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1. Introduction

In this paper we study certain aspects of a model that describes the conductivity in a
disordered material. A disordered material is often modeled in statistical mechanics by
what is known as a network of random resistors. One would like to be able to describe,
for example, what happens in a d-dimensional cubic lattice where each link represents
a resistor whose resistance is a random variable. One of the quantities of interest is
the effective conductivity of such a network. This conductivity could be defined, for
instance, by taking the limit as L goes to infinity of the conductivity o (L) measured on
a cube of side length L.

More generally, a network of random resistors is defined by giving a graph and a
sequence Eij of random variables with 0 < Eij < 0. Zij describes the conductivity of
the link in the graph that connects the vertices ¢ and j. For simplicity one considers in
general families of independent identically distributed random variables. Such models
have been widely studied over the last decades, see for example [Z, K1, Bel, K2, Be2,
BW, SW, BSW, K3, Be3, BO, SS] and for a purely probabilistic approach to the problem
[Bl, EB, W1-2].

The model which we study in this paper belongs to a class of models where one
permits the links to be perfect insulators, that is ¢ = P(Eij =0) > 0, but for which on
the other hand ¥,;; < oo. This situation is interesting, as it presents the phenomenon of
percolation: For g close to one, the links that are conducting form disconnected finite
sets and the effective conductivity of the network is trivially zero. This is not any
longer the case for ¢ close to zero, where the conductivity depends on the resistivity
of the connecting links. As a consequence, a phase transition occurs in the effective
conductivity for a certain critical value of the parameter q. The introduction of the
parameter ¢ permits therefore, through the mechanism of percolation, to obtain a model
that models a critical phenomenon.

The study of phase transitions has progressed enormously with the arrival of renor-
malization group methods. Different types of renormalization schemes have been pro-
posed to describe the phase transition on regular lattices of random resistors, in par-
ticular transformations of the Migdal-Kadanoff type [K3, BO, Bl], and so—called exact
renormalization schemes on hierarchical lattices [SW, Be3, SS].

Some of the difficulties that have to be overcome in a renormalization group study
disappear when one considers hierarchical models. Moreover, these models typically
seem to provide good approximations to more complicated systems [BO].

In Section 1.1 we describe the hierarchical lattice of random resistors for which we
have studied the phase transition in this paper. This lattice has been proposed by [SW]
as an approximation to the square lattice in two dimensions. In Section 1.2, we state
our main result.



1.1. The Model

The hierarchical network that we study in this paper is constructed recursively as indi-
cated in Fig. 1.2.

Fig. 1.1: The hierarchical lattice at order 2.

Consider the mapping on graphs that consists of replacing every link by two pairs
of links. If we start with a graph consisting of one link connecting two sites, then after
applying this operation we end up with four sites and after n applications we end up
with a graph of 4™ links. For n > 1, the network of random resistors that we consider
is obtained after n iterations of the procedure outlined above, and consists of resistors
with conductivities described by 4™ independent copies E(()k) of a random variable 3.

The random variables Egk) are therefore 7.7.d. .

The choice of a hierarchical geometry permits to give a simple formulation of the
effective conductivity of the network, when measured between the two vertices of the
initial link, in terms of a map. Indeed, using the composition laws for conductors
connected in series and in parallel, the conductivity of a circuit that consists of four
resistors with conductivities o,, 0,, 03, 0, arranged in a loop is

(1.1)

If the conductivities o4, 0,, 03, 0, are random, this is also the case for the effective
conductivity o. Therefore, by applying this nonlinear average to each of the loops of
the hierarchical network of order n, we obtain the random variables that describe the
conductivities of the links of the network at the level n — 1. Since the random variables
that were given on the network of order n were i.i.d., the 4" "' random variables that
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are obtained for the network of order n — 1 are also i.i.d.. They are independent copies
of the random variable given by

5 = D5, 557, 557, 2.

