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Abstract. This review is devoted to the study of stationary solutions of lin-
ear and nonlinear equations from relativistic quantum mechanics, involving the
Dirac operator. The solutions are found as critical points of an energy func-
tional. Contrary to the Laplacian appearing in the equations of nonrelativistic
quantum mechanics, the Dirac operator has a negative continuous spectrum
which is not bounded from below. This has two main consequences. First, the
energy functional is strongly indefinite. Second, the Euler-Lagrange equations
are linear or nonlinear eigenvalue problems with eigenvalues lying in a spectral
gap (between the negative and positive continuous spectra). Moreover, since
we work in the space domain R3, the Palais-Smale condition is not satisfied.
For these reasons, the problems discussed in this review pose a challenge in the
Calculus of Variations. The existence proofs involve sophisticated tools from
nonlinear analysis and have required new variational methods which are now
applied to other problems.

In the first part, we consider the fixed eigenvalue problem for models of a
free self-interacting relativistic particle. They allow to describe the localized
state of a spin-1/2 particle (a fermion) which propagates without changing
its shape. This includes the Soler models, and the Maxwell-Dirac or Klein-
Gordon-Dirac equations.

The second part is devoted to the presentation of min-max principles al-
lowing to characterize and compute the eigenvalues of linear Dirac operators
with an external potential, in the gap of their essential spectrum. Many con-
sequences of these min-max characterizations are presented, among them a
new kind of Hardy-like inequalities and a stable algorithm to compute the
eigenvalues.

In the third part we look for normalized solutions of nonlinear eigenvalue
problems. The eigenvalues are Lagrange multipliers, lying in a spectral gap.
We review the results that have been obtained on the Dirac-Fock model which
is a nonlinear theory describing the behavior of N interacting electrons in an
external electrostatic field. In particular we focus on the problematic definition
of the ground state and its nonrelativistic limit.

In the last part, we present a more involved relativistic model from Quan-
tum Electrodynamics in which the behavior of the vacuum is taken into ac-
count, it being coupled to the real particles. The main interesting feature of

this model is that the energy functional is now bounded from below, providing
us with a good definition of a ground state.
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Introduction

In this paper, we present various recent results concerning some linear and non-
linear variational problems in relativistic quantum mechanics, involving the Dirac
operator.

Dirac derived his operator in 1928 [44], starting from the usual classical expres-
sion of the energy of a free relativistic particle of momentum p ∈ R3 and mass
m

(1) E2 = c2|p|2 +m2c4

(c is the speed of light), and imposing the necessary relativistic invariances. By
means of the usual identification

p←→ −i~∇
where ~ is Planck’s constant, he found that an adequate observable for describ-
ing the energy of the free particle should therefore be a self-adjoint operator Dc

satisfying the equation

(2) (Dc)
2 = −c2~

2∆ +m2c4.
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Taking the causality principle into account, Dirac proposed to look for a local
operator which is first order with respect to p = −i~∇:

(3) Dc = −ic~ α · ∇+mc2β = −ic~
3∑

k=1

αk∂k + mc2β,

where α1, α2, α3 and β are hermitian matrices which have to satisfy the following
anticommutation relations:

(4)






αkαℓ + αℓαk = 2 δkℓ 1,
αkβ + βαk = 0,

β2 = 1.

It can be proved [158] that the smallest dimension in which (4) can take place is 4
(i.e. α1, α2, α3 and β should be 4 × 4 hermitian matrices), meaning that Dc has
to act on L2(R3,C4). The usual representation in 2× 2 blocks is given by

β =

(
I2 0
0 −I2

)
, αk =

(
0 σk
σk 0

)
(k = 1, 2, 3) ,

where the Pauli matrices are defined as

σ1 =

(
0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)
.

By (1), the time-dependent Dirac equation describing the evolution of a free
particle is

(5) i~
∂

∂t
Ψ = DcΨ.

This equation has been successfully used in physics to describe relativistic particles
having a spin 1/2.

The main unusual feature of the Dirac equation is the spectrum of Dc which is
not bounded from below:

(6) σ(Dc) = (−∞,−mc2] ∪ [mc2,∞).

Compared with non-relativistic theories in which the Schrödinger operator−∆/(2m)
appears instead of Dc, property (6) leads to important physical, mathematical and
numerical difficulties. Indeed, if one simply replaces −∆/(2m) by Dc in the ener-
gies or operators which are commonly used in the non-relativistic case, one obtains
energies which are not bounded from below.

Although there is no observable electron of negative energy, the negative spec-
trum plays an important role in physics. Dirac himself suspected that the negative
spectrum of his operator could generate new interesting physical phenomena, and
he proposed in 1930 the following interpretation [45, 46, 47]:

“We make the assumption that, in the world as we know it, nearly
all the states of negative energy for the electrons are occupied, with
just one electron in each state, and that a uniform filling of all the
negative-energy states is completely unobservable to us.” [47]

Physically, one therefore has to imagine that the vacuum (called the Dirac sea) is
filled with infinitely many virtual particles occupying the negative energy states.
With this conjecture, a real free electron cannot be in a negative state due to the
Pauli principle which forbids it to be in the same state as a virtual electron of the
Dirac sea.
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With this interpretation, Dirac was able to conjecture the existence of “holes” in
the vacuum, interpreted as “anti-electrons” or positrons, having a positive charge
and a positive energy. The positron was discovered in 1932 by Anderson [3]. Dirac
also predicted the phenomenon of vacuum polarization: in presence of an electric
field, the virtual electrons are displaced, and the vacuum acquires a nonconstant
density of charge. All these phenomena are now well known and well established
in physics. They are direct consequences of the existence of the negative spectrum
of Dc, showing the crucial role played by Dirac’s discovery.

Actually, in practical computations it is quite difficult to deal properly with the
Dirac sea. As a consequence the notion of “ground state” (state of “lowest energy”
which is supposed to be the most “stable” for the system under consideration)
is problematic for many of the models found in the literature. Numerically, the
unboundedness from below of the spectrum is also the source of important practical
issues concerning the convergence of the considered algorithms, or the existence of
spurious (unphysical) solutions.

Dirac’s interpretation of the negative energies will be an implicit assumption in
all this review in the sense that we shall (almost) always look for positive energy
solutions for the electrons. In the last section, we present a model from Quantum
Electrodynamics (QED) in which the nonlinear behavior of the Dirac sea will be
fully taken into account.

Mathematically, most of the energy functionals that we shall consider are strongly
indefinite: they are unbounded from below and all their critical points have an in-
finite Morse index. Note that the mathematical methods allowing to deal with
strongly indefinite functionals have their origin in the works of P. Rabinowitz con-
cerning the study of nonlinear waves [133] and also the study of periodic solutions
of Hamiltonian systems [134]. Many results have followed these pioneering works,
and powerful theories have been devised, in particular in the field of periodic orbits
of Hamiltonian systems: the linking theorem of Benci-Rabinowitz [17], Clarke-
Ekeland’s dual action functional [39], Conley-Zehnder’s relative index [41], Floer’s
homology [74]...

Another difficulty with the models presented in this review is the lack of com-
pactness: the Palais-Smale condition is not satisfied due to the unboundedness of
the domain R3. Variational problems with lack of compactness also have been
extensively studied. Let us mention the work of Sacks-Uhlenbeck [144] on har-
monic maps, Lieb’s Lemma [113], Brezis-Nirenberg’s study of elliptic PDEs with
critical exponents [25], the concentration-compactness method of P.-L. Lions [117],
Bahri-Coron’s critical points at infinity [10] and more recently Fang-Ghoussoub’s
Palais-Smale sequences with Morse information [68, 77].

The combination of the two above types of difficulties poses a challenge in the
Calculus of Variations. To prove the results presented in this review, it has been
necessary to adapt some of the sophisticated tools mentioned above and to introduce
new ideas. The novel variational methods that we have designed can be applied
in general situations and in particular in the study of crystalline matter (nonlinear
Schrödinger equations with periodic potentials).

The review contains four different parts which are almost independent. The
common feature of all the problems addressed in this review is the variational study
of linear and nonlinear eigenvalue problems with eigenvalues in spectral gaps. In
the nonlinear case, there are two different classes of problems. Either we fix the
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eigenvalue and let the L2-norm of the solutions free. Or we look for normalized
solutions, the eigenvalue is then a Lagrange multiplier which has to stay in the
spectral gap.

In the first section, we describe the results that have been obtained for some
models describing one self-interacting free relativistic spin-1/2 particle. The sim-
plest case is when the interaction is “local”, i.e. represented by a nonlinear function
F of the spinor ψ(t, x) of the particle. The general form for the equations that we
consider in this part is:

Dcψ − ωψ = ∇F (ψ).

These models are phenomenological. A Lorentz-invariant interaction term F (ψ) is
chosen in order to find a model of the free localized electron (or on another spin
1/2 particle), which fits with experimental data (see [137]).

At the end of the first section, we present two nonlocal models: the Maxwell-
Dirac and the Klein-Gordon-Dirac equations in which the electron interacts with its
own electromagnetic field. The Maxwell-Dirac equations take the following form:






(Dc + v −α · A)ψ = ωψ,
−4π∆v = |ψ|2,
−4π∆Ak = (ψ, αkψ) , k = 1, 2, 3.

From a mathematical viewpoint, the equations considered in the first section are
nonlinear eigenvalue problems, in which the eigenvalue is fixed in a spectral gap,
but the L2 norm of the solution is not known. They are the Euler-Lagrange equa-
tions of a strongly indefinite functional. Moreover, this functional does not satisfy
the Palais-Smale condition and the classical Benci-Rabinowitz linking theorem [17]
cannot be applied. The solutions are obtained by a “noncompact” linking argument
inspired by the works of Hofer-Wysocki [92] and Séré [149] on homoclinic orbits of
Hamiltonian systems. An additional difficulty is that the nonlinearity can vanish
even for very large values of ψ, and this makes the a priori bounds on Palais-Smale
sequences very delicate.

The second section is devoted to the study of min-max principles allowing to
characterize the eigenvalues of Dirac operators with an external potential V in the
gap of their essential spectrum. Such operators are commonly used to describe the
dynamics of an electron which is submitted to the action of an external electrostatic
field with associated potential V (for instance an electron in the field created by
a nucleus). It can also be used to describe many non-interacting electrons. For
potentials V satisfying appropriate assumptions, the spectrum of the perturbed
Dirac operator Dc + V takes the form

σ(Dc + V ) = (−∞,−mc2] ∪ {εi}i∈N ∪ [mc2,∞)

where the εi’s are eigenvalues of finite multiplicity in (−mc2,mc2), which can only
accumulate at the thresholds −mc2 or mc2 (see [18, 19]). The min-max formulas
presented in this section furnish a useful variational characterization of the εi’s and
of the associated eigenfunctions:

(Dc + V )ϕi = εiϕi.

The min-max formulas are general and can be used in other settings where eigen-
values in a gap of the essential spectrum have to be characterized or computed.
Many consequences of the min-max principles are derived in this section, including
an algorithm for the computation of the eigenvalues.
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In Section 3, we present results concerning the Dirac-Fock model [155], allowing
to describe N interacting electrons in an external electrostatic field. This is a
nonlinear model which is used in Quantum Chemistry to compute the state of
such electrons in heavy atoms. The energy functional is strongly indefinite and
therefore it is really not obvious to find an adequate definition of the ground state,
and to prove the existence of critical points in general. Explaining how this can
be achieved is the main goal of the section. The model consists of a system of N
coupled nonlinear equations, posed on L2(R3,C4)N :

D
c,Φ
ϕi = εiϕi, 0 < εi < mc2,

where
D

c,Φ
= Dc + V + ΓΦ,

ΓΦ being an operator depending nonlinearly on Φ := (ϕ1, ..., ϕN ) and which models
the interactions between the electrons. The functions ϕi’s, which are assumed to
satisfy the constraints

∫
R3(ϕi, ϕj) = δij , represent the states of the N electrons.

Being a system of nonlinear eigenvalue problems with eigenvalues in a spectral
gap, the Dirac-Fock equations carry some similarity with the equations studied in
Section 1. But there is a big difference: the L2 norm of the solutions is now fixed
a priori, and the eigenvalues εi are unknown Lagrange multipliers associated with
these constraints. This makes the problem harder, the main difficulty being to keep
the multipliers εi in the interval (0,mc2). The positivity of εi is obtained thanks
to a new penalization method. See [26] for a generalization of this method, with
applications to nonlinear periodic Schrödinger models for crystals. The inequality
εi < mc2 follows from Morse-type estimates, as in the existence proof of Lions for
the nonrelativistic Hartree-Fock model [118]. To obtain these Morse-type estimates,
the easiest way is to use a general theorem of Fang-Ghoussoub [68]. Note that, since
the functional is strongly indefinite, one has to work in fact with a relative Morse
index.

Finally, in the last section we present a more involved physical model in which
the behavior of the electrons is coupled to that of the Dirac sea, in the presence
of an external electrostatic field V . In this model, Dirac’s interpretation of the
negative energies is really taken into account: the vacuum is considered as being an
unknown physical object which can react to an external stimulation. The important
feature of the model will be that the energy functional is bounded from below, as
first proposed by Chaix and Iracane [36], showing the importance of the vacuum
polarization effects. The main drawback will be that one necessarily has to deal
with infinitely many interacting particles (the real ones and the virtual ones of the
Dirac sea), which creates lots of mathematical difficulties. In particular, the main
unknown of the model is, this time, an orthogonal projector P of infinite rank. The
optimal projector P representing the ground state of the system is solution of a
nonlinear equation of the form

(7) P = χ(−∞,µ](Dc + V + Γ′
P )

where Γ′
P is an operator depending on the projector P and describing the inter-

actions between all particles (the real and the virtual ones). We have used the
standard notation χI(A) for the spectral projector of A associated with the inter-
val I. Solutions of (7) are obtained by a minimization principle, on a set of compact
operators. One has to be very careful in the choice of this set, and in the definition
of the energy. A serious difficulty is the presence of ultraviolet divergencies.
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Notations and basic properties of the Dirac operator.
Before going further, let us fix some notations. All throughout this review, the
conjugate of z ∈ C will be denoted by z∗. For X = (z1, ..., z4)

T a column vector
in C 4 , we denote by X∗ the row co-vector (z∗1 , ..., z

∗
4). Similarly, if A = (aij) is a

4× 4 complex matrix, we denote by A∗ its adjoint, (A∗)ij = a∗ji.

We denote by (X,X ′) the Hermitian product of two vectors X, X ′ in C 4, and

by |X |, the canonical hermitian norm of X in C4, i. e. |X |2 =
∑4
i=1X

∗
iXi . The

usual Hermitian product in L2(R3,C 4) is denoted as

(8) (ψ, ψ′)
L2 =

∫

R3

(
ψ(x), ψ′(x)

)
d3x.

For the sake of simplicity, we shall use a system of units in which

m = ~ = 1.

Actually, by scaling one can also fix the value of another physical constant, like
for instance the speed of light c or the charge of an electron e. We shall use both
possibilities in this review (they are of course equivalent).

Let us now list some basic and important properties of the free Dirac operator.
We refer to the book of Thaller [158] for details.

Proposition 1 (Basic properties of the free Dirac operator). The free Dirac opera-
tor Dc is a self-adjoint operator on L2(R3,C 4), with domain H1(R3,C 4) and form-
domain H1/2(R3,C 4). Its spectrum is purely continuous, σ(Dc) = (−∞,−c2] ∪
[c2,+∞). Moreover, there are two orthogonal projectors (both having infinite rank)
from L2(R3,C 4) into itself, P 0

+,c and P 0
−,c = 1

L2 − P 0
+,c, such that

(9)

{
DcP

0
+,c = P 0

+,cDc =
√
c4 − c2 ∆ P 0

+,c = P 0
+,c

√
c4 − c2 ∆

DcP
0
−,c = P 0

−,cDc = −
√
c4 − c2 ∆ P 0

−,c = −P 0
−,c

√
c4 − c2 ∆.

The projectors P 0
+,c and P 0

−,c are multiplication operators in the Fourier domain,
given by

(10) P 0
±,c(p) =

±Dc(p) +
√
c2 |p|2 + c4

2
√
c2 |p|2 + c4

.
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Note that Proposition 1 enables us to split the space

H := L2(R3,C4)

as the direct sum of two infinite dimensional Hilbert spaces H0
±,c = P 0

±,cH. The

restriction of Dc to H0
±,c is a self-adjoint operator in this subspace, with domain

H0
±,c ∩H1(R3,C4). Furthermore, it will be convenient to use the following norm in

H, equivalent to the usual norm of H1/2(R3,C4),

(11) ‖ψ‖
H

:=
(
ψ, (Dc P

0
+,c −Dc P

0
−,c)ψ

)1/2

H×H′
=
(
ψ, |Dc|ψ

)1/2

The subspaces H0
+,c∩H1/2(R3,C4) and H0

−,c∩H1/2(R3,C4) are orthogonal for this

norm as well as for the L2 norm.
When c = 1, one recovers the usual H1/2 norm. In this case, we shall use the

convenient notation P 0
±,1 = P 0

± and H0
±,1 = H0

±.

1. Nonlinear Dirac equations for a free particle

In this section, we present some nonlinear Dirac equations for a free particle. We
therefore do not consider any external potential (but possibly a self-generated one).
Stationary solutions of such equations represent the state of a localized particle
which can propagate without changing its shape. The first to propose and study
models for the description of this phenomenon were Ivanenko [96], Weyl [168] and
Heisenberg [89]. We refer to Rañada [137] for a very interesting review on the
historical background of this kind of models.

In this section, we shall always assume that c = 1. A general form for the
equations that we want to present is

(12) i∂tΨ−D1Ψ +∇F (Ψ) = 0 ,

where Ψ(t, ·) ∈ L2(R3,C4). Throughout this chapter we assume that F ∈ C2(C 4,R)
satisfies

(13) F (eiθΨ) = F (Ψ) for all θ ∈ R .

The charge of the particle −e does not appear since it is incorporated into the
nonlinear functional F .

The relativistic invariance requirement imposes severe restrictions on the possible
nonlinearities F . In two very interesting papers [69, 70], Finkelstein et al proposed
various models for extended particles corresponding to various fourth order self-
couplings F . In those papers, they gave some numerical description of the structure
of the set of solutions, for different values of the parameters. Among the considered
functions F , in [69, 70] we find the family of general self-couplings

(14) Fb(Ψ) := λ
{
(Ψ̄Ψ)2 + b(Ψ̄γ5Ψ)2

}

where γ5 = −iα1α2α3, b is a real constant, and where we have used the notation

Ψ̄Ψ := (βΨ,Ψ).

