Digital Speech ProcessingLecture 12

Homomorphic Speech Processing

General Discrete-Time Model of

 Speech Production
$h_{U}[n]=A_{N} \cdot v[n] * r[n]$

Basic Speech Model

- short segment of speech can be modeled as having been generated by exciting an LTI system either by a quasi-periodic impulse train, or a random noise signal
- speech analysis => estimate parameters of the speech model, measure their variations (and perhaps even their statistical variabilites-for quantization) with time
- speech = excitation * system response
=> want to deconvolve speech into excitation and system response => do this using homomorphic filtering methods

Superposition Principle

$x[n]=a x_{1}[n]+b x_{2}[n]$
$y[n]=\mathcal{L}\{x[n]\}=a \mathcal{L}\left\{x_{1}[n]\right\}+b \mathcal{L}\left\{x_{2}[n]\right\}$

Generalized Superposition for Convolution

- for LTI systems we have the result

$$
y[n]=x[n] * h[n]=\sum_{k=-\infty}^{\infty} x[k] h[n-k]
$$

- "generalized" superposition => addition replaced by convolution
$x[n]=x_{1}[n] * x_{2}[n]$
$y[n]=\mathcal{H}\{x[n]\}=\mathcal{H}\left\{x_{1}[n]\right\} * \mathcal{H}\left\{x_{2}[n]\right\}$
- homomorphic system for convolution

Homomorphic Filter

- homomorphic filter => homomorphic system $[\mathcal{H}]$ that passes the desired signal unaltered, while removing the undesired signal
$x(n)=x_{1}[n] * x_{2}[n]-$ with $x_{1}[n]$ the "undesired" signal
$\mathcal{H}\{x[n]\}=\mathcal{H}\left\{x_{1}[n]\right\} * \mathcal{H}\left\{x_{2}[n]\right\}$
$\mathcal{H}\left\{x_{1}[n]\right\} \rightarrow \delta(n)$ - removal of $x_{1}[n]$
$\mathcal{H}\left\{x_{2}[n]\right\} \rightarrow x_{2}[n]$
$\mathcal{H}\{x[n]\}=\delta[n] * x_{2}[n]=x_{2}[n]$
- for linear systems this is analogous to additive noise removal

Properties of Characteristic Systems

$$
\begin{aligned}
\hat{x}[n] & =\mathcal{D}_{*}\{x[n]\}=\mathcal{D}_{*}\left\{x_{1}[n] * x_{2}[n]\right\} \\
& =\mathcal{D}_{*}\left\{x_{1}[n]\right\}+\mathcal{D}_{*}\left\{x_{2}[n]\right\} \\
& =\hat{x}_{1}[n]+\hat{x}_{2}[n] \\
& \\
\mathcal{D}_{*}^{-1}\{\hat{y}[n]\} & =\mathcal{D}_{*}^{-1}\left\{\hat{y}_{1}[n]+\hat{y}_{2}[n]\right\} \\
& =\mathcal{D}_{*}^{-1}\left\{\hat{y}_{1}[n]\right\} * \mathcal{D}_{*}^{-1}\left\{\hat{y}_{2}[n]\right\} \\
& =y_{1}[n] * y_{2}[n]=y[n]
\end{aligned}
$$

Canonic Form for Homomorphic Convolution

$x_{1}[n] * x_{2}[n] \quad \hat{x}_{1}[n]+\hat{x}_{2}[n] \quad \hat{y}_{1}[n]+\hat{y}_{2}[n] \quad y_{1}[n] * y_{2}[n]$

$$
x[n]=x_{1}[n] * x_{2}[n] \quad-\text { convolutional relation }
$$

$$
\hat{x}[n]=\mathcal{D}_{*}\{x[n]\}=\hat{x}_{1}[n]+\hat{x}_{2}[n] \quad \text { - additive relation }
$$

$$
\hat{y}[n]=\mathcal{L}\left\{\hat{x}_{1}[n]+\hat{x}_{2}[n]\right\}=\hat{y}_{1}[n]+\hat{y}_{2}[n] \quad \text { - conventional linear system }
$$

$$
y[n]=\mathcal{D}_{*}^{-1}\left\{\hat{y}_{1}[n]+\hat{y}_{2}[n]\right\}=y_{1}[n] * y_{2}[n]-\text { inverse of convolutional relation }
$$

$$
\text { => design converted back to linear system, } \mathcal{L}
$$

$\mathcal{D}_{*}[]$ - fixed (called the characteristic system for homomorphic deconvolution)
$\mathcal{D}_{*}^{-1}[]$ - fixed (characteristic system for inverse homomorphic deconvolution)

