopods, polvchaetes*** tanaids were identified to as far as and was Any organisms found floating on the water surface practical. were skimmed off and added to the "9.5 mm fraction. Both the identified invertebrates and the remainder of the sample were then stored in 80% isopropyl alcohol. The total number of invertebrates m^{-2} was then determined using the calculations in Appendix Ib.

- * The number Dr. Mundie gave as a statistically valid number of subsampling vials.
- ** Ten vials were used instead of six if there was a particularly low number of invertebrates present.

*** Only identifed for Site 7 samples due to lack of time.

· 92 -

APPENDIX Ib - Calculation of Benthic Standing Crop

Sample Area = 0.164 m² = 1/6.098 m² Vial Diameter = 22 mm Bucket Diameter = 264 mm

Area of 1 vial = $(r)^2 = (11 \text{ mm})^2 = 380 \text{ mm}^2$ Area of Herring Bucket = $(r)^2 = (132 \text{ mm})^2 = 54,739 \text{ mm}^2$

Subsample Size

Number in Total Sample

(if 6 vials used) = (# in 6 vials) (24.01) + ("9.5 mm^2 fraction)

(if 10 vials used) = (# in 10 vials) (14.41) + ("9.5 m_m^2 fraction)

Number in One Meter Squared

= (# in total sample) (6.098)

APPENDIX IIa - INVERTEBRATES FOUND IN CAMPBELL RIVER FORESHORE PLANKTON TOWS COLLECTED IN APRIL, 1982

INVERTEBRATE		April 20 (18:00) 	April 20 (16:45) Site 11	April 20 (21:00)
Amphipoda	Accedomoera vagor Pontogenia rostrata Unidentified	- -		43 86 57
Cirripedia	Cyprid larvae	749	456	-
Copepoda	Calanoida Parasitic Harpacticoid & Cyclopoid	331 14 58	1,176 _ 96	1,037 _ 144
Cumacea		14	-	-
Decapoda	Zoea larvae	101	24	158
Diptera	Chironomidae	14	- .	-
Fish	larvae	-	-	14
Ostracoda		-	-	345
Polychaeta		-	-	14
.Scyphozoa		_	-	14
Totals		1,281	1,752	1,912

.
APPENDIX IIb - INVERTEBRATES FOUND IN CAMPBELL RIVER FORESHORE PLANKTON TOWS COLLECTED IN MAY, 1982

INVERTEBRATE		May 27 (13:05) Site 3	May 27 (12:25) Site 7A	May 26 (13:00) Site 11
Amphipoda	Calliopiidae Gammaridea Hyperiidea	44 28 -	29 86 —	- 44 14
Cirripedia	Cyprid larvae	14	14	43
Copepoda	Calanoida Harpacticoid & Cyclopoid Nauplius larvae	58 838 -	102 952 14	2,386 202 -
Malacostraca	Unidentified	14		-
Totals		996	1,197	2,689

2,689

APPENDIX IIC - INVERTEBRATES FOUND IN CAMPBELL RIVER FORESHORE PLANKTON TOWS COLLECTED IN JUNE, 1982

INVERTEBRATE		June 22 (10:30) Site 3	June 22 (20:30) Site 7A	June 22 (19:50) Site 11
Amphipoda	Caprellidae Gammaridea	- 14	- -	1 3
Cirripedia	Cyprid larvae	14	14	4
Copepoda	Calanoida Harpacticoid & Cyclopoid Naplius larvae	14 43 -	14 202 _	23 50 1
Decapoda	Zoea larvae	14	28	13
Insecta	larvae	_	-	2
Isopoda	Cryptoniscan larvae	-	14	-
Ostracoda		· · · ·	_ ·	1
Malacostraca	Unidentified	-	<u> </u>	1
Nematoda		14	_	-

Totals

113

272

99

APPENDIX IIIa - INVERTEBRATES FOUND IN CAMPBELL RIVER FORESHORE BENTHIC SAMPLES IN APRIL, 1982 $(\#/m^2)$

(i) MID TIDAL ZONE

	,		SITE	3	SI	re 7	SITE	11
TAXA	. :		<u>#'s</u>	S.D	<u>#'s</u>	S.D.	‡' S	S.D.
Acarina	. ·		1		1,296		183	y
Amphipoda	(Gammaridea)	•						
	Accedomoera vagor		-		_		2,566	
	Allorchestes angustus		36		1		110	
•	Ampithoe sp.		-		33		-	· · · · · · ·
·	Aoroides columbiae				444		_	
	Calliopiella pratti		5		2,111		.293	
	Hyale sp.		_		_		439	
	Ischyrocerus sp.		\ <u>-</u>		-		38	
	Paramoera sp.		-		268	•	· _	
	Paraphoxus spinosus		-		177		· 🛥	
	Photis brevipes			-	30		-	
×	Pontogeneia sp.		-		455		523	
	Unidentified		38		528		2,752	-
	Total		96	<u>+</u> 70	4,077	+2,229	6,722	<u>+</u> 2,891
Amphipoda	(Caprellidae)		_		-		37	
Anthozoa			-		410		· -	
Bivalvia	Mytilidae		-		-		29	
	Unidentified	, ,	-,	• •	117		-	· .
Cirrepedia		- * - *	211	<u>+</u> 76	3,036	+2,463	996	<u>+</u> 841
wpepoda			1,145	<u>+</u> 965	69 , 567	+22,743	10,203	

- 97 -

APPENDIX IIIa (Cont'd) (i) MID TIDAL ZONE

TAXA		<u>SI'</u> #'S	<u>E 3</u> <u>S.D</u>	<u>SI</u> <u>‡'S</u>	<u>TE 7</u> <u>S.D.</u>	SITE #'S	<u>.11</u> <u>S.D.</u>
Cumacea	Cumella sp. Lamprops sp.	56 33		1,761		73 -	· · · · · · · · · · · · · · · · · · ·
Decapoda	Hemigrapsus sp. Pugettia producta Zoea larvae	- - 1		32 	·	37 . 1 -	•
Echinoidea	• • • •	-		29	,	—	
Gastropoda		-		59		-	
Isopoda	Idotea sp. Munna sp. Sphaeromatidae	-		58 29 -		37 - 2	• • • •
Nematoda		1,467	<u>+</u> 1,050	13,345	<u>+</u> 10,045	488	<u>+4</u> 85
Oligochaeta		7		29		227	
Ostracoda		250	<u>+</u> 516	2,521	<u>+</u> 851	331	<u>+</u> 280
Polychaeta		30	<u>+</u> 65	2,003	<u>+</u> 1,722	367	<u>+</u> 252
Tanaidacea	Leptochelia sp.	-		88		- , •	
Total		3,298	<u>+</u> 1,493	98,486	<u>+</u> 25,776	19,774	<u>+</u> 10,180

APPENDIX IIIa - INVERTEBRATES FOUND IN CAMPBELL RIVER FORESHORE BENTHIC SAMPLES IN APRIL, 1982 ($\#/m^2$)

(ii) LOW TIDAL ZONE

		SITE	: 3	SIT	E 7	SITE	11
TAXA		#'S	S.D	#'S	<u>S.D.</u>	#'S	S.D.
Acarina		36		464		354	
Amphipoda	(Ganmaridea)						
	Accedomoera vagor	-		-		130	
	Ampithoe sp.	-		29		58	
	Calliopiella pratti	-		265		60	
	Calliopius laeviusculus			1			
	Hyale sp.	-		29		-	
	Ischyrocerus sp.	-		-		88	
	Photis brevipes	-		60		· 29	
	Pleusirus secorrus	-		29		-	
	Pleustes depressa	-		29		29	
	Pontogeneia sp.	-		3,108		7,700	
	Unidentified	91		562		1,297	
	Total	91	<u>+</u> 128	4,863	<u>+</u> 1,698	9,456	<u>+</u> 5
Amphipoda	(Caprellidae) <u>Caprella</u> sp.	-		64		29	
Anthozoa		-		29		. –	
Asteroidea		-		29		29	
Bivalvia		46		60		176	
Cirrepedia	· · · · · · · · · · · · · · · · · · ·	66		117		234	