By applying successively the nonlinear average D, one can therefore go up the hierarchy
to compute the effective conductivity ¥, of the network of order n. We note that by
applying one more time the average D, to four independent copies of 3, , we obtain the
conductivity ¥, ., of the hierarchical network of order n + 1 made up from resistors

4n+1

with conductivities given by independent copies of the random variable .

We are interested in the limit as n — oo of the sequence Y, that we have just
defined. This limit corresponds to the effective conductivity of our hierarchical network
in the infinite volume limit. It is not difficult to see that our model is an approximation
to the renormalization on a simple square lattice in d = 2 dimensions. In [SW] a detailed
discussion of this approximation can be found. See also [BO]. The questions that arise
naturally are the following. First of all, a phenomenon of self-averaging should lead
to a deterministic effective conductivity for the infinite network. Next, it is interesting
to know in what way this conductivity depends on the conductivity of each link of the
network, that is on the distribution of the initial random variable X,. Finally, once the
convergence of the effective conductivity is established, one can study the fluctuations
of 3, around this limit.

A certain amount of information can easily be obtained by studying the parameter
p, = P(%,, > 0). (1.2)

Recall that we permit the links to be perfect insulators with a nonzero probability. Here,
Do = p is the probability that a resistor of the original (infinite) network is not broken.
From (1.1) it is not difficult to see that the conductivity of a diamond circuit is nonzero
with probability

p=gp)=1-(1-p"" (1.3)

where p is the probability that each of the for resistors has a nonzero conductivity. The
function g is characteristic for percolation problems [G]. The function g is increasing
on the interval [0, 1] and has, in addition to the fixed points at zero and one, a unique
unstable fixed point p_ in the interval (0, 1). The value of p, is,

po= L (1.4)

There are therefore three cases. If p < p_, it follows immediately that p, — 0 as n — oo.
Hence, the effective conductivity of the network is zero with probability one in this case.
For p > p,, one has lim,,_, __ p, = 1. This means that with probability one there is a
path made from resistors with nonzero conductivity that connects the two sites of the
lattice for n = 0. In other words, the percolation threshold of the network is given by p..
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We note that this does not imply that the effective conductivity is nonzero. However,
it has been proved in [W1] that for p > p_ the sequence X, converges with probability
one to a constant o*(p), and in [Sh] that this constant is strictly positive. Therefore,
the percolation threshold corresponds exactly to the phase transition of the effective
conductivity.

At the critical point p = p,, one has p, = p, for all n. This means that the
probability P(X, = 0) is invariant. In the following we are going to be interested in the
part of the distribution of ¥,, supported on (0,00). An argument based on the study
of the expectation of ¥ shows, however, that the effective conductivity of the network
in the infinite volume limit is still zero in this case. Indeed, if we denote by E(X) the
expectation of a random variable X, one has

E(S,,,) =E([D,:ED0,...,5W)) = E(_27_)

n+1

where we have used independence of the random variables. Since, in addition we have
the following inequality between the arithmetic mean and the geometric mean,

< r+vy

2
+1-= 27

8 |~

1
Y

and since the left hand side of this expression is equal to zero if z or y are zero, we can
bound E(X, ) by the expectation of the average of (M and £? over the set where
the random variables are strictly positive. Therefore, one obtains

Since p,, = p,. for all n, we have E(X,)) — 0 as n — oo, and the sequence X, converges
to zero in probability.

The goal of this paper is to describe how the ¥, converge to zero at the critical
point, that is to describe the fluctuations of the ¥, around their limiting value. A
numerical study [SW] of the probability densities of the random variables ¥, indicates
that if one normalizes ¥, with an appropriate factor p,, that fixes the expectation of
the random variable 1,3, at the expectation of ¥, the sequence p,, 3, converges in
distribution to a multiple of a (universal) random variable ¥, and

lim 27+l — \* ~ 1756,

n—00 ,U,n

independently of the choice of . This means that the fluctuations of the effective
conductivity of the network present a certain universality in the limit n — oo: the
limiting probability densities for different initial random variables ¥, distinguish them-
selves only by a change of scale. Furthermore, the probability density for the positive
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values of ¥, decays faster than exponentially at zero and infinity. Therefore, at the
critical point, the behavior of the fluctuations distinguishes itself from the supercritical
case for which a perturbative computation [SS] indicates that the sequence of properly
normalized random variables ¥, converges to a normal distribution (a proof of this fact
will appear in [WW]). Also, since A* < 2, conductance fluctuations can be thought of
as anomalously large compared to the supercritical case.