Discrete-Time Fourier Transform Representations

Problems with arg Function

Complex and Real Cepstrum

- define the inverse Fourier transform of $\hat{X}\left(e^{j \omega}\right)$ as

$$
\hat{x}[n]=\frac{1}{2 \pi} \int_{-\pi}^{\pi} \hat{X}\left(e^{j \omega}\right) e^{j \omega n} d \omega
$$

- where $\hat{x}[n]$ called the "complex cepstrum" since a complex logarithm is involved in the computation
- can also define a "real cepstrum" using just the real part of the logarithm, giving

$$
\begin{aligned}
c[n] & =\frac{1}{2 \pi} \int_{-\pi}^{\pi} \operatorname{Re}\left[\hat{X}\left(e^{j \omega}\right)\right] e^{j \omega n} d \omega \\
& =\frac{1}{2 \pi} \int_{-\pi}^{\pi} \log \left|X\left(e^{j \omega}\right)\right| e^{j \omega n} d \omega
\end{aligned}
$$

- can show that $c[n]$ is the even part of $\hat{x}[n]$

Issues with Logarithms

- it is essential that the logarithm obey the equation

$$
\log \left[X_{1}\left(e^{j \omega}\right) \cdot X_{2}\left(e^{j \omega}\right)\right]=\log \left[X_{1}\left(e^{j \omega}\right)\right]+\log \left[X_{2}\left(e^{j \omega}\right)\right]
$$

- this is trivial if $X_{1}\left(e^{j \omega}\right)$ and $X_{2}\left(e^{j \omega}\right)$ are real -- however usually
$X_{1}\left(e^{j \omega}\right)$ and $X_{2}\left(e^{j \omega}\right)$ are complex
- on the unit circle the complex log can be written in the form:

$$
\begin{aligned}
& X\left(e^{j \omega}\right)=\left|X\left(e^{j \omega}\right)\right| e^{j \arg \left[X\left(e^{j \omega}\right)\right]} \\
& \log \left[X\left(e^{j \omega}\right)\right]=\hat{X}\left(e^{j \omega}\right)=\log \left[\left|X\left(e^{j \omega}\right)\right|\right]+j \arg \left[X\left(e^{j \omega}\right)\right]
\end{aligned}
$$

- no problems with log magnitude term; uniqueness problems arise in defining the imaginary part of the log; can show that the imaginary part (the phase angle of the z-transform) needs to be a continuous odd function of ω

Complex Cepstrum Properties

- Given a complex logarithm that satisfies the phase continuity condition, we have

$$
\hat{x}[n]=\frac{1}{2 \pi} \int_{-\pi}^{\pi}\left(\log \left|X\left(e^{j \omega}\right)\right|+j \arg \left\{X\left(e^{j \omega}\right)\right\}\right) e^{j \omega n} d \omega
$$

- If $x[n]$ real, then $\log \left|X\left(e^{j \omega}\right)\right|$ is an even function of ω and $\arg \left\{X\left(e^{j \omega}\right)\right\}$ is an odd function of ω. This means that the real and imaginary parts of the complex log have the appropriate symmetry for $\hat{X}[n]$ to be a real sequence, and $\hat{x}[n]$ can be represented as:

$$
\hat{x}[n]=c[n]+d[n]
$$

where $c[n]$ is the inverse DTFT of $\log \left|X\left(e^{j \omega}\right)\right|$ and the even part of $\hat{x}[n]$, and $d[n]$ is the inverse DTFT of $\arg \left\{X\left(e^{j \omega}\right)\right\}$ and the odd part of $\hat{x}[n]$:

$$
c[n]=\frac{\hat{x}[n]+\hat{x}[-n]}{2} ; \quad d[n]=\frac{\hat{x}[n]-\hat{x}[-n]}{2}
$$

Terminology

- Spectrum - Fourier transform of signal autocorrelation
- Cepstrum - inverse Fourier transform of log spectrum
- Analysis - determining the spectrum of a signal
- Alanysis - determining the cepstrum of a signal
- Filtering - linear operation on time signal
- Liftering - linear operation on cepstrum
- Frequency - independent variable of spectrum
- Quefrency - independent variable of cepstrum
- Harmonic - integer multiple of fundamental frequency
- Rahmonic - integer multiple of fundamental frequency

z-Transform Representation

- The z-transform of the signal:
$x[n]=x_{1}[n] * x_{2}[n]$
is of the form:
$X(z)=X_{1}(z) \cdot X_{2}(z)$
- With an appropriate definition of the complex log, we get:
$\hat{X}(z)=\log \{X(z)\}=\log \left\{X_{1}(z) \cdot X_{2}(z)\right\}$
$=\log \left\{X_{1}(z)\right\}+\log \left\{X_{2}(z)\right\}$
$=\hat{X}_{1}(z)+\hat{X}_{2}(z)$

