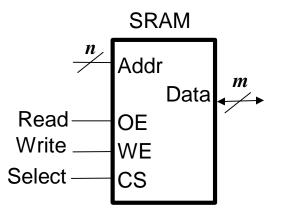
# The Memory Subsystem

#### ECE 153B Sensor & Peripheral Interface Design Winter 2016

### The Memory Subsystem

- Except for the CPU, the most important subsystem in the computer
  - all von Neumann digital computers have memory
  - modern systems have multiple, independent memories
    often on-chip ... our 'C31 CPU has two small on-chip SRAMs
- Do not confuse the addressable memory space with the actual memory subsystem
  - number of bits in processor-generated address can be more (or less) than number of bits used to address physical memory
  - some setups have holes in memory, others have MMUs (i.e. memory management units)

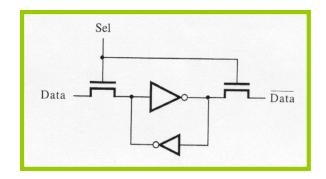
Winter 2016

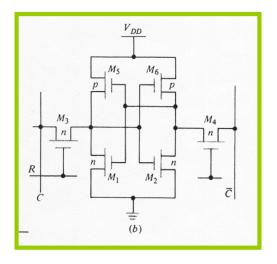

#### SRAM

#### Static Random Access Memory

- essentially a combinational table look-up (also writable)
- easiest type of memory to use
- fast, often rather expensive, large high pinout packages
- Logic symbol needs:
  - 1 wire for requesting a read (aka OE)
  - m wires for the data
  - 1 wire for requesting a write (aka WE)
  - n wires for addressing 2<sup>n</sup> cells
  - usually a chip select (1 wire)

#### So-called "separate I/O" variant exists too

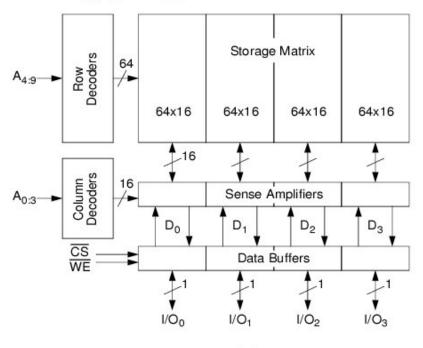

 a second *m*-wide data path (separate dedicated paths for reading and for writing)




#### SRAM Cell

#### 6T SRAM Cell

- CMOS implementation with pass transistors
- Sense amp at bottom of column






#### **SRAM Structure**



e.g. 1024 x 4-bit SRAM

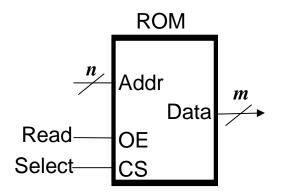


- · sense amplifiers on bit and bit detect value on read
- · data pins often shared as inputs and outputs
- · write by forcing bit and bit to appropriate values

ECE 153B - Sensor & Peripheral Interface Design - The Memory Subsystem

Winter 2016

#### **SRAM Uses & Properties**


- SRAM is typically used for
  - register files
  - caches
  - processor on-chip memories
- Capacity (relative to denser DRAMs)
  - about ¼ or less
  - price higher, due primarily to larger die size & larger packaging
- Speed (relative to DRAMs)
  - Faster; SRAM is the fastest memory available
- □ Power (for CMOS): static ≈ zero
  - Dynamic power proportional to usage