In this work we address the question of the existence of a positive real number \*
and a random variable ¥, such that

2, =XD sV ... 5", (1.5)

We note that the map D, is homogeneous of degree one and the random variables A¥,
are therefore solutions of (1.5) for all A > 0. The number A* gives the dynamics of
the renormalization group D, at the critical point on the whole of the set AX, and is
related to the critical exponent ¢ that describes the phase transition of the effective
conductivity,

o*(p)~ (p—p,)" P> D0

through the formula, cf. [SW],
log \*

~ logg'(p,)

1.2. Main Result

In order to study the fluctuations of the effective conductivity of our hierarchical network
at the critical point, we work in the framework of functional analysis. The part of the
distribution of the random variables ¥, that interests us is the one that is supported on
(0, 00). One assumes that this part of the distribution of ¥ is absolutely continuous with
respect to Lebesgue measure and one derives the functional equation for the probability
densities that correspond to the nonlinear average (1.1). It turns out to be simpler to
work with the resistivities instead of the conductivities. One considers therefore the
random variables T for the resistivity given by

T=_-.
by

If o is the density of the random variable 3, then the density p of Y is given by
1 1

=T = —o(—). 1.6
ple) = T(0)(2) = —0 () (1.6)
The average D, for the conductivities can be rewritten for the resistivities as
1
D, (ry,...,1y) = —3 T (1.7)
ri+ra + r3+ry



The functional equation for the density D,.(p) of the average (1.7) of four independent
copies of a random variable T with density p is therefore given in terms of the map T’
and the convolution operator. Indeed, the probability density p of a sum of two random
variables with densities p; and p, is given by the convolution of p; and p,, that is by

pl2) = oy 2@ = [ 1wl — 1) (1.9)
Therefore, it follows from (1.7) that
D,(p) =T(T(p*p)*T(p*p))- (1.9)

One observes that, formally, the Dirac—densities 6(z — a) are fixed points of this trans-
formation for all @ > 0. They correspond to the limiting densities in the non-—critical
cases.

In order to obtain an equation for the probability densities with support on (0, co)
we determine the contributions of the four resistors to the finite value of D, (ry,...r,).
By inspecting (1.7), one observes that they are of two types: either r; +r, = co and
T4+ 1, < 0o (with the corresponding symmetric case r; +r, < oo and 73+ r, = 00), or
all of the four resistivities are finite. At the critical point p,, one determines easily that
the probability of the first case is given by

¢, = 2p.(1—p?) =0.763..., (1.10)
whereas the probability of the second case is
cy = p2 = 0.236.... (1.11)

Obviously ¢; 4+ ¢, = 1. Therefore, the operator that acts on the probability densities
and corresponds to the finite part of the map D, on the random variables is given at
the critical point by

D(p) = c1(p* p) + T (T(p* p) x T(p  p))- (1.12)

In order to rewrite the fixed point problem (1.5) in terms of the probability densities,
one uses that for A > 0 the probability density of a random variable T/ is given by
S, p, where p is the probability density of T and where S, is the operator that changes
the scale,

S\flx)y=Af(Ax), A>0. (1.13)
Therefore the fixed point problem (1.5) can be rewritten as
p* = S,.D(p"). (1.14)

The proof of the existence of a real A*and a function p* satisfying (1.14) which
we present here is constructive. In particular, we will be capable of providing explicit
bounds on A* as well as an approximation to the function p*. The graph of the approx-
imation that we have obtained this way is represented in Fig. 1.2.
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Fig. 1.2: The fixed point p*.