+5,689

APPENDIX IIIa (Cont'd) (ii) LOW TIDAL ZONE

· · · · ·

103 V 3		SIT	<u>E 3</u>	SIT	<u>E 7</u>	SITE	11
TAXA	· · · ·	<u>#'S</u>	S.D	<u>#'S</u>	<u>S.D.</u>	#' S	S.D.
Copepoda	Harpacticoida & Cyclopoida	a 1,533	<u>+</u> 1,124	25,308	<u>+</u> 18,787	12,141	<u>+</u> 2,765
Cumacea	<u>Cumella</u> sp. <u>Lamprops</u> sp.	156 29		29		234	· ,
, '	Total	184	. ,	29	, ÷,	234	-
Decapoda	Hemigrapsus sp. Pugettia producta Zoea larvae Pugettia richii Pagurus sp.	-		29 2 - 1 1		_ 29 _	
Diptera	Chironomid larvae	60		-		-	
Echinoidea		-		-		59	
Gastropoda		0		1,032	<u>+</u> 136	88	,
Isopoda	Munna sp. Unidentified	-	· ·	32		29 29	
Nematoda		443	<u>+</u> 342	3,390	<u>+</u> 2,131	4,210	<u>+</u> 2,315
Oligochaeta		178	<u>+</u> 188	539	+433	2,869	+1,645
Ostracoda		128	<u>+</u> 126	1,273		942	<u>+</u> 815

APPENDIX IIIa (Cont'd) (ii) LOW TIDAL ZONE

		SITE 3		SI	TE 7	SITE 11		
TAXA		<u>#'S</u>	S.D	#' S	S.D.	#' S	S.D.	
Ophiuroidea		. -		1		-		
Polychaeta		2	<u>+</u> 5	2,023	<u>+</u> 1,264	969	<u>+</u> 530	
Tanaidacea <u>Leptochelia</u> sp.	•	_		29		-		
Total		2,709	<u>+</u> 1,489	39,519	+23,554	31,939	<u>+</u> 3,105	

APPENDIX IIIb -	- INVERTEBRATES	FOUND	IN	CAMPBELL	RIVER	FORESHORE	BENTHIC	SAMPLES	IN MAY,	1982	(#/m ²)
				-					•		· · · · · · · · · · · · · · · · · · ·

(i) MID TIDAL ZONE

.

TAXA		SITE #'S	<u>3</u> <u>S.D</u>	.SI <u></u> #'S	<u>TE 7</u> S.D.	SITE	<u>11</u> S.D.
Acarina	· · ·	61		390		178	
Amphipoda	(Gammaridea)						
,	Accedomoera vagor	_		-		2-089	,
	Ampithoe sp.	-		146		-,003	
	Aoroides columbiae	-		874		3	
	Calliopiella pratti	-		1,323		1.430	
•	Hyale sp.	-		· -		40	
	Ischyrocerus sp.			-		49	
	Paraphoxus spinosus	-		98			
	Pleustes depressa	-		1		-	•
	Pleusirus secorrus	-		30		_	
	Photis brevipes	-		-		[.] 38	
	Pontogeneia sp.	-		299		956	
	Synchelidium shoemakeri	-		1		-	
	Unidentified	Sec. 30		797		4,188	
	Total	30	<u>+</u> 68	3,633	<u>+</u> 2,946	7,979	<u>+4</u> ,655
Amphipoda	(Caprellidae) <u>Caprella</u> sp.	-		121		29	
Archaeogast	ropoda	-		85		-	
Bivalvia Cirrepodia		-		_		1	
Copepoda		29		146			
		4.558	12 513	140		-	
·		-7-50	тэ , 515 Парадана Дарадана	92,950	+21,849	32,768	407 EDA

<u>+</u>27,530^{°°}

- 102 -

.

.

.

APPENDIX IIIb (Cont'd) (i) MID TIDAL ZONE ,

.

.

TAXA		<u>SI:</u> <u>#'S</u>	<u>E 3</u> <u>S.D</u>	<u>SI</u> <u>#'s</u>	<u>IE 7</u> <u>S.D.</u>	SITE #'S	<u>11</u> <u>s.D.</u>
Cumacea	<u>Cumella</u> sp.	-		1,905		60	
Decapoda	Brachyura Hemigrapsus sp. Mimulus foliatus Pagurus sp. Unidentified			- 2 1 58 -		29 - 60	
Diptera	Chironomid larvae	-		29		_	
Gastrapoda		29		292		267	
Isopoda	Bopyridae Idotea sp. Janira sp. Munna sp. Unidentified			1 _ 29 761 _ 2		- 29 176 -	
Nematoda		2,769	+1,848	8,033	+4,589	9,105	+6,086
Nemertea		-	_	1	-	-	-
Oligochaeta	2	-		361		3,585	+2,246
Ostracoda		456	<u>+</u> 338	7,389	<u>+</u> 5,271	644	- +382
Polychaeta		-		14,910	<u>+</u> 24,954	909	

APPENDIX IIIb (Cont'd) (i) MID TIDAL ZONE

.

.

•

.

.

			SITE 3		<u>E 3</u>	SIT	'Е`7	SITE 11		
TAXA				# 'S	S.D	<u>#'S</u>	S.D.	<u>#'S</u>	S.D.	
Tanaidacea	Anatanais normani Leptochelia sp.			- 29	·	1,576		31 503	<u>+</u> 419	
Total		. .		7,962	<u>+</u> 3,589	132,655	<u>+20,792</u>	56 , 122	<u>+</u> 39,150	

APPENDIX IIIb - INVERTEBRATES FOUND IN CAMPBELL RIVER FORESHORE BENTHIC SAMPLES IN MAY, 1982 $(\#/m^2)$

(ii) LOW TIDAL ZONE

•

		SIT	E 3	SITE	:7	SITE	11
TAXA	· · · · · · · ·	# 'S	S.D	<u>#'S</u>	S.D.	<u>#'s</u>	<u>S.D.</u>
Acarina		1,287	<u>+</u> 1,273	474		148	
Amphipoda	(Gammaridea)						
	Accedomoera vagor	59		_		32	
	Allorchestes angustus	207		-		-	
	Ampithoe sp.	59		-		29	
	Aoroides columbiae	_		-		529	
	<u>Calliopiella pratti</u>	-		-		644	
	Paramoera sp.	-		51			
•	Photis brevipes	-		-		29	
	Pleusirus secorrus	49		-		-	
	<u>Pleustes</u> depressa	-		-		2 9	
	Pontogeneia sp.	117		-		617	
	Unidentified (juveniles)	2,728		102		1,520	
	Total	3,170	<u>+</u> 4,322	166	<u>+</u> 288	3,459	<u>+</u> 1,405
Amphipoda	(Caprellidae) <u>Caprella</u> sp.	482	<u>+</u> 1,077	8		·	
Archeogast	ropoda	-		29		· _	
Asteroidea		-		-		29	
Bivalvia	⁴⁴ Mytilidae	-		-		261	
	OUTGENEILLIEG	-		3		-	
Calanoida		-		5		-	

APPENDIX IIIb (Cont'd) (ii) LOW TIDAL ZONE

TAXA		<u>SI1</u> #'S	<u>E 3</u> <u>S.D</u>	SITI #'S	<u>5.D.</u>	SITE #'S	<u>11</u> <u>s.d.</u>
Cirrepedia		. –		2		-	·
Copepoda	Harpacticoida & Cyclopoida	121,590	<u>+</u> 78,372	22,744	+2,291	19 , 234	<u>+</u> 10,253
Cumacea	Cumella sp. Unidentified	761 -	<u>+</u> 598	_ 6		29	
Decapoda	Brachyura Heptacarpus brevirostris Crangon sp. Pagurus sp.	- - -		2 - - -		59 7 1 1	
Diptera	Chironomid larvae	89		152		· _	
Echinoidea		-		-	•	29	
Gastropoda		29		122		440	
Isopoda	Janira sp. Munna sp. Cryptoniscan larvae Unidentified	- - 29 -	•	- - 2		29 149 - 29	
Nematoda		5,481	+3,570	4,536	<u>+</u> 2,843	18,675	<u>+</u> 15,695
Oligochaeta		205		271		3,632	<u>+</u> 3,333
Ostracoda	·	4,988	<u>+</u> 2,920	1,866	<u>+</u> 1,841	2,670	<u>+</u> 1,426

.

.

.

. •

APPENDIX IIIb (Cont'd) (ii) LOW TIDAL ZONE

.

