Basic Stereo \& Epipolar Geometry

EECS 598-08 Fall 2014
 Foundations of Computer Vision

Readings: FP 7; SZ 11.1; TV 7
Date: 10/22/14

Plan

- Basic Stereo
- Why is more than one view useful?
- Triangulation
- Epipolar Geometry

On to Shape

- What cues help us to perceive 3d shape and depth?

Shading

a)

b)

c)
[Figure from Prados \& Faugeras 2006]

Focus/Defocus

[Figure from H. Jin and P. Favaro, 2002]

Texture

[From A.M. Loh. The recovery of 3-D structure using visual texture patterns. PhD thesis]

Perspective effects

Motion

Estimating scene shape

- Shape from X: Shading, Texture, Focus, Motion...
- Stereo:
- shape from "motion" between two views
- infer 3d shape of scene from two (multiple) images from different viewpoints

Can Structure Be Recovered from a Single View?

Camera K

From calibration rig	\rightarrow location/pose of the rig, K
From points and lines at infinity + orthogonal lines and planes	\rightarrow structure of the scene, K

Knowledge about scene (point correspondences, geometry of lines \& planes, etc...

Can Structure Be Recovered from a Single View?

Why is it so difficult?
Intrinsic ambiguity of the mapping from 3D to image (2D)

Can Structure Be Recovered from a Single View?

Intrinsic ambiguity of the mapping from 3D to image (2D)

Courtesy slide S. Lazebnik

Two Eyes Help!

Fixation, convergence

From Bruce and Green, Visual Perception, Physiology, Psychology and Ecology

Human stereopsis: disparity

Disparity occurs when eyes fixate on one object; others appear at different visual angles

From Bruce and Green, Visual Perception,
Physiology, Psychology and Ecology

Human Stereopsis; Disparity

Disparity: $\quad d=r-I=D-F$.

Random dot stereograms

- Julesz 1960: Do we identify local brightness patterns before fusion (monocular process) or after (binocular)?
- To test: pair of synthetic images obtained by randomly spraying black dots on white objects

Random dot stereograms

Forsyth \& Ponce

Random dot stereograms

Random dot stereograms

Figure 5.3.8 A random dot stereogram. These two images are derived from a single array of randomly placed squares by laterally displacing a region of them as described in the text. When they are viewed with crossed disparity (by crossing the eyes) so

that the right eye's view of the left image is combined with the left eye's view of the right image, a square will be perceived to float above the page. (See pages 210-211 for instructions on fusing stereograms.)

Random dot stereograms

- When viewed monocularly, they appear random; when viewed stereoscopically, see 3d structure.
- Conclusion: human binocular fusion not directly associated with the physical retinas; must involve the central nervous system
- Imaginary "cyclopean retina" that combines the left and right image stimuli as a single unit

Autostereograms

Exploit disparity as depth cue using single image
(Single image random dot stereogram, Single image stereogram)

Autostereograms

Images from magiceye.com

Stereo photography and stereo viewers

Take two pictures of the same subject from two slightly different viewpoints and display so that each eye sees only one of the images.

Invented by Sir Charles Wheatstone, 1838

Image courtesy of fisher-price.com

http://www.johnsonshawmuseum.org

http://www.johnsonshawmuseum.org

Public Library, Stereoscopic Looking Room, Chicago, by Phillips, 1923

Two Eyes Help!

This is called triangulation

Triangulation

Triangulation

- Find X that minimizes

$$
d^{2}\left(x_{1}, M_{1} X\right)+d^{2}\left(x_{2}, M_{2} X\right)
$$

Triangulation Geometry in Simple Stereo

Depth from disparity

image I(x,y)
Disparity map $D(x, y)$
image $I^{\prime}\left(x^{\prime}, y^{\prime}\right)$

$$
\left(x^{\prime}, y^{\prime}\right)=(x+D(x, y), y)
$$

Core Problems in Stereo

- Correspondence: Given a point in one image, how can I find the corresponding point x ' in another one ?

Camera geometry: Given corresponding points in two images, find camera matrices, position and pose.

- Scene geometry: Find coordinates of 3D point from its projection into 2 or multiple images.