The operator (1.12) was studied by mathematically rigorous, computer—assisted,
constructive analysis. Before stating with precision the result that is proved in this
paper, we define the function spaces with which we work. We first define the notation
that will be used later.

Notation. We denote by IR the set of nonnegative real numbers. The set of positive
real numbers will be denoted by R’. For an interval I C IR, we denote by C"(I) the
set of functions that are n times continuously differentiable on I. The derivative of a
function f of one variable will be denoted by f’. For a positive function p, we denote
by L'(R,, u(z) dz) the space of functions defined on R, and integrable with respect
to the measure u(z) dz. Finally W} (R 4+ () dz) is the Sobolev space of functions of

L'(R +» #(x) dz) with one distributional derivative in L'(R 4> #(z) dz). For r > 0 and
x in a metric space, B,.(xz) will denote the open ball of radius r centered at .

Definition 1.1. For «, 8 > 0 and functions w,g given by

We5(T) = exp(% + ﬂa:), (1.15)

we define B,z to be the Banach space L'(R 4 W,ap(7) dr). We denote the norm of
f € Ba,@ by ”f”aﬂ) that iS,

s = [ wap(a) 7). (1.16)
We furthermore define
B= () By (1.17)
a>0
B>0
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Remark 1.2. It is clear that we have the inclusion B, C B4 for 0 > o and 7 > .
The inclusion is strict unless ¢ = « and 7 = S.

We will also need the following definitions of the mass and expectation.

Definition 1.3. We define the mass M (f) of a function f € L* (R,) by

/ f(z (1.18)

If f € L'(R,, (1 +|z|) dz), we define the expectation E(f) by
E(f) = / of(z) da. (1.19)
0

Finally, we will need to exclude functions f such that M (f)E(f) = 0, i.e., functions
in
H={feL'(R",(1+|z[)dz) | M(f)E(f) = 0}. (1.20)

We can now state the main result of this paper.

Theorem 1.4. There exists a real number \* and a function f* € B\'H that satisfy the
equation

f* - S}\*D(f*).
In addition f* has the following two properties

(1) M(f*) =1,
(2) f* € C°(R™).

Note that this theorem does not imply that the fixed point f* is a probability
density, since f* is not necessarily a positive function. While we see strong numerical
evidences for positivity of the fixed point f*, we have no proof of this fact.

Before terminating this section, we summarize in the following lemma some of the
properties satisfied by the maps that are contained in (1.14).

Lemma 1.5. The maps S, form a multiplicative group, ie., S; = I, and S, S, =
Sy, »,+ Moreover, for f and g integrable functions one has

S\(f*g) = S\f * Sy9, (1.21)

If f, g € L'(R,, (1 + |z|) d), then the mass and expectation satisfy the following

identities
M(f) = M(S\f) = M(Tf),
M(f*g)=M(f)M(g),
E(S\f) = SE(f),
E(fxg)= M(f)E( )+ E(f)M(g) .

9

(1.23)



Even though the proof of Theorem 1.4 needs in part a computer for its proof, the
properties (1) and (2) follow directly from the existence of the fixed point. The regularity
of the fixed point will be established later, cf. Proposition 2.3, whereas property (1) is
proved in the following lemma.

Lemma 1.6. Let f € L1(1R+)\’}-[ and let A > 0 arbitrary. If f satisfies f = S,D(f),
then M(f) = 1.

Proof. Using the relations (1.23) together with M(f) # 0, one computes from the
identity M (f) = M(S,D(f)) that

1= M(f) + e, M(f)°.

Using the monotonicity of the function z +— c2m3—|—clx— 1, one verifies that if ¢; +¢, = 1,
then the only zero is given by z, = 1. Therefore, M (f) = 1.