z-Transform Cepstrum Alanysis

- express $X(z)$ as product of minimum-phase and maximum-phase signals, i.e.,

$$
X(z)=X_{\min }(z) \cdot z^{-M_{0}} X_{\max }(z)
$$

- where

$$
X_{\min }(z)=\frac{A \prod_{k=1}^{M_{i}}\left(1-a_{k} z^{-1}\right)}{\prod_{k=1}^{N_{i}}\left(1-c_{k} z^{-1}\right)}
$$

- all poles and zeros inside unit circle

$$
X_{\max }(z)=\prod_{k=1}^{M_{i}}\left(-b_{k}^{-1}\right) \prod_{k=1}^{M_{i}}\left(1-b_{k} z\right)
$$

- all zeros outside unit circle
Inverse Characteristic System for Deconvolution

$$
\begin{aligned}
& \hat{Y}(z)=\sum_{n=-\infty}^{\infty} \hat{y}[n] z^{-n} \\
& Y(z)=\exp [\hat{Y}(z)]=\log |Y(z)|+j \arg [Y(z)] \\
& y[n]=\frac{1}{2 \pi j} \oint Y(z) z^{n} d z
\end{aligned}
$$

Characteristic System for Deconvolution

$$
\begin{aligned}
& X(z)=\sum_{n=-\infty}^{\infty} x[n] z^{-n}=|X(z)| e^{j \arg \{X(z)\}} \\
& \hat{X}(z)=\log [X(z)]=\log |X(z)|+j \arg [X(z)] \\
& \hat{X}[n]=\frac{1}{2 \pi j} \oint \hat{X}(z) z^{n} d z
\end{aligned}
$$

z-Transform Cepstrum Alanysis

- consider digital systems with rational z-transforms of the general type

$$
X(z)=\frac{A \prod_{k=1}^{M_{i}}\left(1-a_{k} z^{-1}\right) \prod_{k=1}^{M_{0}}\left(1-b_{k}^{-1} z^{-1}\right)}{\prod_{k=1}^{N_{i}}\left(1-c_{k} z^{-1}\right)}
$$

- we can express the above equation as:

- with all coefficients $a_{k}, b_{k}, c_{k}<1=>$ all c_{k} poles and a_{k} zeros are inside the unit circle; all b_{k} zeros are outside the unit circle;

z-Transform Cepstrum Alanysis

- can express $x[n]$ as the convolution:

$$
x[n]=x_{\min }[n] * x_{\max }\left[n-M_{0}\right]
$$

- minimum-phase component is causal

$$
x_{\min }[n]=0, \quad n<0
$$

- maximum-phase component is anti-causal $x_{\text {max }}[n]=0, \quad n>0$
- factor $z^{-M_{0}}$ is the shift in time origin by M_{0} samples required so that the overall sequence, $x[n]$ be causal

z-Transform Cepstrum Alanysis

- the complex logarithm of $X(z)$ is

$$
\begin{aligned}
& \hat{X}(z)=\log [X(z)]=\log |A|+\sum_{k=1}^{M_{0}} \log \left|b_{k}^{-1}\right|+\log \left[z^{-M_{0}}\right]+ \\
& \sum_{k=1}^{M_{i}} \log \left(1-a_{k} z^{-1}\right)+\sum_{k=1}^{M_{0}} \log \left(1-b_{k} z\right)-\sum_{k=1}^{N_{i}} \log \left(1-c_{k} z^{-1}\right)
\end{aligned}
$$

- evaluating $\hat{X}(z)$ on the unit circle we can ignore the term related to $\log \left[e^{j \omega M_{0}}\right]$ (as this contributes only to the imaginary part and is a linear phase shift)

Cepstrum Properties

1.complex cepstrum is non-zero and of infinite extent for
both positive and negative n, even though $x[n]$ may be
causal, or even of finite duration ($X(z)$ has only zeros)
2. complex cepstrum is a decaying sequence that is bounded by:

$$
|\hat{x}[n]|<\beta \frac{\alpha^{|n|}}{|n|} \text {, for }|n| \rightarrow \infty
$$

