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Motivation







Bayesian Decision Theory

• Fundamental statistical approach to statistical pattern classification

• Quantifies trade-offs between classification using probabilities and 
costs of decisions 

• Assumes all relevant probabilities are known



It is the decision making when all underlying probability distributions are known.

It is optimal given the distributions are known.

For two classes w1 and w2 , 

Prior probabilities for an unknown new observation:

P(w1) : the new observation belongs to class 1

P(w2) : the new observation belongs to class 2

P(w1 ) + P(w2 ) = 1

It reflects our prior knowledge.  It is our decision rule when no feature on the new object 

is available:

Classify as class 1 if P(w1 ) > P(w2 ) 

Bayesian Decision Theory



Bayesian Decision Theory

• Design classifiers to make decisions subject to minimizing an expected ”risk”.
• The simplest risk is the classification error (i.e., assuming that misclassification costs are 

equal).

• When misclassification costs are not equal, the risk can include the cost associated with 
different misclassifications.



Example



Terminology - consider the sea bass/salmon example

• State of nature ω (class label): 
• e.g., ω1 for sea bass, ω2 for salmon

• Probabilities P(ω1) and P(ω2) (priors):
• e.g., prior knowledge of how likely is to get a sea bass or a salmon

• Probability density function p(x) (evidence): 
• e.g., how frequently we will measure a pattern with feature value x

(e.g., x corresponds to lightness) 



Prior Probability
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• The catch of salmon and sea bass is equiprobable

• P(w1) = P(w2) (uniform priors)

• P(w1) + P( w2) = 1 (exclusivity and exhaustivity)

Prior Probability



Decision Rule from only Priors
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Favours  the most likely class.

or P(error) = min[P(ω1), P(ω2)]



Features and Feature spaces



• The class-conditional probability density function is the probability density function for x, 
our feature, given that the state of nature is ω

• e.g., how frequently we will measure a pattern with feature value x given that the pattern 
belongs to class ωj

• P(x | w1) and P(x | w2) describe 

the difference in lightness 

between populations of 

sea-bass and salmon

Class Conditional probability density p(x/ωj) (likelihood) :



• e.g., the probability that the fish belongs to class ωj given feature x.

Conditional probability P(ωj /x) (posterior) :



Decision Rule Using Conditional Probabilities

• Using Bayes’ rule:

where                                                 (i.e., scale factor – sum of probs = 1)

Decide ω1  if P(ω1 /x) > P(ω2 /x); otherwise decide  ω2

or

Decide  ω1 if  p(x/ω1)P(ω1)>p(x/ω2)P(ω2); otherwise decide  ω2

or

Decide  ω1 if  p(x/ω1)/p(x/ω2) >P(ω2)/P(ω1) ; otherwise decide  ω2
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Decision Rule Using Conditional Probabilities 
(cont’d)
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Probability of error
• x is an observation for which: 

• if P(ω1 | x) > P(ω2 | x) True state of nature = ω1 

• if P(ω1 | x) < P(ω2 | x) True state of nature = ω2 



Bayes Decision Rule (with equal costs)



Where do Probabilities come from?

• There are two competitive answers:

(1) Relative frequency (objective) approach.
• Probabilities can only come from experiments.

(2) Bayesian (subjective) approach.
• Probabilities may reflect degree of belief and can be 

based on opinion.



Example (objective approach)

• Classify cars whether they are more or less than $50K:
• Classes:  C1 if price > $50K,   C2 if price <= $50K 

• Features: x, the height of a car

• Use the Bayes’ rule to compute the posterior probabilities:

• We need to estimate  p(x/C1), p(x/C2), P(C1), P(C2)

( / ) ( )
( / )

( )

i i
i

p x C P C
P C x

p x




Example (cont’d)

• Collect data
• Ask drivers how much their car was and measure height. 

• Determine prior probabilities P(C1), P(C2)
• e.g.,  1209 samples: #C1=221  #C2=988
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Example (cont’d)

• Determine class conditional probabilities (likelihood)
• Discretize car height into bins and use normalized histogram
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Example (cont’d)

• Calculate the posterior probability for each bin:

1 1
1

1 1 2 2

( 1.0 / ) ( )
( / 1.0)

( 1.0 / ) ( ) ( 1.0 / ) ( )

0.2081*0.183
0.438

0.2081*0.183 0.0597*0.817

p x C P C
P C x

p x C P C p x C P C


  

  

 


( / )iP C x



A More General Theory

• Use more than one features.

