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Abstract

This paper presents a computational model for per-

ceptual organization. A �gure-ground segregation

network is proposed based on a novel boundary pair

representation. Nodes in the network are boundary

segments obtained through local grouping. Each node

is excitatorily coupled with the neighboring nodes that

belong to the same region, and inhibitorily coupled with

the corresponding paired node. The status of a node

represents the probability of the node being �gural and

is updated according to a di�erential equation. The

system solves the �gure-ground segregation problem

through temporal evolution. Gestalt-like grouping rules

are incorporated by modulating connections, which de-

termines the temporal behavior and thus the perception

of the system. The results are then fed to a surface

completion module based on local di�usion. Di�erent

perceptual phenomena, such as modal and amodal

completion, virtual contours, grouping and shape de-

composition are explained by the model with a �xed set

of parameters. Computationally, the system eliminates

combinatorial optimization, which is common to many

existing computational approaches. It also accounts for

more examples that are consistent with psychological

experiments. In addition, the boundary-pair represen-

tation is consistent with well-known on- and o�-center

cell responses and thus biologically more plausible.

1 Introduction

Perceptual organization refers to the ability of grouping
similar features in sensory data. This, at a minimum,
includes the operations of grouping and �gure-ground
segregation. Here grouping includes both local group-
ing, generally known as segmentation, and long-range
grouping, referred to as perceptual grouping in this pa-
per. Figure-ground segregation refers to the process of
determining the relative depth of adjacent regions in
input data. This problem setting has several compu-

tational implications. The central problem in percep-
tual organization is �gure-ground segregation. When
the relative depth between regions is determined, dif-
ferent types of surface completion phenomena, such as
modal and amodal completion, shape composition and
perceptual grouping, can be solved and explained us-
ing a single framework. Perceptual grouping can be in-
ferred from surface completion. Grouping rules, such as
those summarized by Gestaltists, can be incorporated
for �gure-ground segregation.

Many computational models have been proposed for
perceptual organization. Many of the existing ap-
proaches [8] [4] [12] [13] [3] start from detecting dis-
continuities, i.e. edges in the input; one or several
con�gurations are then selected according to certain
criteria, for example, non-accidentalness [8]. Those ap-
proaches to a larger extend are in
uenced by Marr's
paradigm [10], which is supported by that on- and o�-
center cells response to luminance di�erences, or edges
[6], and that the three-dimensional shapes of the parts
can be inferred from a two-dimensional line drawing [1].
While those approaches work well to derive meaningful
two-dimensional regions and their boundaries, there are
several disadvantages for perceptual organization. The-
oretically speaking, edges should be localized between
regions and do not belong to any region. By detecting
and using edges from the input, an additional ambigu-
ity, the ownership of a boundary segment, is introduced.
Ownership problem is equivalent to �gure-ground seg-
regation [11]. Due to that, regional attributions cannot
be associated with boundary segments. Further more,
because each boundary segment can belong to di�er-
ent regions, the potential search space is combinato-
rial; constraints among di�erent segments such as topo-
logical constraints must be incorporated explicitly [13].
Furthermore, obtaining the optimal con�guration(s) is
computationally expensive.

To overcome some of the problems, we propose a
laterally-coupled network based on a boundary-pair



representation [7]. An occluding boundary is repre-
sented by a pair of boundaries of the two involved re-
gions, and initiates a competition between the regions.
Each node in the network represents a boundary seg-
ment. A closed region boundary is represented as a ring
structure with laterally coupled nodes. A region con-
sists of one or more rings. Regions compete to be �gu-
ral through boundary-pair competition and the �gure-
ground segregation is solved through temporal evolu-
tion. Gestalt grouping rules are incorporated by mod-
ulating the coupling strength between di�erent nodes
within a region, which in
uences the temporal dynam-
ics and determines the perception of the system. Shape
decomposition and grouping are implemented through
local di�usion using the results from �gure-ground seg-
regation. This approach o�ers several advantages over
edge-based approaches:

� Boundary-pair representation makes explicit the
ownership of boundary segments and eliminates
the combinatorial optimization necessary for many
existing approaches [13] [3].

� The model can explain more perceptual phenom-
ena than existing approaches using a �xed set of
parameters.