Epipolar Geometry

- Epipolar Plane
- Baseline
- Epipolar Lines
- Epipoles $\mathrm{e}_{1}, \mathrm{e}_{2}$
= intersections of baseline with image planes
= projections of the other camera center
$=$ vanishing points of camera motion direction

Epipolar Geometry Terms

- Baseline: line joining the camera centers
- Epipole: point of intersection of baseline with the image plane
- Epipolar plane: plane containing baseline and world point
- Epipolar line: intersection of epipolar plane with the image plane
- All epipolar lines intersect at the epipole
- An epipolar plane intersects the left and right image planes in epipolar lines

Example: Converging image planes

Example: Parallel Image Planes

- Baseline intersects the image plane at infinity
- Epipoles are at infinity
- Epipolar lines are parallel to x axis

Example: Parallel Image Planes

Example: Forward translation

- The epipoles have same position in both images
- Epipole called FOE (focus of expansion)

The Epipolar Constraint

- Two views of the same object
- Suppose I know the camera positions and camera matrices
- Given a point on left image, how can I find the corresponding point on right image?

Image Examples of the Epipolar Constraint

Epipolar Geometry

How do we represent the epipolar geometry algebraically?

- Epipolar Plane
- Baseline
- Epipolar Lines
- Epipoles e_{1}, e_{2}
= intersections of baseline with image planes
= projections of the other camera center
= vanishing points of camera motion direction

Epipolar Constraint

- Potential matches for p have to lie on the corresponding epipolar line I'.
- Potential matches for p 'have to lie on the corresponding epipolar line I.

The Epipolar Constraint

$\mathrm{M}=\mathrm{K}\left[\begin{array}{ll}\mathrm{I} & 0\end{array}\right]$
$\mathrm{P} \rightarrow \mathrm{MP}=\left[\begin{array}{l}\mathrm{u} \\ \mathrm{v} \\ 1\end{array}\right]$
$\mathrm{M}^{\prime}=\mathrm{K}\left[\begin{array}{ll}\mathrm{R} & \mathrm{T}\end{array}\right]$
$\mathrm{P} \rightarrow \mathrm{M}^{\prime} \mathrm{P}=\left[\begin{array}{l}\mathrm{u}^{\prime} \\ \mathrm{v}^{\prime} \\ 1\end{array}\right]$

The Epipolar Constraint

$\mathrm{M}=\mathrm{K}[\mathrm{I}$
o]
K is known (canonical cameras)

$$
M=\left[\begin{array}{ll}
\downarrow & 0
\end{array}\right] \quad K=\left[\begin{array}{ll}
10 & 0 \\
0 & 1 \\
0 & 0 \\
0 & 1
\end{array}\right]
$$

$$
\begin{aligned}
& \mathrm{M}^{\prime}=\mathrm{K}\left[\begin{array}{ll}
\mathrm{R} & \mathrm{~T}
\end{array}\right] \\
& M^{\prime}=\left[\begin{array}{ll}
\mathrm{R} & T
\end{array}\right]
\end{aligned}
$$

The Epipolar Constraint

p^{\prime} in first camera reference system is $=R p^{\prime}$
$T \times\left(R p^{\prime}\right)$ is perpendicular to epipolar plane

$$
\rightarrow p^{T} \cdot\left[T \times\left(R p^{\prime}\right)\right]=0
$$

Cross product as matrix multiplication

$$
\mathbf{a} \times \mathbf{b}=\left[\begin{array}{ccc}
0 & -a_{z} & a_{y} \\
a_{z} & 0 & -a_{x} \\
-a_{y} & a_{x} & 0
\end{array}\right]\left[\begin{array}{l}
b_{x} \\
b_{y} \\
b_{z}
\end{array}\right]=\left[\mathbf{a}_{x}\right] \mathbf{b}
$$

The Epipolar Constraint

The Epipolar Constraint

- $E p_{2}$ is the epipolar line associated with $p_{2}\left(l_{1}=E p_{2}\right)$
- $E^{\top} p_{1}$ is the epipolar line associated with $p_{1}\left(l_{2}=E^{\top} p_{1}\right)$
- $E e_{2}=0$ and $E^{\top} e_{1}=0$
- E is 3×3 matrix; 5 DOF
- E is singular (rank two)

The Epipolar Constraint

The Epipolar Constraint

$p \rightarrow K^{-1} p$
 $$
p^{\prime} \rightarrow K^{\prime-1} p^{\prime}
$$
 O

$$
\mathrm{p}^{\mathrm{T}} \cdot\left[\mathrm{~T}_{x}\right] \cdot \mathrm{R} \mathrm{p}^{\prime}=0 \rightarrow\left(\mathrm{~K}^{-1} \mathrm{p}\right)^{\mathrm{T}} \cdot\left[\mathrm{~T}_{x}\right] \cdot \mathrm{R} \mathrm{~K}^{\prime-1} \mathrm{p}^{\prime}=0
$$

$$
\mathrm{p}^{\mathrm{T}} \mathrm{~K}^{-\mathrm{T}} \cdot\left[\mathrm{~T}_{x}\right] \cdot \mathrm{R} \mathrm{~K}^{\prime-1} \mathrm{p}^{\prime}=0 \rightarrow \mathrm{p}^{\mathrm{T}} \mathrm{Fp}^{\prime}=0
$$