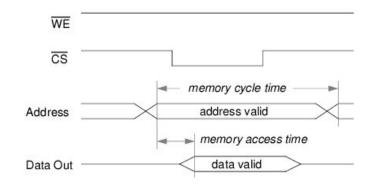
Winter 2016

ECE 153B - Sensor & Peripheral Interface Design - The Memory Subsystem

#### ROM

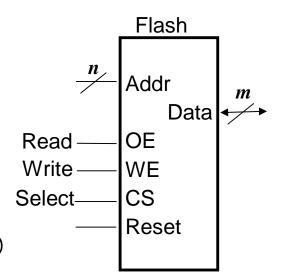
- Read Only Memory
- □ <u>ROM</u>, <u>PROM</u>, <u>EPROM</u>, <u>EEPROM</u>....
  - not in-system writeable, except by special means
- Logic symbol has:
  - 1 wire for requesting a read (aka OE)
  - *m* wires for the data
  - n wires for addressing 2<sup>n</sup> cells
  - often a chip select (1 wire)
- □ Uses:
  - non-volatile information (usually parameters)
  - initial program load (a.k.a. IPL or boot-up)
- Speed (often quite slow)
- Cost (cheap)




#### SRAM, ROM & Flash Memory Cycles

#### With SRAMs, ROMs & Flash

- no notion of a "cycle"
  asynchronous interface
- latency (called the "access time")
- **To read:** 
  - present the address
  - assert OE (output enable) and CS
  - wait for access time, tacc
  - latch the data
- To write into an SRAM (doesn't apply to ROM or Flash):
  - present the address and the data
  - assert WE (write enable) and CS
  - deassert WE before changing either address or data


Winter 2016

ECE 153B - Sensor & Peripheral Interface Design - The Memory Subsystem



# Flash Memory (& Read Mostly)

- □ Flash, battery-backed SRAM, various floating gate SRAMs
  - all are in-system writeable, but write access isn't their primary usage
- Logic symbol needs:
  - 1 wire for requesting a read (aka OE)
  - 1 wire for requesting a write (aka WE)
  - m wires for the data
  - n wires for addressing 2n cells
  - often a wire for (flash) FSM reset
  - often a chip select (1 wire)
- Uses:
  - non-volatile information (usually parameters)
  - initial program load (a.k.a. IPL or boot-up)
- Speed (fast for read, very slow & complex for writing)
- Cost (relatively inexpensive)



### Flash Memory Characteristics

- □ Flash memories are non-volatile
  - Often block-oriented, usually not single-word writeable
    - Erase of an entire block must be done first ... before any writing
    - Blocks can be uniform or irregular in size (per flash & manufacturer)
  - Once erased and written, data is retained for 50+ years

### Writing to Flash Memory (a.k.a., Programming)

- To write into a Flash (varies by manufacturer)
  - Ensure internal state machine has been reset
  - Perform flash's "erase sequence"
    - usually 6 SRAM-like writes with a specific pattern of addresses and data
  - Perform "write unlock" sequence
    4-6 writes to specific pattern of addresses and data
  - Perform a single-word write (with your data), just like an SRAM
  - Repeat the above "unlock" and "write" for each word (or block)
  - Must wait for each write to complete (by polling or other timing)

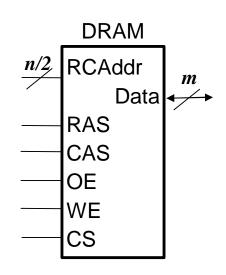
#### NOR vs. NAND Flash

- NOR and NAND flash differ in two important ways
  - The connections of the individual memory cells are different
    - In NOR flash, cells are connected in parallel to the bit lines which resembles the parallel connection of transistors in a CMOS NOR gate
    - In NAND flash, cells are connected in series, resembling a NAND gate
  - The interface provided for reading and writing the memory is different
    - NOR allows random-access for reading
    - NAND allows only page access

Winter 2016

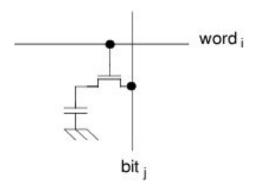
ECE 153B - Sensor & Peripheral Interface Design - The Memory Subsystem

#### NOR vs. NAND Flash


- NOR offers faster read speed and random access capabilities
  - Suitable for code storage in devices such as PDAs and cell phones
- NOR write and erase functions are slow compared to NAND
- NOR has a larger memory cell size than NAND
  - Limits scaling capabilities and therefore achievable bit density compared to NAND
  - Since code storage tends to require lower density memory than file storage, NOR's larger cell size is not considered a concern when used in these applications