TAXA		<u>SITE 3</u> <u>#'SS.D</u>		SIT #'S	<u>SITE 7</u> #'S S.D.		<u>11</u> S.D.
Osteichthyes Cottidae		6		-			1
Polychaeta		176	<u>+</u> 160	783	+230	973	+492
Sipuncula		-		_	_	29	
Tanaidacea	Anatanais normani Leptochelia sp. Unidentified	59 _29 		- - 2		177 90 –	
· .	Total	88	,	2		- 267	
Total		138,376	<u>+</u> 88,736	31,510	<u>+</u> 5,149	50,151	+24,582

. . . Car

APPENDIX IIIC - INVERTEBRATES FOUND IN CAMPBELL RIVER FORESHORE BENTHIC SAMPLES IN JUNE, 1982 (#/m²)

(i) MID TIDAL ZONE

TAXA		SIT	<u>E 3</u>	SITE	7	SITE	11
		# 3	<u>5.D</u>	# S	S.D.	<u>#'S</u>	<u>S.D.</u>
Acarina		470	<u>,+</u> 458	94		30	
Amphipoda	(Gammaridea)			•			
	Accedomoera vagor	-				1,405	
-	Allorchestes angustus	1,205		135		_	•
	Ampithoe sp.	-		-		88	
	<u>Calliopiella</u> pratti	-		280		3,162	
	<u>Calliopius laeviusculus</u>	-		-		88	
	Corophium sp.			-		29	
	Hyalidae	468		_			
	<u>Hyale</u> sp.	-		` —		1.903	
	Ischyrocerus sp.	-		_		88	
	Melita sp.	-		-		88	
	Paramoera sp.	-		30		-	
	Paraphoxus spinosus	-		37		-	
	Pleusirus secorrus	-		29		· —	
	Pleustes depressa	-				29	
	Pontogeneia sp.	-	•	1		⁺ 7,201	
	Unidentified	879		184		A 084	
,							
	Total	2,553	+3,521	697	<u>+602</u>	18,312	<u>+</u> 13,232
Amphipoda	(Caprellidae) <u>Caprella</u> sp.	0		17		32	
Bivalvia	Clinocardium nuttalli	11 <u>7</u>		.1		т	
Cirrepedia	UILUCIULL LOU	117		4 400		•	
		11/		1,489		_	

APPENDIX IIIC - (Cont'd) (i) MID TIDAL ZONE

(1) S ()		SIT	<u>E 3</u>	้รเว	те 7	SITE 11		
TAXA		#' S	S.D	<u>#'s</u>	<u>S.D.</u>	<u>#'s</u>	S.D.	
Copepoda		119,465	<u>+</u> 67,325	16,416	<u>+</u> 5,220	202,865	<u>+</u> 44,969	
Cunaceada	Cumella sp.	996		855		468		
Decapoda	Hemigrapsus sp. Hemigrapsus oregonensis			1 278		-		
	Pagurus sp.	-		117		32		
Diptera	Chironomid larvae	266		230		-		
Gastropoda		-	•	64				
Isopoda	Gnorimosphaeroma sp.	_		-	,	1		
	Munna sp. Unidentified	-		1 58		1		
Mesogastrop	oda <u>Polinices lewesii</u>	-		1		. –		
Nematoda		12,023	. <u>+</u> 5,961	7,820	+3,664	10,978	<u>+</u> 5,457	
Oligochaeta		1,083	<u>+</u> 2,101	962	<u>+</u> 910	2,232		
Osteichthye	s Cottidae	1		-		-	_	
Ostracoda Polychasta		8,517	<u>+6</u> ,604	4,928	<u>+6</u> ,222	1,413	+824	
rorycnaeta		88	<u>+</u> 196	735	+282	352	+267	

۰.

APPENDIX IIIC (Cont'd) (i) MID TIDAL ZONE

TAXA	<u>SITE 3</u>	<u>SITE 7</u>	<u>SITE 11</u>
	#'S S.D	<u>#'S</u> <u>S.D.</u>	<u>#'SS.D.</u>
Tanaidacea Anatanais normani	-	-	59
Leptochelia dubia	1		29
Total	145,579 <u>+</u> 82,615	34,824 +14,025	237,408 +52,454

APPENDIX IIIC - INVERTEBRATES FOUND IN CAMPBELL RIVER FORESHORE BENTHIC SAMPLES IN JUNE, 1982 (#/m²)

(ii) LOW TIDAL ZONE

1

TAXA		SITE 3	SIT	E 7 SIT	<u>E 11</u>
			<u> </u>	<u>S.D.</u> <u>#'S</u>	<u>S.D.</u>
Acarina		324	95	117	
Amphipoda	(Gammaridea)		•		
	Accedomoera vagor	-	-	16 554	
	Allorchestes angustus	117	-	10,554	
	Ampithoe sp.	_	30		
	Aoroides columbiae	-	324	_	
	Corophium sp.	-			
	Calliopiella pratti	-	58,424	36-825	
	Hyalidae (juveniles)	-	1		
	Ischyrocerus sp.	130	1,827	293	
	Paraphoxus spinosus	-	. 1		
	Photis brevipes		-	790	
	Pleusirus secorrus	-	29	-	
	Pontogeneia sp.	2	11,208	20,421	
	Unidentified	213	2,796	37,592	
	Total	367 <u>+</u>	389 74,953	<u>+</u> 52,527 112,485	+65,238
Amphipoda	(Caprellidae)				_
	Caprella alaskana	-	1.514		
	Caprella laeviuscula	-	4.309	-	
	Caprella sp.	-	17.243	_ 121	
Astoroidos			177435	121	
merordea		- .	29	-	
Bivalvia		36	-	· _	

/

PPENDIX IIIc (Cont'd) (ii) LOW TIDAL ZONE

,

TAXA		<u>SI1</u> #'S	E 3 S.D	<u>SI</u> #'S	<u>re 7</u> S.D.	SITE #'S	<u>11</u> S.D.
Cirrepedia		32		 29		.0	
Copepoda	、	75,266	<u>+</u> 21,683	201,576	<u>+</u> 95,826	114,657	<u>+</u> 60,996
Cumacea	Cumella sp. Unidentified	6,366	+2,764	1 1		120 1 4 6	
Decopoda	Crangon sp. Heptacarpus sp. Hippolytidae Pugettia sp. Unidentified	- - - 1		-		2 2 29 29 -	
Diptera	Chironomid larvae	88				_	
Echinoidea	. · · ·	-		-		<u> </u>	
Gastropoda		58		1,357	<u>+</u> 1,391	117	
Isopoda	Munna sp. Unidentified			590 -		118 29	
Mysidacea		-		88		1	
Nematoda		14,122	<u>+</u> 5,213	2,671	<u>+</u> 2,253	32,206	<u>+</u> 10,129
Oligochaeta Ostracoda		2,935 15,484	<u>+</u> 3,532 <u>+</u> 4,730	38 585	<u>+</u> 401	3,477 1,880	<u>+</u> 4,883 +574

.

٠

APPENDIX IIIC (Cont'd) (ii) LOW TIDAL ZONE

TAXA		SITE 3 #'S S.D		<u>SI</u> :	<u>FE 7</u> <u>S.D.</u>	SIT	<u>E 11</u> S.D.
Polychaeta		677	<u>+</u> 818		890	<u>+5</u> 18	656 <u>+</u> 704
Tanaidacea	Anatanais normani Leptochelia sp. Unidentified	- 146 -		154 29 29		_ 411 _	
- '	Total	146		212		411	
Total	· .	115 , 882	+27,845	305,035	<u>+</u> 123,658	266,713	<u>+</u> 120,374

APPENDIX IIID - POLYCHAETES IDENTIFIED IN THE BENTHIC SAMPLES COLLECTED FROM SITE 7A IN CAMPBELL RIVER FORESHORE ($\#/m^2$)