The Epipolar Constraint

F = Fundamental Matrix
(Faugeras and Luong, 1992)

The Epipolar Constraint

$p_{1}{ }^{T} \cdot F p_{2}=0$

- $F p_{2}$ is the epipolar line associated with $p_{2}\left(l_{1}=F p_{2}\right)$
- $F^{\top} p_{1}$ is the epipolar line associated with $p_{1}\left(l_{2}=F^{\top} p_{1}\right)$
- $\mathrm{Fe}_{2}=0$ and $\mathrm{F}^{\top} \mathrm{e}_{1}=0$
- F is 3×3 matrix; 7 DOF
- F is singular (rank two)

Why F is useful?

- Suppose F is known
- No additional information about the scene and camera is given
- Given a point on left image, how can I find the corresponding point on right image?

Why is F Useful?

- F captures information about the epipolar geometry of 2 views + camera parameters
- MORE IMPORTANTLY: F gives constraints on how the scene changes under view point transformation (without reconstructing the scene!)
- Powerful tool in:
- 3D reconstruction
- Multi-view object/scene matching

Estimating F

The Eight-Point Algorithm

$\mathrm{P} \rightarrow \mathrm{p}=\left[\begin{array}{l}\mathrm{u} \\ \mathrm{v} \\ 1\end{array}\right] \quad \mathrm{P} \rightarrow \mathrm{p}^{\prime}=\left[\begin{array}{c}\mathrm{u}^{\prime} \\ \mathrm{v}^{\prime} \\ 1\end{array}\right]$
$p^{T} \mathrm{Fp}^{\prime}=0$

Estimating F

$$
\begin{gathered}
\mathrm{p}^{\mathrm{T}} \mathrm{~F} \mathrm{p}^{\prime}=0 \quad \\
(u, v, 1)\left(\begin{array}{lll}
F_{11} & F_{12} & F_{13} \\
F_{21} & F_{22} & F_{23} \\
F_{31} & F_{32} & F_{33}
\end{array}\right)\left(\begin{array}{c}
u^{\prime} \\
v^{\prime} \\
1
\end{array}\right)=0
\end{gathered}
$$

Estimating F

Estimating F

$\left(\begin{array}{ccccccccc}u_{1} u_{1}^{\prime} & u_{1} v_{1}^{\prime} & u_{1} & v_{1} u_{1}^{\prime} & v_{1} v_{1}^{\prime} & v_{1} & u_{1}^{\prime} & v_{1}^{\prime} & 1 \\ u_{2} u_{2}^{\prime} & u_{2} v_{2}^{\prime} & u_{2} & v_{2} u_{2}^{\prime} & v_{2} v_{2}^{\prime} & v_{2} & u_{2}^{\prime} & v_{2}^{\prime} & 1 \\ u_{3} u_{3}^{\prime} & u_{3} v_{3}^{\prime} & u_{3} & v_{3} u_{3}^{\prime} & v_{3} v_{3}^{\prime} & v_{3} & u_{3}^{\prime} & v_{3}^{\prime} & 1 \\ u_{4} u_{4}^{\prime} & u_{4} v_{4}^{\prime} & u_{4} & v_{4} u_{4}^{\prime} & v_{4} v_{4}^{\prime} & v_{4} & u_{4}^{\prime} & v_{4}^{\prime} & 1 \\ u_{5} u_{5}^{\prime} & u_{5} v_{5}^{\prime} & u_{5} & v_{5} u_{5}^{\prime} & v_{5} v_{5}^{\prime} & v_{5} & u_{5}^{\prime} & v_{5}^{\prime} & 1 \\ u_{6} u_{6}^{\prime} & u_{6} v_{6}^{\prime} & u_{6} & v_{6} u_{6}^{\prime} & v_{6} v_{6}^{\prime} & v_{6} & u_{6}^{\prime} & v_{6}^{\prime} & 1 \\ u_{7} u_{7}^{\prime} & u_{7} v_{7}^{\prime} & u_{7} & v_{7} u_{7}^{\prime} & v_{7} v_{7}^{\prime} & v_{7} & u_{7}^{\prime} & v_{7}^{\prime} & 1 \\ F_{11} u_{8}^{\prime} & u_{8} v_{8}^{\prime} & u_{8} & v_{8} u_{8}^{\prime} & v_{8} v_{8}^{\prime} & v_{8} & u_{8}^{\prime} & v_{8}^{\prime}\end{array}\right)\left(\begin{array}{l}F_{12} \\ F_{13} \\ F_{21} \\ F_{22} \\ F_{23} \\ F_{31} \\ F_{32} \\ F_{33}\end{array}\right) \mathbf{f}=0$