1.3. Computer—Assisted Proofs

The rest of the proof of Theorem 1.4 is the main part of this paper. It is based on a
very large number of inequalities proved rigorously with the help of a computer. The
use of a computer for proving theorems in analysis has become standard by now. This
method, which allows to do constructive functional analysis on a computer, has been
developed by O.E. Lanford in his seminal paper [L1], and has then been generalized by
[EKW2]. This technique of proof has since then been applied to problems of various
origin. See for example [BS, C, CC, dIL, EKW1-2, EW1-2, FL, FS, KP, KSW, KW1-7,
L1-3, LR1-3, M, R, Sel-2, St|.

The proofs constructed up to now have in common that they all deal with spaces of
analytic functions. One important novelty of the work presented here is that a proof is
constructed for function spaces of L'~type. The basic ideas underlying the proof remain
the same, but the generalization to L' spaces uses approximation methods which are
typical in numerical analysis, and we will explain how to control discretization errors in
this context.

A computer—assisted proof is complete once the program has come to an end with-
out a “domain error”.
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2. Organization of the Proof

In order to prove existence of a fixed point f* for the map S,.D, we will rely on the
contraction mapping principle. The following argument shows, however, that S,.D
cannot even be hyperbolic due to the presence of a symmetry. Recall that the nonlinear
average D, is homogeneous of order 1. This causes the scaling operator S, to commute
with D for every A > 0. Hence, existence of a fixed point f* implies existence of a
one parameter family of fixed points {Syf*},5o. In the case E(f*) # 0, this family
can be parameterized by the expectation E (S, f*) = E(f*)/A. We first remove this
symmetry and make the fixed point problem hyperbolic by introducing the family of
maps {N,},s( defined by

NA(D) = Sx(exN S F + T (T(f + ) < TS + 1)) (2.1)

where c, (f) is such that
E(NL(f)) =1. (2.2)

The expression inside the outer brackets on the RHS of (2.1) differs from the map D
only by the coefficient ¢, (f). The following remark relates the maps S, D and N,: If
¢\ (fy) = ¢, for some fixed A > 0 and some f,, then S,D(f,) = N,(f,) by definition
of D and N,. This leads to the following criterion for the existence of a fixed point of
Sy« D.

Lemma 2.1. If there exist a real \* > 0 and a fixed point fy. of Ny. with cy.(fy«) = ¢,
then f,. is solution of the functional equation f = S,.D(f).

To prove existence of A\* and f,., we will study the family {N,} in a neighborhood
(A7, A1) of our best numerical value for A\*. For each value of ) in this neighborhood,
the contraction mapping principle will be used to prove existence of a fixed point f, of
N,. The maps N, are hyperbolic but not contracting in the neighborhood of their fixed
point, due to an unstable direction that, roughly speaking, crosses transversally the
manifold of functions with total mass equal to one. To cope with this problem, we will
adopt later a standard strategy that consists of applying a variant of Newton’s method.
Once the existence of a fixed point f, = N, (f,) is established for all A € [A~, "], we
will show that ¢,- (fy=) < ¢; < ¢+ (fy+)- A continuity argument will finally yield the
existence of a A* € (A7, A") and a function f,. satisfying the hypothesis of Lemma 2.1.

Before entering into more details, we introduce some notation and state a few results
concerning the domains of definition and target spaces of NV,. Using the commutation
and distributivity properties (1.21) and (1.22), one rewrites N, as

NA(F) = ex(DNL(S) + exNR(f) s (2.3)
where

NA() =85(f+ 1), :

NR(f) = T(TNA(f) * TNX(S)) - (2.5)

11



From the condition (2.2), the coefficient ¢, (f) is expressed in terms of the expectation

of N} (f) and NE(f). Since E(N5(f)) = 2M (f)E(f)/) and

SEWE(N) = E(T(T(F + )« T(f + ) = By(f) (2.6)
one gets "
A —co By (f

C/\(f) = W . (2'7)

We will see that F,(f) is finite for f € B,5 with 8 > 0. Hence, c,(f) is finite provided
one excludes functions f in H, i.e., functions such that M (f)E(f) = 0. We now state
a result about the domains of definition and target spaces of the maps N,.