#### NOR vs. NAND Flash

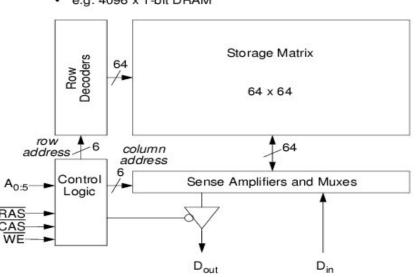
- NAND offers fast write/erase capability and is slower than NOR in the area of read speed
  - NAND is, however, more than sufficient for a majority of consumer applications such as digital video, music or data storage
- NAND's fast write/erase speed combined with its
  - Higher available densities and a
  - Lower cost-per-bit than NOR
    - make it the favored technology for file storage in a host of consumer applications
  - NAND is typically used for
    - storing large quantities of information in devices such as
      - flash drives, MP3 players, multi-function cell phones, digital cameras and USB drives


#### DRAM

- Dynamic Random Access Memory
  - data stored as charge on a tiny capacitor (MOSFET-gate)
  - organized in rows and columns, addressed separately & sequentially
  - not the same as SDRAM (synchronous DRAM)
- Logic symbol needs:
  - 1 wire for enabling data outputs (aka OE), often omitted
  - 1 wire for requesting a write (aka WE)
  - m wires for the data
  - n/2 wires for addressing 2n cells (second generation)
  - 2 wires for row vs column address select
  - often a chip select (1 wire)
- Capacity: high
- Speed (fast, but not as fast as SRAM due to more complex cycle)
- Cost (relatively inexpensive)



#### **DRAM Refresh Cycles**


- Improved density & lower cost (relative to SRAMs) due to
  - use of stored charge (1 transistor) vs. much more complex circuit
  - use of fewer pins (thus smaller package) for row/column addressing
- DRAMs internally organized as a square array
  - sqrt(n) rows by sqrt(n) columns for n cell DRAM
- Memory must be "refreshed" periodically
  - by reading or writing at least once to each row
  - refresh period is in the range 16-32 milliseconds
- Example (considering a 64M x 8 part)
  - sqrt(64M) = 8K rows
  - 8K refreshes per 32 msec ===> 1 row refreshed every 4 µsec



#### **DRAM Addressing**

One-half of the address pins saved (relative to SRAM) 

- By specifying row and column addresses sequentially
- Requires separate row\_address\_strobe (RAS) & column\_addr\_strobe (CAS)

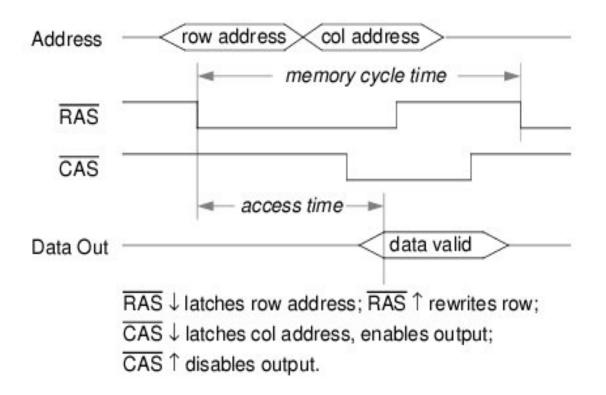


e.g. 4096 x 1-bit DRAM

Winter 2016

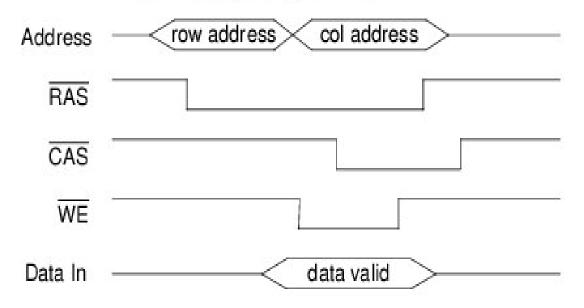
ECE 153B - Sensor & Peripheral Interface Design - The Memory Subsystem

