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Homomorphic Homomorphic 
Speech ProcessingSpeech Processing

General DiscreteGeneral Discrete--Time Model of Time Model of 
Speech ProductionSpeech Production
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Basic Speech ModelBasic Speech Model
• short segment of speech can be modeled as 

having been generated by exciting an LTI system 
either by a quasi-periodic impulse train, or a 
random noise signal

• speech analysis => estimate parameters of the 
h d l th i i ti ( d

3

speech model, measure their variations (and 
perhaps even their statistical variabilites-for 
quantization) with time

• speech = excitation * system response
=> want to deconvolve speech into excitation and 

system response => do this using homomorphic
filtering methods

Superposition PrincipleSuperposition Principle
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Generalized Superposition for ConvolutionGeneralized Superposition for Convolution

 for LTI systems we have the result•
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 "generalized" superposition => addition replaced by convolution
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or convolution

Homomorphic FilterHomomorphic Filter
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 homomorphic filter => homomorphic system  that

passes the desired signal unaltered, while removing the
undesired signal
      ( ) [ ] [ ] - with [ ] the "undesired" signal
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 for linear systems this is analogous to additive noise removal
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Canonic Form for Canonic Form for HomomorphicHomomorphic
DeconvolutionDeconvolution
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 any homomorphic system can be represented as a cascade
of three systems, e.g., for convolution
    1. system takes inputs combined by convolution and transforms
them into additive outputs
    2. system 

•

is a conventional linear system
    3. inverse of first system--takes additive inputs and transforms
them into convolutional outputs

Canonic Form for Homomorphic ConvolutionCanonic Form for Homomorphic Convolution
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[ ] [ ] [ ]
ˆ ˆ ˆ[ ] { [ ]} [ ] [ ]      -   additive relation
ˆ ˆ ˆ ˆ ˆ[ ] { [ ] [ ]} [ ] [ ] - conventional linear system
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inverse of convolutional relation
=> design converted back to linear system, 

 - fixed (called the characteristic system for homomorphic deconvolution)

 - fixed (characteristic system for 
∗

−
∗

⎡ ⎤⎣ ⎦

⎡ ⎤⎣ ⎦

L
D

D inverse homomorphic deconvolution)

Properties of Characteristic Properties of Characteristic 
SystemsSystems
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DiscreteDiscrete--Time Fourier Time Fourier 
Transform RepresentationsTransform Representationspp
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Canonic Form for Canonic Form for DeconvolutionDeconvolution Using DTFTsUsing DTFTs
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 need to find a system that converts convolution to addition
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Characteristic System for Characteristic System for 
DeconvolutionDeconvolution Using DTFTsUsing DTFTs
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Inverse Characteristic System for Inverse Characteristic System for DeconvolutionDeconvolution Using Using 
DTFTsDTFTs
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Issues with LogarithmsIssues with Logarithms
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 it is essential that the logarithm obey the equation

      log ( ) ( ) log ( ) log ( )

 this is trivial if ( ) and ( ) are real -- however usually
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arg ( )

on the unit circle the complex log can be written in the form:

( ) | ( ) |
ˆlog ( ) ( ) log | ( ) | arg ( )

 no problems with log magnitude term; uniq
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ueness problems
arise in defining the imaginary part of the log; can show that
the imaginary part (the phase angle of the z-transform) needs
to be a continuous odd function of ω

Problems with arg FunctionProblems with arg Function
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Complex Complex CepstrumCepstrum PropertiesProperties

1ˆ[ ] (log | ( ) | arg{ ( )})
2
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 Given a complex logarithm that satisfies the phase continuity 
condition, we have:

 If  real, then log|X  is an even function of and 
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the complex log have the appropriate symmetry for  to be a real 
sequence, and  can be represented as:
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Complex and Real CepstrumComplex and Real Cepstrum
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ˆ define the inverse Fourier transform of ( ) as

ˆˆ[ ] ( )