FAMILY	GENUS SPECIES	April Mid	April Low	May Mid	May Low	June Mid	June Low
Aphroditoidea	Unidentified	6	-	· _	_		
Arabellidae	Unidentified	_	1	30	_		
Capitellidae	Capitella sp.	_ ·	-	-	_		-
Chrysopetalidae	Paleanotus bellis	~ _	29	_	_	- 50	-
	Paleanotus sp.	-		_	· _	_	
Dorvilleidae	Dorvillea sp.	-	· 5	-		_	75
•	Unidentified	-	-	· _	_	_	<u>ວ</u> ວ
Glyceridae	Hemipodus borealis	-	-	-	-	1	-
Hesionidae	Unidentified	75	325	238	49	-	38
Lumbrineridae	Unidentified	3	-		-	-	
Nereidae	Nereis sp.	<u> </u>	-	_		176	_
	Platynereis bicaniculata	16	29	1	2	-	_
	Unidentified	6	_	-	-	200	-
Nerillidae	Unidentifed	-		-	-	59	_
Onuphidae	<u>Onuphis</u> sp.	-	47		-		_
Ophelidae	Armandia brevis	62	-	59	-	_	
Phyllodocidae	Phyllodoce castanea	3	_	· —	-		
Polynoidae	Unidentified	53	427	117	49	1	_
Siglionidae	Unidentified	3	- '	-	•	_	_
Spionidae	Malacocerus glutaeus	5 9		59	-	59	— .
	Spio sp.	-	-	-	49	-	-
0-11/1-	Unidentified	362	-	29	-	-	-
Syllidae	Brania brevipharyngea	338 .	135	-	49	· 	73
	Exogone sp.	12	547	59	392	-	40
	Syllis sp.	、 	-	-	49	29	-
	Trypanosyllis sp.	34	29	-	_	_	-
Messah - 11/1	Unidentified	-	163	· –	_	59	29
Terebellidae	Unidentified	9	-	, —	-	- 17	
Unidentified		168	206	30 ⁄	305		651
ourdeficttied (]n	eniies)	-	. –	14,349	-	-	

APPENDIX IIIe - BIOMASS OF INVERTEBRATES FOUND IN CAMPBELL RIVER FORESHORE BENTHIC SAMPLES (g/m^2)

ß

•

2

.

		Gammarid Amphipods	Harpacticoid & Cyclopoid Copepods	Others*	<u>Total*</u>	OIHERS**	TOTAL**
APRIL							
SITE 3						-	
	MID LOW	0.0126 0.0071	0.0204 0.0340	0.0368 0.0356	0.0698 0.0767	0.0000 0.0158	0.0698 0.0925
SITE 7A							
	MID LOW	0.0856 0.8563	0.2421 0.1774	0.6435 0.3476	0.9712 1.3813	0.0135 0.2923	0.9847 1.6736
SITE 11							
	MID LOW	1.8012 2.0467	0.0841 0.1489	0.1546 0.1948	2.0399 2.3904	0.6908 0.0000	2.7307 2.3904
MAY			· .				
SITE 3			•				
	MID LOW	0.0121 0.4850	0.0438 0.8604	0.0465 0.1824	0.1024 1.5278	0.0000 0.0000	0.1024 1.5278
SITE 7A							
SITE 11	MID LOW	0.0966 0.0150	0.1939 0.1020	0.5874 0.0290	0.8779 0.1460	0.5758 0.0598	1 .4 537 0 . 2058
	MID LOW	0.1670 0.7261	0.2981 0.1932	0.1530 0.2615	0.6181 1.1808	0.0525	0.6706 3.8031

- 115 -

APPENDIX	IIIe	(Cont)-	BIOMASS	OF	INVERTEBRATES	FOUND	IN	CAMPBELL	RIVER	FORESHORE	BENTHIC	SAMPLES	(a/m)	2
----------	------	---------	---------	----	---------------	-------	----	----------	-------	-----------	---------	---------	-------	---

		Gammarid Amphipods	Harpacticoid & Cyclopoid Copepods	Others*	<u>Total*</u>	OTHERS**	TOTAL**
JUNE							
SITE 3				·	•		
·	MID LOW	0.1193 0.0472	0.3315 0.3474	0.1597 0.6614	0.6105 1.0560	0.0000	0.6105 1.0560
SITE 7A							
	MID LOW	0.2261 2.1998	0.0744 0.5254	1.4832 0.6913	1.7837 3.4165	7.2745 0.5770	9.0582 3.9935
SITE 11						•	,
	MID LOW	0.9751 2.0299	1.2578 0.9289	0.1785 0.3206	2.4114 3.2794	0.1394 0.0022	2.5508 3.2816

* Excludes organisms greater than 9.5 mm or with calcareous shells

** Includes all organisms

APPENDIX IIIf Significant Differences in Numbers and Biomass Between Locations, Measured by One Way Analysis of Variance (ANOVA) and Subsequent Multiple Range Testing (.05). (Only significantly different sites are listed.)

	LOW			· MID		
	Total Numbers	Total Biomass*	Total	Numbers	Total	Biomass*
Inverteb	rate totals	:				
April	7A''3 11''3	11"3 7A"3	7A"3 11"3			· .
May	3"11 3"7A	- - -	7A"11"3 _ _	-		
June	7 A ''3 11''3	-	11"3"7A _		-	
Copepods	(Harpacticoid and	Cyclopoid)				
April	7A"3 -	-	7A''11 7A''3	7A	- "3	
Мау	3"7A 3"11	3"11 3"7A	7"11"3	•	_	
June	7A"3 -	11"3	11"3"7 -	11 11'''	"3 7A	
Gammarid	Amphipods					
April	11''3 7A''3	-	11"3 7A"3		-	
May	-	-	11"3 -		-	
June	11"3 7"3		11"7 11"3		<u> </u>	

* Excludes organisms greater than 9.5 mm^2 or with calcareous shells.

APPENDIX IVa - CATCH DATA FOR ALL FISH SPECIES SAMPLED FROM THE CAMPBELL RIVER FORESHORE FROM APRIL 15 TO OCTOBER 27, 1982.

Abbreviations

PHER Pacific Herring, PK Pink Salmon, CM Chum Salmon, CO Coho Salmon, CK Chinook Salmon, CT Coastal Cutthroat Trout, TC Pacific Tomcod, TsSb Threespine Stickleback, BP Bay Pipefish, ShP Shiner Perch, StP Striped Seaperch, UP Unidentified Surfperch, UB Unidentified Blenny, PG Penpoint Gunnel, SL Pacific Sand Lance, URF Unidentified Rockfish, KGr Kelp Greenling, BSc Buffalo Sculpin, ShSc Pacific Staghorn Sculpin, TpSc Tidepool Sculpin, USc Unidentified Surfperch, Alligatorfish, ULp Unidentified Liparis, Sdab Unidentified Sanddab, SF Starry Flounder, COS C-O Sole, UFf Unidentified Flatfish, (J) Juvenile, RCr Rock Crab, KC Kelp Crab Blank = Not Sampled.

Sampling Period (1982)	Site 1	Site 2	Site 3	Site 4	Site 5
April 20	1PK 1PHER(J) 2TpSc 1PK 1CM 1KGr(J) 14StP 2SpSc 1TpSc	1рк 27см	8PK 3CM 5SL 1Sdab 1SF 2Sdab 1TpSc 1SF 45CM 14PK	25PK 30CM	20PK 2CM 1KGr (J)
May 26	12CO 1СК	2CO 2CM 2UP 2KGr	15CO 1CK 3CM 1Sc 1TC	20CM 8PK 1USc	81CO 3CK 25CM 4USc 30TC(J)
June 22			3CK 1CO 225CM 5PK 12USC		
Junè 23	50CK 430CO 190CM	1CK 1CO 16CM 17StP			4CK 4CM 1CT 4USc

Sampling Period (1982)	Site 1	Site 2	Site 3	Site 4	Site 5
July 6	1C0 2USc 100StP 1CK 103CM		33CK 1CO 250CM 1UP 1USc 1KGr		
Aug 6	1ShSc 2CK 34NF 1UP 2USc	47ShP 6USc 5ShP 5USc	1977 - 1977 - 1977 - 1977 - 1977 - 1977 - 1977 - 1977 - 1977 - 1977 - 1977 - 1977 - 1977 - 1977 - 1977 - 1977 -		
Aug 12	125SL 58UP 2USC 1KGr 2SL 103UP 8USC 1BP		36UP 4SF 6USC 88UP 7SF 13USC		
Aug 24	5USC 1Sdab 8UP 6USC 3UP		13USc 8Sdab 4USc 1Sdab 1UP		
Aug 31	2CK 6UP 3USC 1SL 5UP 4USC 1BP		3Sdab 2Sdab 3USc 1UP		
Sept 8			10ShP 1Sdab 3USc 2StP 1CK 3USc 2Sdab 6ShP 1StP		