- Homogeneous system $\quad \mathbf{W} \mathbf{f}=0$
- Rank $8 \longrightarrow$ A non-zero solution exists (unique)
- If $\mathrm{N}>8 \rightarrow$ Lsq. solution by SVD! $\rightarrow \hat{\mathrm{F}}$

$$
\|\mathbf{f}\|=1
$$

\hat{F} satisfies: $\mathrm{p}^{\mathrm{T}} \hat{\mathrm{F}} \mathrm{p}^{\prime}=0$
and estimated \hat{F} may have full $\operatorname{rank}(\operatorname{det}(\hat{\mathrm{F}}) \neq 0)$
But remember: fundamental matrix is Rank 2

Find F that minimizes $\|F-\hat{F}\|=\underset{\text { Frobenius norm (s) }}{0}$
Subject to $\operatorname{det}(\mathrm{F})=0$
SVD (again!) can be used to solve this problem
(*) Sqrt root of the sum of squares of all entries

Data courtesy of R. Mohr and B. Boufama.

Mean errors: 10.0pixel 9.1pixel

Problems with the 8-point Algorithm

$$
\begin{aligned}
& \mathbf{W} \mathbf{f}=0, \\
& \|\mathbf{f}\|=1
\end{aligned} \xrightarrow{\substack{\text { Lsq solution } \\
\text { by SVD }}} \mathrm{F}
$$

- Recall the structure of W:
- do we see any potential (numerical) issue?

Problems with the 8-point Algorithm

$\mathbf{W} \mathbf{f}=0$

- Highly un-balanced (not well conditioned)
- Values of W must have similar magnitude
- This creates problems during the SVD decomposition

Normalization

IDEA: Transform image coordinate such that the matrix \mathbf{W} become better conditioned

Apply following transformation T : (translation and scaling)

- Origin = centroid of image points - Mean square distance of the data points from origin is 2 pixels

$$
\mathrm{q}_{\mathrm{i}}=\mathrm{T}_{\mathrm{i}} \mathrm{p}_{\mathrm{i}} \quad \mathrm{q}_{\mathrm{i}}^{\prime}=\mathrm{T}_{\mathrm{i}}^{\prime} \mathrm{p}_{\mathrm{i}}^{\prime} \quad \text { (normalization) }
$$

The Normalized 8-point Algorithm

0. Compute T_{i} and $\mathrm{T}_{\mathrm{i}}{ }^{\prime}$
1. Normalize coordinates:

$$
\mathrm{q}_{\mathrm{i}}=\mathrm{T}_{\mathrm{i}} \mathrm{p}_{\mathrm{i}} \quad \mathrm{q}_{\mathrm{i}}^{\prime}=\mathrm{T}_{\mathrm{i}}^{\prime} \mathrm{p}_{\mathrm{i}}^{\prime}
$$

2. Use the eight-point algorithm to compute F_{q} from the points q_{i} and $\mathrm{q}^{\prime}{ }^{\mathrm{i}}$
3. Enforce the rank-2 constraint. $\rightarrow \mathrm{F}_{\mathrm{q}} \quad\left\{\begin{array}{r}\mathrm{q}^{\mathrm{T}} \mathrm{F}_{\mathrm{q}} \mathrm{q}^{\prime}=0 \\ \operatorname{det}\left(\mathrm{~F}_{\mathrm{q}}\right)=0\end{array}\right.$
4. De-normalize $\mathrm{F}_{\mathrm{q}}: \quad \mathrm{F}=\mathrm{T}^{\prime \mathrm{T}} \mathrm{F}_{\mathrm{q}} \mathrm{T}$

With transformation

Mean errors: 10.0pixel 9.1pixel

Mean errors:
1.Opixel
0.9pixel

Stereo image rectification

In practice, it is convenient if image scanlines are the epipolar lines.

Stereo image rectification: example

Next Lecture: Stereo Vision

- Readings: FP 7; SZ 11; TV 7

