## Tests to determine the equivalent circuit



- Estimate $r_{1}, r_{2}, X_{\mathrm{m}}, R_{\mathrm{m}}$ and $x$ (note: $r_{2}+R_{X}=R_{2}$ where $R_{X}$ is the external resistance)

1. No-load test
2. Locked-rotor test

- Learn Example 15-1


## No-load test

At no-load, slip $s \approx 0 \rightarrow$ $R_{2} / \mathrm{s}$ is high, $I_{1} \ll I_{\mathrm{o}}$

## Steps:

1. Measure stator resistance $R_{L L}$ between any two terminals (assuming a Y connection)

$$
r_{1}=R_{L L} / 2
$$

2. Run the motor at no-load using rated line-to-line voltage $E_{N L}$. Measure no-load current $I_{N L}$ and 3-phase active power $P_{N L}$


Figure 15.17
A no-load test permits the calculation of $X_{\mathrm{m}}$ and $R_{\mathrm{m}}$ of the magnetizing branch.

$$
\left|S_{N L}\right|=\sqrt{3} E_{N L} I_{N L}
$$

$$
\left.P_{N L} \approx P_{f}+3 I_{N L}^{2} r_{1} \Leftrightarrow P_{f} \approx P_{N L}-3 I_{N L}^{2} r_{1} \quad \text { (Ignoring } P_{V}\right)
$$

$$
Q_{N L}=\sqrt{\left|S_{N L}\right|^{2}-P_{N L}^{2}}
$$

$$
R_{m}=\frac{\left(E_{N L} / \sqrt{3}\right)^{2}}{P_{f} / 3}=\frac{E_{N L}^{2}}{P_{N L}-3 I_{N L}^{2} r_{1}} \quad X_{m}=\frac{\left(E_{N L} / \sqrt{3}\right)^{2}}{\left(Q_{N L}\right) / 3}=\frac{E_{N L}^{2}}{Q_{N L}}
$$

## Blocked (locked) rotor test

When the rotor is locked without $R_{X}$, slip $s=1, I_{P} \gg I_{\mathrm{o}} \rightarrow r_{2}=R_{2} / s$, neglect the magnetizing branch

## Steps:

1. Apply reduced 3-phase voltage $E_{L R}$ to the stator so that the stator current $I_{p} \approx$ the rated value
2. Measure line-to-line voltage $E_{L R}$, current $I_{L R}$ and 3-phase active power $P_{L R}$


$$
\begin{aligned}
& \left|S_{L R}\right|=\sqrt{3} E_{L R} I_{L R} \\
& Q_{L R}=\sqrt{\left|S_{L R}\right|^{2}-P_{L R}^{2}}
\end{aligned}
$$

$$
x=\frac{Q_{L R}}{3 I_{L R}^{2}}
$$

$$
P_{L R} \approx 3 I_{L R}^{2} r_{1}+3 I_{L R}^{2} r_{2} \Rightarrow r_{2} \approx P_{L R} /\left(3 I_{L R}^{2}\right)-r_{1}
$$

## Example 13-7



A 3-phase induction motor having a nominal rating of $100 \mathrm{hp}(\sim 75 \mathrm{~kW})$ and a synchronous speed of $1800 \mathrm{r} / \mathrm{min}$ is connected to a 3-phase 600 V source. Resistance between two stator terminals $=0.34 \Omega$. Calculate
a. Power supplied to the motor

$$
P_{e}=P_{1}+P_{2}=70 \mathrm{~kW}
$$

b. Rotor $I^{2} R$ losses $P_{j r}$

$$
\begin{aligned}
& r_{1}=0.34 / 2=0.17 \Omega \\
& P_{j s}=3 I_{1}{ }^{2} r_{1}=3 \times 78^{2} \times 0.17=3.1 \mathrm{~kW} \\
& P_{r}=P_{e}-P_{j s}-P_{f}=70-3.1-2=64.9 \mathrm{~kW} \\
& s=\left(n_{s}-n\right) / n_{s}=(1800-1763) / 1800=0.0205 \\
& P_{j r}=s P_{r}=0.0205 \times 64.9=1.33 \mathrm{~kW}
\end{aligned}
$$