ˆ where [ ] called the "complex cepstrum" since a complex
logarithm is involved in the computation
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 can also define a "re•
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al cepstrum" using just the real part of
the logarithm, giving
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TerminologyTerminology
•• SpectrumSpectrum – Fourier transform of signal autocorrelation
•• CepstrumCepstrum – inverse Fourier transform of log spectrum
•• AnalysisAnalysis – determining the spectrum of a signal
•• AlanysisAlanysis – determining the cepstrum of a signal
•• FilteringFiltering linear operation on time signal
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•• FilteringFiltering – linear operation on time signal
•• LifteringLiftering – linear operation on cepstrum
•• FrequencyFrequency – independent variable of spectrum
•• QuefrencyQuefrency – independent variable of cepstrum
•• Harmonic Harmonic – integer multiple of fundamental frequency
•• RahmonicRahmonic – integer multiple of fundamental frequency
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zz--Transform RepresentationTransform Representation
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Characteristic System for Characteristic System for DeconvolutionDeconvolution
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Inverse Characteristic System for Inverse Characteristic System for 
DeconvolutionDeconvolution
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zz--Transform Transform CepstrumCepstrum AlanysisAlanysis
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 consider digital systems with rational z-transforms of the general type
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 we can express the above equation as:
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zz--Transform Transform CepstrumCepstrum AlanysisAlanysis
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 express  as product of minimum-phase and
maximum-phase signals, i.e.,
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zz--Transform Transform CepstrumCepstrum AlanysisAlanysis
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 can express  as the convolution:
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zz--Transform Cepstrum Transform Cepstrum AlanysisAlanysis
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zz--Transform Transform CepstrumCepstrum AlanysisAlanysis
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 we can then evaluate the remaining terms, use power series
expansion for logarithmic terms (and take the inverse
transform to give the complex cepstrum) giving:
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CepstrumCepstrum PropertiesProperties
1.
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complex cepstrum is non-zero and of infinite extent for
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causal, or even of finite duration (  has only zeros).
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zz--Transform Cepstrum Transform Cepstrum AlanysisAlanysis
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 The main z-transform formula for cepstrum alanysis is based on
  the power series expansion:
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--Apply this formula to the exponential sequence
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zz--Transform Cepstrum Transform Cepstrum AlanysisAlanysis
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 --consider the case of a digital system with a 
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zz--Transform Transform CepstrumCepstrum AlanysisAlanysis for 2 Pulsesfor 2 Pulses
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 the cepstrum is an impulse train with impulses spaced at   samples• pN
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Cepstrum for Train of ImpulsesCepstrum for Train of Impulses
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 an important special case is a train of impulses 
   of the form:
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−− −p pN N

p

az bz
x n N

zz--Transform Cepstrum Alanysis for Transform Cepstrum Alanysis for 
Convolution of 2 SequencesConvolution of 2 Sequences
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 --consider the convolution of sequences 1 and 3, i.e., 
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The complex cepstrum is therefore the sum of the complei
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  of the two sequences (since convolution in the time domain is 
  converted to addition in the cepstral domain)
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zz--Transform Cepstrum Alanysis for Transform Cepstrum Alanysis for 
Convolution of 3 SequencesConvolution of 3 Sequences
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 --consider the convolution of sequences 1, 2 and 3, i.e., 
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p pa u n a u n N ba u n ba u n N

5 1 2 3

1 1

1

1 11 1

cepstrum is therefore the sum of the complex cepstra
  of the three sequences 

ˆ ˆ ˆ ˆ          ( ) ( ) ( ) ( )

( ) ( )( ) ( ) ( )α δ
+ +∞

=

= + +

− −
= − + − + − −∑

n k k n n

p
k

x n x n x n x n

a bu n n kN u n
n k n

Example: a=.9, b=.8, a=.7, Np=15

( )1

1 1
1
( )( )

( )
α −

−

+
= +

−
pNbzX z z

az

34

11( ) +− n nb
n

n
an

1

1

1( ) [ ]α δ
+∞

=

−
−∑

k k

p
k

n kN
k

HomomorphicHomomorphic Analysis of Analysis of 
Speech ModelSpeech Model

35

HomomorphicHomomorphic Analysis of Speech ModelAnalysis of Speech Model

 the transfer function for voiced speech is of the form
        ( ) ( ) ( ) ( )
 with effective impulse response for voiced speech

[ ] [ ] [ ] [ ]

•
= ⋅

∗ ∗
i

V VH z A G z V z R z

h n A g n v n r n

36

[ ] [ ] [ ] [ ]
 similarly for unvoiced speech we have

= ⋅ ∗ ∗

•
V V

U

h n A g n v n r n

H ( ) ( ) ( )
 with effective impulse response for unvoiced speech

[ ] [ ] [ ]

= ⋅

= ⋅ ∗
i

U

U U

z A V z R z

h n A v n r n
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Complex Cepstrum for SpeechComplex Cepstrum for Speech
0

1

1 1

1

1

1 1

1

0

 the models for the speech components are as follows:

( ) ( )
1. vocal tract:  ( )

( )

--for voiced speech, only poles => ,  all 

− −

= =

−

=

•

− −

=

−

= =

∏ ∏

∏

i

i

MM
M

k k
k k

N

k
k

k k

Az a z b z
V z

c z

a b k

37

0o o ced speec , o y po es , a
--unvoiced speech and nasals

k ka b

1

1

1

, need pole-zero model but all poles are
inside the unit circle => 
--all speech has complex poles and zeros that occur in complex conjugate
pairs