� It can incorporate top-down in
uence naturally.

In Section 2 we introduce �gure-ground segregation
network and demonstrate the temporal properties of
the network. Section 3 shows how surface completion
and decomposition are achieved. Section 4 provides ex-
perimental results. Section 5 concludes the paper with
further discussions.

2 Figure-Ground Segregation Network

The central problem in perceptual organization is to
determine the relative depth among regions. As �gural
reversal occurs in certain circumstances, �gure-ground
segregation cannot be resolved only based on local at-
tributes. By using a boundary-pair representation [7],
the solution to �gure-ground segregation is given by
temporal evolution.

2.1 Boundary-Pair Representation

The boundary-pair representation is motivated by on-
and o�-center cell responses. Fig. 1(a) shows an input
image. Fig. 1(b) and (c) show the on-center and o�-
center responses. Without zero-crossing, we naturally
obtain double responses for each occluding boundary,
as shown in Fig. 1(d).

                                                

(a) (b) (c) (d)

Figure 1: On- and o�-center cell responses. (a) In-
put image. (b) On-center cell responses. (c) O�-center
cell responses (d) Binarized on- and o�-center cell re-
sponses. White regions represent on-center response
regions and black o�-center regions.

More precisely, closed region boundaries are obtained
from segmentation and then segmented into segments
using corners and junctions, which are detected through
local corner and junction detectors. A node i in the
�gure-ground segregation network represents a bound-
ary segment, and its status Pi represents the probabil-
ity of the corresponding segment being �gural, which
is set to 0.5 initially. Each node is laterally coupled
with neighboring nodes on the closed boundary. The
connection weight from node i to j, wij , is 1 and can
be modi�ed by T-junctions and local shape informa-
tion. Each occluding boundary is represented by a pair
of boundary segments of the involved regions. A node
in a pair competes with the other to be �gural tempo-
rally. This competition determines the �gure-ground
segregation. Here the critical point is that each occlud-
ing boundary has to be represented using a pair before
we solve the �gure-ground segregation problem; other-
wise, a combinatorial search would be inherit in order
to cover all the possible con�gurations. Fig. 2 shows an
example. In the example, nodes 1 and 5 form a bound-
ary pair, where node 1 belongs to the white region, or
the background region and node 5 belongs to the black
region, or the �gural region.

Node i updates its status by:

� dPidt = �L
P

k2N(i) wki(Pk � Pi)

+�J(1� Pi)
P

l2J(i)H(Qli)

+�B(1� Pi)exp(�Bi=KB)

(1)

Here N(i) is the set of neighboring nodes of i, and �L,
�J , and �B are parameters to determine the in
uences
from lateral connections, junctions, and bias. J(i) is
the set of junctions that are associated with i and Qli

is the junction strength of node i of junction l. H(x) is
given by:
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Figure 2: The �gure-ground segregation network archi-
tecture for Fig. 1(a). Nodes 1, 2, 3 and 4 belong to
the white region; Nodes 5, 6, 7, and 8 belong to the
black region; Nodes 9 and 10, 11 and 12 belong to the
left and right gray regions respectively. Solid lines rep-
resent excitatory coupling while dashed lines represent
inhibitory connections.

H(x) = tanh(�(x � �J)

Here � controls the steepness and �J is a threshold.

In (1), the �rst term on the right re
ects the lateral
in
uences. When nodes are strongly coupled, they are
more likely to be in the same status, either �gure or
background. Second term incorporates junction infor-
mation. In other words, at a T-junction, segments that
are more smooth are more likely to be �gural. The third
term is a bias term, where Bi is the bias introduced to
simulate human perception.

After all the nodes are updated, the competition be-
tween paired nodes is through normalization based on
the assumption that only one of the paired nodes should
be �gural at a given time. Suppose that j is the corre-
sponding paired node of i, we have:

P
(t+1)
i = P t

i =(P
t
i + P t

j ) (2a)

P
(t+1)
j = P t

j =(P
t
i + P t

j ) (2b)

As a dynamic system, this shares some similarities with
relaxation labeling techniques [5]. Because the status of
a node is only in
uenced by the nodes in a local neigh-
borhood in the network, as shown in Fig. 2, the �gure-
ground segregation network de�nes a Markov random
�eld. This shares some similarities with the Markov
random �elds proposed by Zhu [14] for perceptual orga-
nization. As will be demonstrated later, our model can
simulate many perceptual phenomena while the model
by Zhu [14] is a generic and theoretical model for shape
modeling and perceptual organization.