c. Mechanical power supplied to the load

$$
\begin{aligned}
P_{m} & =P_{r}-P_{j r}=64.9-1.33=63.5 \mathrm{~kW} \\
P_{L} & =P_{m}-P_{V}=63.5-1.2=62.3 \mathrm{~kW} \\
& =62.3 \times 1.34=83.5 \mathrm{hp}
\end{aligned}
$$

d. Efficiency

$$
\eta=P_{L} / P_{e}=62.3 / 70=89 \%
$$

e. Torque developed at $1763 \mathrm{r} / \mathrm{m}$

$$
\begin{aligned}
T_{\mathrm{m}} & =9.55 P_{r} / n_{s}=9.55 \times 649000 / 1800 \\
& =344 \mathrm{~N} \cdot \mathrm{~m}
\end{aligned}
$$

## Two-wattmeter method to measure 3-phase active power


$P_{1}=\left|V_{\mathrm{ac}}\right|\left|I_{\mathrm{a}}\right| \cos \left(\theta-30^{\circ}\right)=E_{L} I_{L} \cos \left(\theta-30^{\circ}\right)$
$P_{2}=\left|V_{\mathrm{bc}}\right|\left|I_{\mathrm{b}}\right| \cos \left(\theta+30^{\circ}\right)=E_{L} I_{L} \cos \left(\theta+30^{\circ}\right)$

$$
P_{1}+P_{2}+j \sqrt{3}\left(P_{1}-P_{2}\right)=P_{3 \phi}+j Q_{3 \phi}=S_{3 \phi}
$$

Proof: $\quad E_{L} I_{L}\left[\cos \left(\theta-30^{\circ}\right)+\cos \left(\theta+30^{\circ}\right)\right]+j \sqrt{3} E_{L} I_{L}\left[\cos \left(\theta-30^{\circ}\right)-\cos \left(\theta+30^{\circ}\right)\right]$

$$
\begin{aligned}
& =E_{L} I_{L} 2 \cos \theta \cos 30^{\circ}+j \sqrt{3} E_{L} I_{L} 2 \sin \theta \sin 30^{\circ} \\
& =\sqrt{3} E_{L} I_{L} \cos \theta+j \sqrt{3} E_{L} I_{L} \sin \theta=S_{3 \phi}
\end{aligned}
$$

## Breakdown (maximum) Torque

- When $\left|Z_{1}\right|=\left|R_{2} / s\right|, P_{r}$ and torque $T$ both reach their maximum values


$$
\begin{gathered}
\frac{\left|E_{g}\right|}{2}=\frac{\left|I_{1}\right| R_{2}}{s} \cos \frac{\alpha}{2}=\left|I_{1} Z_{1}\right| \cos \frac{\alpha}{2} \quad \neg\left|I_{1}\right|=\left|I_{1 b}\right| \stackrel{\text { def }}{=} \frac{\left|E_{g}\right|}{2\left|Z_{1}\right| \cos \frac{\alpha}{2}} \quad s=s_{b}=\frac{\operatorname{def}}{\left|Z_{1}\right|} \\
T \leq T_{b} \stackrel{R_{2}}{\text { def }\left.9.55 P_{r}\right|_{L_{1}=I_{1}, s=s_{b}}} \\
n_{s}
\end{gathered} \frac{9.55\left|I_{1 b}\right|^{2} R_{2}}{n_{s} s_{b}} \quad T_{b}=\frac{9.55\left|E_{g}\right|^{2}}{4 n_{s}\left|Z_{1}\right| \cos ^{2} \frac{\alpha}{2}} .
$$

## Torque-Speed Curve

$$
s=\frac{n_{s}-n}{n_{s}}, \quad P_{r}=\left|I_{1}\right|^{2} \frac{R_{2}}{s}, \quad I_{1}=\frac{E_{g}}{Z_{1}+\frac{R_{2}}{s}}=\frac{E_{g}}{Z_{1}+\frac{R_{2} n_{s}}{n_{s}-n}}
$$

$$
T=\frac{9.55 P_{r}}{n_{s}}=\frac{9.55\left|E_{g}\right|^{2} R_{2}}{\left|Z_{1}+\frac{R_{2} n_{s}}{n_{s}-n}\right|^{2}\left(n_{s}-n\right)}
$$