• Allow more than two categories.

• Allow actions other than classifying the input to one of the possible 
categories (e.g., rejection) - Refusing to make a decision in close or bad 
cases!.

• Employ a more general error function (i.e., expected “risk”) by 
associating a “cost” (based on a “loss” function) with different errors. 

• Note that, the loss function states how costly each action taken is



Loss Function

If action i is taken and the true state of nature is wj then the decision is correct if i = j and in error if i  j
Seek a decision rule that minimizes the probability of error which is the error rate



Expected loss





Overall Risk

• Suppose α(x) is a general decision rule that determines which 
action α1, α2, …, αl  to take for every x.

• The overall risk is defined as:

Clearly, we want the rule α(·) that minimizes R(α(x)|x) for all x. 

( ( ) / ) ( )R R a p d  x x x x

• The Bayes rule minimizes R by:
(i)  Computing R(αi /x) for every αi given an x

(ii) Choosing the action αi with the minimum R(αi /x)

• The resulting minimum R* is called Bayes risk and is the best (i.e., optimum) 
performance that can be achieved: 



Example: Two-category classification

• Define

• α1: decide ω1 

• α2: decide ω2 

• λij = λ(αi /ωj)

loss incurred for deciding wi when the true state of nature is wj

• The conditional risks are:
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Example: Two-category classification

• Minimum risk decision rule:

or (i.e., using likelihood ratio) 

or

>

thresholdlikelihood ratio
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x (21- 11)

x (12- 22)
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Two-Category Decision Theory: Chopping Machine

1 = chop 

2 = DO NOT chop 

w1  = NO hand in machine

w2 = hand in machine

11 = (1 | w1) = $       0.00

12 = (1 | w2) = $   100.00

21 = (2 | w1) = $       0.01

22 = (1 | w1) = $       0.01

Therefore our rule becomes

(21- 11) P(x | w1) P(w1) > (12- 22) P(x | w2) P(w2)

0.01   P(x | w1) P(w1) >  99.99 P(x | w2) P(w2)
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Our rule is the following:

if R(1 | x) < R(2 | x)

action 1: “decide w1” is taken

This results in the equivalent rule :

decide w1 if:

(21- 11) P(x | w1) P(w1) >

(12- 22) P(x | w2) P(w2)

and decide w2 otherwise



Special Case:
Zero-One Loss Function

• Assign the same loss to all errors:

• All errors are equally costly.

• The conditional risk corresponding to this loss function:

The risk corresponding to this loss function is the average probability error.

   

R(a i | x) = l(a i |w j )P(w j | x)
j=1

j= c

å

                 = P(w j | x) =1- P(w i | x)
j¹ i

å



Special Case:
Zero-One Loss Function (cont’d)

• The decision rule becomes:

• The overall risk turns out to be the average probability 
error!

or

or



Loss function

Let                                denote the loss for deciding class i

when the true class is j

In minimizing the risk, we decide class one if 

Rearrange it, we have



Loss function
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Example:



Example
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(decision regions)

Decide ω1 if  p(x/ω1)/p(x/ω2)>P(ω2 )/P(ω1) otherwise decide ω2

Assuming zero-one loss:

12 21 

>

assume:

Assuming general loss:



Lecture note for Stat 231: Pattern 
Recognition and Machine Learning

Diagram of pattern classification
Procedure of pattern recognition and decision making

subjects Features
x

Observables
X

Action


Inner belief
w

X--- all the observables using existing sensors and instruments

x --- is a set of features selected from components of X, or linear/non-linear functions of X.

w --- is our inner belief/perception about the subject class.

 --- is the action that we take for x. 