#### **DRAM Addressing**


- Second generation DRAM timing and sequencing are complex
  - Cycle types:
    - random read, random write
    - fast page mode read, fast page mode write
    - CBR refresh (CAS before RAS)
    - "hidden" refresh
    - read/modify/write

Other variants exist as well:

- nibble mode reads & writes
- static column
- RAS-only refresh

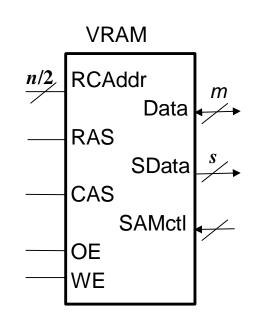

Winter 2016

#### **DRAM Random Read Cycle**



#### **DRAM Random Write Cycle**

RAS/CAS sequencing for write




### High-Performance DRAM Cycles

- Optimizations to get more bits per RAS
- Nibble mode (1 nibble == 4 sequential bits or cells)
  - present RAS, then CAS, CAS, CAS, CAS
- Fast page mode
  - present RAS, then provide col addr, then CAS
  - then change to different column addr (within same row), then CAS again ...
- Static column
  - present RAS, then column address and CAS
  - then change column addr (like an SRAM) without cycling CAS

#### VRAM

- Video RAM
  - specialty DRAM optimized for graphics applications
  - regular DRAM with an added sequential serial read port
- Logic symbol for regular DRAM, plus:
  - s wires (e.g. 1,4,8) for serial data
  - 1-2 wires for serial controls (SAMctl)
- Capacity: same as DRAM
- Speed (same as DRAM)
- Cost (slightly more than DRAM)
- Complex interactions possible between parallel and serial sides since the internal memory is shared
- Replaced by SDRAM (next topic) in most modern graphics applications



Winter 2016

#### **SDRAM**

- **Synchronous DRAM** 
  - Third generation DRAM
- Made by adding a synchronous interface between the basic core DRAM operation/circuitry of second-generation DRAMs and the control coming from off-chip to make the DRAM operation faster
  - All commands and operations to and from the DRAM are executed on the rising edge of a master or command clock signal
- Additionally, the memory is segmented into banks
  - The bank selected is determined by the addresses BA1 and BA0

#### **SDRAM**

#### Advantages of banked SDRAM

- Possible to activate a row in one bank and then, while the row is opening, perform an operation in some other bank (such as reading or writing)
- In addition, one of the banks can be in a PRECHARGE mode (the bitlines are driven to Vcc/2) while accessing one of the other banks and, thus, in effect hiding PRECHARGE and allowing data to be continuously written to or read from the SDRAM

#### **SDRAM**

- SDRAMs often employ pipelining in the address and data paths to increase operating speed
  - Disconnects operating frequency from access latency
  - Additional access instructions can be fed into the SDRAM before prior access instructions have completed

#### **DDR SDRAM**

- Double Data Rate Synchronous Dynamic Random Access Memory
- Compared to single data rate (SDR) SDRAM, the DDR SDRAM interface makes higher transfer rates possible by more strict control of the timing of the electrical data and clock signals
- Implementations often have to use schemes such as phase-locked loops and selfcalibration to reach the required timing accuracy
- The interface uses double pumping (transferring data on both the rising and falling edges of the clock signal) to lower the clock frequency
  - One advantage of keeping the clock frequency down is that it reduces the signal integrity requirements on the circuit board connecting the memory to the controller
- The name "double data rate" refers to the fact that a DDR SDRAM with a certain clock frequency achieves nearly twice the bandwidth of a SDR SDRAM running at the same clock frequency, due to this double pumping
- DDR SDRAM, also called DDR1 SDRAM, has been superseded by DDR2 SDRAM and DDR3 SDRAM
  - Neither of its successors are forward or backward compatible with DDR1 SDRAM, meaning DDR2 or DDR3 memory modules will not work in DDR1-equipped motherboards, and vice versa.