- The curve is nearly linear between no-load and full-load because $s$ is small and $R_{2} / s$ is big ( $Z_{1}$ is ignored)

$$
I_{1} \approx s E_{g} / R_{2} \quad T \approx \frac{9.55\left|E_{g}\right|^{2}}{R_{2} n_{s}^{2}}\left(n_{s}-n\right)=\frac{9.55\left|E_{g}\right|^{2}}{R_{2} n_{s}} s
$$

## Two practical squirrel-cage induction motors



## Motor rating:

$5 \mathrm{ipp}, 60 \mathrm{~Hz}, 1800)_{\mathrm{r}} / \mathrm{min}, 440 \mathrm{~V}, 3$-phase
full-load current: 7 A
locked-rotor current: 39 A
$r_{1}=$ stator resistance $1.5 \Omega$
$r_{2}=$ rotor resistance $1.2 \Omega$
$j . x=$ total leakage reactance $6 \Omega$
$j X_{\mathrm{m}}=$ magnetizing reactance $110 \Omega$
$R_{\mathrm{m}}=$ no-load losses resistance $900 \Omega$
(The no-load losses include the iron losses plus windage and friction losses.)

Figure 15.12
Equivalent circuit of a 5 hp squirrel-cage induction motor. Because there is no external resistor in the rotor, $R_{2}=r_{2}$.


## Motor rating:

$5000 \mathrm{hp}, 60 \mathrm{~Hz} .600 \mathrm{r} / \mathrm{min}, 6900 \mathrm{~V}, 3$-phase full-load current: 358 A
locked-rotor current: 1616 A
$r_{1}=$ stator resistance $0.083 \Omega$
$r_{2}=$ rotor resistance $0.080 \Omega$
$j x=$ total leakage reactance $2.6 \Omega$
$j X_{\mathrm{m}}=$ magnetizing reactance $46 \Omega$
$R_{\mathrm{m}}=$ no-load losses resistance $600 \Omega$
The no-load losses of 26.4 kW (per phase) consist of 15 kW for windage and friction and 11.4 kW for the iron losses.
Figure 15.13
Equivalent circuit of a 5000 hp squirrel-cage induction motor. Although this motor is 1000 times more powerful than the motor in Fig. 15.12, the circuit diagram remains the same.

Torque-Speed Curve: 5 hp motor
TABLE 15A TORQUE-SPEED CHARACTERISTIC
$5 \mathrm{hp}, 440 \mathrm{~V}, 1800 \mathrm{r} / \mathrm{min}, 60 \mathrm{~Hz}$ squirrel-cage induction motor

| $\boldsymbol{s}$ | $\boldsymbol{I}_{\mathbf{1}}$ | $\boldsymbol{P}_{\boldsymbol{r}}$ | $\boldsymbol{T}$ | $\boldsymbol{n}$ |
| :--- | :---: | :---: | :---: | :---: |
|  | $\|\mathrm{A}\|$ | $\mid \mathrm{W}]$ | $\|\mathrm{N} \cdot \mathrm{m}\|$ | $[\mathrm{r} / \mathrm{min}]$ |
| 0.0125 | 2.60 | 649 | 3.44 | 1777 |
| 0.025 | 5.09 | 1243 | 6.60 | 1755 |
| 0.026 | 5.29 | $129 \mid$ | 6.85 | 1753 |
| 0.05 | 9.70 | 2256 | 12.0 | 1710 |
| 0.1 | 17.2 | 3547 | 18.8 | 1620 |
| 0.2 | 26.4 | 4196 | 22.3 | 1440 |
| 0.4 | 33.9 | 3441 | 18.3 | 1080 |
| 0.6 | 36.6 | 2674 | 14.2 | 720 |
| 0.8 | 37.9 | 2150 | 11.4 | 360 |
| 1 | 38.6 | 1788 | 9.49 | 0 |

- When the motor is stalled, i.e. locked-rotor condition, the current is 5-6 times the full-load current, making $I^{2} R$ losses 25-36 times higher than normal, so the rotor must never remain locked for more than a few second
- Small motors ( 15 hp and less) develop their breakdown torque at about $80 \%$ of $n_{\mathrm{s}}$