· : •

Sampling Period (1982)	Site 1	Site 2	Site 3	Site 4	Site 5
Sept 13	2USc 4USc		Unable to Count USc present		
Oct 12	No catch No catch		No catch No catch		
Oct 19	No catch No catch		2UFf 1USc 7UFf		

APPENDIX IVa - (Con't)

F Sampling Period (1982)	Site 6	Site 7A	Site 7B	Site 9	Site 10
Apr 15	101710151151151151151	60-70CM 60-70PK 7StP 2UCot			
Apr 20		15pk 20cm 1Sf		8pk 3CM	1CO 1PK 2CM 4TpSc 1BSc 1KGr(J) 1RCr
May_25				2CK 46PK 126CM	
				16CK 240CO 4CM 2CT 2PHER(J)	
May 27		72CO 30USC 35TC	13CO 1CK 2CM 30UCot 3StP 4USc		
Juné 21		1CK 3PK 20CM 8USC	``````````````````````````````````````		
June 22		6USC 1CK 1CO 72CM 1TsSb 18Sc 1KGr	Internetion		And Frictory of State

- 121 -

Sampling Period (1982)	Site 6	Site 7A	Site 7B	Site 9	Site 10
June 23	35CK 13CO 3CM 1KGr 4USc			10СК 5РК 370СМ	
July 6		16CK 1KGr 2StP 5ShP 35USc 2CK 1CM 2KGr		1CK 7CM 10PHER(J) 10USc 1URF 1CK 2CM 1USc 3PHER 1SF	
Aug 6	No catch 7CK 1USc	4CK 13USC 3CK 6USC			
Aug 9				17CK 1CM 6CK 2USC	
Aug 12	6USC 1USC 1OUP				
Aug 17		94UP 1SF 6USC 56UP 5SF		3CK 5USC 2CK 1USC	

	6	0			
F Sampling Period (1982)	F Site 6	Site 7A	Site 7B	Site 9	Site 10
Aug 24	1StP 3ShP	4USC	54ShP		
	3ShP	a ShP	55ShP		
HTTH:	there is a second se	E 1PG	2USc	Lip Xu	
		E 4CK			
		1USc			
NUT THE		f 1PG 1UP		2171217	
E Aug 31	E No catch	<u> </u>			
	2UP				rintra Lintra
ESept 1		62USC	5USC	6USc	
		39USC	5050	3USC	
Sept 7		12USc	2SF	, 1Sđab	
		80SC 55tP		- 7UP 7USa	
		1Sab	12USc		
Sept 8	1CK			······	
	No catch				
Sept 13	Not Seined	2USc	10UP		
			205C		
Sept 14				No catch	
				20CK	
· · · · · · · · · · · · · · · · · · ·	·			20SC	
Oct 7	No catch	No catch	No catch	No catch	
	NO CATCH	IUSC 5	No catch E	No catch	· · ·
Oct 12	No catch	No catch	No catch	No catch	
	No catch	No catch	No catch	5USc	મેલમાં
Oct 19	1UFf	2PHER	2UFf	2USc	E.
	1KGr		1UFF	5USC	E E
	í í	1UB 🛔			

1

1

F Sampling Period (1982)	Site 11	Site 12	Site 22	Site 23	Sitè 24
Apr 16	1PK 2CM 9CO				
Apr 20	1CK 10PK 14CM 1BSc 25ULp 3SF				
May 25	214CO 7CK 1CM 1KGr 1TC	123CO 3CK 1CM			
June 22	40CK 16CO 9PK 240CM 1CT				
June 23	- 1	14CK 1CM 1USC			
July 7	13CK 144CM 17CK 4CM	33CK 8CM 61KGr 1SL 3USc 10CK 6USc 1KGr			

		the second s		.	
Sampling Period (1982)	Site 11	Site 12	Site 22	Site 23	Site 24
Aug 9	2CK 1USC	67ĆK 1USc 1UP 48CK	un seur seur seur se	u internetie	
Aug 17	1ST 1UP 15CK 1PHER 2UP	No catch No catch			
Aug 27	2USC 14CK	5CK 1TsSb 2TsSb			
Sept 1	2CK 1StP No catch	No catch No catch			2UP 2ShSc 157TpSc 6TsSb
Sept 7	4CK 8CK 2ShP	1CK 1USC		No catch No catch	22CK 1USC 4Sdab 2CK 1USC 3SF
Sept 14	No catch No catch	<u>10Ск</u> 1СК 1USc			
Oct 7	1USC 1USC	1CK _2TsSb No catch		6SF 1USC 3SF 4USC	3CK
Oct 12	No catch 2TsSb	1USc 1USc	No catch No catch		1700 7131 710

Contract of

1 A.

からわずたら

2 min 1 min 1 min 2 min 2

F Sampling Period (1982)	Site 11	Site 12	Site 22	Site 23	Site 24
Poct 14			(North) 10B 1BP 2USc 3UFf 1KC (North) 6USc 1UFf 1COS 1UB 2KGr 6USC 4BP 6Af 6USC 1UP 2BP (South) 17UP 3USc 2PG 5TC 2Af (South) 22UP 1PG 1USc 1BP 3Af		
	No catch	No catch		2SF 2USC 1USC	No Catch No catch
Oct 27		1CK 1BSc 2TsSb			

ţ

Sampling Period (1982)	M 1	M 2	M 3	M 4
Aug 25	4USc 26USc	1USc No catch	40USc 47USc	10CK 16Sdab 10USc 16USc 10Sdab
Sept 2	3TpSc 1TpSc	2USc 1USc	1CT No catch	6USC 2UFf 7USC 3UFf
Sept 9	30USC 10CK	1US¢ 1CK 2SF 4US¢	16USC 1SF 1TsSb 3CT 6USC 1CK	10USC 8Sdab 4USC 2Sdab
Oct 8	3USc	7CK 4USc 1TsSb 2CO 3USc 2SF	5USC 1CT 1USC 1TSSb	1CK 4USc 5USc
Oct 13	1CT 1USC	6USC 6SF 2USC 1SF	1USC	2USC 1UFf 4USC 2UFf
Oct 20	1CK 2USC	15SF 1USC 4SF 4USC	2CK 2USC 7USC	3USC 3UFf 4UFf 1USC

١

Ħ

ì

Species	Brood Year	Release (1982)	# Marked	Total Released
Chinook	81	May 5	83 501	97 200
	81	May 14	AQ QAD	
	81	May 26	- 1004 - 00 106	180,173
	81		07,120 40 050	92,045
	81 81	June 16	49,953	258,233
	01		89,599	<u>9</u> 2,128
•	01	Juty 7	53,670	55,585
		1	415,741	765,464
Chum	81	June 9	-	71,565
Coho	80	May 18	18 952	E20 700
	80	то То	10,052	. 539,722
	80		19,000	220,139
	80		10,835	253,934
-	00		19,501	266,554
	· .	·	76,238	1,280,349
Pink	81	Mar 23 - Apr 20	3 60.525	3 353 947
	81	April 16	60 201	124 624
	81	April 30	60 146	124,624
	U 1	WALTT JA	00,140	124,376
			181,065	3,602,867

APPENDIX IVb - QUINSAM HATCHERY JUVENILE SALMONID RELEASE DATA FOR 1982

日本部でに、住民で大小

「日本日間が、三日に、日本はどえよ、

			# Marked/	· · ·
Date (1982) May 25	Site 12	Species	Total Caught	Length (mm)
May 26	2	Coho	9/123	125+
May 26	2	Caha	1/2	160
May 20 May 26	3 2		1/15	135
May 20 May 26	<u></u> כ	Chinook	1/1	80
May 20	5 7	Cono	7/81	125+
May 21	/A	Cono	8/72	-
June 22	7B [.]	Coho?	3/9	89,94,118
June 22	7B	Chinook?	2/7	118, 117
June 22	11	Coho?	2/11	94, 141
June 23	2	Chinook	1/1	-
June 23	5	Chinook ¹	3/4	-
June 23	6	Chinook	13/35	-
July 6		Chincok	2/22	
July 6	7	Chinook	2/33	-
July 6	ý	Chinook		-
July 7	11	Chincok	9/12	CO
July 7	11	Chincok	· 0/13	-
	11	CHINOK	8/17	115,104,
				107,110,
				105,109,
Tulu 7	10 '		4 (22	110,109
oury /	12	Chinook	1/33	-
Aug 17	11	Chinook	2/15	160 , 157
Sept 14	9	Chincok	1/20	_
Sept 14	12	Chinook	2/10	-