2.2 Incorporation of Gestalt Rules

Without introducing grouping cues such as T-junctions
and preferences, the solution of the network is not well
de�ned. To generate behavior that is consistent with
human perception, we incorporate grouping cues and
some Gestalt grouping principles. As the network pro-
vides a generic model, many other rules can be incor-
porated in a similar manner.

T-junctions T-junctions provide important cues
for determining relative depth [11] [13]. In Williams
and Hanson's model [13], T-junctions are imposed
as topological constraints. Given a T-junction l, the
initial strength for node i that is associated with l is:

Qli =
exp(��(i;c(i))=KT )

1=2
P

k2NJ (l)
exp(��(k;c(k))=KT )

where KT is a parameter, NJ(l) is a set of all the nodes
associated with junction l, c(i) is the other node in
NJ(l) that belongs to the same region as node i, and
�(ij) is the angle between segments i and j.

Non-accidentalness Non-accidentalness tries to
capture the intrinsic relationships among segments [8].
In our system, an additional connection is introduced
to node i if it is aligned well with a node j from the
same region and j 62 N(i) initially. The connection
weight wij is a function of distance and angle between
the involved ending points. This can also be viewed as
virtual junctions, resulting in virtual contours and con-
version of a corner into a T-junction if involving nodes
become �gural. This corresponds to the organization
criterion proposed by Geiger et al. [3].

Shape information Shape information plays a cen-
tral role in Gestalt principles. Shape information is in-
corporated through enhancing lateral connections. In
this paper, we consider local symmetry. Let j and k be
the two neighboring nodes of i.

wij = 1 + C exp(�j�ij � �kij=K�)�
exp(�(Lj=Lk + Lk=Lj � 2)=KL))

(3)

Essentially (3) strengthens the lateral connections when
the two neighboring segments of i are symmetric.
Those nodes are then strongly grouped together accord-
ing to (1).

Preferences Human perceptual systems often pre-
fer some organizations over the others. In this model,
we incorporated a well-known �gure-ground segrega-
tion principle, called closeness. In other words, the
system prefers regions over holes. In current imple-
mentation, we set Bi = 1:0 if node i is part of a hole
and otherwise Bi = 0.
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Figure 3: Temporal behavior of each node in the net-
work shown in Fig. 2. Each plot shows the status of
the corresponding node with respect to the time. The
dashed line is 0.5.

2.3 Temporal Properties of the Network

After we construct the �gure-ground segregation net-
work, there are two fundamental questions to be ad-
dressed. First we need to demonstrate that the equi-
librium state of the system gives a desired solution.
Second, we need to show that the system converges to
the desired state. Here we demonstrate those using the
example shown in Fig. 2. Fig. 3 shows the temporal
behavior of the network. First, the system approaches
to a stable solution. For �gure-ground segregation, we
can binarize the status of each node using threshold
0.5. In this case, the system convergences very quickly.
In other words, the system outputs the solution in a
few iterations. Second, the system generates the cor-
rect perception. The black region is occluding other
regions while gray regions are occluding the white re-
gion. For example, P5 is close to 1 and thus segment 5
is �gural, and P1 is close to 0 and thus segment 1 is at
background.

3 Surface Completion

After the �gure-ground segregation is solved, surface
completion and shape decomposition can be imple-
mented in a straightforward manner. Currently this
stage is implemented through di�usion. Because the
ownership of each boundary segment is known, �xed
heat sources are generated along occluding boundaries,

and the occluding boundaries naturally block di�usion.
This method is similar to the one used by Geiger et
al. [3] for generating salient surfaces. However, in their
approach, because the hypotheses are de�ned only at
junction points, �xed heat sources for di�usion have to
be given. On the other hand, in our model, �xed heat
sources are generated automatically along the occlud-
ing boundaries. In other words, the hypotheses in our
system are de�ned along boundaries, not at junction
points.