Proposition 2.2. Fora > 0, 8 > 0 and A > 0, N, is well defined as a map from Baﬂ\H
to B, for all o < 4a/X and T < AB.

Proof. The operators Sy, T and the convolution f — fx* f are well defined on L'(R +)-
Next, we show that the convolution product maps BCn X BCn into B( 4y Using Fubini’s
theorem, we get the following inequalities

1 % gllscry < / 47 w(ae) () / dy 1f@)llg(z — v)|
= [ wiiw [ d v @+ o)

w(4C)77(x+ y) ”
——=———— Iy llgl

= [[fllenllglley - (2-8)

The last equality follows from

< sup

sup L = sup eXp(—Ch(fﬁay)) ;

Z;g wg’n(x)wgn(y) Z;g

and N 4
rTy
h(xz,y) = — >0
(z,y) PR

for all z,y > 0. Next, S, is bounded as a map from B, to B(g/A)(M) :

1S3 Fll ¢/ am) :/0 Wie 3 () @/ A f () |dz

Wie/n o (F/A)
< sup(RT) ey
= || fll¢y - (2.9)
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Therefore Ny maps B,p into By, x)(ap). and hence into B, for o < 4a/A and 7 < AB.

In order to check that N maps B,g into By, x)(ag), We first note that T is obviously
bounded as a map from B, to B, ., with

1T fllne = [1fller > (2.10)

since we, (1/z) = w,(x) for all z > 0. Using (2.8), (2.10) and the bound on Ny, one
concludes that N3 (f) € Bsa/ryarg) C 3(46.!//\)()\/3) for f.E B.’aﬂ. Fipally,. the bounds
(2.8), (2.10), and the fact that the expectation of a function in B, is finite for 7 > 0
imply that c, (f) is finite for f € B,z\H and § > 0.

N

Proposition 2.2 together with Remark 1.2 immediately imply that every fixed point
f € B,g\H of Ny with a, 8 > 0 and A € (1,4) satisfies f € B\H. Furthermore, using
the regularization properties of the convolution, one can show that every such fixed
point is a smooth function. More precisely, we have the following proposition, whose
proof can be found in the appendix.

Proposition 2.3. Let o, 8 > 0, A € (1,4), and let f € Baﬂ\H be a fixed point of N, .
Then f € B\H, f is of class C* (R, ), and f' € B.

The following theorem implies Theorem 1.4.

Theorem 2.4. Let A~ = 1.7562035 and AT = 1.7562048. Then,

(a) For some a, 3> 0, there is a continuous family {f\} ¢~ a+] of functions
in B,g\H such that Ny (fy) = fy for all X € [A7,A1],

(b) ex-(fa-) < g <cexr(far) - (2.11)

Our main result follows from Theorem 2.4 and Proposition 2.3.

Proof of Theorem 1.4. Assume first that the map A — ¢, (f)) is continuous. Then
Theorem 2.4 implies the existence of a A* € (A7,A") for which cy.(fy.) = ¢; and
fr« = Ny« f+, which using Lemma 2.1 implies that S,.D(f,.) = f,«, and using Proposi-
tion 2.3 that fy. € (B\H)NC™ (IR ). It remains to be checked that the map A = ¢, (fy)
is indeed continuous. One first observes that the linear functionals f — M (f) and
[+ E(f) are bounded as maps from B, to R, provided 7 > 0, and that

1
M < (5 )l (212)
B < sup (s )1 (213)

Hence, f — FE,(f) is continuous as a map from B4 to R for every o, 8 > 0, using
in addition the bounds derived in the proof of Proposition 2.2. Therefore f — ¢, (f)
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is continuous as a map from Baﬂ\H to IR for every o, > 0 and A € R. Next, for
each f € B,z\H with a, 8 > 0, the map A — ¢, (f) is continuous. The continuity of

A= ¢, (fy) as a map from [A~, A*] to IR finally follows from the continuity of the family

{fA}AE[A—,Aﬂ-
|

The proof of Theorem 2.4 is in part computer—assisted. Once (a) is established,
the verification of part (b) involves mainly an explicit calculation, that will be given in
Section 5.3. The remainder of this section is devoted to the proof of part (a).