APPENDIX IVC - MARKED JUVENILE SALMONIDS CAUGHT IN THE CAMPBELL RIVER FORESHORE DURING THE STUDY (- = not measured)

APPENDIX IV d - RESULTS OF SALMONID SCALE ANALYSIS FOR AGE

Species	Date	Site	Age	Number	Comments
Chinook	June 21/82	7B	0+	5	Hatchery type growth
Coho	April 16/82	11	1+ 1 ⁺ *	4 1	* Estuary growth?
	May 26/82	11	1+	3	
5 4	May 27/82	7A	1+	5	
	May 27/82	11	1+	16	Hatchery type growth
	June 21/82	7B	0+	1	Species uncertai
APPENDIX \overline{V} a LENGTH DISTRIBUTION OF CHINOOK SALMON SAMPLED IN THE CAMPBELL RIVER FORESHORE (BY MONTH)

Month 1982	Length Class (mm)	No. of Fish	Relative Frequency
April	35 - 39 40 - 45	2 4	33.3 66.7
Total April	- X = 41.0	6	100.0
May	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	3 3 1 0 0 0 1 1 1 0 1 0 3 0 2	16.7 16.7 16.7 5.5 0.0 0.0 5.5 5.5 0.0 5.5 0.0 16.7 0.0 11.1
Total May	- X = 67.3	18	99.9
June	50 - 54 $55 - 59$ $60 - 64$ $65 - 69$ $70 - 74$ $75 - 79$ $80 - 84$ $85 - 89$ $90 - 94$ $95 - 99$ $100 - 104$ $105 - 109$ $110 - 114$ $115 - 119$	2 0 5 2 2 0 1 2 4 0 1 1 1 1 4	8.0 0.0 20.0 8.0 0.0 4.0 16.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4
Total June	X = 85.7	25	100.0

Month 1982	Length Class (mm)	No. of Fish	% Relative Frequency
July	55 - 59 60 - 64 65 - 69 70 - 74 75 - 79 80 - 84 85 - 89 90 - 94 95 - 99 100 - 104 105 - 109 110 - 114 115 - 119	1 3 1 2 0 1 0 1 0 1 2 6 4 2	4.3 13.0 4.3 8.7 0.0 4.3 0.0 0.0 4.3 8.7 26.1 17.4 8.7
Total July	- X = 95.9	23	99.8
August	70 - 74 $75 - 79$ $80 - 84$ $85 - 89$ $90 - 94$ $95 - 99$ $100 - 104$ $105 - 109$ $110 - 114$ $115 - 119$ $120 - 124$ $125 - 129$ $130 - 134$ $135 - 139$ $140 - 144$ $145 - 149$ $150 - 154$ $155 - 159$ $160 - 164$ $165 - 169$	1 спилитили пилитили пили	1.0 1.0 1.9 2.9 4.9 22.3 13.6 18.4 14.6 2.9 6.8 3.9 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
Total August	- X = 107.9 ft	103	100.2

.

•

- 132 -

.

.

Month 1982	Length Class (mm)	No. of Fish	8 Relative Frequency
Sept.	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	1 1 4 5 10 10 10 11 3 7 1 0 0 1 3	$ \begin{array}{r} 1.7\\ 1.7\\ 1.7\\ 6.9\\ 8.6\\ 17.2\\ 17.2\\ 19.0\\ 5.2\\ 12.1\\ 1.7\\ 0.0\\ 0.0\\ 1.7\\ 5.2\end{array} $
~Total Sept.	- X = 115.3	. 58	99.9
Oct.	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	2 3 1 3 6 0 0 1	2 3 1 3 6 0 0 6.3
Total Oct.	- X = 127.3	16	100.2

Month 1 982	Length Class (mm)	No. of Fish	8 Relative Frequency
April	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	22 86 11 2	18.2 71.1 9.1 1.6
Total April	$\frac{1}{2}$ - 38.2	121	100.0
Мау	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	6 11 16 13 26 12 4 1 1 0 0 1 3	6.4 11.7 17.0 13.8 27.7 12.8 4.3 1.1 1.1 0.0 0.0 1.1 3.2
Total May	- X = 57.1	94	100.2
June	$50 - 54 \\ 55 - 59 \\ 60 - 64 \\ 65 - 69 \\ 70 - 74 \\ 75 - 79$	2 0 2 0 1 2	28.6 0.0 28.6 0.0 14.3 28.6
Total June	X = 63.9	7	100.1

APPENDIX \overline{V} b - LENGTH DISTRIBUTION OF CHUM SALMON SAMPLED IN THE CAMPBELL RIVER FORESHORE (BY MONTH)

:

APPENDIX $\overline{\underline{V}}$ b (Cont'd)

Month 1982	Length Class (mm)	No. of Fish	8 Relative Frequency
July	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	2 0 0 1 0 0 0 0 0 0 2 2 2 3 0 1	18.2 0.0 9.1 0.0 0.0 0.0 0.0 0.0 0.0 18.2 18.2 27.3 0.0 9.1
Total July	- X = 77.7	11	100.1

Month 1982	Length Class (mm)	No. of Fish	<pre>% Relative Frequency</pre>
April	$100 - 104 \\ 105 - 109 \\ 110 - 114 \\ 115 - 119 \\ 120 - 124 \\ 125 - 129 \\ 130 - 134$	1 0 1 2 0 0 1	20.0 0.0 20.0 40.0 0.0 20.0
Total April	- X = 118.6	5	100.0
May	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	3 6 3 4 0 1 2 5 10 8 6 8 6 8 1 0 0 1	5.2 10.3 5.2 6.9 0.0 1.7 3.4 8.6 17.2 13.8 10.3 13.8 1.7 0.0 0.0 0.0 1.7
Total May	- X = 119.1	58	99.8

APPENDIX $\overline{\underline{V}}$ c - LENGTH DISTRIBUTION OF COHO SALMON SAMPLED IN THE CAMPBELL RIVER FORESHORE (BY MONTH)

APPENDIX <u>▼</u> c (Cont'd)

Month 1982	Length Class (mm)	No. of Fish	<pre>% Relative Frequency</pre>
June	75 - 79 $80 - 84$ $85 - 89$ $90 - 94$ $95 - 99$ $100 - 104$ $105 - 109$ $110 - 114$ $115 - 119$ $120 - 124$	1 1 3 2 0 2 1 2 1 2 0 1 2 0 1	8.0 8.0 23.0 15.0 0.0 15.0 8.0 15.0 0.0 8.0
Total June	- X = 97.9	13	. 100.0
July	115 - 119 120 - 209 210 - 214	1 1 0 1	50.0 0.0 50.0
Total July		- 2	100.0

Month 1982	Length Class (mm)	No. of Fish	E & Relative Frequency
April	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	26 41 8 4 1	32.5 51.3 10.0 5.0 1.2
Total April	- X = 33.3	80	100.0
Мау	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	7 6 5 0 1 1	35.0 30.0 25.0 0.0 5.0 5.0
Total May	X = 46.3	20	100.0
June	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	1 1 9 7 7 4 6 1 0 3 3 1 1 1 0 0 0 1	$\begin{array}{c} 2.2\\ 2.2\\ 20.0\\ 15.6\\ 15.6\\ 8.9\\ 13.3\\ 2.2\\ 0.0\\ 6.7\\ 2.2\\ 2.2\\ 2.2\\ 0.0\\ 0.0\\ 0.0\\ 0.0\\ 2.2\end{array}$
Total June	- X = 68.6 $\frac{1}{2}$	45	100.0

APPENDIX \overline{V} d - LENGTH DISTRIBUTION OF PINK SALMON SAMPLED IN THE CAMPBELL RIVER FORESHORE (BY MONTH)

1.4.1

4. 2.

.

.

.

Species:	Chincok	Salmon
Site:	7A	
Date:	May 27,	1982
No of Replicates:	4	_
Mean Length:	39.8 mm	
Mean Weight:	0.534 g	

. •

-

.

Food Category	Number/ Stomach	<pre>% Numerical Composition</pre>	Weight/ on Stomach	<pre>% Weight Composition</pre>	Frequency of Occurrence	Prey I.R.I.	<pre>% Total I.R.I.</pre>
Gammarid Amphipoda Calanoid Copepoda Cyclopoid & Harpacticoid Copepoda	5.2 6.3 4.5	30.3 36.8 26.3	0.00038 0.00040 0.00012	34.7 36.3 10.9	75 50 75	4875 1876 2790	48.0 18.5 27.5
Unidentified Diptera adult	0.7	3.9	0.00008	7.0	25	273	2.7
Homoptera Oligochaeta	0.2	1.3 1.3	0.00007 0.00005	6.8 ~4.3	25 25	202 140	2.0 0.4

.