Winter 2016

# NXP LPC 4088 Internal Memory & External Memory Controller (EMC)

#### ECE 153B Sensor and Peripheral Interface Design Winter 2015

# NXP LPC 4088 Internal Memory

- 512 KB on-chip Flash program memory with In-System Programming (ISP) and In-Application Programming (IAP) capabilities
  - The combination of an enhanced Flash memory accelerator and location of the Flash memory on the CPU local code/data bus provides high code performance from Flash
- 96 KB on-chip SRAM includes 64 kB of main SRAM on the CPU with local code/data bus for high-performance CPU access
  - Two 16 kB peripheral SRAM blocks with separate access paths for higher throughput
  - These SRAM blocks may be used for DMA memory as well as for general purpose instruction and data storage

## NXP LPC 4088 Internal Memory

- □ 4 KB (4032 byte) EEPROM
  - The EEPROM is indirectly accessed through address and data registers
  - All communication with the actual EEPROM block is done through the 64 byte page buffer
- **8** KB Boot ROM
  - The boot loader controls initial operation after reset and also provides the tools for programming the flash memory
  - This could be initial programming of a blank device, erasure and re-programming of a previously programmed device, or programming of the flash memory by the application program in a running system

# NXP LPC 4088 Internal Memory

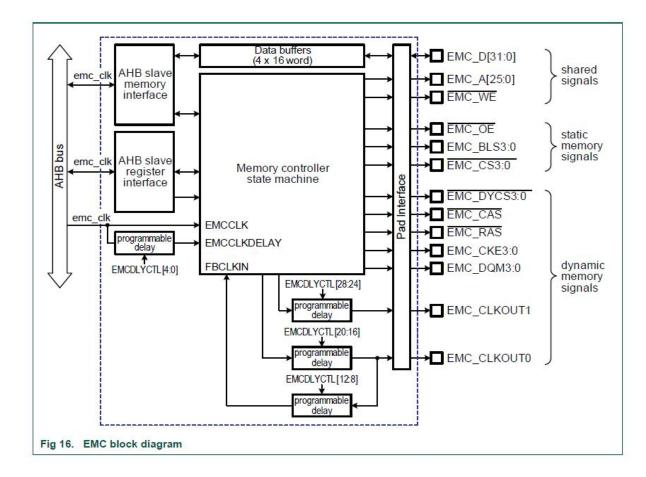
#### Table 4. LPC408x/7x memory usage and details

| Address range                 | General Use                                             | Address range details and description |                                                             |
|-------------------------------|---------------------------------------------------------|---------------------------------------|-------------------------------------------------------------|
| 0x0000 0000 to<br>0x1FFF FFFF | On-chip non-volatile<br>memory                          | 0x0000 0000 to 0x0007 FFFF            | For devices with 512 kB of flash memory.                    |
|                               |                                                         | 0x0000 0000 to 0x0003 FFFF            | For devices with 256 kB of flash memory.                    |
|                               |                                                         | 0x0000 0000 to 0x0001 FFFF            | For devices with 128 kB of flash memory.                    |
|                               |                                                         | 0x0000 0000 to 0x0000 FFFF            | For devices with 64 kB of flash memory.                     |
|                               | On-chip SRAM                                            | 0x1000 0000 to 0x1000 FFFF            | For devices with 64 kB of main SRAM.                        |
|                               |                                                         | 0x1000 0000 to 0x1000 7FFF            | For devices with 32 kB of main SRAM.                        |
|                               |                                                         | 0x1000 0000 to 0x1000 3FFF            | For devices with 16 kB of main SRAM.                        |
|                               | Boot ROM                                                | 0x1FFF 0000 to 0x1FFF 1FFF            | 8 kB Boot ROM with flash services.                          |
| 0x2000 0000 to<br>0x3FFF FFFF | On-chip SRAM<br>(typically used for<br>peripheral data) | 0x2000 0000 to 0x2000 1FFF            | Peripheral SRAM - bank 0 (first 8 kB)                       |
|                               |                                                         | 0x2000 2000 to 0x2000 3FFF            | Peripheral SRAM - bank 0 (second 8 kB)                      |
|                               |                                                         | 0x2000 4000 to 0x2000 7FFF            | Peripheral SRAM - bank 1 (16 kB)                            |
|                               | AHB peripherals                                         | 0x2008 0000 to 0x200B FFFF            | See Figure 9 for details                                    |
| 0x4000 0000 to<br>0x7FFF FFFF | APB Peripherals                                         | 0x4000 0000 to 0x4007 FFFF            | APB0 Peripherals, up to 32 peripheral blocks of 16 kB each. |
|                               |                                                         | 0x4008 0000 to 0x400F FFFF            | APB1 Peripherals, up to 32 peripheral blocks of 16 kB each. |