In the sequel, without any loss of generality, we will assume that λ = 1/2.

Stationary solutions of (12) are functions of the type

(15) Ψ(t, x) = e−iωtψ(x),
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such that ψ is a non-zero localized solution of the following stationary nonlinear
Dirac equation

(16) D1ψ − ωψ −∇F (ψ) = 0 in R
3.

It is interesting to note that the latter equation has a variational structure: it is
indeed the Euler-Lagrange equation associated with the functional

(17) Iω(ψ) =

∫

R3

(
1

2
(D1ψ(x), ψ(x)) − ω

2
|ψ(x)|2 − F (ψ(x))

)
dx .

Hence, the solutions of (16) are formally the critical points of the “energy” func-
tional Iω. In this context, we say that ψ is a localized solution if Iω(ψ) is well-
defined, that is, if ψ ∈ H1/2(R3,C4) and F (ψ) ∈ L1(R3,R) . Due to the structure
of the Dirac operator D1, the functional Iω is not bounded below and solutions of
(16) cannot be obtained by a minimization method.

1.1. Soler models: existence by O.D.E. techniques. The case b = 0 in the
definition (14) of Fb was proposed by Soler in [153] to describe elementary fermions.
In this case, (17) reduces to

(18) D1ψ − ωψ − (ψ̄ψ)βψ = 0 in R
3

which is usually called the Soler model. Its more general version

(19) D1ψ − ωψ − g(ψ̄ψ)βψ = 0 in R
3

is often called the generalized Soler equation, and it is the Euler-Lagrange equation
associated with Iω for F (ψ) = 1

2G(ψ̄ψ) , G′ = g, G(0) = 0.
The main advantage of (19) is the existence of a special ansatz compatible with

the equation:

(20) ψ(x) =




v(r)

(
1
0

)

iu(r)

(
cos θ

sin θ eiξ

)


 .

In this ansatz, equation (19) reduces to the O.D.E. system

(21)

{
(u′ + 2u

r ) = v
(
g(v2 − u2)− (1− ω)

)

v′ = u
(
g(v2 − u2)− (1 + ω)

)

The O.D.E. system (21) has been extensively studied. In [163] Vázquez proved
some qualitative properties of the solutions in the case 0 < ω < 1, and showed the
non-existence of localized solutions when |ω| > 1. Cazenave and Vázquez obtained
the first rigorous existence result for this problem in [33]. More precisely, in [33]
they proved the existence of a solution (u, v) to (21) for nonlinearities g of class
C1 satisfying:

(22) g : [0,+∞)→ [0,+∞) , g(0) = 0 , g′ > 0 , lim
s→+∞

g(s) = +∞ ,

whenever 0 < ω < 1. Moreover, this solution (u, v) is such that u and v are
positive on R+, u(0) = 0, v(0) > 0. Additionally, u and v (as well as their first
derivatives) decay exponentially at infinity.

Later on, Merle [123] improved the above result by extending it to a more gen-
eral class of nonlinearities g. Then, Balabane et al proved the following general
multiplicity result:
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Theorem 2. ([11]) Assume that g : R → R is a function of class C1 such that
g(0) = 0 , g is increasing in (0,+∞), g(s) > 1+ω for s large, g′(g−1(1−ω)) > 0
and g(s) ≤ 0 for s ≤ 0. Then, for any ω ∈ (0, 1) , there exists an increasing
sequence of positive numbers {xn}n≥1 such that for every n ≥ 1, there is a solution
(un, vn) of (21) satisfying

• un(0) = 0 , vn(0) = xn ,
• un and vn have n− 1 zeros in R+,
• un and vn decay exponentially at infinity, as well as their first derivatives.

Moreover, if for all s, g(s) = s, then the sequence {xn} is bounded.

In the case of singular nonlinearities, compactly supported solutions may exist.
More concretely, the following result was proved in [12]:

Theorem 3. ([12]) Assume that g : (0,+∞) → (−∞, 0) is a function of class
C1 which is nondecreasing and integrable near the origin. Suppose also that there
exists a number a such that g(a2) = 1 − ω , while g′(a2) > 0. Then, for every
0 < ω < 1 there exists a positive solution (u, v) of (21). Moreover, the support of
(u, v) is bounded if and only if

∫ 1

0

ds

G(s)
< +∞ , where G(s) := −

∫ s

0

g(x) dx .

1.2. Soler models: existence by variational techniques. All the above results
were obtained by a dynamical systems approach. But it is also possible to exploit
the variational structure of (19) (and also of the O.D.E. system (21)) to prove
existence of solutions.

In the case of (21), the use of variational methods does not radically improve
the results that were obtained by O.D.E. methods (see above). The assumptions
needed to use variational techniques are slightly different. In [62], Esteban and Séré
obtained the following result:

Theorem 4. ([62]) Let F : C 4 → R satisfy

F (ψ) =
1

2
G(ψψ), G ∈ C2(R,R), G(0) = 0 ,

with G ∈ C2(R,R). Denoting by g the first derivative of G, we make the following
assumptions:

(23) ∀x ∈ R, x g(x) ≥ θ G(x) for some θ > 1,

(24) G(0) = g(0) = 0,

(25) (∀x ∈ R, G(x) ≥ 0 ) and G(A0) > 0 for some A0 > 0,

(26) 0 < ω < 1 .

Then there exist infinitely many solutions of Equation (16) in⋂
2≤q<+∞W

1,q(R3,C 4). Each of them solves a min-max variational problem on

the functional Iω. They are of the form (20) and thus correspond to classical so-
lutions of (21) on R+. Finally, they all decrease exponentially at infinity, together
with their first derivatives.
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The interest of using variational techniques appears much more clearly when one
studies equations for which no simplifying ansatz is known, for instance in the case
where F = Fb with b 6= 0. In that case, Equation (16) cannot be reduced to a
system of O.D.Es similar to (21). A general result proved by Esteban and Séré in
this context is the following:

Theorem 5. ([62]) Let be F (ψ) = λ
(
|ψψ̄|α1 + b|ψ̄γ5ψ|α2

)
, with 1 < α1, α2 <

3
2 ;

λ, b > 0. Then, for every ω ∈ (0, 1), there exists a non-zero solution of (16) in⋂
1≤q<+∞W 1,q(R3,C 4).

In fact, Theorem 5 is a consequence of the more general following result in [62]

Theorem 6. ([62]) Assume that F : C 2 → R satisfies :

(27) ∀ψ ∈ C
4, 0 ≤ F (ψ) ≤ a1 (|ψ|α1 + |ψ|α2) ,

with a1 > 0 and 2 < α1 ≤ α2 < 3. Assume moreover that

(28)

{
F ∈ C2(C 4,R), F ′(0) = F ′′(0) = 0 ,
|F ′′(ψ)| ≤ a2|ψ|α2−2, a2 > 0, for |ψ| large;

(29) ∀ ψ ∈ C
4, ∇F (ψ) · ψ ≥ a3F (ψ), a3 > 2 ;

(30) ∃ a4 > 3, ∀ δ > 0, ∃ Cδ > 0, ∀ ψ ∈ C
4, |∇F (ψ)| ≤

(
δ + CδF (ψ)

1
a4

)
|ψ|;

(31) ∀ ψ ∈ C
4, F (ψ) ≥ a5|ψψ̄|ν − a6, ν > 1, a5, a6 > 0.

Then, for every ω ∈ (0, 1), there exists a non-zero solution of (16) in⋂
2≤q<+∞W 1,q(R3,C 4).

1.3. Existence of solutions by perturbation theory. Another way of finding
solutions to nonlinear Dirac equations is perturbation theory. In this approach,
one uses previously known information about the nonlinear Schrödinger equation
[167], which is approached in the non-relativistic limit. Ounaies proved in [129] that
solutions of some nonlinear Dirac equations, when properly rescaled, are close to
solutions of the nonlinear Schrödinger equation, with the same nonlinearity, when
the phase ω approaches 1. More precisely, assume for instance that

F (ψ) :=
1

2

(
G(ψ̄ψ) +H(ψ̄γ5ψ)

)
,

where G,H are two functions of class C2 such that G(0) = H(0) = 0, and such
that g := G′ and h := H ′ are homogeneous of degree θ ∈ (0, 1]. Then, if we write
any 4-spinor ψ as ψ =

(
ϕ
χ

)
, the main theorem in [129] states the following

Theorem 7. ([129]) Under the above assumptions, let 1−ω = a2θ = λ2 = b
2θ

θ+1 =
ε. If we rescale the functions ϕ, χ as follows

ϕ(x) := a ϕ̄(λx), χ(x) := b χ̄(λx) ,

then, ψ =
(
ϕ
χ

)
is a solution to (16) if and only if ϕ̄, χ̄ are solutions to the system
{

(−i σ · ∇)χ̄+ ϕ̄− g(|ϕ̄|2)ϕ̄+K1(ε, ϕ̄, χ̄) = 0
(−i σ · ∇)ϕ̄ − 2χ̄+K2(ε, ϕ̄, χ̄) = 0.
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Here K1 and K2 are small functions for small ε, ϕ̄ and χ̄ taking values in a bounded
set of C2. Moreover, for ε small enough, there exist solutions to the above equation.
They are close to a solution of the nonlinear Schrödinger equation

(32) −1

2
∆ϕ̄+ ϕ̄− g(|ϕ̄|2)ϕ̄ = 0 , χ̄ = − i

2
(σ · ∇)ϕ̄ .

Remark 8. Note that the function h = H ′ does not appear in the above limiting
equation.

The proof of this theorem makes use of the implicit function theorem in an
appropriate manner. Important ingredients are the uniqueness (up to translation)
of the solution to the elliptic equation (32) for ϕ̄ and its nondegeneracy [105, 40,
167].

1.4. Nonlinear Dirac equations in the Schwarzschild metric. All the above
models correspond to the Dirac equation written in the Minkowski metric, this
is, in flat space. But the space-time geometry plays an important role when one
wants to take relativistic effects into account. For instance, when considering the
Schwarzschild metric outside a massive star, the nonlinear Dirac equation appears
to be different.

In [9] A. Bachelot-Motet has studied numerically this problem in the case of the
symmetric solutions as above. One has to study a system of O.D.Es similar to (21)
but with r-dependent coefficients instead of constant ones. More precisely, in the
ansatz (20) and for the case F (s) = λ|s|2 , system (21) becomes

(33)
fu′ + u

r (f + f1/2) = v
[
λ(v2 − u2)− (f1/2 − ω)

]

fv′ + v
r (f − f1/2) = u

[
λ(v2 − u2)− (f1/2 + ω)

]
,

where f(r) = 1− 1
r .

Notice that this problem is not to be considered in the whole space: since the
physical situation corresponds to the outside of a massive star, the natural domain
is the complement of a ball, or in radial coordinates, the interval r > r0 , for some
r0 > 0 . In this case, the usual “MIT-bag” boundary condition reads

u(r0) = −v(r0) .
The very interesting numerical results obtained by Bachelot-Motet suggested

conditions for some existence and multiplicity results for (33) that were later rig-
orously proved by Paturel in [130]. Note that in [130] the solutions are found as
critical points of a reduced energy functional by a mountain-pass argument, while
as we see below, we use a linking method to produce our solutions.

1.5. Solutions of the Maxwell-Dirac equations. The nonlinear terms appear-
ing in all the above models are local, that is, are functions of the spinor field Ψ.
But in some cases, one has to introduce nonlocal terms, like for instance when con-
sidering the interaction of the Dirac field with a self-generated field. In this case,
the equations become integro-differential.

Our first example is the Maxwell-Dirac system of classical field equations, de-
scribing the interaction of a particle with its self-generated electromagnetic field.
In order to write the equations in relativistically covariant form, we introduce the
usual four-dimensional notations: let be γ0 := β and γk := βαk. For any wave-
function Ψ(x0, x) : R × R

3 7→ C
4 (note that x0 plays the role of the time t), we
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denote Ψ̄ := βΨ. In the Lorentz gauge the Maxwell-Dirac equations can be written
as follows

(34)

{
(iγµ∂µ−γµAµ − 1)Ψ = 0 in R× R3

∂µA
µ = 0, 4π ∂µ∂

µAν = (Ψ̄, γνΨ) in R× R
3.

Notice that we have used Einstein’s convention for the summation over µ. We also
introduce the electromagnetic current Jν := (Ψ̄, γνΨ).

Finite energy stationary solutions of classical nonlinear wave equations have been
sometimes used to describe extended particles. Of course the electromagnetic field
should in principle be quantized like in Quantum Electrodynamics. In the Maxwell-
Dirac model, the field is not quantized but it is believed that interesting qualitative
results can be obtained by using classical fields (see, e.g. [79, Chapter 7]).

Another example of a self-interaction is the Klein-Gordon-Dirac system which
arises in the so-called Yukawa model (see, e.g. [20]). It can be written as

(35)

{
(iγµ∂µ − χ− 1)Ψ = 0 in R× R3

∂µ∂µχ+M2χ = 1
4π (Ψ̄,Ψ) in R× R3 .

Other related models, that we will not discuss, include the Einstein-Dirac-Maxwell
equations, which have been investigated by F. Finster, J. Smoller and S.-T. Yau
[71], [72]. The above systems (34) and (35) have been extensively studied and
many results are available concerning the Cauchy problem (we refer to [61] and
[79], chapter 7, for detailed references).

A stationary solution of the Maxwell-Dirac system (34) is a particular solution
(Ψ, A) : R× R4 7→ C4 × R4 of the form

(36)

{
Ψ(x0, x) = e−iωx0ψ(x) with ψ : R3 → C 4,

Aµ(x0, x) = Jµ ∗ 1
|x| =

∫
R3

dy
|x−y| J

µ(y).

The existence of such stationary solutions of (34) has been an open problem for a
long time (see, e.g. [79, p. 235]). Indeed, the interaction between the spinor and
its own electromagnetic field makes equations (34) nonlinear.

Concerning stationary solutions of (34), let us mention the pioneering works of
Finkelstein et al [69] and Wakano [165]. The latter considered this system in the
approximation A0 6≡ 0, A1 = A2 = A3 ≡ 0, the so-called Dirac-Poisson system.
This problem can be reduced to a system of three coupled differential equations
by using the spherical spinors (20). Wakano obtained numerical evidence for the
existence of stationary solutions of the Dirac-Poisson equation. Further work in this
direction (see [137]) yielded the same kind of numerical results for some modified
Maxwell-Dirac equations which include some nonlinear self-coupling.

In [119] Lisi found numerical solutions of the Dirac-Poisson and of the Maxwell-
Dirac systems. The computation of the magnetic part of the field A for these
solutions showed that Wakano’s approximation was reasonable, since the field com-
ponents (A1, A2, A3) stay small compared with A0.

In the case −1 < ω < 0, Esteban, Georgiev and Séré [61] used variational
techniques to prove the existence of stationary solutions of (34). Any solution of
(34) taking the form (36) corresponds (formally) to a critical point ψ of the following
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functional:

Iω(ψ) =

∫

R3

1

2
(iαk∂kψ, ψ)− 1

2
(ψ̄, ψ)− ω

2
|ψ|2 − 1

4

∫∫

R3×R3

Jµ(x)Jµ(y)

|x−y| dx dy.

This remark was used in [61] to find a stationary solution of (34) in the appropriate
space of functions.

Theorem 9. ([61]) For any ω strictly between −1 and 0, there exists a non-zero
critical point ψω of Iω. This function ψω is smooth in x and exponentially decreasing
at infinity. Finally, the fields Ψ(x0, x) = e−iωx0 ψω, Aµ(x0, x) = Jµω ∗ 1

|x| are

solutions of the Maxwell-Dirac system (34).

Later, using cylindrical coordinates, S. Abenda [1] extended the above result to
the case −1 < ω < 1. Indeed, in the class of cylindrically symmetric functions,
the energy functional has better properties which allow to use the same variational
procedure as in the work of Esteban-Séré, but in the more general case ω ∈ (−1, 1).
Note that Abenda’s result is optimal, as it is shown in [136].

Many questions are still open about the existence of stationary solutions for (34).
It is easy to see that they have all a negative “mass”. Wakano already observed this
phenomenon for the soliton-like solutions of the Dirac-Poisson system. However, it
was shown in [165] that a positive mass can be reached by taking into account the
vacuum polarization effect.

For the case of the Klein-Gordon-Dirac equations the situation is slightly simpler
because they are compatible with the ansatz (20) introduced above. So, in this case
the authors of [61] did not only obtain existence of solutions, but also multiplicity:

Theorem 10. ([61]) For any ω strictly between −1 and 0, there exists infinitely
many solutions to the Klein-Gordon-Dirac system (35). These solutions are all
smooth and exponentially decreasing at infinity in x.

We finish this section by explaining the general ideas of the proof of Theorem 9.
The proofs of Theorems 4, 5 and 6 basically follow the same lines and we will skip
them.

Sketch of the proof of Theorem 9. As already mentioned in the introduction,
the presence of the negative spectrum for the Dirac operator forbids the use of a
minimization argument to construct critical points. Instead, the solution will be
obtained by means of a min-max variational method based on complicated topolog-
ical arguments. This kind of method used to treat problems with infinite negative
and positive spectrum have been already used under the name of linking. The link-
ing method was introduced by V. Benci and P. Rabinowitz in a compact context
[17]. The reasons making the use of variational arguments nonstandard in our case
are : (1) the equations are translation invariant, which creates a lack of compact-
ness; (2) the interaction term JµAµ is not positive definite. Note that as we have
alredy pointed out, in some cases one can perform a reduction procedure and ob-
tain a reduced functional for which critical points can be found by a mountain-pass
argument [130].
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First step: Estimates. Defining Aµ = Jµ ∗ 1
|x| , then one deduces JµAµ =

J0A0 −∑3
k=1 J

kAk and

L(ψ) :=

∫∫

R3×R3

Jµ(x)Jµ(y)

|x−y| dx dy =

∫

R3

JµAµ dx .

Let us also introduce the functional

(2.2) Q(ψ) =

∫∫

R3×R3

(ψ, ψ)(x) (ψ, ψ)(y)

|x−y| dx dy .

It is easy to prove thatQ is non-negative, continuous and convex on H = H1/2(R3,C4),
and vanishes only when (ψ, ψ)(x) = 0 a.e. in R3 .