,

Species:	Chinook Salmon
Site:	3
Date:	June 22, 1982
No of Replicates:	1
Length:	52mm
Weight:	1.395 g

. •

×.

Food Category	Number/ Stomach	<pre>% Numerical Compositi</pre>	Weight/ on Stomach	<pre>% Weight Composition</pre>	Frequency of Occurrence	Prey I.R.I.	<pre>% Total I.R.I.</pre>
Gammarid Amphipoda	9.0	7.4	0.01365	61.3	100	6870	3/ 3
Chironomid Adults	40.1	35.5	0.00304	13.7	100	4920	24.6
Chironomid Larvae	19.7	17.4	0.00167	7.5	100	2490	12.4
Chironomid Pupae	44.9	39.7	0.00391	17.6	100	5730	28.6

۰ .

Species:	Chinook Salmon
Site:	,7A
Date:	June 21, 1982
No of Replicates:	11
Mean Length:	103.2mm
Mean Weight:	11.078g

Food Category	Number/ Stomach	<pre>% Numerical Composition</pre>	Weight/ Stomach	<pre>% Weight Composition</pre>	Frequency of Occurrence	Prey I.R.I.	<pre>% Total I.R.I.</pre>
Gammarid Amphipoda	3.8	26.9	0.00141	11.1	82	3116	20.0
Calanoid Copepoda	1.1	7.7	0.00015	1.2	64	570	29.0
Cyclopoid &	5.9	41.5	0.00003	0.2	73	3044	20 1
Harpacticoid Copepoda				0.2		2044	47.1
Caprellid Amphipoda	0.4	3.1	0.00007	0.5	18	65	06
Coleoptera	0.1	0.8	0+00018	1_4	<u>10</u>	20	0.0
Chironomid Larvae	2.2	15.4	0.00013	1.0	27	20	0.2
Chironomid Pupae	0.3	2.3	0.00004	-0.3	18	445	4•4 0 Å
Decapoda Zoea	0.8	5.4	0.00011	5.4	36	272	0.4
Fish larvae	0.7	4.6	0.00783	~ 4.6	27	1804	17 2
Coleoptera larvae	0.3	2.3	0.00004	2.3	27	70	07
Isopoda	0.2	1.5	0.00021	1.5	18	58	0.7
Unid. Insecta Adult	0.7	4.6	0.00013	4.6	36	202 [°]	1 0
Mysidacea?	0.5	3.8	0.00219	3.8	36	763	1.5
Tanaidacea	0.3	2.3	0.00005	2.3	9	24	7.3
Others	0.1	0.8	0.00005	0.8	9	11	0.1

- 141 -

Species:	Chinook Salmon
Site:	11
Date:	June 22, 1982
No of Replicates:	6
Mean Length:	95.2 mm
Mean Weight:	8.606 g

Food Category	Number/ Stomach	<pre>% Numerical Composition</pre>	Weight/ Stomach	<pre>% Weight Composition</pre>	Frequency of Occurrence	Prey I.R.I.	<pre>% Total I.R.I.</pre>
Gammarid Amphipoda	6.7	16.9	0.00029	4.2	100	2110	10.9
Calanoid Copeoda	4.1	10.4	0.00373	53.6	83	5312	19.0
Cyclopoid & Harpacticoid Copepoda	23.8	60.2	0.00020	2.8	33	2079	19.5
Decapoda Megalops	0.5	1.3	0.00144	20.3	17	367	3 4
Gastropoda	2.4	6.0	0.00019	2.7	33	287	2.7
Hyperid Amphipoda	1.4	3.5	0.00018	2.6	33	201	1.9
Insecta adult	0.2	0.4	0.00006	0.8	17	20	0.2
Mysidacea?	0.2	0.4	0.00081	11.6	17	204	1.9
Others	0.4	0.9	0.00007	0.9	33	59	0.6

- ----

Species:	Chum
Site:	3
Date:	April 20, 1983
No of Replicates:	10
Mean Length:	39.7 mm
Mean Weight:	0.367 g

.

.

Food Category	Number/ Stomach	<pre>% Numerical Composition</pre>	Weight/ Stomach	<pre>% Weight Composition</pre>	Frequency of Occurrence	Prey I.R.I.	<pre>% Total I.R.I.</pre>
Gammarid Amphipoda Calanoid Copeoda Cyclopoid & Harpacticoid Copepoda	2.2 3.6 7.5	14.8 25.0 51.6	0.00004 0.00016 0.00004	11.9 55.3 14.2	70 70 70	1869 5621 4606	14.9 44.7 36.7
Chironomid Pupae Chironomid Adults	0.2 0.5	1.6 3.1	0.00027 0.00028	9.2 9.5	20 20	216 252	1.7 2.0

.

- 143 -

Species:	Chumi
Site:	7A
Date:	April 14, 1982
No of Replicates:	11
Mean Length:	37.46 mm
Mean Weight:	3.368 g

Food Category	Number/	<pre>% Numerical</pre>	Weight/	% Weight	Frequence	cy of Prey	<pre>% Total</pre>
	Stomach	Composition	on Stomach	Composition	Occuri	rence I.R.	I. I.R.I.
Gammarid Amphipoda Calanoid Copeoda Cyclopoid & Harpacticoid Copepoda	3.1 1.2 25.7	9.6 3.7 79.8	0.00012 0.00003 0.00011	35.1 9.7 32.7	45 36 100	2012 482 11250	14.2 3.4 79.2
Cumacea	.2	0.6	0.00002	4.6	18	94	0.7
Decapoda (Zoea)	.5	1.4	0.00003	10.2	18	209	1.5
Fish (larvae)	.3	0.8	0.00002	4.6	9	104	0.7
Polychaeta	.9	2.8	0.00001	3.2	9	54	0.4

Species:	Chum		
Site:	11		
Date:	April	16-20,	1982
No of Replicates:	10		
Mean Length:	38.80	mm	
Mean Weight:	3.547	g	

Food Category	Number/ Stomach	<pre>% Numerical Compositi</pre>	Weight/ on Stomach	<pre>% Weight Composition</pre>	Frequency of Occurrence	f Prey I.R.I.	<pre>% Total I.R.I.</pre>
Gammarid Amphipoda Calanoid Copeoda Cyclopoid & Harpacticoid Copepoda	1.6 9.9 49.0	2.6 16.2 80.4	0.00008 0.00030 0.00042	9.0 34.9 50.1	60 100 80	696 5110 10440	4.2 31.1 63.7
Decapoda (Zoea) Unidentified Diptera adult	.4 .4	0.7 0.7	0.00002 0.00001	2.6 0.7	10 10	33 74	0.2
Mysidacea	.4	0.7	0.00002	2.7	10	34	0.2

.

Species:	Chum
Site:	3
Date:	May 27, 1982
No of Replicates:	10
Mean Length:	51.80 mm
Mean Weight:	1.122 g

	Number/	<pre>% Numerical</pre>	Weight/ {	& Weight	Frequency of	Prey	% Total
Food Category	Stomach	Composition	n Stomach	Composition	Occurrence	I.R.I.	I.R.I.
Gammarid Amphipoda	15.9	16.9	0.00014	8.1	80	2000	11.1
Calanoid Copeoda	13.2	14.1	0.00079	46.8	100	6090	33.9
Cyclopoid &	64.0	68.1	0.00070	41.1	90	9828	54.7
Harpacticoid Copepoda							
Cumacea	.3	0.3	0.00001	0.4	20	14	0.1
Unidentified Diptera	•5	0.5	0.00003	1.6	10	21	0.1

.

. ~

Species:	Chum
Site:	7A
Date:	May 27, 1982
No of Replicates:	10
Mean Length:	62.40 mm
Mean Weight:	1.885 g

.

.

٠.

÷ .