We denote the three spaces by
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Lecture note for Stat 231: Pattern 
Recognition and Machine Learning

Examples

Ex 1: Fish classification

X=I is the image of fish,

x =(brightness, length, fin#,  ….)

w is our belief what the fish type is 

c={“sea bass”, “salmon”, “trout”, …}

 is a decision for the fish type,

in this case c= 

 ={“sea bass”, “salmon”, “trout”, …}

Ex 2: Medical diagnosis

X= all the available medical tests, imaging scans  that a 

doctor can order for a patient

x =(blood pressure, glucose level,  cough, x-ray….)

w is an illness type

c={“Flu”, “cold”, “TB”, “pneumonia”, “lung cancer”…}

 is a decision for treatment,

 ={“Tylenol”,  “Hospitalize”, …}



Lecture note for Stat 231: Pattern 
Recognition and Machine Learning

Tasks

subjects Features
x

Observables
X

Decision


Inner belief
w

control
sensors

selecting
Informative 

features

statistical
inference

risk/cost
minimization

In Bayesian decision theory, we are concerned with the last three steps in the big ellipse
assuming that the observables are given and features are selected. 



Lecture note for Stat 231: Pattern 
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Bayesian Decision Theory

Features
x

Decision
(x)

Inner belief
p(w|x)

statistical
Inference

risk/cost
minimization

Two probability tables: 

a). Prior p(w)

b). Likelihood p(x|w)

A  risk/cost function

(is a two-way table)

( | w)

The belief on the class w is computed by the Bayes rule

The risk is computed by
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Lecture note for Stat 231: Pattern 
Recognition and Machine Learning

Decision Rule 

A decision is made to minimize the average cost / risk,

It is minimized when our decision is made to minimize the cost / risk for each instance 
x.

 dx)()|)(( xpxxRR 

 d:)(x
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A decision rule is a mapping function from feature space to the set of actions

we will show that randomized decisions won’t be optimal.



Lecture note for Stat 231: Pattern 
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Bayesian error
In a special case, like fish classification, the action is classification, we assume a 0/1 error.
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The risk for classifying x to class i  is,

The optimal decision is to choose the class that has maximum posterior probability

)|(maxarg))|(1(minarg)( xpxpx 
 



The total risk for a decision rule, in this case,  is called the Bayesian error

dxxpxxpdxxpxerrorperrorpR )())|)((1()()|()(   



Lecture note for Stat 231: Pattern 
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An example of fish classification
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Decision/classification Boundaries



Discriminant Functions

Decision surface defined by
gi(x) = gj(x) 

})(...,...),(),({maxarg)( 21 xgxgxgx k



Bayes Discriminants



Uniqueness of discriminants 



Decision Regions and Boundaries

• Discriminants divide the feature space in decision regions
R1, R2, …, Rc, separated by decision boundaries.

Decision boundary 

is defined by:

g1(x)=g2(x) 



Case of two categories

• More common to use a single discriminant function (dichotomizer) instead of two:

• Examples:
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Discriminant function for discrete features

Discrete features: x = [x1, x2, …, xd ]
t , xi{0,1 }

pi = P(xi = 1 | w1)

qi = P(xi = 1 | w2)

The likelihood will be:



Discriminant function for discrete features

The discriminant function:

The likelihood ratio:



   

g(x) = wi

i=1

d

å x i + w0

       wi = ln
pi(1- qi)

qi(1- pi)
      i =1,...,d

       w0 = ln
1- pi

1- qii=1

d

å + ln
P(w1)

P(w2)

Discriminant function for discrete features

So the decision surface is again a hyperplane.
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The Univariate Normal Density

• Easy to work with analytically

• A lot of processes are asymptotically Gaussian

• Handwritten characters, speech sounds are ideal or prototype corrupted by random process (central limit theorem)



Univariate Normal Density



Entropy



Multivariate density: N( , )

• Multivariate normal density in d dimensions:

where:

x = (x1, x2, …, xd)t (t stands for the transpose of a vector)

 = (1, 2, …, d)t mean vector

 = d*d covariance matrix

|| and -1 are determinant and inverse of , respectively

• The covariance matrix is always symmetric and positive semidefinite; we assume  is positive 
definite so the determinant  of  is strictly positive

• Multivariate normal density is completely specified by [d + d(d+1)/2] parameters

• If variables x1 and x2  are statistically independent  then the covariance of x1 and x2  is zero. 