Let us state a lemma giving some properties of the quadratic forms in Iω:

Lemma 11. For any ψ ∈ H, the following inequalities hold:

(i) JµAµ(x) ≥ 0 , a.e. in R3,

(ii)
∫

R3 J
µAµ ≥ Q(ψ),

(iii) A0 ≥
(∑3

k=1 |Ak|2
)1/2

,

(iv) |γµAµψ| ≤ C
√
A0
√
AµJµ a.e. in R

3.

Remark 12. Note that when the function ψ is cylindrically symmetric, the func-
tional L defined above is not only non-negative, but actually controls from below

‖ψ‖4
H

(see Lemma 1 in [1]). This is the reason why Abenda has been able to treat
the case ω ∈ (−1, 1), extending Theorem 9.

Another important information is given by the

Lemma 13. Let be µ > 0. There is a non-zero function e+ : (0;∞)→ H
+
1 = Λ+

1 H

such that, if Λ+ψ = e+(µ), then

1

2

∫

R3

(ψ,D1ψ)− 1

4
Q(ψ) ≤ µ

2
‖ψ‖2L2 .

Second step: Modified functional and variational argument. In order to
obtain some coercivity, a modified functional Iω,ε was considered in [61]. It reads

Iω,ε(ψ) = Iω(ψ)− 2ε

5
‖ψ‖5/2

L5/2.

where ε > 0. The critical points of Iω,ε(ψ) satisfy

(37)

{
iγk∂kψ − ψ − ωγ0ψ − γµAµψ − εγ0|ψ| 12ψ = 0
−4π∆A0 = J0 = |ψ|2, −4π∆Ak = −Jk .

Let θ be a smooth function satisfying θ(s) = 0 for s ≤ −1 and θ(s) = 1 for
s ≥ 0 . The gradient being defined by −∇Iω,ε = −|D1|−1 I ′ω,ε, let us consider the

flow for positive times t, ηtω,ε, of a modified gradient :

(38)

{
η0 = 1H

∂tη
t
ω,ε = − (θ(Iω,ε)∇Iω,ε) ◦ ηtω,ε .

It can be seen that for ε > 0 the functional Iω,ε enjoys the properties needed
for the Benci-Rabinowitz linking argument [17], except that its gradient is not of
the form L + K with L linear and K compact. Due to this lack of compactness,
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one cannot use Leray-Schauder’s degree. One can work instead with a generalized
version of the Leray-Schauder Z2-degree, due to Smale [152] to show the existence
of a positive critical level of Iω,ε . This idea was introduced by Hofer-Wysocki
[92] in the study of homoclinic orbits of nonconvex Hamiltonian systems, where a
similar lack of compactness occurs. Hofer and Wysocki worked with the unregu-
larized L2-gradient. This gradient does not have a well-defined flow, but for the
linking argument it is sufficient to consider certain smooth gradient lines, which
are pseudo-holomorphic curves satisfying boundary conditions. Later Séré [149],
studying homoclinic orbits on singular energy hypersurfaces, worked with the H1/2-
regularized gradient, which has a well-defined flow leading to an easier and more
flexible linking argument. This approach is adapted to nonlinear Dirac in [62] and
to Dirac-Maxwell and Dirac-Klein-Gordon in [61]. Consider the sets

N− =
{
ψ = ψ− + λe+(µ) , ψ− ∈ H

−
1 , ‖ψ−‖H ≤ ‖e+(µ)‖H, λ ∈ [0, 1]

}

and
Σ+ = {ψ ∈ H

+
1 / ‖ψ‖H = ρ} , ρ > 0 .

Then one can prove the

Proposition 14. For any −1 < ω < −µ, ε > 0 and Σ+, N− constructed as above,
there exists a positive constant cω, such that the set ηtω,ε(N−) ∩ Σ+ is non-empty,
for all t ≥ 0. Moreover, the number

cω,ε = inf
t≥0

Iω,ε ◦ ηtω,ε(N−)

is strictly positive, it is a critical level for Iω,ε and cω,ε → cω > 0 as ε→ 0.
Additionally, for any ω, ε fixed, there is a sequence {ϕnω,ε}n≥0 such that as n→

+∞,

(39)

{
Iω,ε(ϕ

n
ω,ε) → cω,ε ,(

1 + ‖ϕnω,ε‖
)
∇Iω,ε(ϕnω,ε) → 0 .

Remark 15. In [61] and [62], an easy regularization step is missing. Indeed,
Smale’s degree theory requires C2-regularity for the flow, which corresponds to C3-
regularity for the functional. In the case of the local nonlinear Dirac equation,
such a regularity can be easily achieved by a small perturbation of the function
F (ψ) + ε|ψ|α2−1ψ. Since all the estimates will be independent of the regularization
parameter, the solutions of the non-regularized problem will be obtained by a limiting
argument.

Note that the linking argument of [149], [62] and [61] has inspired later work (see
[161, 156]), where an abstract linking theorem in a noncompact setting is given,
valid first for C2 and then for C1-functionals.

Third step: Properties of the critical sequences. The concentration-compactness
theory of P.-L. Lions [117] allows us to analyze the behavior of critical sequences of
Iω,ε as follows:

Proposition 16. Let ω ∈ (−1, 0) and ε ≥ 0 be fixed. Let (ψn) ⊂ H be a sequence
in H such that

(40) 0 < inf
n
‖ψn‖H ≤ sup

n
‖ψn‖H < +∞
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and I ′ω,ε(ψn)→ 0 in H′ as n goes to +∞. Then we can find a finite integer p ≥ 1 ,

p non-zero solutions ϕ1, . . . , ϕp of (37) in H and p sequences (xin) ⊂ R3, i = 1, . . . , p
such that for i 6= j, |xin − xjn| →n→+∞

+∞ , and, up to extraction of a subsequence,

∥∥∥ψn −
p∑

i=1

ϕi(· − xin)
∥∥∥

H

→
n→+∞

0 .

Obtaining estimates in H1/2(R3) for the sequence {ϕnω,ε}n≥0 of Proposition 14
is quite easy because of the coercivity introduced by the perturbation term in
ε. Moreover, cω,ε being strictly positive, the sequence {ϕnω,ε}n≥0 is also bounded
from below away from 0. So, Proposition 16 applies to prove the existence of a
solution to (37) for every ε > 0. Next, we want to pass to the limit when ε goes
to 0. Note that we are doing so along a sequence of functions which are exact
solutions of the approximate problem (37). This part of the proof is done by first
proving the equivalent of the Pohozaev identity for equation (37), ε ≥ 0, and then
by introducing some special topologies in the spaces Lq which are related to the
decomposition of R3 as the union of unit cubes. Analyzing the solutions to (37)
in those topologies, we find the following

Theorem 17. There is a constant κ > 0 such that if −1 < ω < 0 and 0 < ε ≤ 1,
there is a function ψε ∈ H such that I ′ω,ε(ψε) = 0 and

κ ≤ Iω,ε(ψε) ≤ cω,ε .

Last step: Passing to the limit ε → 0. Eventually, we use Proposition 16
to pass to the limit ε → 0. When obtaining the estimates (40) for the critical
sequences of Iω,ε , we observe that the lower estimate for the norm ||·||H is actually
independent of ε. Assume, by contradiction that the upper estimates do not hold
for the sequence (ψε). Then, we consider the normalized functions

ψ̃ε = ‖ψε‖−1
H
ψε

and apply Proposition 16 to the sequence (ψ̃ε). Under the assumption that ||ψε||H →
+∞, we use all the previous estimates to infer that for j = 1, . . . , p,

p∑

j=1

∫

R3

ϕ̄jϕj + ω|ϕ|2 dx = 0 , Q(ϕj) = 0.

But the latter implies that for every j, ϕ̄jϕj = 0 a.e. and so, from the r.h.s.
identity we obtain that ϕj = 0 a.e. for all j. This contradicts Theorem 17. ⊔⊓

1.6. Nonlinear Dirac evolution problems. The results which we have men-
tioned so far are concerned with the existence of stationary solutions of various
evolution nonlinear Dirac equations. These particular solutions are global and do
not change their shape with time. The study of the nonlinear Dirac evolution
problem

(41)

{
i∂tΨ−D1Ψ +G(Ψ) = 0
Ψ(0) = Ψ0

is also interesting in itself and, even if this is not the aim of the present paper, let
us mention some references.
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For the case of local nonlinearities as the ones considered in this section, sev-
eral works have proved well-posedness for small initial data in well chosen Sobolev
spaces. For nonlinearities containing only powers of Ψ of order p ≥ 4, Reed proved
in [138] the global well-posedness for small initial data in Hs , s > 3. A decay
estimate at infinity was also obtained in this paper. Later, Dias and Figueira [43]
improved this result to include powers of order p = 3 and for s > 2. Najman [126]
took the necessary regularity of the initial data down to H2. In [60] Escobedo
and Vega proved an “optimal result” which states that for the physically relevant
nonlinearities of order p ≥ 3 of the type

(42) G(Ψ) := λ
{
(Ψ̄Ψ)

p−1
2 βΨ + b(Ψ, γ5Ψ)

p−1
2 γ5Ψ

}
,

there is local well-posedness of the evolution equation in Hs, for s > 3
2 − 1

p−1 , when

p is an odd integer, while s has to be in the interval (3
2 − 1

p−1 ,
p−1
2 ) otherwise.

Moreover, if p > 3, then the problem is globally well-posed for small initial data
in Hs(p), with s(p) = 3

2 − 1
p−1 . For a more recent result, see for instance a paper

of Machihara, Nakanishi and Ozawa [120], in which the existence of small global
solutions is proved in Hs for s > 1, and the nonrelativistic limit is also considered.

An interesting question to ask is about the (linear or nonlinear) stability proper-
ties of the stationary solutions with respect to the flow generated by the evolution
equation. At present this seems to be a widely open problem (see [137] and [154]
for a discussion). Recently, Boussaid [21] has obtained the first stability results, for
small stationary solutions of nonlinear Dirac equations with exterior potential.

Concerning the Cauchy problem for the Maxwell-Dirac equations, the first result
about the local existence and uniqueness of solutions was obtained by L. Gross in
[82]. Later developments were made by Chadam [34] and Chadam and Glassey
[35] in 1 + 1 and 2 + 1 space-time dimensions and in 3 + 1 dimensions when the
magnetic field is 0. Choquet-Bruhat studied in [38] the case of spinor fields of
zero mass and Maxwell-Dirac equations in the Minskowski space were studied
by Flato, Simon and Taflin in [73]. In [76], Georgiev obtained a class of initial
values for which the Maxwell-Dirac equations have a global solution. This was
performed by using a technique introduced by Klainerman (see [99, 100, 101]) to
obtain L∞ a priori estimates via the Lorentz invariance of the equations and a
generalized version of the energy inequalities. The same method was used by Bach-
elot [8] to obtain a similar result for the Klein-Gordon-Dirac equation. Finally,
more recent efforts have been directed to proving existence of solutions for the
time-dependent Klein-Gordon-Dirac and Maxwell-Dirac equations in the energy
space, namely C(−T, T ;H1/2 × H1). The existence and uniqueness of solutions
to the Maxwell-Dirac system in the energy space has been proved by Masmoudi
and Nakanishi in [121, 122], improving Bournaveas’ result in [22], where the space
considered was C(−T, T ;H1/2+ε ×H1+ε).

Note that as mentioned above, the stationary states of the form (36) are particu-
lar solutions of the Maxwell-Dirac equations. Physically they correspond to bound
states of the electron. But note that other kind of solutions could be considered,
like for instance the so-called static ones. For this type of solutions see the review
paper [24] and the long list of references therein.
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2. Linear Dirac equations for an electron in an external field

When looking for stationary states describing the dynamics of an electron moving
in an external field generated by an electrostatic potential V , one is led to study the
eigenvalues and eigenfunctions of the operator Dc+V . If the electron has to enjoy
some stability, the eigenvalues should also be away from the essential spectrum.
In the case of not very strong potentials V , the essential spectrum of Dc + V is
the same as that of Dc , that is, the set (−∞,−c2] ∪ [c2,+∞). So the eigenvalues
which are of interest to us are those lying in the gap of the essential spectrum, i.e.
in the interval (−c2, c2). More precisely, in general a state describing an electron
is always assumed to correspond to a positive eigenvalue. It is therefore important
to be able to determine whether there are positive eigenvalues or not, and what is
the behaviour of the ‘first’ eigenvalue when V varies (whether it crosses 0 or dives
into the lower negative essential spectrum for instance). Remark that one expects
that for a reasonable potential there are no eigenvalues embedded in the essential
spectrum. Very general conditions on V which ensure nonexistence of embedded
eigenvalues have been given by [18, 19] . Note finally that in this section c is kept
variable.

Formally, the eigenvalues of the operator Dc + V are critical values of the
Rayleigh quotient

(43) QV (ψ) :=
((Dc + V )ψ, ψ)

(ψ, ψ)

in the domain of Dc+V . Of course, one cannot use a minimizing argument to find
such critical points since, due to the negative continuous spectrum of the free Dirac
operator, QV is not bounded-below. Many works have been devoted to finding
non-minimization variational problems yielding the eigenvalues of Dc + V in the
interval (−c2, c2). Another important issue is to avoid the appearance of spurious
states (some eigenvalues of the finite dimensional problem may not approach the
eigenvalues of the Dirac operator Dc+V ) as it has been the case in many proposed
algorithms (see for instance [55]). W. Kutzelnigg has written two excellent reviews
[103, 104] on this subject, where many relevant references can be found. The main
techniques which have been developed so far and used in practice can be divided
in three groups:

(1) Use of effective Hamiltonians whose point spectra are close to the spectrum
of the Dirac operator in the limit c→ +∞. For instance, one can cut at a
finite level some infinite asymptotic formal expansion in negative powers of
c. To this category of works belong for instance [58, 59, 109, 110, 111, 104].

(2) Use of a Galerkin approximation technique to approach the eigenvalues,
and this without falling into the negative continuum (−∞,−c2). This is
equivalent to projecting the equation onto a well-chosen finite dimensional
space. This procedure has been well explained for instance in [56, 57, 103].

(3) Replacement of the problematic minimization of QV by another one. For
instance, it was proposed to minimize the Rayleigh quotient for the squared
Hamiltonian (Dc + V )2 (see, e.g. [166, 16]) or later on, to maximize the
Rayleigh quotients for the “inverse Hamiltonian” Dc+V

|Dc+V |2 (see [91]).

Before we go further, let us recall some useful inequalities which are usually used
to control the external field V and show that Dc + V is essentially self-adjoint. We
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recall that H = H1/2(R3,C4) and that H0
± are the positive and negative spectral

subspaces of D1.

Proposition 18 (Hardy-like inequalities). The Coulomb potential W (x) = 1
|x|

satisfies the following Hardy-type inequalities:

(44) W ≤ π

2

√
−∆ ≤ π

2c
|Dc|,

(45) ∀ψ ∈ H0
+ ∪ H0

−,
(
ψ,W (x)ψ

)

L2
≤ 1

2

(
π

2
+

2

π

)
(ψ, |D1|ψ)L2 ,

(46) W 2 ≤ −4∆ ≤ 4|D1|2.
The inequalities of Proposition 18 are classical (see, e.g. [90, 97] for (44)), except

for (45). The proof of the latter is based on a method of Evans, Perry and Siedentop
[67] and is contained in the recent papers [29, 159, 160].

2.1. A variational characterization of the eigenvalues of Dc + V . Formally,
the eigenvalues of Dc + V lying in the gap of the essential spectrum should be
described by some kind of min-max argument. This was mentioned in several
papers dealing with numerical computations of Dirac eigenvalues before it was
formally addressed in different contexts in a series of papers [63, 81, 80, 50, 51].

For the sake of clarity, we are going to present only a particular version of those
min-max arguments allowing to characterize eigenvalues of the operator Dc + V
for appropriate potentials V . This method derives from a proposition made by
Talman [157] and Datta, Deviah [42] and based on the decomposition of any spinor
ψ =

(
ϕ
χ

)
as the sum of its upper and its lower components:

(47) ψ =

(
ϕ

0

)
+

(
0

χ

)
.

This proposal consisted in saying that the first eigenvalue of Dc + V could be
obtained by solving the min-max problem

(48) min
ϕ 6=0

max
χ

((Dc + V )ψ, ψ)

(ψ, ψ)
.

The first rigorous result on this min-max principle was obtained by Griesemer
and Siedentop [81], who proved that (48) yields indeed the first positive eigenvalue
of Dc + V for potentials V which are in L∞ and not too large. In [51], Dolbeault,
Esteban and Séré proved that if V satisfies the assumptions

(49) V (x) −→
|x|→+∞

0 ,

(50) − ν

|x| −K1 ≤ V ≤ K2 = sup
x∈R3

V (x) ,

(51) K1,K2 ≥ 0, K1 +K2 − c2 <
√
c4 − ν2 c2

with ν ∈ (0, c), K1,K2 ∈ R, then the first eigenvalue λ1(V ) of Dc + V in the
interval (−c2, c2) is given by the formula

(52) λ1(V ) = inf
ϕ 6=0

sup
χ

(ψ, (Dc + V )ψ)

(ψ, ψ)
, ψ =

(
ϕ

χ

)
.
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Actually, under the conditions (49)-(50)-(51), it can be seen that Dc + V has an
infinite sequence of eigenvalues {λk(V )}k≥1 converging to 1, and it was proved in
[51] that each of them can be obtained by a min-max procedure:

Theorem 19. (Min-max characterization of the eigenvalues of Dc + V [51]). Let
V be a scalar potential satisfying (49)-(50)-(51). Then, for all k ≥ 1, the k-th
eigenvalue λk(V ) of the operator Dc+V is given by the following min-max formula

(53) λk(V ) = inf
Y subspace of C∞

o (R3,C 2)
dimY=k

sup
ϕ∈Y \{0}

λT(V, ϕ) ,

where

(54) λT(V, ϕ) := sup
ψ=(ϕ

χ)
χ∈C∞

0 (R3,C 2)

((Dc + V )ψ, ψ)

(ψ, ψ)

is the unique number in (K2 − c2,+∞) such that

(55) λT (V, ϕ)

∫

R3

|ϕ|2dx=

∫

R3

( c2 |(σ · ∇)ϕ|2
c2 − V + λT (V, ϕ)

+ (c2 + V )|ϕ|2
)
dx.

The above result is optimal for Coulomb potentials for which all the cases ν ∈
(0, c) are included. But note that assumptions (50)-(51) can be replaced by weaker
ones allowing in particular to treat potentials which have a finite number of isolated
singularities, even of different signs. We describe some of these extensions at the
end of this subsection.