3. zero-quefrency value of complex cepstrum (and the cepstrum) depends on the gain constant and the zeros outside the unit circle. Setting $\hat{x}[0]=0$ (and therefore $c[0]=0$) is equivalent to normalizing the log magnitude spectrum to a gain constant of:

$$
A \prod_{k=1}^{M_{0}}\left(-b_{k}^{-1}\right)=1
$$

4. If $X(z)$ has no zeros outside the unit circle (all $b_{k}=0$), then:
$\hat{x}[n]=0, \quad n<0 \quad$ (minimum-phase signals)
5. If $X(z)$ has no poles or zeros inside the unit circle (all $a_{k}, c_{k}=0$), then:

z-Transform Cepstrum Alanysis

- Example 2--consider the case of a digital system with a single zero outside the unit circle ($|b|<1$)

$$
\begin{aligned}
x_{2}(n) & =\delta(n)+b \delta(n+1) \\
X_{2}(z) & =1+b z \quad \text { (zero at } z=-1 / b) \\
\hat{X}_{2}(z) & =\log \left[X_{2}(z)\right]=\log (1+b z) \\
& =\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n}(b)^{n} z^{n} \\
\hat{x}_{2}(n) & =\frac{(-1)^{n+1} b^{n}}{n} u(-n-1)
\end{aligned}
$$

z-Transform Cepstrum Alanysis for 2 Pulses

- Example 3--an input sequence of two pulses of the form
$x_{3}(n)=\delta(n)+\alpha \delta\left(n-N_{p}\right) \quad(0<\alpha<1)$
$X_{3}(z)=1+\alpha z^{-N_{p}}$
$\hat{X}_{3}(z)=\log \left[X_{3}(z)\right]=\log \left(1+\alpha z^{-N_{p}}\right)$

$$
=\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n} \alpha^{n} z^{-n N_{p}}
$$

$\hat{x}_{3}(n)=\sum_{k=1}^{\infty}(-1)^{k+1} \frac{\alpha^{k}}{k} \delta\left(n-k N_{p}\right)$

- the cepstrum is an impulse train with impulses spaced at N_{p} samples

Cepstrum for Train of Impulses

- an important special case is a train of impulses of the form:

$$
\begin{aligned}
& x(n)=\sum_{r=0}^{M} \alpha_{r} \delta\left(n-r N_{p}\right) \\
& X(z)=\sum_{r=0}^{M} \alpha_{r} z^{-r N_{p}}
\end{aligned}
$$

- clearly $X(z)$ is a polynomial in $z^{-N_{p}}$ rather than z^{-1}; thus $X(z)$ can be expressed as a product of factors of the form ($1-a z^{-N_{p}}$) and ($1-b z^{N_{p}}$), giving a complex cepstrum, $\hat{x}(n)$, that is non-zero only at integer multiples of N_{p}

z-Transform Cepstrum Alanysis for Convolution of 3 Sequences

- Example 5--consider the convolution of sequences 1, 2 and 3, i.e., $x_{5}(n)=x_{1}(n) * x_{2}(n) * x_{3}(n)$
$=\left[a^{n} u(n)\right] *[\delta(n)+b \delta(n+1)] *\left[\delta(n)+\alpha \delta\left(n-N_{p}\right)\right]$

$$
=a^{n} u(n)+\alpha a^{n-N_{p}} u\left(n-N_{p}\right)+b a^{n} u(n+1)+\alpha b a^{n-N_{p}+1} u\left(n-N_{p}+1\right)
$$

- The complex cepstrum is therefore the sum of the complex cepstra of the three sequences

$$
\hat{x}_{5}(n)=\hat{x}_{1}(n)+\hat{x}_{2}(n)+\hat{x}_{3}(n)
$$

$$
=\frac{a^{n}}{n} u(n-1)+\sum_{k=1}^{\infty} \frac{(-1)^{k+1} \alpha^{k}}{k} \delta\left(n-k N_{p}\right)+\frac{(-1)^{n+1} b^{n}}{n} u(-n-1)
$$

Homomorphic Analysis of Speech Model

Homomorphic Analysis of Speech Model

- the transfer function for voiced speech is of the form

$$
H_{V}(z)=A_{V} \cdot G(z) V(z) R(z)
$$

- with effective impulse response for voiced speech $h_{V}[n]=A_{V} \cdot g[n] * v[n] * r[n]$
- similarly for unvoiced speech we have

$$
H_{U}(z)=A_{U} \cdot V(z) R(z)
$$

- with effective impulse response for unvoiced speech $h_{U}[n]=A_{U} \cdot v[n] * r[n]$

Complex Cepstrum for Speech

- the models for the speech components are as follows:

1. vocal tract: $V(z)=\frac{A z^{-M} \prod_{k=1}^{M_{i}}\left(1-a_{k} z^{-1}\right) \prod_{k=1}^{M_{0}}\left(1-b_{k} z\right)}{\prod_{k=1}^{N_{i}}\left(1-c_{k} z^{-1}\right)}$
--for voiced speech, only poles $=>a_{k}=b_{k}=0$, all k
--unvoiced speech and nasals, need pole-zero model but all poles are
inside the unit circle $=>c_{k}<1$
--all speech has complex poles and zeros that occur in complex conjugate pairs
2. radiation model: $R(z) \approx 1-z^{-1}$ (high frequency emphasis)
3. glottal pulse model: finite duration pulse with transform
$G(z)=B \prod_{k=1}^{L_{l}}\left(1-\alpha_{k} z^{-1}\right) \prod_{k=1}^{L_{0}}\left(1-\beta_{k} z\right)$
with zeros both inside and outside the unit circle

Simplified Speech Model

- short-time speech model

$$
\begin{aligned}
x[n] & =w[n] \cdot[p[n] * g[n] * v[n] * r[n]] \\
& \approx p_{w}[n] * h_{v}[n]
\end{aligned}
$$

- short-time complex cepstrum

$$
\hat{x}[n]=\hat{p}_{w}[n]+\hat{g}[n]+\hat{v}[n]+\hat{r}[n]
$$

Time Domain Analysis

Complex Cepstrum for Voiced Speech

- combination of vocal tract, glottal pulse and radiation will be non-minimum phase => complex cepstrum exists for all values of n
- the complex cepstrum will decay rapidly for large n (due to polynomial terms in expansion of complex cepstrum)
- effect of the voiced source is a periodic pulse train for multiples of the pitch period

Analysis of Model for Voiced Speech

- Assume sustained /AE/ vowel with fundamental frequency of 125 Hz
- Use glottal pulse model of the form:
$0.5\left[1-\cos \left(\pi(n+1) / N_{1}\right)\right] \quad 0 \leq n \leq N_{1}-1$
$g[n]=\left\{\cos \left(0.5 \pi\left(n+1-N_{1}\right) / N_{2}\right) \quad N_{1} \leq n \leq N_{1}+N_{2}-2\right.$
$N_{1}=25, N_{2}=10 \Rightarrow 34$ sample impulse response, with transform
$G(z)=z^{-33} \prod_{k=1}^{33}\left(-b_{k}^{-1}\right) \prod_{k=1}^{33}\left(1-b_{k} z\right) \Rightarrow$ all roots outside unit circle \Rightarrow maximum phase
- Vocal tract system specified by 5 formants (frequencies and bandwidths)
$V(z)=\frac{1}{\prod^{5}\left(1-2 e^{-2 \pi \sigma_{k} T} \cos \left(2 \pi F_{k} T\right) z^{-1}+e^{-4 \pi \sigma_{k} T} z^{-2}\right)}$
$\left\{F_{k}, \sigma_{k}\right\}=[(660,60),(1720,100),(2410,120),(3500,175),(4500,250)]$ Radiation load is simple first difference
$R(z)=1-\gamma z^{-1}, \gamma=0.96$

Spectral Analysis of Model

Complex Cepstrum of Model

- The voiced speech signal is modeled as: $x[n]=A_{v} \cdot g[n] * v[n] * r[n] * p[n]$
- with complex cepstrum:
$\hat{s}[n]=\log \left|A_{v}\right| \delta[n]+\hat{g}[n]+\hat{v}[n]+\hat{r}[n]+\hat{p}[n]$
- glottal pulse is maximum phase $\Rightarrow \hat{g}[n]=0, n>0$
- vocal tract and radiation systems are minimum phase $\Rightarrow \hat{v}[n]=0, n<0, \hat{r}[n]=0, n<0$

$$
\hat{P}(z)=-\log \left(1-\beta z^{-N_{p}}\right)=\sum_{k=1}^{\infty} \frac{\beta^{k}}{k} z^{-k N_{p}}
$$

$\hat{p}[n]=\sum_{k=1}^{\infty} \frac{\beta^{k}}{k} \delta\left[n-k N_{p}\right]$

Frequency Domain Representations

The Cepstrum-DFT Implementation

$c[n]=\frac{1}{2 \pi} \int_{-\pi}^{\pi} \log \left|X\left(e^{j \omega}\right)\right| e^{j \omega n} d \omega \quad-\infty<n<\infty$

