Lecture 3 Introduction to vectors and tensors

Instructor: Prof. Marcial Gonzalez

Announcements

Midterm Exam

- Thursday, April 2rd, <u>3-5 p.m., ME 2054</u>

Lecture 3 – Introduction to tensors and vectors

Lecture 3 – Introduction to tensors and vectors

Review (transformation rules)

Tensors: real-valued multi-linear functions of vectors

1-order tensor (vector) 2-order tensor

$$a_i \equiv \boldsymbol{a}[\boldsymbol{e}_i]$$

$$a_i \equiv m{a}[m{e}_i]$$
 $A_{ij} \equiv m{A}[m{e}_i,m{e}_j]$ coordinate invariant

$$a_i' = Q_{\alpha i} \ a_{\alpha}$$

$$a_i' = Q_{\alpha i} \ a_{\alpha} \qquad A_{ij}' = Q_{\alpha i} A_{\alpha \beta} Q_{\beta j}$$

transformation rules

$$[\boldsymbol{a}]' = \mathbf{Q}^T[\boldsymbol{a}]$$
 $[\boldsymbol{A}]' = \mathbf{Q}^T[\boldsymbol{A}]\mathbf{Q}$

$$[A]' = \mathbf{Q}^T [A] \mathbf{Q}$$

$${f Q}^T={f Q}^{-1}$$
 Properties of the transformation matrix $\det({f Q})=1$ (proper orthogonal = orthogonal + positive determinant)

Tensor operations

- Addition: $oldsymbol{C}[oldsymbol{a},oldsymbol{b}] = oldsymbol{A}[oldsymbol{a},oldsymbol{b}] + oldsymbol{B}[oldsymbol{a},oldsymbol{b}]$

$$C_{ij} = A_{ij} + B_{ij} \iff \mathbf{C} = \mathbf{A} + \mathbf{B}$$

- Magnification: $m{B}[m{a},m{b}] = \lambda m{A}[m{a},m{b}]$ $B_{ij} = \lambda A_{ij} \Longleftrightarrow m{B} = \lambda m{A}$
- Transpose: $m{B}[m{a},m{b}] = m{A}[m{b},m{a}]$ $B_{ij} = A_{ji} \Longleftrightarrow m{B} = m{A}^T$
- Tensor product: $m{D}[m{a},m{b},m{c}]=m{A}[m{a},m{b}]m{v}[m{c}]$ $D_{ijk}=A_{ij}v_k \Longleftrightarrow m{D}=m{A}\otimesm{v}$

Dyad: a second-order tensor formed by the tensor product of two vectors

$$A_{ij} = a_i b_j \iff \mathbf{A} = \mathbf{a} \otimes \mathbf{b}$$

 $\mathbf{a} \otimes \mathbf{b} \neq \mathbf{b} \otimes \mathbf{a}$

Tensor operations

- Contraction:

$$\operatorname{Cont}_{ij} \boldsymbol{T} = \boldsymbol{T}[\boldsymbol{a}_1, ..., \boldsymbol{a}_{i-1}, \boldsymbol{e}_k, \boldsymbol{a}_{i+1}, ..., \boldsymbol{a}_{j-1}, \boldsymbol{e}_k, \boldsymbol{a}_{j+1}..., \boldsymbol{a}_n]$$

$$(\operatorname{sum_on_k})$$

$$\boldsymbol{v}[\boldsymbol{a}] = \operatorname{Cont}_{23} \boldsymbol{D} = \boldsymbol{D}[\boldsymbol{a}, \boldsymbol{e}_k, \boldsymbol{e}_k] \iff v_i = D_{ikk}$$

Contracted multiplication:

+
$$v[a] = \operatorname{Cont}_{23}(A[a,b]u[c]) = A[a,e_j]u[e_j]$$

$$v_i = A_{ik}u_k \Longleftrightarrow v = Au$$
Matrix notation

+
$$C[a, b] = \text{Cont}_{23}(A[a, c]B[d, b]) = A[a, e_k]B[e_k, b]$$

 $C_{ij} = A_{ik}B_{kj} \iff C = AB$

+
$$C_{ij} = A_{ik}B_{jk} \iff \mathbf{C} = \mathbf{A}\mathbf{B}^T$$
 $C_{ij} = A_{ki}B_{jk} \iff \mathbf{C} = \mathbf{A}^T\mathbf{B}^T$ $C_{ij} = A_{ki}B_{kj} \iff \mathbf{C} = \mathbf{A}^T\mathbf{B}$