Theorem 19 is a useful tool from a practical point of view in the sense that the
first eigenvalue (case k = 1) of Dc+V can be obtained by a minimization procedure
over the (bounded-below) nonlinear functional ϕ 7→ λT (V, ϕ). Higher eigenvalues
are obtained by the usual Rayleigh-Ritz minimax principle on the same nonlinear
functional. As we shall see below, this has important consequences from a numerical
point of view.

Theorem 19 is a direct consequence of an abstract theorem proved by Dolbeault,
Esteban and Séré [51], providing variational characterizations for the eigenvalues
of self-adjoint operators in the gaps of their essential spectrum.

Theorem 20. (Min-max principle for eigenvalues of operators with gaps [51]) Let
H be a Hilbert space and A : D(A) ⊂ H → H a self-adjoint operator. We denote
by F(A) the form-domain of A. Let H+, H− be two orthogonal Hilbert subspaces
of H such that H = H+⊕H− and let Λ± be the projectors associated with H±. We
assume the existence of a subspace of D(A), F , which is dense in D(A) and such
that :

(i) F+ = Λ+F and F− = Λ−F are two subspaces of F(A).

(ii) a− = supx−∈F−\{0}
(x−,Ax−)
‖x−‖2

H

< +∞ .

Moreover we define the sequence of min-max levels

(56) ck(A) = inf
V subspace of F+

dim V=k

sup
x∈(V⊕F−)\{0}

(x,Ax)

||x||2
H

, k ≥ 1,

and assume that
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(iii) c1(A) > a− .

Then

∀k ≥ 1, ck(A) = µk,

where, if b = inf (σess(A) ∩ (a−,+∞)) ∈ (a−,+∞], µk denotes the kth eigenvalue
of A (counted with multiplicity) in the interval (a−, b) if it exists, or µk = b if there
is no kth eigenvalue.

As a consequence, b = lim
k→∞

ck(A) = sup
k
ck(A) > a− .

An important feature of this min-max principle is that the min-max levels do not
depend on the splitting H = H+⊕H− provided assumptions (i), (ii) and (iii) hold
true. In practice, one can find many different splittings satisfying these assumptions
and choose the most convenient one for a given application.

In order to treat families of operators without checking the assumptions of the
above theorem for every case, there is a “continuous” version of Theorem 20 in [51]
which we shall present now.

Let us start with a self-adjoint operator A0 : D(A0) ⊂ H → H. and denote by
F(A0) the form-domain of A0. Now, for ν in an interval [0, ν̄) we define Aν =
A0 + νW where W is a bounded operator. The operator Aν is self-adjoint with
D(Aν) = D(A0), F(Aν) = F(A0). Let H = H+⊕H− be an orthogonal splitting of
H, and P+ , P− the associated projectors, as in Section 1. We assume the existence
of a subspace of D(A0), F , dense in D(A0) and such that:

(j) F+ = P+F and F− = P−F are two subspaces of F(A0);

(jj) there is a− ∈ R such that for all ν ∈ (0, ν̄),

aν := sup
x−∈F−\{0}

(x−, Aνx−)

‖x−‖2H
≤ a−.

For ν ∈ (0, ν̄), let bν := inf(σess(Aν) ∩ (aν ,+∞)) , and for k ≥ 1, let µk,ν be the
k-th eigenvalue of Aν in the interval (aν , bν), counted with multiplicity, if it exists.
If it does not exist, we simply let µk,ν := bν . Our next assumption is

(jjj) there is a+ > a− such that for all ν ∈ (0, ν̄), µ1,ν ≥ a+ .

Finally, we define the min-max levels

(57) ck,ν := inf
V subspace of F+

dim V=k

sup
x∈(V⊕F−)\{0}

(x,Aνx)

||x||2
H

, k ≥ 1 ,

and assume that

(jv) c1,0 > a− .

Then, we have the

Theorem 21. ([51]) Under conditions (j) to (jv), Aν satisfies the assumptions (i)
to (iii) of Theorem 20 for all ν ∈ [0, ν̄), and ck,ν = µk,ν ≥ a+, for all k ≥ 1.

Theorems 20 and 21 are very good tools in the study of the point-spectrum
of Dirac operators Dc + νV , where V is a potential which has singularities not
stronger than c/|x − x0| (0 < c < 1). Of course, Theorem 21 cannot be directly
applied to the case of unbounded potentials, but this can actually be done by first
truncating the potential and then passing to the limit in the truncation parameter,
as we did in the proof of Theorem 19.
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Theorem 21 is an easy consequence of the proof of Theorem 20. On the contrary,
the proof of Theorem 20 is more involved. We sketch now its main steps.

Sketch of the proof of Theorem 20. For E > a and x+ ∈ F+, let us define

ϕE,x+ : F− → R

y− 7→ ϕE,x+(y−) =
(
(x+ + y−), A(x+ + y−)

)
− E||x+ + y−||2H .

From assumptions (i)− (ii), N(y−) =
√

(a+ 1)||y−||2H − (y−, Ay−) is a norm on

F−. Let F
N

− be the completion of F− for this norm. Since ||.||
H
≤ N on F−, we

have F
N

− ⊂ H−. For all x+ ∈ F+, there is an x ∈ F such that Λ+x = x+ . If we
consider the new variable z− = y− − Λ−x, we can define

ψE,x(z−) := ϕE,Λ+x(z− + Λ−x) = (A(x + z−), x+ z−)− E(x+ z−, x+ z−) .

Since F is a subspace of D(A), ψE,x (hence ϕE,x+) is well-defined and continuous
for N , uniformly on bounded sets. So, ϕE,x+ has a unique continuous extension

ϕE,x+
on F

N

−, which is continuous for the extended norm N . It is well-known (see

e.g. [139]) that there is a unique self-adjoint operator B : D(B) ⊂ H− →H− such

that D(B) is a subspace of F
N

−, and

∀x− ∈ D(B), N(x−)2 = (a+ 1)||x−||2H + (x−, Bx−).

Now, ϕE,x+
is of class C2 on F

N

− and

D2ϕE,x+
(x−) · (y−, y−) = −2(y−, By−)− 2E||y−||2H

≤ −2 min(1, E)N(y−)2 .(58)

So ϕE,x+
has a unique maximum, at the point y− = LE(x+). The Euler-Lagrange

equations associated to this maximization problem are :

(59) Λ−Ax+ − (B + E)y− = 0 .

The above arguments allow us, for any E > a, to define a map

QE : F+ → R

x+ 7→ QE(x+) = sup
x−∈F−

ϕE,x+
(x−) = ϕE,x+

(LEx+)(60)

= (x+, (A− E)x+) +
(
Λ−Ax+, (B + E)−1Λ−Ax+

)
.

It is easy to see that QE is a quadratic form with domain F+ ⊂ H+ and it is
monotone nonincreasing in E > a.

We may also, for E > a given, define the norm nE(x+) = ||x+ + LEx+||H . We
consider the completion X of F+ for the norm nE and denote by nE the extended
norm. Then, we define another norm on F+ by

NE(x+) =
√
QE(x+) + (KE + 1)(nE(x+))2

with KE = max(0, E
2(E−λ1)
λ2
1

) and consider the completion G of F+ for the

norm NE . Finally, we use the monotonicity of the map E 7→ QE and classi-
cal tools of spectral theory to prove that the k-th eigenvalue of A in the interval
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(0, inf (σess(A) ∩ (a,+∞))) is the unique Ek > a such that

(61) inf
V subspace of G

dim V=k

sup
x+∈V \{0}

Q̄Ek
(x+)

(n̄Ek
(x+))2

= 0 .

Note that since the above min-maxes correspond to the eigenvalues of the operator
TE associated to the quadratic form QE, (61) is actually equivalent to

λk(T
Ek) = 0 .

and the fact that this inequality defines a unique Ek relies on the monotonicity of
QE w.r.t. E. �

In the application of Theorem 20 to prove Theorems 19 and 21, various decom-
positions H = H̃+⊕H̃− could be considered. One that gives excellent results is
defined by

(62) ψ =

(
ϕ

0

)
+

(
0

χ

)
.

This decomposition yields optimal results about the point spectrum for some po-
tentials V . There are cases for which this is not anymore true. For instance, this
happens when the potential V has “large” positive and negative parts, case which
is not dealt with in the previous results.

Recently, Dolbeault, Esteban and Séré [53] have considered the case where a
potential can give rise to two different types of eigenvalues, not only those ap-
pearing in Theorems 19 and 21. More precisely, if V satisfies (49), assume that
it is continuous everywhere except at two finite sets of isolated points, {x+

i } ,
{x−j }, i = 1, . . . I, j = 1, . . . , J, where

(63)

lim
x→x+

i

V (x) = +∞ , lim
x→x+

i

V (x) |x − x+
i | ≤ νi,

lim
x→x−

j

V (x) = −∞ , lim
x→x−

j

V (x) |x− x−j | ≥ −νj,

with νi, νj ∈ (0, c) for all i, j. Under the above assumptions, as above, Dc+V has
a distinguished self-adjoint extension A with domain D(A) such that

H1(R3,C4) ⊂ D(A) ⊂ H1/2(R3,C4).

The essential spectrum of A is the same as that of Dc :

σess(A) = (−∞,−c2] ∪ [c2,+∞),

see [158, 145, 127, 102]. Finally, V maps D(A) into its dual, since (49) and (63)
imply that for all ϕ ∈ H1/2(R3), V ϕ ∈ H−1/2(R3). The decomposition of H

considered here is related to the positive/negative spectral decomposition of the
free Dirac operator Dc :

H = H
0
+ ⊕ H

0
− ,

with H0
± = P 0

±H, where P 0
± are the positive/negative spectral projectors of the free

Dirac operator Dc.
As above, we assume the existence of a core F (i.e. a subspace of D(A) which is

dense for the norm ‖·‖D(A)), such that :

(i) F+ = P 0
+F and F− = P 0

−F are two subspaces of D(A);
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(ii−) a− := supx−∈F−\{0}
(x−, Ax−)

‖x−‖2
H

< +∞;

(ii+) a+ := infx+∈F+\{0}
(x+, Ax+)

‖x+‖2
H

> −∞.

We consider the two sequences of min-max and max-min levels {λ+
k }k≥1 and {λ−k }k≥1

defined by

(64) λ+
k := inf

V subspace of F+

dim V=k

sup
x∈ (V⊕F−)\{0}

(x,Ax)

‖x‖2
H

,

(65) λ−k := sup
V subspace of F−

dim V=k

inf
x ∈(V⊕F+)\{0}

(x,Ax)

‖x‖2
H

.

Theorem 22. Take a positive integer k0 and any k ≥ k0 and let A be the
self-adjoint extension of Dc + V defined above, where V is a scalar potential satis-
fying (49) and (63).

If a− < λ+
k0
< c2, then λ+

k is either an eigenvalue of Dc + V in the interval

(a−, c2), or λ+
k = c2. If additionally V ≥ 0, then a− = c2 and λ+

k = c2.

If −c2 < λ−k0 < a+, then λ−k is either an eigenvalue of Dc + V in the interval

(−c2, a+) or λ−k = −c2. If additionally V ≤ 0, then a+ = −c2 and λ−k = −c2.
The sequences {λ+

k }k≥1 and {λ−k }k≥1 are respectively nondecreasing and nonin-
creasing. As a consequence of their definitions we have:

(66) for all k ≥ 1, λ+
k ≥ max {a−, a+} and λ−k ≤ min {a−, a+} ,

and if a− ≥ a+, we do not state anything about the possible eigenvalues in the
interval [a+, a−]. Note that, as it is showed in [53], there are operators for which
all or almost all the eigenvalues lie in the interval [a+, a−] and thus, they are not
given by the variational procedures defining the λ±k ’s.

Finally, let us remark that if we apply Theorem 22 to deal with a family of
operators Dc + τ V , with V satisfying (49)-(63), then we see that the eigenvalues
λ+
k ’s and λ−k ’s are of a “different” kind , since

lim
τ→0+

λτ,±k = ±c2 , for all k ≥ 1 .

In physical words, we could say that the λ+
k ’s correspond to electronic states, and

the λ−k ’s to positronic ones.

2.2. Numerical method based on the min-max formula. Let us now come
back to the case k = 1 of Theorem 19. Note that from (52) and (54) we see that
(under the right assumptions on V ) the first eigenvalue λ1(V ) of Dc + V in the
gap (−c2, c2) can be seen as the solution of a minimization problem, that is,

(67) λ1(V ) = min
ϕ∈C∞(R3,C2)

ϕ 6=0

λT (V, ϕ) ,

where ϕ 7→ λT (V, ϕ) is a nonlinear functional implicitly defined by

(68) λT (V, ϕ)

∫

R3

|ϕ|2dx=

∫

R3

( c2 |(σ · ∇)ϕ|2
c2 − V + λT (V, ϕ)

+ (c2 + V )|ϕ|2
)
dx.

The idea of characterizing the first eigenvalue in a gap of the essential spectrum as
the solution of a minimization problem is not completely new. It has for instance
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already been used by Bayliss and Peel [16] in another context. It is also close to
the Fesbach method and to some techniques used in Pencil Theories.

The fact that one can reduce the computation of λ1(V ) to that of a minimization
problem (67)-(68) has an important practical consequence: these problems (67)-(68)
can now be easily discretized to construct an algorithm, allowing us to approximate
λ1(V ) in an efficient manner. Indeed, the functional λT (V, ·) to be minimized is
bounded from below in the whole space H1/2(R3,C2) . This is a huge advantage
compared to other methods in which the total Rayleigh quotient Qv is minimized
on particular finite dimensional subspaces of H1/2(R3,C4) : the latter are prone
to variational collapse (entering into the negative continuum) and can even furnish
spurious solutions (see, e.g. [36]).

The discretization method based on (67) is completely free of all these complica-
tions and satisfactory numerical tests for atomic and molecular models have been
presented in [54, 52]. Notice that molecular simulations are more complicated to
carry on because one cannot use the rotational symmetry like in the atomic case.
Contrarily to the one-dimensional radially symmetric problem, the discretization
has to be made in R2 when axial symmetry is present, or in R3 in the general
case. Below we describe the algorithm that was used in [54, 52] to find eigenvalues
of Dc + V by the minimization method presented above.

Consider the following approximation procedure for λk(V ), k ≥ 1. Take any
complete countable basis set B in the space of admissible 2-spinors X and let Bn
be an n-dimensional subset of B generating the space Xn. We assume that Bn
is monotone increasing in the sense that if n < n′, then Bn is contained in Bn′ .
Denote by ϕ1, ϕ2, . . . , ϕn the elements of Bn. For all 1 ≤ i, j ≤ n, we define the
n× n matrix An(λ) whose entries are

(69) Ai,jn (λ) =

∫

R3

( (c (σ · ∇)ϕi, c (σ · ∇)ϕj)

λ+ c2 − V + (V + c2 − λ) (ϕi, ϕj)
)
dx.

The matrix An(λ) is selfadjoint and has therefore n real eigenvalues. For 1 ≤ k ≤ n,
we compute λk,n as the solution of the equation

(70) µk,n(λ) = 0 ,

where µk,n(λ) is the k-th eigenvalue of An(λ). Note that the uniqueness of such
a λ comes from the monotonicity of the r.h.s. of equation (69) with respect to λ.
Moreover, since for a fixed λ

(71) µk,n(λ)ց µk(λ) as n→ +∞ ,

we also have

(72) λk,n ց λk(V ) as n→ +∞ .

The elements of the basis set used in [54] were Hermite functions. In [52] more
efficient numerical results have been obtained by means of B-spline functions. The
interest of using well-localized basis set functions is the sparseness and the nice
structure of the corresponding discretized matrix An(λ). If the degree of the basis
of B-splines increases, the number of filled diagonals will also increase. So, a good
balance has to be found between the smoothness of elements of the approximating
basis set and the speed of the corresponding numerical computations. In [52] the
simple choice of considering second order spline functions on a variable length grid
was made. In the atomic case, when 1-dimensional B-splines are used, very quick
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and accurate results can be obtained. In [52] numerical tests were provided for
some axially symmetric diatomic molecules.

In [108] we can find an algorithm which has some analogy with the algorithm
described above.

2.3. New Hardy-like inequalities. Another byproduct of the minimization char-
acterization of the first eigenvalue of Dc + V given in (67) and of (55) is the
following: for all ϕ ∈ D(Dc + V ),

(73)

∫

R3

(
c2|(σ · ∇)ϕ|2
c2 − V + λ1(V )

+ (c2 + V − λ1(V )) |ϕ|2
)
dx ≥ 0.

In the particular case V = −ν/|x|, ν ∈ (0, c) , (73) means that for all ϕ ∈
H1(R3,C2),
(74)∫

R3

(
c2|(σ · ∇)ϕ|2

c2 + ν/|x|+
√
c4 − ν2 c2

+ (c2 −
√
c4 − ν2 c2) |ϕ|2

)
dx ≥ ν

∫

R3

|ϕ|2
|x| dx.

By scaling, one finds that for all ϕ ∈ H1(R3,C2), and for all ν ∈ (0, 1),

(75)

∫

R3

( |(σ · ∇)ϕ|2
1 + ν/|x|+

√
1− ν2

+ (1−
√

1− ν2) |ϕ|2
)
dx ≥ ν

∫

R3

|ϕ|2
|x| dx ,

and, passing to the limit when ν tends to 1, we get:

(76)

∫

R3

( |(σ · ∇)ϕ|2
1 + 1/|x| + |ϕ|2

)
dx ≥

∫

R3

|ϕ|2
|x| dx .

This inequality is a Hardy-like inequality related to the Dirac operator. It is not
invariant under dilation, which corresponds to the fact that the Dirac operator Dc

is not homogeneous. But by another scaling argument, (76) yields, as a corollary,
an inequality which is invariant by dilation,

(77)

∫

R3

|x| |(σ · ∇)ϕ|2 dx ≥
∫

R3

|ϕ|2
|x| dx ,

which is actually equivalent to the “classical” Hardy inequality

(78)

∫

R3

|∇ϕ|2 dx ≥ 1

4

∫

R3

|ϕ|2
|x|2 dx .

For a 4-dimensional version of (77), see [169, 98].
Finally, note that in [49] the Hardy-like inequality (76) (and slightly more gen-

eral ones also) has been proved by analytical means, without using any previous
knowledge about the Coulomb-Dirac operator’s spectrum.

2.4. The nonrelativistic limit. Let us now indicate how we can relate the eigen-
values of the Dirac operator to those of the Schrödinger operator. This relation is
established by taking the limit c→ +∞ , so by passing to the nonrelativistic limit.