Food Category	Number/ Stomach	<pre>% Numerical Composition</pre>	Weight/ Stomach	<pre>% Weight Composition</pre>	Frequency of Occurrence	Prey I.R.I.	<pre>% Total I.R.I.</pre>
Gammarid Amphipoda	.2	0.4	0.00006	4.5	40	196	1.0
Calanoid Copeoda	17.0	31.7	0.00109	78.5	100	11020	56.9
Cyclopoid &	35.8	66.6	0.00018	12.6	100	7920	40.9
Harpacticoid Copepoda							1015
Cumacea	.2	0.3	0.00002	1.7	40	80	0.4
Gastropoda	•3	0.6	0.00001	0.8	40	56	0.3
Ispoda	.2	0.3	0.00003	1.9	40	88	0.5

· · ·

- 147 -

. •

٩.,

d'

۰.

APPENDIX VI (Cont) - DIETS OF JUVENILE SALMON COLLECTED FROM THE CAMPBELL RIVER FORESHORE AND THE INDICES OF RELATIVE IMPORTANCE (I.R.I.).

Species:	Chum
Site:	3
Date:	June 22, 1982
No of Replicates:	1
Length:	53mm
Weight:	1.611 g

Food Category	Number/ Stomach	<pre>% Numerical Composition</pre>	Weight/ n Stomach	% Weight Composition	Frequency of Occurrence	Prey I.R.I.	<pre>% Total I.R.I.</pre>
Gammarid Amphipoda	27.0	28.4	0.00392	45.8	100	7420	37.1
Calanoid Copeoda	1.0	. 1.1	0.00057	6.7	100	780	3.9
Cyclopoid &	2.0	2.1	0.00019	2.2	100	- 430	2.2
Harpacticoid Copepoda	~						
Unidentified Diptera adult	43.0	45.3	0.00162	~ 18,9	100	6420	32.1
Unidentified Diptera larve	17.0	17.9	0.00063	7.4	100	2530	12.7
Unidentified Diptera	5.0	5.3	0.00162	18.9	100	2420	12.1

Species: Site: Date: No of Replicates: Mean Length: Mean Weight:	Coho 11 April 16 4 118.0 mm 12.860g	· .			-		. *
Food Category	Number/ Stomach	% Numerical Composition	Weight/ Stomach	% Weight Composition	Frequency of Occurrence	Prey I.R.I.	% Total I.R.I.
Gammarid Amphipoda	a 0.3	100.0	0.00011	100.0	25	5000	100.0
Species: Site: Date: No of Replicates: Mean Length: Mean Weight:	Coho 7A May 27, 1982 3 88.3 mm 2.082 g		· · · ·	·			
Food Category	Number/ Stomach	<pre>% Numerical Composition</pre>	Weight/ Stomach	% Weight Composition	Frequency of Occurrence	Prey I.R.I.	<pre>% Total I.R.I.</pre>
Gammarid Amphipoda Calanoid Copeoda Chironomid Adults Decapoda Zoea Oligochaeta	a 3.6 37.3 .3 .7 .3	8.4 88.2 0.8 1.7 0.8	0.00065 0.00021 0.00005 0.00013 0.00006	6.1 19.3 5.0 9.0 5.6	33 100 33 33 33 33	2294 8820 19 353 211	19.3 74.3 1.6 3.0 1.8

.

Species:	Coho
Site:	11
Date:	May 26-27, 1982
No of Replicates:	5
Mean Length:	132.4 mm
Mean Weight:	16.994g

•.

	Food Category	Number/ Stomach	% Numerical Composition	Weight/ Stomach	% Weight Composition	Frequency of Occurrence	Prey I.R.I.	% Total I.R.I.
	Gammarid Amphipoda	2.5	10.1	0.00087	41.7	40	2072	16.2
	Calanoid Copepoda	19.5	78.1	0.00106	50.7	80	10304	80.7
	Decapoda Zoea	2.3	9.3	0.00010	4.8	20	282	2.2
	Insecta adult	• •6	2.5	0.00006	2.8	` 20	106	0.8
	Species: Coho)						
	Site: 11							
	Date: June	22, 1982						
	No of Replicates: 6	•		:	· , ~ .			
	Mean Length: 93.2	2 mm						
	Mean Weight: 7.21	l2 g	r					
	• . •	Number/	<pre>% Numerical</pre>	Weight/	% Weight	Frequency of	Prey	% Total
	Food Category	Stomach	Composition	Stomach	Composition	Occurrence	I.R.I.	I.R.I.
	Gammarid Amphipoda	1.8	23.4	0.00078	27.0	66.6	3357	35.8
	Hyperid Amphipoda	-8	10.6	0.00025	8.5	16.7	_ 319	3.4
	Caprellid Amphipoda	• •2	6.4	0.00003	1.0	16.7	124	1.3
	Calanoid Copepoda	1.5	19.4	0.00019	6.7	66.6	1738	18.5
	Cyclopoid &	2.7	34.0	0.00006	2.0	50.0	1800	19.2
1.020	Harpactiocoid Copepoda	1						
	Mysidaœa?	•5	6.3	0.00157	54.8	33.3	2035	21.7

.

Species:	Pink
Site:	3
Date:	June 22, 1982
No of Replicates:	12
Mean Length:	68.8 mm
Mean Weight:	4.827 g

Food Category	Number/ Stomach	<pre>% Numerical Composition</pre>	Weight/ Stomach	% Weight Composition	Frequency of Occurrence	Prey I.R.I.	% Total I.R.I.
Gammarid Amphipoda	.3.9	6.4	0.00035	8.4	50	740	8.7
Hyperid Amphipoda	2.7	4.4	0.00051	12.2	25	415	4.9
Calanoid Copepoda	11.2	18.9	0.00123	29.6	42	2037	24.0
Cyclopoid &	-						
Harpacticoid Copepoda	13.9	23.1	0.00008	1.8	33	822	9.7
Chironomid Adults	8.9	14.8	0.00058	13.8	42	1201	14.1
Chironomid larvae	8.7	14.5	0.00052	12.5	50	1350	15.9
Chironomid pupae	9.4	15.7	0.00077	18.6	50	1715	20.2
Mysidacea?	0.5	0.9	0.00004	1.0	8	17	.2
Others	0.8	1.3	0.00009	2.2	58	203	2.4

Species:	Pink
Site:	7A.
Date:	June 21, 23, 1982
No of Replicates:	19
Mean Length:	68.2 mm
Mean Weight:	3.089 g

	Number/	& Numerical	Weight/	% Weight	Frequency of	Prey	* Total
Food Category	Stomach	Composition	Stomach	Composition	Occurrence	I.R.I.	I.R.I.
Gammarid Amphipoda	1.2	2.3	0.00006	1.3	67	328	2.4
Hyperid Amphipoda	0.9	1.6	0.00005	1.0	56	146	1.1
Calanoid Copepoda	13.0	24.2	0.00389	83.6	78	8408	60.8
Cyclopoid &							
Harpacticoid Copepoda	19.8	36.9	0.00018	3.8	78	3175	23.0
Chironomid Adults	0.4	0.7	0.00003	0.6	11	14	0.1
Chironomid larvae	1.3	2.5	0.00006	1.2	44	- 163	1.2
Chironomid pupae	1.0	1.8	0.00009	1.9	44	163	1.2
Cirripedia	2.7	5.0	0.00002	~ ~ 0.4	33	178	1.3
Mysidacea?	0.4	0.7	0.00002	0.5	11	13	0.1
Oligochaeta	0.3	0.5	0.00001	0.2	22	15	0.1
Ostracoda	11.0	20.4	0.00024	5.1	33	842	6.1
Others	1.9	3.6	0.00001	0.2	100	380	2.7

Species:	Pink	
Site:	11	
Date:	June 22,	1982
No of Replicates:	8	
Mean Length:	71.0	
Mean Weight:	2.928 g	

Food Category	Number/ Stomach	<pre>% Numerical Composition</pre>	Weight/ Stomach	% Weight Composition	Frequency of Occurrence	Prey I.R.I.	<pre>% Total I.R.I.</pre>
Gammarid Amphipoda	1.0	0.7	0.00007	1.4	38	80	0.7
Hyperid Amphipoda	4.2	3.1	0.00047	10.2	50	665	5.5
Calanoid Copepoda Cyclopoid &	25.0	18.4	0.00295	64.0	75	6180	51.5
Harpacticoid Copepoda	105.4	77.5	0.00107	23.3	50	5040	42.0
Cumacea	0.1	0.1	0.00003	0.7	13	10	0.1
Others	0.3	0.2	0.00002	0.4	25	15	0.1