First, in order to simplify further our estimates, we introduce yet another family
of operators, closely related to {N,},5o- This family is defined by

N)\,R - SK,N')\ 3 (214)

where A\, k > 0.

Lemma 2.5. Let « > 0 and 8, A,k > 0. Then ./\/}\,,,C is well defined as a map from
B,s\H to B, for every o < 4a/k) and 7 < kAB, and one has

B N B
ap (42)(kAB)
Si/ N S1/w (2.15)
N
B KA

(ke)(2) Biia)ap)

Proof. First, our previous result on the domains of definition and target spaces of N,
implies that the operator NV, . is well defined as a map from B,z\H to Bsa/in) (x28)
whenever a > 0 and 8, A,k > 0. We now show that

ex(f) = coa(Siyf) - (2.16)
Using (2.7), we see that

_ BA =By (S f)
o End) = M (S, ES, o)

and the relations M (S . f) = M(f), E(Sy,.f) = E(f) and Ey(S;,,.f) = £E,(f) lead
to (2.16). Using (2.16), we compute

Nn}\(sl/m-f) = CﬁA(Sl/mf)Nli)\(Sl/nf) + CZNS}\(SI/Nf)
= cx(HNR(F) + N3 (f)
:N)\(f)a
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and conclude by observing that Ny =S, , N, .
|

From Lemma 2.5 it follows that the fixed points of Ny for A € [A™, A"] are related
to the fixed points of NA+,;~; for k € [A7/AT,1]. Furthermore, the operators J\/}\,K are
well defined as maps from B,5\H to B,g for A and & satisfying

<K< (2.17)

-
>

This condition is easily seen to hold for x € [A™/AT, 1] and A € [A™, AT].

As mentioned earlier, the fixed points f, of the maps N, are not attractive. Nu-
merically, the two largest eigenvalues of DN, (f,) are roughly 1.37 and 0.54 for A &~ \*.
In the context of computer—assisted proofs, the standard way of solving a hyperbolic
fixed point problem is to turn it into a fixed point problem for a contraction by pro-
ceeding in the following way. We choose an invertible linear map M close to the inverse
of 1 — DN,.(f,.) and define

MA,K, - 1+M(N}\,N— 1) (218)

In Section 7.2, we give a detailed description of M and establish its invertibility. Fur-
thermore, we will see that M is bounded in B4 for all o, 8 > 0. Hence, M, , is well
defined as a map from B,z\H to B, for all « > 0, 8 > 0, and &, A satisfying (2.17).

The existence of the continuous family of fixed points { f, } will follow from estimates
on the contractions M, .. These estimates are collected in the following proposition.

Proposition 2.6. Let AT and A\~ be defined as in Theorem 2.4. Then, for y = 0.5,
v=0.9 and r = 9-107%, there is a function f£+ € B, and two positive real numbers

q < 1 and ¢ < r(1 — q) for which the following holds. For all k € [A~ /A1, 1], the
operator My . is well defined and continuously differentiable as a map from the closed

ball B,.(f{,) C B, \H to B, and satisfies for all f € B,(f})

uv

Mt () = fRe L < (2.19)
DM+ (NI < g- (2.20)

The fact that B,.(f},) does not contain any function in # will follow from comput-

ing explicit bounds on the inverse of M (f)E(f) for all f € B,(f),). These bounds will
be computed when evaluating the quantity ¢, (f), cf. the remark preceding Section 6.1.
We now show that Proposition 2.6 implies part (a) of Theorem 2.4.

Proof of Theorem 2.4 (a). By the contraction mapping principle, Proposition 2.6
implies the existence of a fixed point fy+ . € B, \H of My,  for all x € [A™/AT,1].
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From the invertibility of the operator M, the functions f,; . are also fixed points of
the operators N, .. Hence, the conjugation relation (2.15) ensures the existence of
the family {f,} of fixed points of N, for A € [\, AT]. These fixed points are given by
Ir = 81 ulrt s = AAT. Since Sy far o € Bia-pyney \H for all & € A7/AT, 1], it
follows that for all A € [A\7,AT], £, € B,s\H for some o, 8 > 0.