A ψ with values in C 4 satisfies the eigenvalue equation

(79) (Dc + V )ψ = λψ

if and only if, writing ψ =
(
ϕ
χ

)
with ϕ, χ taking values in C

2,

(80)

{
Rc χ = (λ− c2 − V ) ϕ ,
Rc ϕ = (λ + c2 − V ) χ ,
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with

Rc = −i c (~σ.~∇) =

3∑

j=1

−i c σj
∂

∂xj
.

Recall that σj , j = 1, 2, 3, are the Pauli matrices. As long as λ+c2−V 6=0, the
system (80) can be written as

(81) Rc

(
Rc ϕ

g
µ

)
+ V ϕ = µϕ , χ =

Rc ϕ

g
µ

where g
µ

= µ+ 2c2 − V and µ = λ− c2.
Assume now that ψc =

(
ϕc

χc

)
is an eigenfunction of the operator (Dc + V )

associated with the eigenvalue λc which satisfies

lim inf
c→∞

(λc − c2) > −∞, lim sup
c→∞

(λc − c2) < 0.

The system (81) can be written as

(82)
−c2∆ϕc

µc + 2c2 − V +
c2(~σ.~∇)ϕc · (~σ.~∇)V

(µc + 2c2 − V )2
+ V ϕc = µc ϕc , χc =

−i c (~σ.~∇)ϕc
µc + 2c2 − V ,

with µc = λc − c2. It is then easy to prove (see [65]) that for c large, the functions
ϕc , which in principle are only in H1/2(R3,C2) , actually belong to the space
H1(R3,C2) and are uniformly bounded for the H1(R3,C2) norm. Moreover, after
taking subsequences, we can find ϕ̄ ∈ H1(R3,C2) and µ̄ < 0 such that

lim
c→+∞

‖ϕc − ϕ̄‖H1(R3,C2) = 0 , lim
c→+∞

µc = µ̄ ,

and

−∆ϕ̄

2
+ V ϕ̄ = µ̄ ϕ̄ .

Note that χc, the lower component of the eigenfunction ψc, converges to 0 in the
nonrelativistic limit.

It can be proved that for all the potentials V considered in the theorems of this
section, all the eigenvalues in the gap (−c2, c2) satisfy the above conditions, and
converge, when shifted by the quantity −c2, to the associated eigenvalues of the
Schrödinger operator −∆

2 perturbed by the same potential V .

2.5. Introduction of a constant external magnetic field. The previous results
were devoted to the case of a scalar electrostatic field V . The Dirac operator for
a hydrogenic atom interacting with a constant magnetic field in the x3-direction is
given by

(83) DB := α ·
[
−i∇+

B

2
(−x2, x1, 0)

]
+ β − ν

|x| ,

where ν = Zα > 0, Z being the nuclear charge number (we fix the speed of light
c = 1 in this subsection) and B is a constant.

The magnetic Dirac operator without the Coulomb potential ν/|x| has essential
spectrum (−∞,−1] ∪ [1,∞) and no eigenvalue in the gap (−1, 1) for any B ∈ R.
The operator DB has the same essential spectrum and possibly some eigenvalues
in the gap. The ground state energy λ1(ν,B) is the smallest among these. As
the field gets large enough, one expects that the ground state energy of the Dirac
operator decreases and eventually penetrates the lower continuum. The implication
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of this for a second quantized model is that electron–positron pair creation comes
into the picture [128, 131]. The intuition comes from the Pauli equation, where
the magnetic field tends to lower the energy because of the spin. It is therefore
reasonable to define the critical field strength B(ν) as the supremum of the B’s for
which λ1(ν, b) is in the gap (−1, 1) for all b < B. As a function of ν, λ1(ν,B) is
non-increasing, and as a result the function B(ν) is also non-increasing. Estimates
on this critical field as a function of the nuclear charge ν can be found in [48]. They
have been obtained by adapting to this case the variational arguments of Theorem
19. One of the first results in this paper states that for all ν ∈ (0, 1),

(84)
0.75

ν2
≤ B(ν) ≤ min

(
18πν2

[3ν2 − 2]2+
, eC/ν

2

)
.

As a corollary we see that as ν → 1 the critical field B(ν) stays strictly positive.
This is somewhat remarkable, since in the case without magnetic field the ground
state energy λ1(ν, 0), as a function of ν tends to 0 as ν → 1 but with an infinite
slope. Thus, one might expect very large variations of the eigenvalue at ν = 1 as
the magnetic field is turned on, in particular one might naively expect that the
ground state energy leaves the gap for small fields B. This is not the case.

Next, again by using the min-max characterization of λ1(ν,B), it is shown in
[48] that for ν > 0 small enough, and B not too large λ1(ν,B) is asymptotically
close to the ground state energy of the Coulomb-Dirac magnetic operator in the
lowest relativistic Landau level c0(ν,B). This constant is proved to be given by

(85) c0(ν,B) = inf
f∈C∞

0 (R,C)\{0}
λB0 (f) ,

where λB0 (f) is implicitly defined by
(86)

λB0 (f)

∫ +∞

−∞

|f(z)|2 dz =

∫ +∞

−∞

( |f ′(z)|2
1 + λB0 (f) + ν aB0 (z)

+ (1− ν aB0 (z)) |f(z)|2
)
dz,

and

aB0 (z) = B

∫ +∞

0

s e−
Bs2

2√
s2 + z2

ds .

In [48] it is proved that for B not too small and ν small enough,

(87) c0(ν + ν3/2, B) ≤ λ1(ν,B) ≤ c0(ν,B).

and that since for ν small, ν3/2 << ν,

c0(ν + ν3/2, B) ∼ c0(ν,B) ∼ λ1(ν,B) as ν → 0 .

The one dimensional c0(ν,B) problem, while not trivial, is simpler to calculate
than the λ1(ν,B) problem. As a result, in the limit as ν → 0, this new theory yields
the first term in the asymptotics of the logarithm of the critical field. In particular
we have the following result,

lim
ν→0

ν log(B(ν)) = π
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3. The Dirac-Fock equations for atoms and molecules

In the previous two sections we described some results concerning the solutions of
nonlinear or linear Dirac equations in R3, which represent the state of one electron
only (or possibly many non-interacting electrons). We now want to present the
Dirac-Fock (DF) model which allows to describe the state of interacting electrons,
like for instance N electrons in a molecule. The DF model is very often used in
quantum chemistry computations and usually gives very good numbers when the
correlation between the electrons is negligible. It is the relativistic counterpart of
the better known non-relativistic Hartree-Fock equations, which can indeed be seen
as the non-relativistic limit (c → ∞) of the Dirac-Fock model as explained below.
For this reason, we start by recalling briefly the Hartree-Fock model.

3.1. The (non-relativistic) Hartree-Fock equations. The Hartree-Fock equa-
tions are easily derived from the linear Schrödinger model in which one considers
the following operator

(88) H :=

N∑

i=1

(
−∆xi

2
+ V (xi)

)
+

∑

1≤i<j≤N

1

|xi − xj |

whose associated quadratic form describes the energy of N interacting electrons in
the potential field V . Most often, V is the Coulomb electrostatic potential created
by a positive distribution of charge ν ≥ 0, of total charge Z:

V = −ν ∗ 1

|x| ,
∫

R3

ν = Z.

In the case of M pointwise nuclei of charges z1, ..., zM and located at x̄1, ..., x̄M ,

one takes ν =
∑M

m=1 zmδx̄m and Z =
∑M

m=1 zm. But extended nuclei can also be
considered in which case ν is assumed to be a smooth L1 non-negative function.

Due to the Pauli principle, the operator H acts on
∧N
i=1 L

2(R3 × {±},C), that
is to say the space of L2 functions Ψ(x1, σ1..., xN , σN ) which are antisymmetric
with respect to the permutations of the (xi, σi)’s. When Z > N − 1, it is known
[170, 171] that the spectrum of H has the form σ(H) = {λi} ∪ [Σ,∞) where {λi}
is an increasing sequence of eigenvalues with finite multiplicity converging to the
bottom of the essential spectrum Σ. We notice that the condition Z > N − 1 plays
a special role even for the linear theory based on the operator (88), as one knows
[164, 95] that only finitely many eigenvalues exist below Σ when N ≥ Z + 1, and
that there is no eigenvalue below Σ when N ≫ Z [143, 150, 151, 114]. In the
following, we shall always assume that Z > N − 1.

In the Hartree-Fock approximation, one computes an approximation of the first
eigenvalue λ1 of H by restricting the quadratic form Ψ 7→ 〈Ψ, HΨ〉 to the class of
the functions Ψ which are a simple (Slater) determinant:

(89) Ψ = ϕ1 ∧ · · · ∧ ϕN
where (ϕ1, ..., ϕN ) is an orthonormal system of L2(R3 × {±},C) = L2(R3,C2),
∫

R3(ϕi, ϕj)C2 = δij . Denoting ϕi =
(
ϕ+

i

ϕ−
i

)
, (89) means more precisely

Ψ(x1, σ1, ..., xN , σN ) =
1√
N !

det(ϕ
σj

i (xj)).
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Since the set of all the Ψ’s having the form (89) is not a vector subspace of∧N
i=1 L

2(R3 × {±},C), one then obtains an energy functional which is nonlinear
in terms of ϕ1, ..., ϕN . The associated Euler-Lagrange equations form a system of
N coupled nonlinear PDEs:

(90) HΦ ϕk = λkϕk, k = 1, ..., N

where HΦ is the so-called mean-field operator seen by each of the N electrons

(91) HΦ = −∆

2
+ (ρΦ − ν) ∗

1

| · | −
γΦ(x, y)

|x− y| ,

with ρΦ being the (scalar) electronic density and γΦ the so-called density matrix of
the N electrons (this is a 2× 2 matrix for any (x, y) ∈ R3 × R3):

(92) ρΦ :=
N∑

i=1

|ϕi|2 and γΦ(x, y) :=
N∑

i=1

ϕi(x) ⊗ ϕi(y)∗.

We notice that (91) means

(HΦ ψ)(x) = −∆ψ(x)

2
+

(
(ρΦ − ν) ∗

1

| · |

)
(x)ψ(x) −

∫
γΦ(x, y)ψ(y)

|x− y| dy

for any ψ ∈ H2(R3,C2). The existence of solutions to (90) when
∫

R3 ν = Z > N−1
has been proved first by Lieb and Simon [116] by a minimization method, and then
by Lions [118] by general min-max arguments. See also [107] for a recent survey.

3.2. Existence of solutions to the Dirac-Fock equations. The relativistic
Dirac-Fock equations were first introduced by Swirles in [155]. They take the same
form as the Hartree-Fock equations (90), with −∆/2 replaced by the Dirac operator
Dc. They are of course posed for functions taking values in C4 instead of C2. Note
however that when −∆/2 is replaced by Dc in the formula of the N -body Hamil-
tonian (88), one obtains an operator whose spectrum is the whole line R as soon as
N ≥ 2. To our knowledge, it is not known whether there exist or not eigenvalues
which are embedded in the essential spectrum. In any case, the relativistic N -body
problem is not well-posed. This somehow restricts the physical interpretation of
the Dirac-Fock model, compared to its non-relativistic counterpart. We refer to
the next section in which a better model deduced from Quantum Electrodynam-
ics is presented. Despite this issue, the Dirac-Fock equations have been widely
used in computational atomic physics and quantum chemistry to study atoms and
molecules involving heavy nuclei, and they seem to provide very good results when
the correlation between the electrons is negligible.

In the case of N electrons, the Dirac-Fock equations read

(93) Dc,Φ ϕk
= εkϕk, k = 1, ..., N,

where Φ = (ϕ1, . . . , ϕN ) satisfies
∫

R3(ϕi(x), ϕj(x)) dx = δij , i.e.

(94) Gram(Φ) = 1,

and

(95) Dc,Φ = Dc + (ρΦ − ν) ∗
1

|x| −
γΦ(x, y)

|x− y| ,
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(96) γΦ(x, y) =

N∑

ℓ=1

ϕ
ℓ
(x)⊗ ϕ

ℓ
(y)∗, ρΦ(x) = trC4(γΦ(x, x)) =

N∑

ℓ=1

|ϕ
ℓ
(x)|2.

Notice that γΦ(x, y) is a 4× 4 complex matrix, and that the operator whose kernel
is γΦ(x, y), is nothing but the orthogonal projector onto the space spanned by
ϕ1, ..., ϕN . We also denote it by γΦ.

Indeed, like for the Hartree-Fock case, equations (93) are the Euler-Lagrange
equations of the Dirac-Fock functional

(97) Eν,cDF(Φ) =

N∑

ℓ=1

(
ϕ

ℓ
, Dcϕℓ

)

L2

−
N∑

ℓ=1

(
ϕ

ℓ
,

(
ν ∗ 1

|x|

)
ϕ

ℓ

)

L2

+
1

2

∫∫

R3×R3

ρΦ(x)ρΦ(y)− tr
(
γΦ(x, y)γΦ(y, x)

)

|x− y| dx dy

on the manifold

M :=
{
Φ = (ϕ1, ..., ϕN ) ∈ (H1/2(R3,C4)N , Gram(Φ) = 1

}
.

It will be important to notice that the functional Eν,cDF only depends on the projector
γΦ defined in (96):

(98) Eν,cDF(Φ) = “tr ((Dc + V )γΦ) ” +
1

2

∫∫

R3×R3

ρΦ(x)ρΦ(y)− |γΦ(x, y)|2
|x− y| dx dy ,

where by “tr ((Dc + V )γΦ) ” we denote

N∑

i=1

((Dc+V )ϕi, ϕi). Note that this expres-

sion is really a trace if the ϕi’s are in H1(R3,C4).
As a matter of fact, the Euler-Lagrange equations of Eν,cDF onM only depend on

the space spanned by (ϕ1, ..., ϕN ). This explains why, up to a rotation of the ϕi’s,
one can always assume that the Lagrange multiplier matrix associated with the
constraint (94) is diagonal, with diagonal elements (ε1, ..., εN ) appearing in (93).

Finding solutions of (93) is then reduced to finding critical points of the func-
tional Eν,cDF on the manifold M. Once again, the unboundedness (from above and
below) of the spectrum of the free Dirac operator makes the functional Eν,cDF totally
indefinite. This together with the a priori lack of compactness of the problem posed
in R

3 and the fact that we have to work on a manifold M and not in the whole
functional space, makes the variational problem difficult. A minimization proce-
dure is once again impossible and another method has to be found. In [64], Esteban
and Séré defined a penalized variational problem (see below for details) which can
be solved by first maximizing on some part of the spinor functions ϕi and then
defining a more standard min-max argument for the remaining functional, together
with Morse index considerations.

The theorem proved in [64] and improved later by Paturel in [130] states the
following:

Theorem 23. (Existence of solutions to the Dirac-Fock equations [64, 130]) With
the above notations, assume that N and Z =

∫
R3 ν are two positive integers satisfy-

ing max(Z,N) < 2c
π/2+2/π and N − 1 < Z. Then, there exists an infinite sequence
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(Φc,j)
j≥0

of critical points of the Dirac-Fock functional Eν,cDF on M. The functions

ϕc,j1 , . . . ϕc,jN satisfy the normalization constraints (94) and they are strong solu-

tions, in H1/2(R3,C 4) ∩ ⋂
1≤q<3/2W

1,q(R3,C 4), of the Dirac-Fock equations

(99) Dc,Φc,j ϕc,j
k

= εc,j
k

ϕc,j
k

, 1 ≤ k ≤ N ,

(100) 0 < εc,j
1
≤ ... ≤ εc,j

N
< c2 .

Moreover,

(101) 0 < Eν,cDF(Φc,j) < Nc2 ,

(102) lim
j→∞

Eν,cDF(Φc,j) = Nc2 .

Remark 24. In our units, taking into account the physical value of the speed of
light c, the above conditions become

N ≤ Z ≤ 124.

The proof of the above theorem is done by defining a sequence of min-max
principles providing critical points of increasing Morse index. We notice that the
solution Φc,0 obtained by Theorem 23 when j = 0 will play an important role,
since for c large it will be actually interpreted as an “electronic ground state” (see
below).

The condition Z,N < 2c/(2π + π/2) is not that unnatural, since already in the
linear case such a condition was necessary to use Hardy-like inequalities ensuring
the existence of a gap of the spectrum of Dc+V around 0, see (45). Notice however
that in [64] the following additional technical assumption was used:

(103) 3N − 1 <
2c

π/2 + 2/π
.

This assumption was removed by Paturel shortly afterwards in [130]. He did so
by studying a finite dimensional reduction of the problem and then passing to the
limit, after having obtained the necessary bounds. This proof was done in the spirit
of the Conley-Zehnder proof of the Arnold’s conjecture [41]. The sketch of the proof
that we give below is that of [64] because the variational arguments are easier to
explain in that case.

Sketch of the proof of Theorem 23 when (103) holds. The first (and smallest)
difficulty here is that ν∗ 1

|x| is not a compact perturbation ofDc when ν = Zδ0. This

creates some technical problems. They are easily solved, replacing the Coulomb
potential 1

|x| by a regularized potential Vδ. The modified energy functional is

denoted now by Eν,c,ηDF . At the end of the proof, we shall be able to pass to the
limit η → 0.

The second difficulty is that the Morse index estimates can only give upper
bounds on the multipliers εc,jk in (99). But we also want to ensure that εc,jk > 0,
since these multipliers are interpreted as the energies of the different electrons. To
overcome this problem, we replace the constraint Gram (Φ) = 1 by a penalization
term πp(Φ), subtracted from the energy functional:

(104) πp(Φ) = tr
[(

Gram Φ
)p (

1−Gram Φ
)−1]

.
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In this way we obtain a new functional Fc,η,p = Eν,c,ηDF −πp , defined now on the set
of Φ’s satisfying

0 < Gram Φ < 1 .

Since in the basis in which

Gram Φ = Diag(σ1, . . . , σN ) , 0 < σ1 ≤ · · · ≤ σN < c2 ,

the matrix
(
Gram Φ

)p (
1−Gram Φ

)−1

is also diagonal and equals

Diag(fp(σ1), . . . , fp(σN )) , with fp(x) :=
xp

1− x ,

the corresponding Euler-Lagrange equations are then

Dc,Φc,j ϕc,jk = f ′
p(σ

c,j
k )ϕc,jk .

The numbers εc,jk := f ′
p(σ

c,j
k ) are now explicit functions of ϕc,jk . Thus, fp being an

increasing function, we automatically get εc,jk > 0.