2. radiation model: ( )  (high frequency emphas−

<

≈ −

kc

R z z

0
1

1 1

1 1

is)
3. glottal pulse model: finite duration pulse with transform

    ( ) ( ) ( )

with zeros both inside and outside the unit circle

α β−

= =

= − −∏ ∏
i LL

k k
k k

G z B z z

Complex Cepstrum for Voiced Complex Cepstrum for Voiced 
SpeechSpeech

• combination of vocal tract, glottal pulse and 
radiation will be non-minimum phase => 
complex cepstrum exists for all values of n

38

• the complex cepstrum will decay rapidly for 
large n (due to polynomial terms in expansion 
of complex cepstrum)

• effect of the voiced source is a periodic pulse 
train for multiples of the pitch period

Simplified Speech ModelSimplified Speech Model

[ ]
 short-time speech model

        [ ] [ ] [ ] [ ] [ ] [ ]
[ ] [ ]

•

= ⋅ ∗ ∗ ∗x n w n p n g n v n r n
h

39

[ ] [ ]
 short-time complex cepstrum

ˆ ˆ ˆˆ ˆ        [ ] [ ] [ ] [ ] [ ]

≈ ∗

•
= + + +

w v

w

p n h n

x n p n g n v n r n

Analysis of Model for Voiced SpeechAnalysis of Model for Voiced Speech

1 1

1 2 1 1 2

1 2

0.5 [1 cos( ( 1) / )] 0 1
[ ] cos(0.5 ( 1 ) / ) 2

0
25, 1

 Assume sustained /AE/ vowel with fundamental frequency of 125 Hz
 Use glottal pulse model of the form:

     
otherwise

n N n N
g n n N N N n N N

N N

π
π

− + ≤ ≤ −⎧
⎪= + − ≤ ≤ + −⎨
⎪
⎩

= =

i
i

33 33

0 34 sample impulse response, with transform⇒

40

33 33
33 1

1 1

( ) ( ) (1 )   all roots outside unit circle  maximum phase

  Vocal tract system specified by 5 formants (frequencies and bandwidth

k k
k k

G z z b b z− −

= =

= − − ⇒ ⇒∏ ∏
i

5
2 41 2

1

1

1( )
(1 2 cos(2 ) )

{ , } [(660,60), (1720,100), (2410,120), (3500,175), (4500,250)]

( ) 1 , 0.96

s)

   

 Radiation load is simple first difference
   

k kT T
k

k

k k

V z
e F T z e z

F

R z z

πσ πσπ

σ

γ γ

− −− −

=

−

=
− +

=

= − =

∏

i

Time Domain AnalysisTime Domain Analysis

41

PolePole--Zero Analysis of Model Zero Analysis of Model 
ComponentsComponents

42
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Spectral Analysis of ModelSpectral Analysis of Model

43

Speech Model OutputSpeech Model Output

44

Complex Cepstrum of ModelComplex Cepstrum of Model

[ ] [ ] [ ] [ ] [ ]

ˆ ˆ ˆ ˆ ˆ[ ] log | | [ ] [ ] [ ] [ ] [ ]
ˆ[ ] 0 0

 The voiced speech signal is modeled as:
     
 with complex cepstrum:

     
glottal pulse is maximum phase

V

V

x n A g n v n r n p n

s n A n g n v n r n p n
g n n

δ

= ⋅ ∗ ∗ ∗

= + + + +
⇒ = >

i

i

i

45

[ ] 0, 0 glottal pulse is maximum phase  
 vocal tra

g n n⇒ = >i
i

1

1

ˆ ˆ[ ] 0, 0, [ ] 0, 0

ˆ( ) log(1 )

ˆ[ ] [ ]

ct and radiation systems are minimum phase
 

p p

k
N kN

k
k

p
k

v n n r n n

P z z z
k

p n n kN
k

ββ

β δ

∞
− −

=

∞

=

⇒ = < = <

= − − =

= −

∑

∑

Cepstral Analysis of ModelCepstral Analysis of Model

46

Resulting Complex and Real Resulting Complex and Real 
CepstraCepstra

47

Frequency Domain RepresentationsFrequency Domain Representations

48
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FrequencyFrequency--Domain Representation of Domain Representation of 
Complex CepstrumComplex Cepstrum

49

The Complex The Complex CepstrumCepstrum--DFT ImplementationDFT Implementation

2 2

0 1 1[ ] ( ) [ ] , ,..., ,
π π∞ −

∞

= = = −∑
j k j kn
N N

n
X k X e x n e k N

50

{ } { }2

21

0

1 0 1 1

/

[ ] is the  point DFT corresponding to ( )
ˆ ˆ[ ] ( ) log [ ] log [ ] arg [ ]

ˆˆ ˆ[ ] [ ] [ ] , ,...,

ˆ [

ω

π

π

=−∞

− ∞

= =−∞

= = = +

= = + = −

•

∑ ∑

i
n

j
p

j k N

N j kn
N

k r

X k N X e

X k X e X k X k j X k

x n X k e x n rN n N
N

x ˆ] is an aliased version of [ ]
use as large a value of  as possible to minimize aliasing⇒
n x n