Tensor operations

- Contraction:

$$\operatorname{Cont}_{ij} \boldsymbol{T} = \boldsymbol{T}[\boldsymbol{a}_1, ..., \boldsymbol{a}_{i-1}, \boldsymbol{e}_k, \boldsymbol{a}_{i+1}, ..., \boldsymbol{a}_{j-1}, \boldsymbol{e}_k, \boldsymbol{a}_{j+1}..., \boldsymbol{a}_n]$$

$$(\operatorname{sum_on_k})$$

$$\boldsymbol{v}[\boldsymbol{a}] = \operatorname{Cont}_{23} \boldsymbol{D} = \boldsymbol{D}[\boldsymbol{a}, \boldsymbol{e}_k, \boldsymbol{e}_k] \iff v_i = D_{ikk}$$

Scalar contraction:

(2-order)
$$\operatorname{tr} \boldsymbol{A} = \operatorname{Cont}_{12} \boldsymbol{A} = \operatorname{tr} [\boldsymbol{A}] = A_{ii} \qquad \det \boldsymbol{A} \equiv \det [\boldsymbol{A}]$$

(1-order)
$$\boldsymbol{a} \cdot \boldsymbol{b} = \operatorname{Cont}_{12}(\boldsymbol{a} \otimes \boldsymbol{b}) = a_i b_i$$

(double contraction of two 2-order tensors)

$$\boldsymbol{A}:\boldsymbol{B}=A_{ij}B_{ij}$$
 $\boldsymbol{A}\cdot\cdot\boldsymbol{B}=A_{ij}B_{ji}$

_____ (double contraction of a 4-order tensor and a 2-order tensor)

$$[\boldsymbol{E}:\boldsymbol{B}]_{ij} = E_{ijkl}B_{kl} \quad [\boldsymbol{E}\cdot\boldsymbol{B}]_{ij} = E_{ijkl}B_{lk}$$

Tensor operations

Tensor basis

Tensor product of vectors can be used to define basis for tensors.

(**2-order**) – can be written as a linear combination of dyads (i.e., a <u>dyadic</u>) A dyadic of two (linearly independent) dyads for $n_{\rm d}=2$

$$A = a \otimes b + c \otimes d$$

A dyadic of three (linearly independent) dyads for $n_{\rm d}=3$

$$A = a \otimes b + c \otimes d + e \otimes f$$

.... but also (i.e., the decomposition is not unique)

$$\mathbf{A} = A_{ij}(\mathbf{e}_i \otimes \mathbf{e}_j)$$
 $A_{ij} = \mathbf{e}_i \cdot \mathbf{A} \mathbf{e}_j$

where $oldsymbol{e}_i \otimes oldsymbol{e}_j$ form linearly independent basis.

(4-order)

$$\mathbf{E} = E_{ijkl}(\mathbf{e}_i \otimes \mathbf{e}_j \otimes \mathbf{e}_k \otimes \mathbf{e}_l)$$

Orthogonal tensors

$$m{Q}$$
 is orthogonal if $(m{Q}m{a})\cdot(m{Q}m{b})=m{a}\cdotm{b} \ \ orall m{a},m{b}\in\mathbb{R}^{n_{
m d}}$

The tensor preservers the magnitude of, and the angle between, the vectors on which it operates.

Necessary and sufficient condition:
$${m Q}^T = {m Q}^{-1}$$
 $(\det {m Q} = 1)$ proper orthogonal

Proper orthogonal tensors represent rotations, .e.g.,
$$\,e_1'=Qe_1\,$$
 $\,e_2'=Qe_2\,$ $\,e_3'=Qe_3\,$

NOTE: Recall the matrix that links two bases
$$\{e_i\}$$
 and $\{e_i'\}$... $e_j' = \mathrm{Q}_{ij} \ e_i$ Though $[{m Q}] = {m Q}$, they represent very different ideas!

Symmetrical and antisymmetrical tensors

$$S$$
 is a symmetric if $S_{ij} = S_{ji} \iff S = S^T$

$$\boldsymbol{A}$$
 is an antisymmetric if $A_{ij} = -A_{ji} \iff \boldsymbol{A} = -\boldsymbol{A}^T$

Any tensor T_{ij} can be <u>decomposed</u> into a symmetric part $T_{(ij)} \equiv \frac{1}{2}(T_{ij} + T_{ji})$ and an antisymmetric $T_{[ij]} \equiv \frac{1}{2}(T_{ij} - T_{ji})$ so that $T_{ij} = T_{(ij)} + T_{[ij]}$