The third difficulty with DF, is that all critical points have an infinite Morse
index. This kind of problem is often encountered in the theory of Hamiltonian
systems and in certain elliptic PDEs. One way of dealing with it is to use a concavity
property of the functional, to get rid of the “negative directions”, see e.g. [2, 27,
28, 31]. This method was used in [64]. Doing so, we get a reduced functional
Ic,η,p. A min-max argument gives us Palais-Smale sequences (Φc,η,pn )n≥1 for Ic,η,p
with a Morse index “at most j” (up to an error which converges to 0 as n → ∞),
thanks to [68, 77]. Moreover, adapting the arguments of [118], we prove that the

corresponding εc,j,η,p,nk are bounded away from c2. Finally, the assumptions made

on Z,N guarantee that the εc,j,η,p,nk are also bounded away from 0, uniformly on
η, p and n. Then we pass to the limit (η, p, n) → (0,∞,∞), and get the desired

solutions of DF, with 0 < εc,jk < c2.

The fact that we recover at the limit p→ +∞ the constraint GramΦ = 1 is a
consequence of the a priori estimates

0 < ε < εc,j,η,pk = f ′
p(σ

c,j,η,p
k ) ,

with ε independent of η, p. The properties of the function fp and the above in-
equality imply that as p→ +∞ , one necessarily has σc,j,η,p → 1, which of course
is equivalent to saying that in the limit there is no loss of charge:

∫
R3 |ϕc,jk |2 = 1.

The method that we have just described can be generalized. In [26] an abstract
version is provided, with applications to nonlinear periodic Schrödinger models
arising in the physics of crystalline matter.

The concavity argument of [64] works only if (103) holds. In his theorem, Paturel
[130] got rid of this assumption my making a finite dimensional reduction first. This
allowed him to deal with finite Morse indices again. ⊔⊓

3.3. Nonrelativistic limit and definition of the Dirac-Fock “ground state”.
As in the case of linear Dirac equations of Section 3, it is interesting here to see
what is the nonrelativistic limit of the Dirac-Fock equations. We shall recover in
the limit the Hartree-Fock equations (90) presented above, for the two-dimensional
upper component of the ϕi’s (recall that ϕ1, ..., ϕN are C4-valued functions), the
lower component converging to zero. This was proved rigorously in [65]. This
result has been of importance to better understand the variational structure of the



VARIATIONAL METHODS IN RELATIVISTIC QUANTUM MECHANICS 35

Dirac-Fock problem and in particular to obtain a good definition of an electronic
ground-state energy, which is a priori not clear because of the unboundedness of
the Dirac-Fock energy.

Theorem 25. (Non-relativistic limit of the Dirac-Fock equations [65]) Let be N <
Z+1. Consider a sequence of numbers cn → +∞ and a sequence (Φn)n of solutions
of (93), i.e. Φn = (ϕn1 , ..., ϕ

n
N ), each ϕnk being in H1/2(R3,C4), with Gram Φn = 1

and Dcn,Φnϕnk = εnkϕ
n
k . Assume that the multipliers εnk , k = 1, . . . , N, satisfy

0 < ε < εn1 ≤ ... ≤ εnN < c2 − ε′, with ε, ε′ > 0 independent of n.

Then for n large enough, each ϕnk is in H1(R3,C4), and there exists a solution of
the Hartree-Fock equations (90), Φ̄ = (ϕ̄1, · · · , ϕ̄N ) ∈ H1(R3,C2)N , with negative
multipliers, λ̄1, ..., λ̄N , such that, after extraction of a subsequence,

(105) lim
n→∞

(εnk − (cn)2) = λ̄k,

ϕnk =

(
ϕ̄nk
χnk

)
−→
n→+∞

(
ϕ̄k
0

)
in H1(R3,C 2)×H1(R3,C 2),(106)

∥∥∥∥χ
n
k +

i

2cn
(σ · ∇)ϕ̄nk

∥∥∥∥
L2(R3,C 2)

= O(1/(cn)
3),(107)

for all k = 1, ..., N , and

(108) Eν,cn

DF (Φn)−Nc2n −→
n→+∞

EHF(Φ̄).

The Hartree-Fock energy EHF appearing in (108) is the same as (97), but with
Dc replaced by −∆/2 and C4 by C2. It can be proved [65] that the critical points
constructed in Theorem 23 all satisfy the assumptions of Theorem 25 for any fixed
j. Therefore, all the Φc,j converge as c→∞ to a state whose upper component is a
solution of the Hartree-Fock equations, and whose lower component vanishes. This
result can even be made more precise in the case of one of the “first” solutions (i.e.
corresponding to j = 0): the critical point Φc,0 does not converge to any solution
of the HF equations, but actually to a Hartree-Fock ground state, as stated in the
following

Theorem 26. (Non-relativistic limit of the Dirac-Fock “ground state” [65]) As-
sume that N < Z + 1 and ν are fixed, and that cn → ∞. Then the critical point
Φcn,0 constructed in Theorem 23 for j = 0 satisfies

lim
cn→∞

{
Eν,cDF(Φcn,0)−Nc2n

}
= min

Φ̄∈H1(R3,C2)N

Gram Φ̄=1

EHF(Φ̄).

Up to a subsequence, (Φcn,0) converges as cn →∞ to
(

Φ̄0
0

)
where Φ̄0 is a minimizer

of EHF.
Furthermore, for cn large enough, the εcn,0

k are the first positive eigenvalues of
Dcn,Φcn,0 :

(109) γΦcn,0 = χ[0,εcn,0
N ]

(
Dcn,Φcn,0

)

We notice that (109) means that the last level εcn,0
N is necessarily totally filled.

In other words, similarly to the Hartree-Fock case [7], “there are no unfilled shell
in the Dirac-Fock theory for c≫ 1”.
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σ
(
Dc,Φc,0

)

Φc,0

Figure 1. For c≫ 1, the Dirac-Fock ‘ground state’ Φc,0 contains
the eigenfunctions associated with the N first positive eigenvalues
of the mean-field operator Dc,Φc,0 .

Although the Dirac-Fock functional Eν,cDF is not bounded-below, Theorem 26 al-
lows to interpret the first min-max solution Φc,0 (any of them, since there is no
uniqueness) as an electronic ground state, since it converges to a Hartree-Fock
ground state in the nonrelativistic limit. Actually, more has been proved in [65]:
Φc,0 indeed minimizes the Dirac-Fock functional among all the Φ = (ϕ1, ..., ϕN )
such that each ϕi belongs to the positive spectral subspace of the mean-field oper-
ator Dc,Φ:

Theorem 27. (Variational interpretation of the Dirac-Fock “ground state” [65])
Assume that N < Z + 1 and ν are fixed, and that c is sufficiently large. Then Φc,0

is a solution of the following minimization problem:

(110) inf
{
Eν,cDF(Φ) | Φ = (ϕ1, ..., ϕN ), GramΦ = 1, χ(−∞,0) (Dc,Φ) Φ = 0

}

where χ(−∞,0)(Dc,Φ) denotes the negative spectral projector of the operator Dc,Φ,
and

χ(−∞,0) (Dc,Φ) Φ = 0

means
χ(−∞,0) (Dc,Φ) ϕk = 0,

for any k = 1, ..., N .

The interpretation of the theorem is the following: although the Dirac-Fock
energy is unbounded from below, the critical points Φc,0 are, for c large enough,
the minimizers of Eν,cDF on the set of functions satisfying the nonlinear condition
χ(−∞,0) (Dc,Φ) Φ = 0. Calling these functions electronic, we obtain that for c large,

Φc,0 is really an electronic ground state. In particular, it is also a minimizer of Eν,cDF

among all the solutions of Dirac-Fock equations with positive Lagrange multipliers.

Remark 28. Recently, explicit bounds on c under which Theorem 27 is valid have
been provided by Huber and Siedentop [93].

4. The mean-field approximation in Quantum Electrodynamics

In this last section, we want to present some progress that has been made re-
cently concerning models from Quantum Electrodynamics (QED) in which, instead
of trying to ‘avoid’ the negative spectrum ofDc, the latter is reinterpreted as Dirac’s
vacuum and completely ‘incorporated’ into the model. The somehow surprising con-
sequence will be that, contrary to the previous sections, the energy functional will
be bounded from below. The price to pay is that one has to deal with infinitely many
particles (many of them being ‘virtual’) instead of the finite number of electrons as
previously.

As mentioned in the introduction, Dirac interpreted the negative spectrum of
his operator Dc as follows [45, 46, 47]. Since there exists no electron of negative
kinetic energy, one has to find a way of avoiding the negative spectrum. This is
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done by assuming that the negative spectrum energies are all occupied by virtual
electrons, one in each energy state, and that this (virtual) distribution of charge is
not felt by the real particles on account on its uniformity. Then, the real electrons
can in general only have positive energies due to the Pauli principle which prevents
them to be in the same state as a virtual particle.

Mathematically, Dirac’s postulate is interpreted as follows: the states of the real
free electrons necessarily belong to the positive spectral subspace H0

+,c = P 0
+,c H

defined in Proposition 1, and the vacuum (Dirac sea) is described by the infinite
rank spectral projector P 0

−,c. Recall that in Hartree or Dirac-Fock theories, the
density matrix γΦ of the N electron state Ψ = ϕ1∧· · ·∧ϕN is precisely the orthog-
onal projector onto span(ϕ1, ..., ϕN ), see, e.g. formulas (89) and (92). Therefore,
when one represents the Dirac sea by the projector P 0

−,c, one describes formally the
vacuum as an infinite Slater determinant

(111) Ω0 = ϕ1 ∧ · · · ∧ ϕi ∧ · · ·
where (ϕi)i≥1 is an orthonormal basis of H0

−,c = P 0
−,cH. Dirac’s postulate is based

on the important invariance by translation of the projector P 0
−,c, which is used to

neglect the physical influence of this ‘constant background’.
It was realized just after Dirac’s discovery that, for consistency of the theory,

the vacuum should not be considered as a totally virtual physical object which
does not interact with the real particles. Dirac himself [45, 46, 47] conjectured the
existence of surprising physical effects as a consequence of his theory, which were
then experimentally confirmed. First, the virtual electrons of the Dirac sea can
feel an external field and they will react to this field accordingly, i.e. the vacuum
will become polarized. This polarization is then felt by the real particles and one
therefore is led to consider a coupled system ‘Dirac sea + real particles’. From
the experimental viewpoint, vacuum polarization plays a rather small role for the
calculation of the Lamb shift of hydrogen but it is important for high-Z atoms [125]
and it is even a crucial physical effect for muonic atoms [75, 78]. Second, in the
presence of strong external fields, the vacuum could react so importantly that an
electron-positron pair can be spontaneously created [128, 140, 141, 142].

The mathematical difficulties of a model aiming at describing both the Dirac
sea and the real particles are important, for one has to deal at the same time
with infinitely many particles (the real ones and the virtual ones of the Dirac
sea). In the following, we present a Hartree-Fock (mean-field) type model for this
problem, which has been mathematically studied by Hainzl, Lewin, Séré and Solovej
[83, 84, 85, 86]. The model under consideration is inspired of an important physical
article by Chaix and Iracane [36] in which the possibility that a bounded-below
energy could be obtained by adding vacuum polarization was first proposed. But
the equations of this so-called Bogoliubov-Dirac-Fock model were already known
in Quantum Electrodynamics (QED) [141]. For the sake of simplicity, we shall
not explain how the model is derived from the QED Hamiltonian and we refer to
[83, 84, 85, 86]. In the version studied in these works, the electromagnetic field is
not quantized (photons are not considered).

Let us now describe formally the mean-field approximation in QED, following
mainly [86]. The state of our system will be represented by an infinite rank pro-
jector P . This projector should be seen as the density matrix of an infinite Slater
determinant made of an orthonormal basis of the subspace PH, like (111). The
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projector P describes not only Dirac’s vacuum but the whole system consisting of
the infinitely many virtual particles of the vacuum, together with the finitely many
real particles (they could be electrons or positrons). Indeed, it is important to real-
ize that in this model there is no a priori possible distinction between the real and
the virtual particles. For N electrons, this would correspond to a decomposition
of the form P = Pvac + γ where γ is an orthogonal projector of rank N satisfying
Pvacγ = γPvac = 0 (for N positrons, this becomes P = Pvac − γ). But there are
infinitely many such decompositions for a given P and a given N : it will only be for
the final solution of our equation that this decomposition will be done in a natural
way.

For the sake of simplicity, we take c = 1 except at the very end of this section.
We recall that in this case an additional parameter α = e2 appears, where e is the
charge of the electron. The energy in the state P of our system in the presence of
an external field V = −αν ∗ | · |−1 is then formally given by [86]

(112) EνQED(P ) := Eν(P − 1/2)

where Eν is the Dirac-Fock functional expressed in term of the density matrix, see
(98),

(113) Eν(Γ) := tr(D1Γ)− α
∫

R3

(
ν ∗ 1

| · |

)
(x)ρΓ(x) dx

+
α

2

∫∫

R3×R3

ρΓ(x)ρΓ(y)

|x− y| dx dy − α

2

∫∫

R3×R3

|Γ(x, y)|2
|x− y| dx dy.

The density of charge ν which creates the field V can for instance represent a system
of nuclei in a molecule. But in the following we shall not allow pointwise nuclei as
we did for the Dirac-Fock model, and ν will essentially be an L1

loc function. This is
not important for pointwise particles do not exist in nature.

The subtraction of half the identity in (112) is a kind of renormalization which
was introduced by Heisenberg [88] and has been widely used by Schwinger (see [146,
Eq. (1.14)], [147, Eq. (1.69)] and [148, Eq. (2.3)]) as a necessity for a covariant
formulation of QED. The importance of this renormalization will be clarified below.

Before we come to the problems of definition of the above energy (which are
numerous), let us mention briefly how EνQED is supposed to be used. There are
two possibilities. If one wants to find the state of the vacuum alone in the field
V (no particle at all), then one has to minimize P 7→ Eν(P − 1/2) on the whole
set of orthogonal projectors. When ν = 0, one should obtain the free vacuum,
a translation-invariant projector which is supposed to be physically unimportant.
When ν 6= 0, one should obtain the polarized vacuum in the presence of the field
V . It can formally be seen that such a minimizer P should be a solution of the
following nonlinear equation:

(114) P = χ(−∞,0)

(
D1 + α(ρ[P−1/2] − ν) ∗

1

| · | − α
(P − 1/2)(x, y)

|x− y|

)
.

If one wants to describe a system containing N real particles (or more correctly of
total charge−eN), then one has to minimize P 7→ Eν(P−1/2) under the additional
constraint tr(P − 1/2) = N . Usually this will provide us with a projector P which
describes adequately the state of a system of charge −eN interacting with Dirac’s
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vacuum. It is formally solution of the following nonlinear equation

(115) P = χ(−∞,µ]

(
D1 + α(ρ[P−1/2] − ν) ∗

1

| · | − α
(P − 1/2)(x, y)

|x− y|

)
,

µ being a Lagrange multiplier due to the charge constraint. If ν is not too strong,
the mean-field operator

D := D1 + α(ρ[P−1/2] − ν) ∗
1

| · | − α
(P − 1/2)(x, y)

|x− y|

will have exactlyN eigenvalues in [0, µ] (counted with their multiplicity). Therefore,
there will be a natural decomposition

P = χ(−∞,0) (D) + χ[0,µ] (D) = χ(−∞,0) (D) +
N∑

ℓ=1

ϕi ⊗ ϕi

where the ϕi’s are solutions of

(116) Dϕk = εk ϕk, εk > 0,

which is the natural decomposition between the real and the virtual particles men-
tioned above. It will be shown below that Equations (116) are very close to the
Dirac-Fock equations (93).

The goal is now be to give a mathematical meaning to this program.
First, one has to face an important difficulty: when P is an orthogonal projector

and H is infinite dimensional, then P − 1/2 is never compact. Therefore, none of
the terms of (113) makes sense. In [86], Hainzl, Lewin and Solovej tackled this
problem in the following way: they considered a box CL := [−L/2, L/2)3 of volume
L3 and replaced the ambient space H by the space L2

per(CL) of L2 functions on CL
with periodic boundary conditions, with moreover a cut-off in Fourier space. Doing
so, the problem becomes finite dimensional and everything makes perfect sense.
Then, when no charge constraint is imposed, they took the thermodynamic limit
L → ∞ with the Fourier cut-off fixed and proved that the sequence of minimizers
converges to a limiting projector P satisfying equation (114). In this way, they
could give a meaning to the minimization of the QED functional (112) and to the
equation (114). Moreover, they also obtained the so-called Bogoliubov-Dirac-Fock
(BDF) energy which attains its minimum at the limit state P . This energy has been
studied by Hainzl, Lewin and Séré in [83, 84, 85]. In the following, we describe all
these results in more detail.

Notice that the Fourier cut-off will not be removed in this study. Indeed it is
well-known that QED contains important divergences which are difficult to remove.
Therefore H will be replaced by the functional space

HΛ :=
{
f ∈ L2(R3,C4), supp(f̂) ⊂ B(0,Λ)

}
.

The ideas described in this section have recently been adapted [30] to a nonlinear
model of solid state physics describing nonrelativistic electrons in a crystal with a
defect.



40 MARIA J. ESTEBAN, MATHIEU LEWIN, AND ERIC SÉRÉ

4.1. Definition of the free vacuum. We start by explaining how the free vacuum
was constructed in [86], in the case ν = 0. This is done by defining the energy (113)
for projectors P acting on the finite-dimensional space

HLΛ :=
{
f ∈ L2

per([−L/2, L/2)3,C4), supp(f̂) ⊂ B(0,Λ)
}

= span
{
exp(ik · x), k ∈ (2π/L)Z3 ∩B(0,Λ)

}
.

To define the energy properly, it is necessary to periodize the Coulomb potential
as follows:

WL(x) =
1

L3




∑

k∈(2π)Z3/L
k 6=0

4π

|k|2 e
ik·x + wL2


 ,

where w is some constant which is chosen such that min CL WL = 0 for any L. The
Dirac operator D1 is also easily defined on HLΛ: it is just the multiplication of the
Fourier coefficients by (D1(k))k∈2πZ3/L. Then, one introduces

(117) E0
L(Γ) := trHL

Λ
(D1Γ) + +

α

2

∫∫

CL×CL

WL(x− y)ρΓ(x)ρΓ(y) dx dy

− α

2

∫∫

CL×CL

WL(x− y)|Γ(x, y)|2dx dy ,

for any self-adjoint operator Γ acting on HLΛ. The kernel Γ(x, y) of Γ is easily
defined since HLΛ is finite-dimensional. Its density ρΓ is then defined as ρΓ(x) :=
trC4(Γ(x, x)). A translation-invariant operator T acting on HLΛ is by definition a
multiplication operator in the Fourier domain. In this case, one has T (x, y) =
f(x− y) for some f and therefore ρT is constant. The identity of HLΛ, denoted by
ILΛ is an example of a translation-invariant operator.