- Approximation to cepstrum using DFT:
$X[k]=X\left(e^{j \frac{2 \pi}{N} k}\right)=\sum_{n=-\infty}^{\infty} x[n] e^{-j \frac{2 \pi}{N} k n} \quad k=0,1, \ldots, N-1$,
$\tilde{c}[n]=\frac{1}{N} \sum_{k=0}^{N-1} \log |X[k]| e^{j 2 \pi k n / N}, \quad 0 \leq n \leq N-1$
$\tilde{c}(n)=\sum_{r=-\infty}^{\infty} c[n+r N] \quad n=0,1, \ldots, N-1$
- $\tilde{c}[n]$ is an aliased version of $c[n] \Rightarrow$ use as large a value of N
as possible to minimize aliasing
$\tilde{c}(n)=\frac{\tilde{\hat{x}}[n]+\tilde{\hat{x}}[-n]}{2}$
52

Summary

1. Homomorphic System for Convolution:

2. Practical Case:

$$
\begin{aligned}
& z() \rightarrow D F T \\
& z^{-1}() \rightarrow I D F T \\
& \left.X\left(e^{j \omega}\right)=\left|X\left(e^{j \omega}\right)\right| e^{j \arg \left\{X\left(e^{j \omega}\right)\right.}\right\} \\
& \log \left[X\left(e^{j \omega}\right)\right]=\log \left|X\left(e^{j \omega}\right)\right|+j \arg \left\{X\left(e^{j \omega}\right)\right\}
\end{aligned}
$$

Summary

3. Complex Cepstrum:

$$
\hat{x}[n]=\frac{1}{2 \pi} \int_{-\pi}^{\pi} \hat{X}\left(e^{j \omega}\right) e^{j \omega n} d \omega
$$

4. Cepstrum:

$$
\begin{aligned}
& c[n]=\frac{1}{2 \pi} \int_{-\pi}^{\pi} \log \left|X\left(e^{j \omega}\right)\right| e^{j \omega n} d \omega \\
& c[n]=\frac{\hat{x}[n]+\hat{x}[-n]}{2}=\text { even part of } \hat{x}[n]
\end{aligned}
$$

Complex Cepstrum Without Phase Unwrapping

- short-time analysis uses finite-length windowed segments, $x[n]$
$X(z)=\sum_{n=0}^{M} x[n] z^{-n}, \quad M^{\text {th }}$-order polynomial
- Find polynomial roots

$$
X(z)=x[0] \prod_{m=1}^{M_{i}}\left(1-a_{m} z^{-1}\right) \prod_{m=1}^{M_{0}}\left(1-b_{m}^{-1} z^{-1}\right)
$$

- a_{m} roots are inside unit circle (minimum-phase part)
- b_{m} roots are outside unit circle (maximum-phase part)
- Factor out terms of form $-b_{m}^{-1} z^{-1}$ giving

$$
\begin{aligned}
& X(z)=A z^{-M_{0}} \prod_{m=1}^{M_{1}}\left(1-a_{m} z^{-1}\right) \prod_{m=1}^{M_{0}}\left(1-b_{m} z\right) \\
& A=x[0](-1)^{M_{0}} \prod_{m=1}^{M_{0}} b_{m}^{-1}
\end{aligned}
$$

- Use polynomial root finder to find the zeros that lie inside and outside the unit circle and solve directly for $\hat{x}[n]$.

Recursive Relation for Complex Cepstrum for Minimum Phase Signals

- the complex cepstrum for minimum phase signals can be computed recursively from the input signal, $x(n)$ using the relation

$$
\begin{array}{rlrl}
\hat{x}(n) & =0 & & n<0 \\
& =\log [x(0)] & & n=0 \\
& =\frac{x(n)}{x(0)}-\sum_{k=0}^{n-1}\left(\frac{k}{n}\right) \hat{x}(k) \frac{x(n-k)}{x(0)} & n>0
\end{array}
$$

Cepstrum for Minimum Phase Signals

- for minimum phase signals (no poles or zeros outside unit circle) the complex cepstrum can be completely represented by the real part of the Fourier transforms
- this means we can represent the complex cepstrum of minimum phase signals by the log of the magnitude of the FT alone
- since the real part of the FT is the FT of the even part of the sequence
$\operatorname{Re}\left[\hat{X}\left(e^{j \omega}\right)\right]=F T\left[\frac{\hat{x}(n)+\hat{x}(-n)}{2}\right]$
$F T[c(n)]=\log \left|X\left(e^{j \omega}\right)\right|$
$c(n)=\frac{\hat{x}(n)+\hat{x}(-n)}{2}$
- giving
$\hat{x}(n)=0 \quad n<0$ $=c(n) \quad n=0$ $=2 c(n) \quad n>0$
- thus the complex cepstrum (for minimum phase signals) can be computed by computing the cepstrum and using the equation above