N

Inverse SystemInverse System-- DFT ImplementationDFT Implementation

51

The The CepstrumCepstrum--DFT ImplementationDFT Implementation

1
2

[ ] log | ( ) |

Approximation to cepstrum using DFT:

π
ω ω

π

ω
π −

= −∞ < < ∞∫
i

j j nc n X e e d n

52

2 2

1
2

0

0 1 1

1 0 1

0 1 1

/

 Approximation to cepstrum using DFT:

[ ] ( ) [ ] , ,..., ,

[ ] log | [ ] | ,

( ) [ ] , ,...,

 [ ]

π π

π

∞ −

=−∞

−

=

∞

=−∞

= = = −

= ≤ ≤ −

= + = −

•

∑

∑

∑

j k j kn
N N

n
N

j kn N

k

r

X k X e x n e k N

c n X k e n N
N

c n c n rN n N

c n

2

 is an aliased version of [ ] use as large a value of  
  as possible to minimize aliasing

ˆ ˆ[ ] [ ]( )

⇒

+ −
=

c n N

x n x nc n

Cepstral Computation AliasingCepstral Computation Aliasing

N=256, NN=256, Npp=75, =75, 
αα=0.8=0.8

Circle dots areCircle dots are

53

Circle dots are Circle dots are 
cepstrum cepstrum 
values in values in 
correct correct 

locations;  all locations;  all 
other dots are other dots are 

results of results of 
aliasing due to aliasing due to 

finite range finite range 
computationscomputations

SummarySummary

z(   )z(   ) log(   )log(   ) L(   )L(   ) exp(   )exp(   ) zz--11(   )(   )
x[n]x[n] y[n]y[n]X(z)X(z) X(z)X(z)^̂ Y(z)Y(z)^̂ Y(z)Y(z)

1. Homomorphic System for Convolution:

zz--11(   )(   ) Linear Linear 
SystemSystem

z(   )z(   )
X(z)X(z)^̂ Y(z)Y(z)^̂x[n]x[n] y[n]y[n]^̂ ^̂

54

{ }

{ }

1

arg ( )

2. Practical Case:
          ( )

( )

( ) ( )

log ( ) log ( ) arg ( )

jj X ej j

j j j

z DFT
z IDFT

X e X e e

X e X e j X e

ω
ω ω

ω ω ω

−

→

→

=

⎡ ⎤ = +⎣ ⎦
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SummarySummary

1
2

3. Complex Cepstrum:

ˆˆ          [ ] ( )

4 C t

π
ω ω

π

ω
π −

= ∫ j j nx n X e e d

55

1
2

2

4. Cepstrum:

          [ ] log ( )

ˆ ˆ[ ] [ ] ˆ[ ] even part of [ ]

π
ω ω

π

ω
π −

=

+ −
= =

∫ j j nc n X e e d

x n x nc n x n

SummarySummary

DFTDFT Complex LogComplex Log IDFTIDFT
x(n)x(n) X(kX(k)) X(kX(k)) x(nx(n))^̂ ^̂

( ) ( )

{ } { }

2 2/ /

5. Practical Implementation of Complex Cepstrum:

          [ ] ( ) [ ] )

ˆ

π π
∞

−

=−∞

= = ∑j N k j N kn

n
X k X e x n e

~

56

{ } { }
( )

1
2

0

1 /

ˆ [ ] log ( ) log ( ) arg ( )

ˆˆ ˆ[ ] [ ] [ ] aliasing

ˆ[ ] aliased versi

π
− ∞

= =−∞

= = +

= = + ⇒

=

∑ ∑

p p p

N
j N kn

k r

X k X k X k j X k

x n X k e x n rN
N

x n

1
1

1

1
1

1

ˆon of [ ]
6. Examples:

ˆ( ) [ ] [ ]

ˆ( ) [ ] [ ]

δ

δ

∞

−
=

∞

=

= ⇔ = −
−

= − ⇔ = − +

∑

∑

r

r
r

r

x n

aX z x n n r
az r

bX z bz x n n r
r

Complex Complex CepstrumCepstrum Without Phase Without Phase 
UnwrappingUnwrapping

0

0

1 1 1

1 1

[ ]

( ) [ ] ,

( ) [0] (1 ) (1 )

 short-time analysis uses finite-length windowed segments,

-order polynomial

Find polynomial roots
i

M
n th

n

M M

m m
m m

x n

X z x n z M

X z x a z b z

−

=

− − −

= =

=

= − −

∑

∏ ∏

i

i

57

roots are inside unit circle (minmai

0
0

0
0

1 1

1

1 1

1

1

( ) (1 ) (1 )