# NXP LPC 4088 External Memory Controller (EMC)

- Dynamic memory interface support including single data rate SDRAM
- Asynchronous static memory device support including RAM, ROM, and Flash, with or without asynchronous page mode
- Low transaction latency
- **D** Read and write buffers to reduce latency and to improve performance
- 8/16/32 data and 16/20/26 address lines wide static memory support
- **1**6 bit and 32 bit wide chip select SDRAM memory support
- Static memory features include:
  - Asynchronous page mode read
  - Programmable Wait States
  - Bus turnaround delay
  - Output enable and write enable delays
  - Extended wait

# NXP LPC 4088 External Memory Controller (EMC)


- Four chip selects for synchronous memory and four chip selects for static memory devices
- Power-saving modes dynamically control EMC\_CKE and EMC\_CLK outputs to SDRAMs
- Dynamic memory self-refresh mode controlled by software
- Controller supports 2048 (A0 to A10), 4096 (A0 to A11), and 8192 (A0 to A12) row address synchronous memory parts
  - That is typical 512 MB, 256 MB, and 128 MB parts, with 4, 8, 16, or 32 data bits per device
- Separate reset domains allow the for auto-refresh through a chip reset if desired.
- Synchronous static memory devices (synchronous burst mode) are not supported.

# NXP LPC 4088 External Memory Controller (EMC)

#### Table 4. LPC408x/7x memory usage and details

| Address range                 | General Use                                              | Address range details and description |                                                                       |
|-------------------------------|----------------------------------------------------------|---------------------------------------|-----------------------------------------------------------------------|
| 0x8000 0000 to<br>0xDFFF FFFF | Off-chip Memory via<br>the External Memory<br>Controller | Four static memory chip selects:      |                                                                       |
|                               |                                                          | 0x8000 0000 to 0x83FF FFFF            | Static memory chip select 0 (up to 64 MB)                             |
|                               |                                                          | 0x9000 0000 to 0x93FF FFFF            | Static memory chip select 1 (up to 64 MB)                             |
|                               |                                                          | 0x9800 0000 to 0x9BFF FFFF            | Static memory chip select 2 (up to 64 MB)                             |
|                               |                                                          | 0x9C00 0000 to 0x9FFF FFFF            | Static memory chip select 3 (up to 64 MB)                             |
|                               |                                                          | Four dynamic memory chip selects:     |                                                                       |
|                               |                                                          | 0xA000 0000 to 0xAFFF FFFF            | Dynamic memory chip select 0 (up to 256 MB)                           |
|                               |                                                          | 0xB000 0000 to 0xBFFF FFFF            | Dynamic memory chip select 1 (up to 256 MB)                           |
|                               |                                                          | 0xC000 0000 to 0xCFFF FFFF            | Dynamic memory chip select 2 (up to 256 MB)                           |
|                               |                                                          | 0xD000 0000 to 0xDFFF FFFF            | Dynamic memory chip select 3 (up to 256 MB)                           |
| 0xE000 0000 to<br>0xE00F FFFF | Cortex-M4 Private<br>Peripheral Bus                      | 0xE000 0000 to 0xE00F FFFF            | Cortex-M4 related functions, includes the NVIC and System Tick Timer. |

### External Memory Controller Block Diagram



#### ECE 153B - Sensor & Peripheral Interface Design - The Memory Subsystem