Recursive Relation for Complex Cepstrum for Minimum Phase Signals

$x(n) \longleftrightarrow X(z)$	1. basic z-transform
$n x(n) \longleftrightarrow-z \frac{d X(z)}{d z}=-z X^{\prime}(z)$	2. scale by n rule
$\hat{x}(n) \longleftrightarrow \hat{X}(z)=\log [X(z)]$	3. definition of complex cepstrum
$\frac{d \hat{X}(z)}{d z}=\frac{d}{d z}[\log [X(z)]]=\frac{X^{\prime}(z)}{X(z)}$	4. differentiation of z-transform
$-z \frac{d \hat{X}(z)}{d z} X(z)=-z X^{\prime}(z)$	5. multiply both sides of equation

Recursive Relation for Complex Cepstrum for Minimum Phase Signals

$n \hat{x}(n) * x(n) \longleftrightarrow-z \frac{d X(z)}{d z} X(z)=-z X^{\prime}(z) \longleftrightarrow n x(n)$
$n x(n)=\sum_{k=x}^{\infty} \hat{x}(k) x(n-k)(k)$

- for minimum phase systems we have $\hat{x}(n)=0$ for $n<0$,
$x(n)=0$ for $n<0$, giving.
$x(n)=\sum_{k=0}^{n} \hat{x}(k) x(n-k)\left(\frac{k}{n}\right)$
- separating out the term for $k=n$ we get
$x(n)=\sum_{k=0}^{n-1} \hat{x}(k) x(n-k)\left(\frac{k}{n}\right)+x(0) \hat{x}(n)$
$\hat{x}(n)=\frac{x(n)}{x(0)}-\sum_{k=0}^{n-1} \hat{x}(k) \frac{x(n-k)}{x(0)}\left(\frac{k}{n}\right), \quad n>0$
$\hat{x}(0)=\log [x(0)], \hat{x}(n)=0, n<0$

Cepstrum for Maximum Phase Signals

- for maximum phase signals (no poles or zeros inside unit circle)

$$
c(n)=\frac{\hat{x}(n)+\hat{x}(-n)}{2}
$$

- giving

$$
\begin{aligned}
\hat{x}(n) & =0 & & n>0 \\
& =c(n) & & n=0 \\
& =2 c(n) & & n<0
\end{aligned}
$$

- thus the complex cepstrum (for maximum phase signals) can be computed by computing the cepstrum and using the equation above

Computing Short-Time Cepstrums from Speech Using Polynomial Roots

Cepstrum From Polynomial Roots

Cepstrum From Polynomial Roots

Computing Short-Time Cepstrums from Speech Using the DFT

Practical Considerations

- window to define short-time analysis
- window duration (should be several pitch periods long)
- size of FFT (to minimize aliasing)
- elimination of linear phase components (positioning signals within frames)
- cutoff quefrency of lifter
- type of lifter (low/high quefrency)

Voiced Speech Example

Characteristic System for Homomorphic Convolution

- still need to define (and design) the L operator part (the linear system component) of the system to completely define the characteristic system for homomorphic convolution for speech
- to do this properly and correctly, need to look at the properties of the complex cepstrum for speech signals

Homomorphic Filtering of Voiced Speech

- model of speech:
- voiced speech produced by a quasi-periodic pulse train exciting slowly time-varying linear system => p[n] convolved with $h_{v}[n]$
- unvoiced speech produced by random noise exciting slowly time-varying linear system => $u[n]$ convolved with $h_{v}[n]$
- time to examine full model and see what the complex cepstrum of speech looks like

Voiced Speech Example

Voiced Speech Example

Unvoiced Speech Example

Review of Cepstral Calculation

- 3 potential methods for computing cepstral coefficients, $\hat{x}[n]$, of sequence $x[n]$
- analytical method; assuming $X(z)$ is a rational function; find poles and zeros and expand using log power series
- recursion method; assuming $X(z)$ is either a minimum phase (all poles and zeros inside unit circle) or maximum phase (all poles and zeros outside unit circle) sequence
- DFT implementation; using windows, with phase unwrapping (for complex cepstra)

Cepstral Computation Aliasing

- Effect of quefrency aliasing via a simple example

$$
\chi[n]=\delta[n]+\alpha \delta\left[n-N_{p}\right]
$$

- with discrete-time Fourier transform

$$
X\left(e^{j \omega}\right)=1+\alpha e^{-j \omega N_{p}}
$$

- We can express the complex logarithm as

$$
\hat{X}\left(e^{j \omega}\right)=\log \left\{1+\alpha e^{-j \omega N_{p}}\right\}=\sum_{m=1}^{\infty}\left(\frac{(-1)^{m+1} \alpha^{m}}{m}\right) e^{-j \omega m N_{p}}
$$