[0]( 1)

imum-phase part)
 roots are outside unit circle (maximum-phase part)
 Factor out terms of form  giving:

 Use polynomial root finde

i

m

m
M M

M
m m

m m
M

M
m

m

b

b z

X z Az a z b z

A x b

− −

− −

= =

−

=

−

= − −

= −

∏ ∏

∏

i
i

i
ˆ[ ]

r to find the zeros that lie inside
and outside the unit circle and solve directly for .x n

Cepstrum for Minimum Phase SignalsCepstrum for Minimum Phase Signals

 for minimum phase signals (no poles or zeros outside unit circle) the complex cepstrum 
can be completely represented by the real part of the Fourier transforms
 this means we can represent the compl

•

•

2

ex cepstrum of minimum phase signals by the log 
of the magnitude of the FT alone
 since the real part of the FT is the FT of the even part of the sequence

ˆ ˆ( ) ( )ˆRe ( )ω

•

⎡ + − ⎤⎡ ⎤ = ⎢ ⎥⎣ ⎦ ⎣ ⎦
j x n x nX e FT

58

2

( )

⎣ ⎦ ⎣ ⎦

=⎡ ⎤⎣ ⎦FT c n

2

0 0
0

2 0

log ( )

ˆ ˆ( ) ( )( )

 giving
ˆ          ( )

( )
( )

 thus the complex cepstrum (for minimum phase signals) can be computed by computing 
the cepstrum and using the equation above

ω

+ −
=

•

= <
= =
= >

•

jX e

x n x nc n

x n n
c n n
c n n

Recursive Relation for Complex Recursive Relation for Complex 
Cepstrum for Minimum Phase SignalsCepstrum for Minimum Phase Signals

 the complex cepstrum for minimum phase signals 
can be computed recursively from the input signal, 

( ) using the relation

•

x n

59

1

0

0 0
0 0

0
0 0

ˆ( )
log ( )

( ) ( )ˆ( )
( ) ( )

−

=

= <

= =⎡ ⎤⎣ ⎦

−⎛ ⎞= − >⎜ ⎟
⎝ ⎠

∑
n

k

x n n
x n

x n k x n kx k n
x n x

Recursive Relation for Complex Recursive Relation for Complex 
Cepstrum for Minimum Phase SignalsCepstrum for Minimum Phase Signals

( ) ( ) 1. basic -transform
( )( ) ( ) 2. scale by  rule

←⎯→

′←⎯→ − = −

x n X z z
dX znx n z zX z n
dz

60

[ ]

[ ]

ˆˆ( ) ( ) log ( ) 3. definition of complex cepstrum
ˆ ( ) ( )log[ ( )] 4. differentiation of -transform

( )
ˆ ( )

←⎯→ =

′
= =

−

x n X z X z

dX z d X zX z z
dz dz X z

dX zz ( ) ( ) 5. multiply both sides of equation′= −X z zX z
dz
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Recursive Relation for Complex Recursive Relation for Complex 
Cepstrum for Minimum Phase SignalsCepstrum for Minimum Phase Signals

( )

0 0
0 0

ˆ ( )ˆ( ) ( ) ( ) ( ) ( )

ˆ( ) ( ) ( )

ˆ for minimum phase systems we have ( ) for ,
( ) for giving:

∞

=−∞

′∗ ←⎯→ − = − ←⎯→

= −

= <
= <

∑
i

k

dX znx n x n z X z zX z nx n
dz

nx n x k x n k k

x n n
x n n

61

0

0 0( ) for ,  giving:

ˆ( ) ( ) ( )

 separating out the term for 
=

= <

⎛ ⎞= − ⎜ ⎟
⎝ ⎠

∑
i

n

k

x n n
kx n x k x n k
n

[ ]

1

0

1

0

0

0
0 0

0 0 0 0

 we get:

ˆ ˆ( ) ( ) ( ) ( ) ( )

( ) ( )ˆ ˆ( ) ( ) ,
( ) ( )

ˆ ˆ( ) log ( ) , ( ) ,

−

=

−

=

=

⎛ ⎞= − +⎜ ⎟
⎝ ⎠

− ⎛ ⎞= − >⎜ ⎟
⎝ ⎠

= = <

∑

∑

n

k

n

k

k n
kx n x k x n k x x n
n

x n x n k kx n x k n
x x n

x x x n n

Recursive Relation for Complex Recursive Relation for Complex 
Cepstrum for Minimum Phase SignalsCepstrum for Minimum Phase Signals

0 0
0 1 1

0 1 1 1 1

1 10 1 1
0 0

ˆ why is ( ) log[ ( )]?
 assume we have a finite sequence ( ), , ,...,
 we can write ( ) as:

           ( ) ( ) ( ) ( ) ( ) ... ( ) ( )
( ) ( )( ) ( ) ( ) ... ( )
( ) ( )

x x
x n n N

x n
x n x n x n x N N

x x Nx n n N
x x

δ δ δ

δ δ δ

=
= −

= + − + + − −

⎡ −
= + − + + −

⎣

i
i
i

⎤
⎢ ⎥

⎦

62

1 21
1

0 1 1

1 1

0

taking transforms, we get:

          ( ) ( ) ( ) ( )

 where the first term is the gain, ( ), and the two product terms are the 
  zeros inside and outside t

NZ NZN
n

k k
n k k

z

X z x n z G a z b z

G x

−
− −

= = =

−

= = − −

=

∑ ∏ ∏

i

i

0 0 0 0

he unit circle.
 for minimum phase systems we have all zeros inside the unit circle so the 

  second product term is gone, and we have the result that
ˆ ˆ           ( ) log[ ] log[ ( )]; ( ) ,

ˆ( )

x G x x n n

x n

= = = <

=

i

0
NZ1

k=1

ank n
n

⎛ ⎞
− >⎜ ⎟

⎝ ⎠
∑

Cepstrum for Maximum Phase SignalsCepstrum for Maximum Phase Signals

2

 for maximum phase signals (no poles or 
zeros inside unit circle) 

ˆ ˆ( ) ( )( )

giving

•

+ −
=

•

x n x nc n

63

0 0
0

2 0

 giving
ˆ          ( )

( )
( )

 thus the complex cepstrum (for maximum 
phase signals) can be compute

= >
= =
= <

•

x n n
c n n
c n n

d by computing 
the cepstrum and using the equation above

Recursive Relation for Complex Recursive Relation for Complex 
Cepstrum for Maximum Phase SignalsCepstrum for Maximum Phase Signals

 the complex cepstrum for maximum phase signals 
can be computed recursively from the input signal, 

( ) using the relation

•

x n

64

0

1

0 0
0 0

0
0 0

( ) using the relation
ˆ( )

log ( )

( ) ( )ˆ( )
( ) ( )= +

= >

= =⎡ ⎤⎣ ⎦

−⎛ ⎞= − <⎜ ⎟
⎝ ⎠

∑
k n

x n
x n n

x n

x n k x n kx k n
x n x

Computing ShortComputing Short--Time Time 
CepstrumsCepstrums from Speech from Speech 
U i P l i l R tU i P l i l R tUsing Polynomial RootsUsing Polynomial Roots

65

CepstrumCepstrum From Polynomial RootsFrom Polynomial Roots

66
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CepstrumCepstrum From Polynomial RootsFrom Polynomial Roots

67

Computing ShortComputing Short--Time Time 
CepstrumsCepstrums from Speech from Speech 

68

Using the DFTUsing the DFT

Practical ConsiderationsPractical Considerations

• window to define short-time analysis
• window duration (should be several pitch 

periods long)
i f FFT (t i i i li i )

69

• size of FFT (to minimize aliasing)
• elimination of linear phase components 

(positioning signals within frames)
• cutoff quefrency of lifter
• type of lifter (low/high quefrency)

Computational ConsiderationsComputational Considerations

70

Voiced Speech ExampleVoiced Speech Example

Hamming window

40 msec duration

(section beginning 

71

at sample 13000 
in file 

test_16k.wav)

Voiced Speech ExampleVoiced Speech Example

wrapped phase

72

unwrapped 
phase
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Voiced Speech ExampleVoiced Speech Example

73

Characteristic System for Characteristic System for 
Homomorphic ConvolutionHomomorphic Convolution

• still need to define (and design) the L
operator part (the linear system 
component) of the system to completely 

74

p ) y p y
define the characteristic system for 
homomorphic convolution for speech
– to do this properly and correctly, need to look 

at the properties of the complex cepstrum for 
speech signals

Complex Cepstrum of SpeechComplex Cepstrum of Speech

• model of speech:
– voiced speech produced by a quasi-periodic 

pulse train exciting slowly time-varying linear 
system => p[n] convolved with hv[n]

75

y p[ ] v[ ]
– unvoiced speech produced by random noise 

exciting slowly time-varying linear system => 
u[n] convolved with hv[n]

• time to examine full model and see what 
the complex cepstrum of speech looks like

Homomorphic Filtering of Voiced Homomorphic Filtering of Voiced 
SpeechSpeech

• goal is to separate out the 
excitation impulses from the 
remaining components of the 
complex cepstrum

• use cepstral window, l(n), to 
separate excitation pulses from 
combined vocal tract

76

– l(n)=1 for |n|<n0<Np
– l(n)=0 for |n|≥n0
– this window removes excitation 

pulses
– l(n)=0 for |n|<n0<Np
– l(n)=1 for |n|≥n0
– this window removes combined 

vocal tract
• the filtered signal is processed by 

the inverse characteristic system 
to recover the combined vocal 
tract component