## The 5 hp induction motor

$$
\begin{aligned}
& E_{\mathrm{g}}=440 / 1.73 \mathrm{~V} \\
& R_{2}=1.2 \Omega \\
& Z_{1}=1.5+6 \mathrm{j} \Omega \\
& n_{\mathrm{s}}=1800 \mathrm{r} / \mathrm{min}
\end{aligned}
$$





## Torque-Speed Curve: 5000 hp motor



## Effect of rotor resistance (5 hp induction motor)



## Effects of rotor resistance

- When $R_{2} \uparrow$, starting (locked-rotor) torque $T_{L R} \uparrow$, starting current $I_{1, L R} \downarrow$, and breakdown torque $T_{b}$ remains the same
- Pros \& Cons with a high rotor resistance $R_{2}$
- It produces a high starting torque $T_{L R}$ and a relatively low starting current $I_{1, L R}$
- However, because the torque-speed curve becomes flat, it produces a rapid fall-off in speed with increasing load around the rated torque, and the motor has high copper losses and low efficiency and tends to overheat
- Solution
- For a squirrel-cage induction motor, design the rotor bars in a special way so that the rotor resistance $R_{2}$ is high at starting and low under normal operations
- If the rotor resistance needs to be varied over a wide range, a woundrotor motor needs to be used.


## Asynchronous generator

Connect the $5 \mathrm{hp}, 1800 \mathrm{r} / \mathrm{min}, \mathbf{6 0 H z}$ motor to a 440 V , 3-phase line and drive it at a speed of $1845 \mathrm{r} / \mathrm{min}$
$s=\left(n_{s}-\mathrm{n}\right) / n_{s}=(1800-1845) / 1800=-0.025<0$
$R_{2} / \mathrm{s}=1.2 /(-0.025)=-48 \Omega<0$


The negative resistance indicates the actual power flow from the rotor to the stator
Power flow from the rotor to the stator:
$|E|=440 / 1.73=254 \mathrm{~V}$
$\left|I_{1}\right|=|E|| |-48+1.5+\mathrm{j} 6 \mid=254 / 46.88=5.42 \mathrm{~A}$
$P_{r}=\left|I_{1}\right|^{2} R_{2} / s=-1410 \mathrm{~W}$ (in fact, rotor $\rightarrow$ stator)
If we still assume the power flow directions as induction motors (from the stator to rotor) in slide $\# 23, P_{r}, P_{m}$ and $P_{e}$ are all negative. Alternatively, we may assume $P_{r}, P_{m}$
 and $P_{e}$ to be from the rotor to stator as generators:
Mech. power \& torque inputs to the shaft:
$P_{j r}=\left|I_{1}\right|^{2} R_{2}=35.2 \mathrm{~W}$
$P_{m}=P_{r}+P_{j r}=1410+35.2=1445 \mathrm{~W}$
$T=3 \times 9.55 \times P_{m} / n=22.3 \mathrm{~N} \cdot \mathrm{~m}$
Total active power delivered to the line:
$P_{j s}=\left|I_{1}\right|^{2} r_{1}=44.1 \mathrm{~W}, \quad P_{f}=|E|^{2} / R_{\mathrm{m}}=71.7 \mathrm{~W}$
$P_{e}=P_{r}-P_{j s}-P_{f}=1410-44.1-71.7=1294 \mathrm{~W}$ $P_{3 \phi}=3 P_{e}=3882 \mathrm{~W}$

Reactive power absorbed from the line:
$Q_{3 \phi}=\left(\left|I_{1}\right|^{2} x+|E|^{2} / X_{\mathrm{m}}\right) \times 3=(176+586) \times 3=2286$ var
Complex power delivered to the line:
$S_{3 \phi}=P_{3 \phi}-Q_{3 \phi}=3882-\mathrm{j} 2286 \mathrm{VA}$
$\cos \theta=86.2 \%$
Efficiency of this asynchronous generator

$$
\eta=P_{e} / P_{m}=1294 / 1445=89.5 \%
$$