To be more precise, regions from local segmentation are
now grouped into di�usion groups based on the average
gray value and that if they are occluded by common re-
gions. Segments that belong to one di�usion group are
di�used simultaneously. For a �gural segment, a bu�er
with a given radius is generated. Within the bu�er, the
values are set to 1 for pixels belonging to the region and
0 otherwise. If there is no �gural segment in the dif-
fusion group, it is the background, which is always the
entire image. Because the �gure-ground segregation
has been solved, with respect to the di�usion group,
only the parts that are being occluded need to be com-
pleted. Now the problem becomes a well-de�ned math-
ematical problem. We need to solve the heat equation
with given boundary conditions. Currently, di�usion is
implemented through local di�usion. The results from
di�usion are then binarized using threshold 0.5.

Figure 4 shows the results of Fig. 1 after surface com-
pletion. Here the two gray regions are grouped together
through surface completion because occluded bound-
aries allow di�usion. Figure 1(d) shows the result using
a layered representation to show the relative depth be-
tween the surfaces. While the order in this example is
well de�ned, in general the system can handle surfaces
that are overlapped with each other, making the order
ill-de�ned.

4 Experimental Results

For all the experiments shown in this paper, we use a
�xed set of parameters for the �gure-ground segrega-
tion network. Given an input image, the system au-
tomatically constructs the network and establishes the
connections based on the rules discussed in Section 2.2.

We �rst demonstrate that the system can simulate vir-
tual contours and modal completion. Figure 5 shows
the input images and Fig. 6 shows the results. The
system correctly solves the �gure-ground segregation
problem and generates the most probable percept. In
Fig. 5(b), the rectangular-like frame is tilted, mak-
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Figure 4: Surface completion results for Fig. 1(a). (a)
White region. (b) Gray region. (c) Black region. (d)
Layered representation by stacking the results accord-
ing to the relative depth order.

            
            

            

(a) (b) (c)

Figure 5: Images with virtual contours. (a) Kanizsa
triangle. (b) Woven square. (c) Double kanizsa.

ing the order between the frame and virtual square not
well-de�ned. Our system handles that in the temporal
domain. At any given time, the system outputs one of
the completed surfaces. Due to this, the system can
also handle the case in Fig. 5(c), where the perception
is bistable, as the order between the two virtual squares
is not de�ned.

Figure 7 (a) and (b) show well-known examples by
Bregman [2]. While the edge elements in both cases
are identical, the perception is quite di�erent. In Fig.
7(a), there is no perceptual grouping and parts of B's
remain fragmented. However, when occlusion is intro-
duced as in Fig. 7(b), perceptual grouping is evident
and fragments of B's are grouped together. These per-
ceptions are consistent with our results shown in Fig. 8
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Figure 6: Surface completion results for the correspond-
ing image in Fig. 5.

                        

            

(a) (b) (c)

Figure 7: Bregman and real images. (a) and (b) Ex-
amples by Bregman [2]. (c) A grocery store image.

(a) and (b). This is also strong evidence for boundary-
pair representation and against edge-based approaches.
It shows clearly that grouping plays a very important
for recognition. Figure 7(c) shows an image of a gro-
cery store used in [12]. Even though the T-junction at
the bottom is locally confusing, our system gives the
most plausible result through the lateral in
uence of
the other two strong T-junctions. Without search and
parameter tuning, our system gives the optimal solu-
tion shown in Fig. 8(c).

5 Conclusions

In this paper we propose a network for perceptual or-
ganization using temporal dynamics motivated by the
fact that there are both on- and o�-cell cells in the
visual cortex. We demonstrate that the pair-wise rep-
resentation can be treated as a surface representation,
closing the gap between edge- and surface-based repre-
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Figure 8: Surface completion results for images shown
in Fig. 7.

sentations. The pair-wise representation also provides
computational advantage over edge-based representa-
tion by overcoming the combinatorial problem common
to existing models for perceptual organization [13] [3].

One of the critical advantages of our model is that it al-
lows interactions among di�erent modules dynamically
and thus accounts for more context-sensitive behaviors.
It is not clear to us whether there exists an energy func-
tion for the model. Nodes belonging to one region can
be viewed as a Markov random �eld because the in-

uence is de�ned locally in the network. However, the
inhibition between paired nodes introduced in (2) com-
plicates the system analysis.
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