( )1
2

ˆ ˆ( ) ( ) ( )

ˆ ˆ( ) ( ) ( )jj j

y n n x n

Y e X e L e d
π

ω θω θ

π

θ
π

−

−

= ⋅

= ∫

Voiced Speech ExampleVoiced Speech Example
Cepstrally

smoothed log 
magnitude, 50 

quefrencies
cutoff

77

Cepstrally
unwrapped 
phase, 50 

quefrencies
cutoff

Voiced Speech ExampleVoiced Speech Example

Combined 
impulse 

f

78

response of 
glottal pulse, 
vocal tract 

system, and 
radiation system
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Voiced Speech ExampleVoiced Speech Example

High quefrency
liftering; cutoff

79

liftering; cutoff 
quefrency=50; 
log magnitude 

and unwrapped 
phase

Voiced Speech ExampleVoiced Speech Example

Estimated 
excitation 

function for 
voiced speech 

(Hamming

80

(Hamming 
window 

weighted)

Unvoiced Speech ExampleUnvoiced Speech Example

Hamming window

40 msec duration

(section beginning 

81

at sample 3200 in 
file test_16k.wav)

Unvoiced Speech ExampleUnvoiced Speech Example

wrapped phase

82

unwrapped 
phase

Unvoiced Speech ExampleUnvoiced Speech Example

83

Unvoiced Speech ExampleUnvoiced Speech Example
Cepstrally

smoothed log 
magnitude, 50 

quefrencies
cutoff

84

Cepstrally
unwrapped 
phase, 50 

quefrencies
cutoff
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Unvoiced Speech ExampleUnvoiced Speech Example

Estimated 
excitation source 

for unvoiced

85

for unvoiced 
speech section 

(Hamming 
window 

weighted)

ShortShort--Time Homomorphic AnalysisTime Homomorphic Analysis

STFT

86

Review of Cepstral CalculationReview of Cepstral Calculation

• 3 potential methods for computing cepstral 
coefficients,      , of sequence x[n]
– analytical method; assuming X(z) is a rational 

function; find poles and zeros and expand using log 
i

ˆ[ ]x n

87

power series
– recursion method; assuming X(z) is either a minimum 

phase (all poles and zeros inside unit circle) or 
maximum phase (all poles and zeros outside unit 
circle) sequence

– DFT implementation; using windows, with phase 
unwrapping (for complex cepstra)

Example 1Example 1——single pole sequence single pole sequence 
(computed using all 3 methods)(computed using all 3 methods)

[ ] [ ]= nx n a u n

88

1ˆ[ ] [ ]= −
nax n u n
n

Cepstral Computation AliasingCepstral Computation Aliasing

( )

[ ] [ ] [ ]

1

 Effect of quefrency aliasing via a simple example
      
 with discrete-time Fourier transform

     p

p

j Nj

x n n n N

X e e ωω

δ αδ

α −

= + −

= +

i

i
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ˆ ( ) log{1 }

 We can express the complex logarithm as

     pj NjX e e ωω α −= +

i
1

1

1

1

( 1)

( 1)ˆ[ ] [ ]

 giving a complex cepstrum in the form

     

p

m m
j mN

m

m m

p
m

e
m

x n n mN
m

ωα

α δ

+∞
−

=

+∞

=

⎛ ⎞−
= ⎜ ⎟

⎝ ⎠

⎛ ⎞−
= −⎜ ⎟

⎝ ⎠

∑

∑

i

Example 2Example 2——voiced speech framevoiced speech frame

90
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Example 3Example 3——low quefrency lifteringlow quefrency liftering

91

Example 3Example 3——high quefrency lifteringhigh quefrency liftering

92

Example 4Example 4——effects of low quefrency liftereffects of low quefrency lifter

93

Example 5Example 5——phase unwrappingphase unwrapping

94

Example 6Example 6——phase unwrappingphase unwrapping

95

Homomorphic Spectrum SmoothingHomomorphic Spectrum Smoothing

96
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Running Running CepstrumCepstrum

97

Running Running CepstrumCepstrum

98

Running Running CepstrumsCepstrums

99

CepstrumCepstrum ApplicationsApplications

100

CepstrumCepstrum Distance MeasuresDistance Measures
 The cepstrum forms a natural basis for comparing

patterns in speech recognition or vector quantization
because of its stable mathematical characterization
for speech signals
 A typical "cepstral distan

i

i

2( [ ] [ ])

ce measure" is of the form:

        
con

D c n c n= −∑

101

1
( [ ] [ ])

[ ] [ ]where  and  are cepstral sequences corresponding
to frames of signal, and  is the cepstral distance between
the pair of sequences.
 Using 

n

c n c n
D

=
∑

i

21 (log | ( ) | log | ( ) |)
2

Parseval's theorem, we can express the cepstral 
distance in the frequency domain as:

       

 Thus we see that the cepstral distance is actually a log 
magnitude spe

j jD H e H e d
π ω ω

π
ω

π −
= −∫

i
ctral distance

Mel Frequency Mel Frequency CepstralCepstral CoefficientsCoefficients
 Basic idea is to compute a frequency analysis based on a filter 

bank with approximately critical band spacing of the filters and
bandwidths.  For 4 kHz bandwidth, approximately 20 filters are used.
 

i

i [ ], 0,1,..., / 2First perform a short-time Fourier analysis, giving 
where  is the frame number and  is the frequency index (1 to half
the size of the FFT)

Next the DFT values are grouped together

mX k k NF
m k

=

i  in critical bands and weighted

102

g p g g
by triangular weighting functions.



18

Mel Frequency Mel Frequency CepstralCepstral CoefficientsCoefficients

2

( 1, 2,..., )

1[ ] | [ ] [ ] |

[ ]

 The mel-spectrum of the  frame for the  filter 
is defined as:

         MF

where  is the weighting function for the  filter, ranging from
DFT index

r

r

th th

U

m r m
k Lr

th
r

m r r R

r V k X k
A

V k r
=

=

= ∑

i

  to , andr r
U

L U

103

2| [ ] |

 is the normalizing factor for the  mel-filter.  (Normalization guarantees
that if the input spectrum is flat, the mel-spectrum is flat).
 A discrete cosine transform

r

r

U

r r
k L

th

A V k

r
=

= ∑

i

1

[ ]

1 2 1[ ] log( [ ]) cos , 1, 2,...,
2

13 24

mfcc

mfcc

 of the log magnitude of the filter outputs is
computed to form the function mfcc  as:

        mfcc MF

 Typically  and  for 4 kHz

R

m m
r

n

n r r n n N
R R

N R

π
=

⎡ ⎤⎛ ⎞= + =⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦
= =

∑
i  bandwidth speech signals.

Delta Delta CepstrumCepstrum
 The set of mel frequency cepstral coefficients provide perceptually

meaningful and smooth estimates of speech spectra, over time
 Since speech is inherently a dynamic signal, it is reasonable to seek

i

i
a representation that includes some aspect of the dynamic nature of
the time derivatives (both first and second order derivatives) of the short-
term cepstrum
 The resulting parameter sets are called thi e delta cepstrum (first derivative)

and the delta-delta cepstrum (second derivative).
Th i l t th d f ti d lt t t i fi t

104

The simplest method of computing delta cepstrum parameters is a first
difference of cepstral vectors, of the form:
 

i

1[ ] [ ] [ ]       mfcc mfcc mfcc
 The simple difference is a poor approximation to the first derivative and is

not generally used.  Instead a least-squares approximation to the local slope
(over a r

m m mn n n−Δ = −

i

2

( [ ])
[ ]

egion around the current sample) is used, and is of the form:

mfcc
        mfcc

where the region is  frames before and after the current frame

M

m k
k M

m M

k M

k n
n

k

M

+
=−

=−

Δ =
∑

∑

Homomorphic VocoderHomomorphic Vocoder
• time-dependent complex cepstrum retains all the 

information of the time-dependent Fourier 
transform => exact representation of speech

• time dependent real cepstrum loses phase 
information > not an exact representation of

105

information -> not an exact representation of 
speech

• quantization of cepstral parameters also loses 
information

• cepstrum gives good estimates of pitch, voicing, 
formants => can build homomorphic vocoder

Homomorphic VocoderHomomorphic Vocoder
1. compute cepstrum every 10-20 msec
2. estimate pitch period and 

voiced/unvoiced decision
3. quantize and encode low-time cepstral 

l

106

values
4. at synthesizer-get approximation to hv(n)

or hu(n) from low time quantized cepstral 
values

5. convolve hv(n) or hu(n) with excitation 
created from pitch, voiced/unvoiced, and 
amplitude information

Homomorphic VocoderHomomorphic Vocoder

107

• l(n) is cepstrum window that selects low-time 
values and is of length 26 samples homomorphic 

vocoder

Homomorphic Vocoder Impulse ResponsesHomomorphic Vocoder Impulse Responses

108
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SummarySummary
• Introduced the concept of the cepstrum of a signal, 

defined as the inverse Fourier transform of the log of the 
signal spectrum

• Showed cepstrum reflected properties of both the 

1ˆ[ ] log ( )jx n F X e ω− ⎡ ⎤= ⎣ ⎦
p p p

excitation (high quefrency) and the vocal tract (low 
quefrency)
– short quefrency window filters out excitation; long quefrency 

window filters out vocal tract

• Mel-scale cepstral coefficients used as feature set for 
speech recognition

• Delta and delta-delta cepstral coefficients used as 
indicators of spectral change over time 109