DIY

Axial vector: Given
$$A$$
, $\exists \omega$ s.t. $Aa = \omega \times a \quad \forall a \in \mathbb{R}^3$ show that $\omega_k = -\frac{1}{2}\epsilon_{ijk}A_{ij}$

Contraction of symmetric and antisymmetric tensors:

show that
$$\boldsymbol{S}: \boldsymbol{A} = S_{ij}A_{ij} = 0$$

Principal values and directions

$$G_{ij}\Lambda_j = \lambda\Lambda_i \iff G\boldsymbol{\Lambda} = \lambda\boldsymbol{\Lambda} \iff (G_{ij} - \lambda\delta_{ij})\Lambda_j = 0 \iff (G - \lambda\boldsymbol{I})\boldsymbol{\Lambda} = \boldsymbol{0}$$

Nontrivial solutions [i.e., λ^G (eigenvalue) and Λ^G (eigenvector)] require

$$\det(\boldsymbol{G} - \lambda \boldsymbol{I}) = 0$$

Characteristic equation and principal invariants

The characteristic equation of G (for $n_d = 3$) is

$$\overline{-\lambda^3 + I_1}(\mathbf{G})\lambda^2 - I_2(\mathbf{G})\lambda + I_3(\mathbf{G}) = 0$$

where the principal invariants of G are

$$I_1(\mathbf{G}) = \operatorname{tr}(\mathbf{G})$$

$$I_2(\boldsymbol{G}) = \frac{1}{2}[(\operatorname{tr}\boldsymbol{G})^2 - \operatorname{tr}\boldsymbol{G}^2]$$

$$I_3(\mathbf{G}) = \det \mathbf{G}$$

$$\Lambda_{\alpha}^{S} \cdot \Lambda_{\beta}^{S} = \delta_{\alpha\beta}$$
 $S = \sum_{\alpha=1}^{3} \lambda_{\alpha}^{S} \Lambda_{\alpha}^{S} \otimes \Lambda_{\alpha}^{S}$

Principal values and directions (principal basis, completeness relation, spectral decomposition)

Cayley-Hamilton theorem $(T \text{ on } \mathbb{R}^3)$

$$\boldsymbol{T}^3 = I_1(\boldsymbol{T})\boldsymbol{T}^2 - I_2(\boldsymbol{T})\boldsymbol{T} + I_3(\boldsymbol{T})\boldsymbol{I}$$

(i.e., T satisfies its own characteristic equation).

$$T^4 = (I_1^2 - I_2)T^2 + (I_3 - I_1I_2)T + I_1I_3I$$

$$T^5 = ...$$

NOTE: Recall that
$$[T^3]_{ij} = T_{im}T_{mn}T_{nj}$$

Symmetric positive-definite tensors

S is positive definite iff
$$Q(x) \equiv S_{ij}x_ix_j > 0 \ \forall x \in \mathbb{R}^{n_d}, x \neq \mathbf{0}$$

$$S$$
 is positive definite iff $\lambda_{\alpha}^{S} > 0$, $\forall \alpha$

+ Now we can define the square root:

If S is positive definite, then
$$\exists R$$
, s.t. $R^2 = S$

For
$$S$$
 on \mathbb{R}^3 , $\sqrt{S} = \sum_{\alpha=1}^3 \sqrt{\lambda_{\alpha}^S} (\mathbf{\Lambda}_{\alpha}^S \otimes \mathbf{\Lambda}_{\alpha}^S)$

.... notice that we choose the 'positive-definite' square root!

Note: the scalar function $Q(x) \equiv S_{ij}x_ix_j$ is called the <u>quadratic form</u> of S.

Isotropic tensors

(... important for constitutive relations)

- An isotropic tensor is a tensor whose components are unchanged by coordinate transformation.

$$Q_{\alpha i}Q_{\beta j}T_{\alpha\beta}=T_{ij}$$
, $\forall \mathbf{Q} \in \text{group of rotation matrices}$

- + Zeroth-order: All zeroth-order tensors are isotropic.
- + First-order: The only isotropic first-order tensor is the zero vector.
- + Second-order: All isotropic second-order tensors are proportional to the identity tensor.
- + Third-order: All isotropic (hemitropic) third-order tensors are

proportional to the permutation symbol.

+ Forth-order: All isotropic fourth-order tensors can be written as

$$C_{ijkl} = \alpha \ \delta_{ij}\delta_{kl} + \beta \ \delta_{ik}\delta_{jl} + \gamma \ \delta_{il}\delta_{jk}$$

Lecture 3 – Introduction to tensors and vectors

Any questions?