The first result proved in [86] is the following:

Theorem 29. (QED mean-field minimizer in a box [86]) Assume that 0 ≤ α < 4/π,
Λ > 0 and that L is large enough. Then the functional E0

L has a unique minimizer
Γ0
L on the convex set

GLΛ :=
{
Γ ∈ L(HLΛ), Γ∗ = Γ, −ILΛ/2 ≤ Γ ≤ ILΛ/2

}
.

It is invariant by translation and satisfies ρΓ0
L
≡ 0. Moreover, it takes the form

Γ0
L = P0

L − ILΛ/2 where P0
L is an orthogonal projector on HLΛ.

Notice that in the definition of the variational set GLΛ , we did not consider only
operators taking the form P−ILΛ/2 , where P is an orthogonal projector as suggested
by (112), but we indeed extended the energy functional to the convex hull of this
set. But, as usual in Hartree-Fock type theories [112], the global minimizer is always
an extremal point, i.e. a state taking the form P − ILΛ/2.

Of course, it can easily be shown that P0
L satisfies an equation similar to (114)

with ν removed and 1/|x| replaced by WL. But we do not give the details since we
are more interested in the limit of P0

L as L→∞.

To be able to state the thermodynamic limit correctly, one needs first to introduce
the translation-invariant projector P0

− acting on HΛ, which will be the limit of the
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sequence (P0
L)L. The identity of HΛ is denoted by IΛ. We introduce

(118)

T (A) =
1

(2π)3

∫

B(0,Λ)

trC4 [D0(p)A(p)]dp− α

(2π)5

∫∫

B(0,Λ)2

trC4 [A(p)A(q)]

|p− q|2 dp dq

for any A belonging to the convex set

AΛ := {A translation-invariant on HΛ, A
∗ = A, −IΛ/2 ≤ A ≤ IΛ/2} .

It will be shown in Theorem 31 below that T represents the energy per unit volume
of translation-invariant operators. For this reason, one now considers the minimiza-
tion of T on AΛ. The following was proved in [86]:

Theorem 30. (Definition of the free vacuum [86]) Assume that 0 ≤ α < 4/π and
Λ > 0. Then T possesses a unique global minimizer Γ0 on AΛ. It satisfies the
self-consistent equation

(119)






Γ0 = − sgn(D0)

2
,

D0 = D1 − α
Γ0(x, y)

|x− y|
or, written in terms of the translation-invariant projector P0

− = Γ0 + IΛ/2,

(120) P0
− = χ(−∞,0)

(
D0
)
.

Moreover, D0 takes the special form, in the Fourier domain,

(121) D0(p) = g1(|p|)α · p+ g0(|p|)β
where g0, g1 ∈ L∞([0,Λ),R) are such that 1 ≤ g1(x) ≤ g0(x) for any x ∈ [0,Λ),
and therefore

(122) |D1(p)|2 ≤ |D0(p)|2 ≤ g0(|p|)|D1(p)|2.
The self-consistent equation (119) has already been solved by Lieb and Siedentop

in a different context [115]. They used a fixed point method only valid when
α log Λ ≤ C for some constant C.

As shown by the next result, the negative spectral projector P0
− of the Dirac-

type operator D0 represents the free vacuum, as it is the limit of the sequence
P0
L when L → ∞. An important property of Γ0 showing the usefulness of the

subtraction of half the identity in (112) is the following. Due to

P0
−(p)− IΛ(p)/2 = Γ0(p) = −g1(|p|)α · p+ g0(|p|)β

2|D0(p)| ,

one infers

trC4(Γ0(p)) = trC4 [(P0
− − IΛ/2)(p)] = 0 ,

for any p ∈ B(0,Λ), the Pauli matrices being trace-less. This has the important
consequence that the (constant) density of charge of the free vacuum vanishes:

ρΓ0 ≡ (2π)−3

∫

B(0,Λ)

trC4(Γ0(p)) dp = 0,

which is physically meaningful. This formally means that

(123) “ tr
(
P0
− − IΛ/2

)
=

∫

R3

ρΓ0 dx = 0 ”.
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We notice that P0
− is not Dirac’s original choice P 0

− (except when α = 0) because
the interaction between the particles (the virtual and the real ones) is taken into
account by the model. Notice also that Equation (120) is exactly the same as (114)
with ν = 0, due to (119).

As a consequence of (121), the spectrum of D0 is

σ(D0) =
{
±
√
g0(|p|)2 + g1(|p|)2|p|2, p ∈ B(0,Λ)

}
.

It has a gap which is greater than the one of D0, by (122):

(124) 1 ≤ m(α) := min σ(|D0|).
In [85], it is proved that when α ≪ 1, then m(α) = g0(0) and conjectured this is
true for any 0 ≤ α < 4/π. Notice that the following expansion is known [115, 86]:
g0(0) = 1 + α

π arcsinh(Λ) + O(α2).

σ
(
D0
)

P0
−

Figure 2. The free vacuum P0
− is the negative spectral projector

of the translation-invariant operator D0.

We are now able to state the thermodynamic limit, as proved in [86]

Theorem 31. (Thermodynamic limit in the free case [86]) Assume that 0 ≤ α <
4/π and Λ > 0. Then, one has

lim
L→∞

E0
L(Γ0

L)

L3
= min

AΛ

T ,

where we recall that Γ0
L is the unique minimizer of E0

L defined in Theorem 29.
Moreover, P0

L = Γ0
L + ILΛ/2 converges to P0

− in the following sense:

lim
L→∞

∥∥P0
L − P0

−

∥∥
S∞(HL

Λ)
= lim

L→∞
sup

p∈(2πZ3/L)∩B(0,Λ)

|P0
L(p)− P0

−(p)| = 0.

4.2. The Bogoliubov-Dirac-Fock model. Now that the free vacuum P0
− has

been correctly defined, we will be able to introduce the Bogoliubov-Dirac-Fock
(BDF) energy as studied in [83, 84, 85, 86]. Formally, it measures the energy (112)
of a state P , relatively to the (infinite) energy of the free vacuum P0

−. It will only

depend on P − P0
− and reads formally:

“ EνBDF(P − P0
−) = EνQED(P )− E0

QED(P0
−)

= Eν(P − IΛ/2)− E0(P0
− − IΛ/2)(125)

= tr
(
D0Q

)
− α

∫∫

R3×R3

ρQ(x)ν(y)

|x− y| dx dy

+
α

2

∫∫

R3×R3

ρQ(x)ρQ(y)

|x− y| dx dy − α

2

∫∫

R3×R3

|Q(x, y)|2
|x− y| dx dy ”,(126)

with Q = P −P0
−. This new energy looks again like a Hartree-Fock type functional

except that our main variable is Q = P−P0
−, which measures the difference between

our state and the (physically unobservable) translation-invariant free vacuum P0
−.

The energy (126) was introduced and studied by Chaix-Iracane in [36] (see also
Chaix-Iracane-Lions [37]). An adequate mathematical formalism was then provided
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by Bach, Barbaroux, Helffer and Siedentop [6] in the free case ν = 0, and by Hainzl,
Lewin and Séré [83, 84] in the external field case ν 6= 0. However, in all these works
a simplified version was considered: D0 and P0

− were replaced by Dirac’s choice D1

and P 0
−. As mentioned in [86], although the choice of P0

− for the free vacuum is
better physically, the two models are essentially the same from the mathematical
point of view: the main results of [6, 83, 84] can be easily generalized to treat the
model in which D0 and P0

− are used.
What is gained with (126) is that Q can now be a compact operator (it will

be Hilbert-Schmidt, indeed) and, thanks to the Fourier cut-off Λ, many of the
terms in (126) will be mathematically well-defined. However, it will be necessary
to generalize the trace functional to define correctly the kinetic energy tr

(
D0Q

)
.

This is done by introducing the following space

S
P0

−

1 (HΛ) :=
{
Q ∈ S2(HΛ) | P0

−QP0
−, P0

+QP0
+ ∈ S1(HΛ)

}
,

with the the usual notation

Sp(HΛ) := {A ∈ L(HΛ), tr(|A|p) <∞}.

An operator Q belonging to S
P0

−

1 (HΛ) is said to be P0
−-trace class. For any such

Q ∈ S
P0

−

1 (HΛ), we then define its P0
−-trace as

trP0
−
(Q) := tr(P0

−QP0
−) + tr(P0

+QP0
+).

Due to the fact that the free vacuum has a vanishing charge (123), trP0
−
(Q) can be

interpreted as the charge of our state P = Q+ P0
−. We refer to [83] for interesting

general properties of spaces of the form SP ′

1 (H) for any projector P ′ and infinite-
dimensional Hilbert space H .

Thanks to the cut-off in Fourier space, the charge density ρQ of an operator

Q ∈ S
P0

−

1 is well-defined in L2(R3,R), via

ρ̂Q(k) = (2π)−3/2

∫

B(0,Λ)

trC4

(
Q̂(p+ k/2, p− k/2)

)
dp.

Finally, the following notation is introduced

D(f, g) = 4π

∫
f̂(k)ĝ(k)

|k|2 dk ,

for any (f, g) ∈ L2(R3,R)2, which coincides with
∫∫

R3×R3 f(x)g(y)|x − y|−1dx dy
when f and g are smooth enough.

It is possible now to define the Bogoliubov-Dirac-Fock energy as [83, 84, 86]
(127)

EνBDF(Q) := trP0
−
(D0Q)− αD(ρQ, ν) +

α

2
D(ρQ, ρQ)− α

2

∫∫

R6

|Q(x, y)|2
|x− y| dx dy ,

where

(128) Q ∈ QΛ :=

{
Q ∈ S

P0
−

1 (HΛ), −P0
− ≤ Q ≤ P0

+

}
.

It is proved in [85] that any Q ∈ S
P0

−

1 (HΛ) automatically has its density ρQ in the
following so-called Coulomb space:

(129) C = {f | D(f, f) <∞} ,
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which is the natural space for defining the terms depending on ρQ in (127). Notice
that the set QΛ is one more time the convex hull of our initial states P −P0

− where
P is an orthogonal projector on HΛ. The following was proved:

Theorem 32 (The BDF energy is bounded-below [37, 6, 83, 84, 86]). Assume that
0 ≤ α < 4/π, Λ > 0 and that ν ∈ C.
(i) One has

∀Q ∈ QΛ, EνBDF(Q) +
α

2
D(ν, ν) ≥ 0 ,

and therefore EνBDF is bounded from below on QΛ.

(ii) If moreover ν = 0, then E0
BDF is non-negative on QΛ, 0 being its unique mini-

mizer.

The boundedness from below of the BDF energy is an essential feature of the
theory. It shows the usefulness of the inclusion of the vacuum effects in the model.
The interpretation of (ii) is the following: by (125), it proves that the free vacuum
P0
− is the unique minimizer of the (formal) QED energy in the set of all the projec-

tors P which are such that P −P0
− ∈ QΛ. In the previous subsection (Theorem 30),

it was also proved that P0
− is the unique minimizer of the energy per unit volume

T . These are two different ways of giving a mathematical meaning to the fact that
P0
− is the unique minimizer of the QED energy when no external field is present.
The case ν = 0, (ii) in Theorem 32, was proved by Bach, Barbaroux, Helffer

and Siedentop [6]. In this paper, the authors also study a relativistic model, but
with vacuum polarization neglected (see Section 4.5 below). They were inspired of
a paper by Chaix, Iracane and Lions [37]. Then, it has been argued in [83, 84, 86]
that the proof of the case ν 6= 0, (i) in Theorem 32, is a trivial adaptation of [6].

Now that EνBDF has been shown to be bounded-below, it is natural to try to
minimize it. Actually, we shall be interested in two minimization problems. The
first is the global minimization of EνBDF in the whole set QΛ. As mentioned above,
a global minimizer of the mean-field QED energy EνQED and therefore of the BDF

energy EνBDF (they formally differ by an infinite constant !) is interpreted as the
polarized vacuum in the external electrostatic field −αν ∗ | · |−1. If one wants to
describe a system of charge −eN , one has to minimize EνBDF in the Nth charge
sector:

QΛ(N) :=
{
Q ∈ QΛ | trP0

−
(Q) = N

}
.

These two minimization problems will be tackled in the following two subsections.
Let us also notice that the boundedness from below of the BDF energy (127) has

been used by Hainzl, Lewin and Sparber in [87] to prove the existence of global-in-
time solutions to the time-dependent nonlinear equation associated with the BDF
functional:

(130) i
d

dt
P (t) = [D(P (t)−P0

−) , P (t)]

where [·, ·] is the usual commutator and

DQ := D0 + α(ρQ − ν) ∗
1

| · | − α
Q(x, y)

|x− y|
(indeed, like in [83, 84], the model for which P0

− and D0 are replaced by P 0
− and D1

was considered, but the proof holds similarly in the case of (130)). Global solutions
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are shown to exist for any initial orthogonal projector

P (0) ∈ P0
− + S2(HΛ).

For nonlinear Dirac theories, it is usually quite difficult to prove the existence
of global solutions (see the comments in Section 1.6). Here, the proof is highly
simplified by the important property that the BDF energy EνBDF, which is conserved
along solutions of (130), is bounded-below and coercive.

Let us now give the proof of Theorem 32, which is a simple adaptation of argu-
ments of [6].

Proof of Theorem 32. Let be Q ∈ QΛ, and therefore satisfying the operator
inequality

(131) −P0
− ≤ Q ≤ P0

+.

It is easily proved that (131) is equivalent to

(132) Q2 ≤ Q++ −Q−−

where Q++ := P0
+QP0

+ and Q−− := P0
−QP0

−. This now implies that

(133) 0 ≤ tr(|D0|Q2) ≤ trP0
−
(D0Q)

which shows that the kinetic energy is non-negative. We now use Kato’s inequality
(44) and Equation (122) to obtain

∫∫

R3×R3

|Q(x, y)|2
|x− y| dx dy ≤

π

2
tr(|D1|Q2) ≤ π

2
tr(|D0|Q2).

Together with (133), this implies

EνBDF(Q) ≥
(
1− απ

4

)
tr(|D0|Q2)− α

2
D(ν, ν),

which easily ends the proof of Theorem 32. ⊔⊓

4.3. Global minimization of EνBDF: the polarized vacuum. The existence of
a global minimizer of EνBDF has been proved by Hainzl, Lewin and Séré, first in [83]

by a fixed-point argument valid only when α
√

log Λ ≤ C1 and αD(ν, ν)1/2 ≤ C2,
and then by a global minimization procedure in [84], valid for any cut-off Λ and
0 ≤ α < 4/π. The precise statement of the latter is the following:

Theorem 33 (Definition of the polarized vacuum [83, 84, 86]). Assume that 0 ≤
α < 4/π, Λ > 0 and that ν ∈ C. Then EνBDF possesses a minimizer Q̄ on QΛ such
that P = Q̄+ P0

− is an orthogonal projector satisfying the self-consistent equation

(134) P = χ(−∞,0)

(
DQ̄
)
,

DQ̄ = D0 + α
(
ρQ̄ − ν

)
∗ 1

| · | − α
Q̄(x, y)

|x− y|(135)

= D1 + α
(
ρ[P̄−−1/2] − ν

)
∗ 1

| · | − α
(P̄− − 1/2)(x, y)

|x− y| .(136)

Additionally, if α and ν satisfy

(137) 0 ≤ απ
4

{
1− α

(
π

2

√
α/2

1− απ/4 + π1/6211/6

)
D(ν, ν)1/2

}−1

≤ 1,
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then this global minimizer Q̄ is unique and the associated polarized vacuum is neu-
tral, i.e. Q̄ ∈ QΛ(0):

(138) trP0
−
(Q̄) = trP0

−
(P̄− − P0

−) = 0.

The proof consists in showing that EνBDF is lower semi-continuous for the weak-∗
topology of QΛ. For this purpose, one shows that, in the electron-positron field,
any mass escaping to infinity takes away a positive energy. This is the so-called di-
chotomy case of the concentration-compactness principle [117]. To prove (138), one
first shows that trP0

−
(P̄−−P0

−) is always an integer, then one applies a continuation

argument.
Notice that the definition (119) of D0 has been used to obtain (136) from (135).

Of course, equations (134) and (136) are exactly the one we wanted to solve in
the beginning (114). For not too strong external densities ν, a neutral vacuum
is necessarily obtained, as shown by (138). But in general, a charged polarized
vacuum could be found.

σ
(
DQ̄
)

P
Figure 3. The polarized vacuum P in the presence of the exter-
nal density ν is the negative spectral projector of the mean-field
operator DQ̄.

In [86], a thermodynamic limit was considered as for the free case ν = 0, to
justify the formal computation (126) when ν 6= 0. As before, the QED energy is
well-defined in a box CL = [−L/2, L/2)3 with periodic boundary conditions and a
cut-off in Fourier space by

(139) EνL(Γ) := E0
L(Γ)− α

∫∫

CL×CL

WL(x− y)ρΓ(x)νL(y) dx dy,

where

(140) νL(x) =
(2π)3/2

L3

∑

k∈(2πZ3)/L

ν̂(k)eik·x,

(for simplicity, it is assumed that ν̂ is a smooth function). Then the following was
proved in [86].

Theorem 34 (Thermodynamic limit with external field [86]). Assume that 0 ≤
α < 4/π, Λ > 0, ν ∈ C and that ν̂ is continuous on B(0,Λ). Then for any L, EνL
possesses a minimizer ΓL = PL− ILΛ/2 on GLΛ where PL is an orthogonal projector,
and one has

(141) lim
L→∞

{
EνL(ΓL)− E0

L(Γ0
L)
}

= min {EνBDF(Q), Q ∈ QΛ} .

Moreover, up to a subsequence, QL(x, y) := (ΓL − Γ0
L)(x, y) = (PL − P0

L)(x, y)
converges uniformly on compact subsets of R6 to Q̄(x, y), a minimizer of EνBDF on
QΛ.

Since all the previous results hold for any fixed Λ, it would be natural to consider
the limit Λ→∞. This was done in [84] where it is argued that this limit is highly
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unphysical: the vacuum polarization density totally cancels the external density
ν. In QED, this “nullification” of the theory as the cut-off Λ diverges was first
suggested by Landau [106] and later studied by Pomeranchuk et al. [132].