- giving a complex cepstrum in the form

$$
\hat{x}[n]=\sum_{m=1}^{\infty}\left(\frac{(-1)^{m+1} \alpha^{m}}{m}\right) \delta\left[n-m N_{p}\right]
$$

Short-Time Homomorphic Analysis

Example 1-single pole sequence (computed using all 3 methods)

Example 2-voiced speech frame

Example 3-high quefrency liftering

Example 5-phase unwrapping

Homomorphic Spectrum Smoothing

Running Cepstrum

Running Cepstrums

99

Cepstrum Applications

Running Cepstrum

Mel Frequency Cepstral Coefficients

- Basic idea is to compute a frequency analysis based on a filter bank with approximately critical band spacing of the filters and bandwidths. For 4 kHz bandwidth, approximately 20 filters are used. - First perform a short-time Fourier analysis, giving $X_{m}[k], k=0,1, \ldots, N F / 2$ where m is the frame number and k is the frequency index (1 to half the size of the FFT)
- Next the DFT values are grouped together in critical bands and weighted by triangular weighting functions

Mel Frequency Cepstral Coefficients

- The mel-spectrum of the $m^{\text {th }}$ frame for the $r^{\text {th }}$ filter $(r=1,2, \ldots, R)$ is defined as:

$$
\mathrm{MF}_{m}[r]=\frac{1}{A_{t}} \sum_{k=L_{r}}^{U_{r}}\left|V_{r}[k] X_{m}[k]\right|^{2}
$$

where $V_{r}[k]$ is the weighting function for the $r^{\text {th }}$ filter, ranging from DFT index L_{r} to U_{r}, and

$$
A_{r}=\sum_{k=L_{r}}^{U_{r}}\left|V_{r}[k]\right|^{2}
$$

is the normalizing factor for the $r^{\text {th }}$ mel-filter. (Normalization guarantees that if the input spectrum is flat, the mel-spectrum is flat).

- A discrete cosine transform of the log magnitude of the filter outputs is computed to form the function $\mathrm{mfcc}[n]$ as:

$$
\operatorname{mfcc}_{m}[n]=\frac{1}{R} \sum_{r=1}^{R} \log \left(\mathrm{MF}_{m}[r]\right) \cos \left[\frac{2 \pi}{R}\left(r+\frac{1}{2}\right) n\right], \quad n=1,2, \ldots, N_{\mathrm{mfcc}}
$$

- Typically $N_{\text {micc }}=13$ and $R=24$ for 4 kHz bandwidth speech signals.

Delta Cepstrum

- The set of mel frequency cepstral coefficients provide perceptually meaningful and smooth estimates of speech spectra, over time - Since speech is inherently a dynamic signal, it is reasonable to seek a representation that includes some aspect of the dynamic nature of the time derivatives (both first and second order derivatives) of the shortterm cepstrum
- The resulting parameter sets are called the delta cepstrum (first derivative) and the delta-delta cepstrum (second derivative)
- The simplest method of computing delta cepstrum parameters is a first difference of cepstral vectors, of the form:
$\Delta \operatorname{mfc}_{m}[n]=\operatorname{mfc}_{m}[n]-\operatorname{mfcc}_{m-1}[n]$
- The simple difference is a poor approximation to the first derivative and is not generally used. Instead a least-squares approximation to the local slope (over a region around the current sample) is used, and is of the form

$$
\Delta \mathrm{mfcc}_{m}[n]=\frac{\sum_{k=-M}^{M} k\left(\operatorname{mfcc}_{m+k}[n]\right)}{\sum_{k=-M}^{M} k^{2}}
$$

where the region is M frames before and after the current frame

Homomorphic Vocoder

1. compute cepstrum every $10-20 \mathrm{msec}$
2. estimate pitch period and voiced/unvoiced decision
3. quantize and encode low-time cepstral values
4. at Synthesizer-get approximation to $h_{v}(n)$ or $h_{u}(n)$ from low time quantized cepstral values
5. convolve $h_{v}(n)$ or $h_{u}(n)$ with excitation created from pitch, voiced/unvoiced, and amplitude information

Homomorphic Vocoder Impulse Responses

Summary

- Introduced the concept of the cepstrum of a signal, defined as the inverse Fourier transform of the log of the signal spectrum

$$
\hat{x}[n]=F^{-1}\left[\log X\left(e^{j \omega}\right)\right]
$$

- Showed cepstrum reflected properties of both the excitation (high quefrency) and the vocal tract (low quefrency)
- short quefrency window filters out excitation; long quefrency window filters out vocal tract
- Mel-scale cepstral coefficients used as feature set for speech recognition
- Delta and delta-delta cepstral coefficients used as indicators of spectral change over time