 

)x()x(
2

1
exp

)2(

1
)x(P

1t

2/12/d






Multivariate Normal Density



The Covariance Matrix



Mahalanobis Distance



Reminder of some results for random vectors

Let Σ be a kxk square symmetrix matrix, then it has k pairs of 

eigenvalues and eigenvectors.  A can be decomposed as:

  

S = l1e1e1
¢ + l2e2e2

¢ + .......+ lkekek
¢ = PL ¢ P 

Positive-definite matrix:

   

¢ x Sx > 0,"x ¹ 0

l1 ³ l2 ³ ...... ³ lk > 0

Note : ¢ x Sx = l1( ¢ x e1)
2 + ......+ lk ( ¢ x ek )2



Normal density

Whitening transform:

   

P :  eigen vector matrix

L :  diagonal eigen value matrix

Aw = PL
- 1

2

Aw

t SAw

= L
- 1

2P tSPL
- 1

2

= L
- 1

2P tPLP tPL
- 1

2

= I

  

S = l1e1e1
¢ + l2e2e2

¢ + .......+ lkekek
¢ = PL ¢ P 



Linear Combinations of Normals



General Discriminant Function for 
Multivariate Gaussian Density
Recall the minimum error rate discriminant

( ) ln ( / ) ln ( )i i ig p Pw w x x

N(μ,Σ)



Simple Case: Statistically Independent Features 
with Same Variance

A classifier that uses linear discriminant functions is called “a linear machine”

The decision surfaces for a linear machine are pieces of hyperplanes defined by:

gi(x) = gj(x)

.



Multivariate Gaussian Density: Case I

• Σi=σ2 I (diagonal matrix)

• Features are statistically independent

• Each feature has the same variance



Case1 : Σi=σ2 I



Case 1: Σi=σ2 I

i.e. With equal prior, x0 is the middle point between the two means.
The decision surface is a hyperplane, perpendicular to the line between the means.



Case 1: Σi=σ2 I

• Properties of decision boundary:
• It passes through x0

• It is orthogonal to the line linking the means.

• If σ is very small, the position of the boundary is insensitive to P(ωi) and P(ωj)

)

)

2( ) || ||i ig   x x

When P(ωi) are equal, then the discriminant becomes:



Case 1: Σi=σ2 I

With unequal prior 

probabilities, the 

decision boundary 

shifts to the less likely 

mean.



Multivariate Gaussian Density: Case 2

• Σi= Σ

Recall



Case 2 : Σi= Σ



Case 2 : Σi= Σ

Properties of hyperplane 
(decision boundary) for equal 
but asymmetric Gaussian 
distributions

It passes through x0

It is not orthogonal to the line 
between the means.
If P(ωi) and P(ωj) are not equal, 
then x0 shifts away from the most 
likely category.



• Mahalanobis distance classifier 
• When P(ωi) are equal, then the discriminant becomes:

Case 2 : Σi= Σ



Multivariate Gaussian Density: Case 3

• Σi= arbitrary

e.g., hyperplanes, pairs of hyperplanes,  hyperspheres, hyperellipsoids, hyperparaboloids etc. 

hyperquadrics;



non-linear

decision

boundaries

Case 3: Σi= arbitrary



Case 3: Σi= arbitrary



Case 3: Σi= arbitrary



Example - Case 3

P(ω1)=P(ω2)

decision boundary:

boundary does

not pass through

midpoint of μ1,μ2



Signal Detection Theory



Signal Detection Theory



Receiver Operating Characteristics



ROC



Example: Person Authentication

• Authenticate a person using biometrics (e.g., fingerprints).

• There are two possible distributions (i.e., classes):
• Authentic (A) and Impostor (I)

I
A



Example: Person Authentication

• Possible decisions:
• (1) correct acceptance (true positive): 

• X belongs to A, and we decide A

• (2) incorrect acceptance (false positive): 
• X belongs to I, and we decide A

• (3) correct rejection (true negative): 
• X belongs to I, and we decide I

• (4) incorrect rejection (false negative): 
• X belongs to A, and we decide I

I
A

false positive

correct acceptance

correct rejection

false negative



Error vs Threshold

x* (threshold)

ROC Curve

FAR: False Accept Rate (False Positive)
FRR: False Reject Rate (False Negative)



False Negatives vs Positives 

ROC Curve

FAR: False Accept Rate (False Positive)
FRR: False Reject Rate (False Negative)