Notice that in QED, the procedure of renormalization is often used to formally
remove the cut-off Λ and the divergence of the theory. It consists in assuming
that the parameter α is not the physical one but the bare one. The physical
αphys ≃ 1/137 is related to α by a formula of the form

αphys ≃
α

1 + 2α log Λ/(3π)
.

When αphys is fixed at its physical value, then necessarily Λ ≤ 10280, meaning
that the large Λ limit should not be considered in principle. In the case where the
exchange term is neglected in the energy (the so-called reduced BDF model), this
renormalization procedure has been studied in detail in [84].

4.4. Minimization of EνBDF in charge sectors. The previous subsection was de-
voted to the global minimization of the BDF energy. We now mention some results
that have been obtained in [85] for the minimization with a charge constraint. It
is believed that the charge constrained BDF model can be obtained as the thermo-
dynamical limit of the full QED model in a fixed charge sector and posed in a box
with periodic boundary conditions, but this has not been shown yet.

Due to the charge constraint and like for the Hartree-Fock model for instance,
minimizers will not always exist for the BDF functional: it depends whether the
external electrostatic potential created by the charge distribution ν is strong enough
to be able to bind the N particles in presence of the Dirac sea. On the other hand,
it must not be too strong otherwise electron-positron pairs could appear.

We start with a general result proved in [85] providing the form of a minimizer, if
it exists. To this end, we introduce the minimum energy in the Nth charge sector:

(142) Eν(N) := inf
{
EνBDF(Q) | Q ∈ QΛ, trP0

−
(Q) = N

}
.

In principle N could be any real number, but here, for simplicity, we shall restrict
ourselves to integers.

Theorem 35 (Self-Consistent Equation of a BDF Minimizer [85]). Let be 0 ≤ α <
4/π, Λ > 0, ν ∈ C and N ∈ Z. Then any minimizer Q solution of the minimization
problem (142), if it exists, takes the form Q = P − P0

− where

(143) P = χ(−∞,µ](DQ) = χ(−∞,µ]

(
D0 + α(ρQ − ν) ∗ 1/| · | − αQ(x, y)

|x − y|

)
,

for some µ ∈ [−m(α),m(α)].

Recall that m(α) is the threshold of the free operator D0 defined in (124). We
remark that (143) implicitly means that the last eigenvalue below µ of the mean-field
operator DQ is necessarily totally filled. As already mentioned in the Dirac-Fock
case, this is a general fact for Hartree-Fock type theories [7]. For a minimizer of
the form (143) and when N,µ > 0, it is natural to consider the decomposition

P = Π + χ[0 , µ](DQ),

where Π is the polarized Dirac sea:

Π := χ(−∞ , 0)(DQ).
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For not too strong external potentials, the vacuum will be neutral, i.e.

trP0
−
(Π− P0

−) = 0 ,

and therefore χ[0 , µ](DQ) will be a projector of rank N :

χ[0,µ](DQ) =

N∑

n=1

ϕn ⊗ ϕ∗
n, DQϕn = εnϕn ,

where ε1 ≤ · · · ≤ εN are the first N positive eigenvalues of DQ counted with their
multiplicity. Notice that

(144) DQ = D1 + α(ρΦ − ν) ∗
1

| · | − α
γΦ(x, y)

|x− y|

+ αρ[Π−IΛ/2] ∗
1

| · | − α
(Π− IΛ/2)(x, y)

|x− y| ,

where

γΦ := χ[0,µ](DQ) =
N∑

n=1

ϕn ⊗ ϕ∗
n, ρΦ(x) := trC4(γΦ(x, x)) =

N∑

n=1

|ϕn(x)|2.

In the first line of (144), the Dirac-Fock operator associated with (ϕ1, ..., ϕN ) ap-
pears, see (95). This shows that the electronic orbitals ϕi are solutions of a Dirac-
Fock type equation in which the mean-field operator DΦ is perturbed by the (self-
consistent) potentials of the Dirac sea Π − IΛ/2. In practice, these potentials are
small, and the DF equations are a good approximation of the BDF equations for
the electronic orbitals. But the energy functionals behave in a completely different
way: as we have seen, the DF energy is strongly indefinite while the BDF energy
is bounded below. The Dirac-Fock model is thus interpreted as a non-variational
approximation of the mean-field model of no-photon QED [36].

σ (DQ)

Π ϕi’s

P
µ

Figure 4. Decomposition of the system ‘vacuum + N electrons’
for the solution P = Π + γΦ in the Nth charge sector.

Concerning the existence of a minimizer, solution of (143), the following result
was proved in [85]:

Theorem 36 (Binding Conditions and Existence of a BDF Minimizer [85]). Let
be 0 ≤ α < 4/π, Λ > 0, ν ∈ C and N ∈ Z. Then the following two assertions are
equivalent:

(H1) Eν(N) < min
{
Eν(N −K) + E0(K), K ∈ Z \ {0}

}
.

(H2) Each minimizing sequence (Qn)n≥1 for Eν(N) is precompact in QΛ and con-
verges, up to a subsequence, to a minimizer Q of Eν(N).
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Conditions like (H1) appear classically when analyzing the compactness proper-
ties of minimizing sequences, for instance by using the concentration-compactness
principle of P.-L. Lions [117]. They are also very classical for linear models in which
the bottom of the essential spectrum has the form of the minimum in the right hand
side of (H1), as expressed by the HVZ Theorem [94, 162, 170]. Assume N > 0 for
simplicity. When 0 < K ≤ N , (H1) means that it is not favorable to let K electrons
escape to infinity, while keeping N −K electrons near the nuclei. When K < 0, it
means that it is not favorable to let |K| positrons escape to infinity, while keeping
N + |K| electrons near the nuclei. When K > N , it means that it is not favorable
to let K electrons escape to infinity, while keeping K−N positrons near the nuclei.
When α is small enough and N > 0, it was shown in [85] that the separation of
electron-positron pairs is not energetically favorable, so that one just needs to check
(H1) for K = 1, 2, ..., N .

To prove the existence of a minimizer, one can therefore prove that (H1) holds.
Two situations in which (H1) is true have been provided by Hainzl, Lewin and Séré
in [85]. The first one is the case of weak coupling α ≪ 1 and αν = ν̄ fixed (the
charge N is also fixed). The following was proved:

Theorem 37 (Existence of a minimizer in the weak coupling limit [85]). Assume
that Λ > 0, that N is a non-negative integer, and that ν̄ ∈ C is such that

(1) the spectrum σ(D0− ν̄∗|· |−1) contains at least N positive eigenvalues below
1,

(2) ker(D0 − tν̄ ∗ | · |−1) = {0} for any t ∈ [0, 1].

Then (H1) holds in Theorem 36 for α small enough and αν = ν̄, and therefore
there exists a minimizer Qα of Eν̄/α(N). It takes the form

(145) Qα = χ(−∞,0] (DQα)− P0
− + χ(0,µα] (DQα) := Qvac

α +
N∑

i=1

|ϕαi 〉〈ϕαi |

(146) DQαϕ
α
i = εαi ϕ

α
i

where εα1 ≤ · · · ≤ εαN are the N first positive eigenvalues of DQα . Finally, for
any sequence αn → 0, (ϕαn

1 , ..., ϕαn

N ) converges (up to a subsequence) in HΛ to
(ϕ1, ..., ϕN ) which are N first eigenfunctions of D0 − ν̄ ∗ | · |−1 and Qvac

αn
converges

to χ(−∞;0)

(
D0 − ν̄ ∗ | · |−1

)
− P 0

− in S2(HΛ).

The second situation provided in [85] is the case of the non-relativistic regime
c ≫ 1. To state the result correctly, we reintroduce the speed of light c in the
model (of course, we shall then take α = 1). The expression of the energy and
the definition of the free vacuum P0

− (which of course then depends on c and the
ultraviolet cut-off Λ) are straightforward. We denote by Eνα,c,Λ(N) the minimum

energy of the BDF functional depending on the parameters (α, c,Λ). The following
was proved:

Theorem 38 (Existence of a minimizer in the non-relativistic limit [85]). Assume
that α = 1 and that the ultraviolet cut-off is Λ = Λ0c for some fixed Λ0. Let be
ν ∈ C ∩ L1(R3,R+) with

∫
R3 ν = Z, and N a positive integer which is such that

Z > N−1. Then, for c large enough, (H1) holds in Theorem 36 and therefore there
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exists a minimizer Qc for Eν1,c,Λ0c
(N). It takes the following form:

Qc = χ(−∞,0)(DQ)− P0
− + χ[0,µc)(DQ) = Qvac

c +

N∑

i=1

|ϕci 〉〈ϕci | ,

and one has

lim
c→∞

{
Eν1,c,Λ0c(N)−Ng0(0)

}
= min

Φ̄∈H1(R3,C2)N

Gram Φ̄=1

EHF(Φ̄).

Moreover, for any sequence cn →∞, (ϕcn
1 , ..., ϕcn

N ) converges in H1(R3,C4)N (up

to a subsequence) towards (ϕ1, ..., ϕN ) with ϕi =
(ϕ̄i

0

)
, and where Φ̄0 = (ϕ̄1, ..., ϕ̄N )

is a global minimizer of the Hartree-Fock energy.

We notice that this result is very similar to Theorem 26 providing the convergence
of the Dirac-Fock ‘ground state’ in the non-relativistic limit.

4.5. Neglecting Vacuum Polarization: Mittleman’s conjecture. In view of
the complications introduced by the Dirac sea, some authors [5, 6, 14] considered
an approximate model in which the vacuum polarization is neglected, in the spirit
of a paper by Mittleman [124]. In this subsection, we shall keep the speed of light
c and therefore take α = 1.

In the vacuum case, a possible way to describe Mittleman’s approach is first to
write that the global minimizer P − 1/2 constructed in Theorem 33 is formally a
solution of the following tautological max-min principle:

(147) e = sup
P

P 2=P

inf
γ

−P≤γ≤1−P

{
EνQED(P + γ)− EνQED(P )

}
.

Indeed taking γ = 0, one finds that e ≤ 0. Saying that P is a global QED minimizer
exactly means that

min
γ

−P≤γ≤1−P

{
EνQED(P + γ)− EνQED(P)

}
= 0.

Then, the idea is to approximate (147) by neglecting the vacuum polarization terms
coming from P . One has formally

(148) EνQED(P + γ)− EνQED(P ) = tr(DPγ)−
∫∫

R3×R3

ργ(x)ν(y)

|x− y| dx dy

+
1

2

∫∫

R3×R3

ργ(x)ργ(y)

|x− y| dx dy − 1

2

∫∫

R3×R3

|γ(x, y)|2
|x− y| dx dy

with

DP := Dc + ρ[P−1/2] ∗
1

| · | −
(P − 1/2)(x, y)

|x− y| .

Neglecting the vacuum polarization potentials then simply amounts to replacing
DP by the free Dirac operator Dc. The following max-min principle was studied
by Bach, Barbaroux, Helffer and Siedentop in [6], inspired by Mittleman [124]:

(149) eν,cMitt = sup
P,

P 2=P=P∗

inf
γ∈S1(HΛ),
−P≤γ≤1−P

Eν,cP (γ)
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where Eν,cP is defined as

(150) Eν,cP (γ) := tr(Dcγ)−D(ν, ργ) +
1

2
D(ργ , ργ)−

1

2

∫∫

R6

|γ(x, y)|2
|x− y| dx dy

on the set depending on P :

Γ(P ) := {γ ∈ S1(H), |∇|γ ∈ S1(H), −P ≤ γ ≤ 1− P}.
The advantage of this formulation is that, since the vacuum polarization has been
neglected, no divergence problem is encountered and (149) can be studied without
any Fourier cut-off (i.e. H = H1/2(R3,C4)), and with pointwise external charges
(i.e. ν = Zδ0 where δ0 is the Dirac distribution at the point 0 ∈ R

3). The following
was proved in [6]:

Theorem 39 (Mittleman Principle for the Vacuum [6]). Assume that ν = Zδ0 for
some Z ≥ 0 and that c > 0 satisfies 4c(1− 2Z/c)/π ≥ 1. Then

P̄c := χ(−∞,0)(Dc − Z/|x|)
is the unique solution of Mittleman’s max-min principle

(151) eν,cMitt = sup
P∈S

inf
γ∈Γ(P )

Eν,cP (γ),

where S denotes the set of all the orthogonal projectors P which are such that P
and 1− P leave the domain of Dc − Z/|x| invariant. Moreover, eν,cMitt = 0.

As a consequence, when vacuum polarization is neglected, the Dirac sea is rep-
resented by the negative spectral projector of the operator Dc − Z/|x|.

The N electron case was studied by Mittleman in [124]. His main idea was to
justify the validity of the Dirac-Fock approximation by a type of max-min principle
from QED in which vacuum polarization is neglected. Let us introduce the following
max-min principle:

(152) eν,cMitt(N) = sup
P∈S

inf
γ∈Γ(P )
γP=Pγ,
tr(γ)=N

Eν,cP (γ).

The interpretation is that γ represents the N electrons, whereas P is the Dirac sea.
Notice that in this interpretation, the real particles are artificially separated from
the virtual electrons of the Dirac sea. However, it was believed that (152) could be
a simpler problem with interesting practical implications. Remark that compared
to (149), we have added in (152) the condition that γ commutes with P , i.e. it
cannot contain off-diagonal terms. Without this requirement, it is known [4] that
(152) cannot give any solution of the Dirac-Fock equations.

Mittleman’s conjecture consists in saying that the max-min principle (152) is
attained by a solution to the Dirac-Fock system. More precisely, we follow [13] and
state it as:

Mittleman’s conjecture. A solution of (152) is given by a pair

(P, γ) = (χ(−∞,0)(Dc,Φ), γΦ)

where Φ is a solution of the Dirac-Fock equation Dc,Φϕi = εiϕi with εi > 0, and
where Dc,Φ is the Dirac-Fock mean-field operator defined in (95).

Mittleman’s conjecture for molecules has been investigated in [14, 13]. In [14]
Barbaroux, Farkas, Helffer and Siedentop have studied the minimization problem
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on Γ(P ) in (152) for a fixed P . Under suitable conditions, they proved that γ is an

electronic density matrix γ =
∑N
i=1 |ϕi〉〈ϕi|, where (ϕ1, ..., ϕN ) is a solution of the

projected Dirac-Fock equations (1 − P )Dc,Φ(1 − P )ϕi = εiϕi. Then they further
proved that if the energy is stationary with respect to variations of the projector
P , then the unprojected Dirac-Fock are obtained. But they were unable to prove
the existence of such a state.

In [13], Barbaroux, Esteban and Séré investigated the validity of Mittleman’s
conjecture by a perturbation argument. Namely they added a parameter τ in front
of the interaction terms as follows:

(153) Eν,c,τP (γ) := tr(Dcγ)−D(ν, ργ) +
τ

2
D(ργ , ργ)−

τ

2

∫∫

R6

|γ(x, y)|2
|x− y| dx dy.

Here ν is a fixed positive and smooth radial function with compact support and∫
R3 ν = 1. They studied Mittleman’s conjecture in the regime c≫ 1 and τ ≪ 1. We

emphasize that by a scaling argument this physically corresponds to assuming α≪
1 and Z ≫ 1 with αZ ≪ 1. We denote by Eν,c,τDF the Dirac-Fock functional which
is easily defined with these parameters, and by Φc,τ,0 the DF solution obtained by
the corresponding versions of Theorems 23 and 27 for j = 0.

When c > 1, it is known thatDc−ν∗|·|−1 is essentially self-adjoint on L2(R3,C4)
and that its spectrum is as follows:

σ(Dc − ν ∗ | · |−1) = (−∞,−c2] ∪ {µ1(c) < µ2(c) · · · } ∪ [c2,∞),

where limi→∞ µi(c) = c2. We denote by (Ni(c))i≥1 the multiplicities of the µi(c)’s.
The following was proved in [13]:

Theorem 40 (Validity and non validity of Mittleman’s conjecture [13]). Assume
that ν is a fixed positive and smooth radial function with compact support and such
that

∫
R3 ν = 1.

If N =
∑I

i=1Ni(c) for some I ≥ 1 and some fixed c > 1, then Mittleman’s
conjecture is true for τ small enough: one has

eν,c,τMitt (N) = Eν,c,τDF (Φc,τ,0) ,

where Φc,τ,0 is any of the solutions obtained in Theorem 23 in the case j = 0.
Moreover, the optimal projector for the sup part of (152) is P = χ(−∞,0)(Dc,Φc,τ,0).

If N =
∑I

i=1Ni(c)+1 for some I ≥ 1 and c large enough, then Mittleman’s con-
jecture is wrong when τ > 0 is small enough: there is no solution Φ of the Dirac-
Fock equations with positive multipliers such that the pair

(
χ(−∞,0)(Dc,Φ), γΦ

)
re-

alizes Mittleman’s max-min principle (152).

One can consider a weaker version of Mittleman’s conjecture which consists in
only comparing energy levels and not the solutions themselves.

Weaker Mittleman’s conjecture. One has

eν,c,τMitt (N) = Eν,c,τDF (Φc,τ,0).

When N = 1 and for c≫ 1, τ ≪ 1, it is known by Theorem 40 that Mittleman’s
conjecture is wrong. But Barbaroux, Helffer and Siedentop proved in [15] that the
weaker conjecture is indeed true.
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Theorem 41 (Validity of the weaker Mittleman conjecture forN = 1 [15]). Assume
that ν = δ0. Then for c large enough and τ small enough, the weaker Mittleman
conjecture is true:

eν,c,τMitt (N) = Eν,c,τDF (Φc,τ,0).

The sup-inf (152) is realized by the pair
(
P̄c, γ

)
with P̄c = χ(−∞,0)(Dc − 1/|x|), γ = |ϕc〉〈ϕc|

where ϕc is any eigenvector of

(154) Dc − 1/|x|
with eigenvalue eν,c,τMitt (N).

In [15], an explicit condition on τ and c is provided. Notice the equality

Dc,ϕϕ
c = Dc,0ϕ

c = (Dc − 1/|x|)ϕc = eν,c,τMitt (N)ϕc

which is very specific to the one-electron case, and means that the electron does
not “see” its own Coulomb field. In particular P̄cϕ

c = 0.
For N ≥ 2, the question remains completely open.
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[25] H. Brézis and L. Nirenberg. Positive solutions of nonlinear elliptic equations involving
critical Sobolev exponents. Comm. Pure Appl. Math. 36(4) (1983), p. 437–477.
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