Finally, we prove the continuity of the family {f, }. From Proposition 2.3, it follows
that f, € BNC™ (R, ) with fx € B. Since the functions fat x = S, fer+ have the same
properties, £ — Sy, fy+ ,; is continuous as a map from A~ /A1, 1] to B, provided that
the family {fy+ .}, is continuous in B,,,. In order to show that this is indeed the case,
we check that {fy+ .}, is continuous at k = k for each k, € [A™/AT,1]. Let us fix
such a K, and denote f, = fy+ . . First, since the contraction mapping principle and
Proposition 2.6 imply that f, belongs to the ball B;(f>?+), where 7 = ¢/(1 — q) < r,
then, for every & > 0 satisfying £ < r — 7, the ball B.(f,) is contained in B, (fy+).
Hence, by (2.20), the operators M A+, are strict contractions there with rate ¢g. Next,
since fo € BNC®(R,) with f§ € B, k = My . (fy) is continuous as a map from R’
to B,y for all @, 8 > 0. This implies that there is a § = §(¢) such that M, , maps the

ball B:(f,) into itself for each x with |k — k| < 0: for f € B:(f,), it follows from the
continuity of the map x — M, (fo) and ¢ < 1 that

Mt 5 (F) = folluw < IMi () = Mo (Fdllw + M+ (fo) = follw
< G+ | Mir 1 (fo) = Mok o (fo) |
<E.

Therefore, the contraction mapping principle implies the existence of a fixed point of
M+, in the ball B.(f,) whenever [k — ko[ < 0. By uniqueness of the fixed points
[+ s one concludes that |[fy+ , — fr+ 4l < € for all s satisfying |x — k| < 6.

Proposition 2.6 reduces the proof of Theorem 1.4 to the verification of the estimates
(2.11), (2.19) and (2.20). This verification is computer—assisted, and yields ¢ ~ 0.85
and £ ~ 1.15 - 10~%. The function f/(\)+ has been numerically determined to be a very
good approximation of the fixed point f,;. It is given by the linear interpolation of 217
positive numbers at well chosen points, and has been obtained by iterating a numerical
version of the map N,; (as described in Sections 4 and 5) and renormalizing the mass
properly after each iteration in order to remove the unstable direction. Regarding the
computation of the norm of the tangent map DM, . (f), we will take advantage of the
fact that DN, (f) has very good contraction properties on certain subspaces of finite
codimension provided f has some regularity. In particular, the nontrivial action of the
operator M can be restricted to a finite dimensional subspace, and the computation
of the norm of DM,  (f) essentially requires to explicitly evaluate DM, .(f) on
finitely many basis vectors.
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The remainder of this paper is devoted to the proof of Proposition 2.6 and the
verification of inequality (2.11). In Section 3, we review the basic approach of computer—
assisted proofs, and extend it to function spaces of L'-type. In Sections 4 and 5, we
give a detailed account of the rigorous implementation on a computer of the maps N,
and of the computation of bound (2.19) and inequality (2.11). Section 6 is devoted
to the tangent maps DN, and their contraction properties, whereas Section 7 deals
with DM, ,, and the computation of the bound (2.20). Section.8 is available as a
supplement to this paper, and contains the source code of the program (proof.f) and
two input data files (fpoint.lp and fpoint.1lm). The program has been written in
Fortran 777 and consists of a (short) main program and several subroutines ordered
in a “bottom—up” hierarchy, accordingly to the organization of the paper. Except for
Section 3, references to the program are collected in remarks at the end of each section.
For a description of the input data files, see Sections 5.2 and 5.3.

3. Constructive Analysis in B,

Computer—assisted proofs rely on the ability, first, to discretize the problem under
study in terms of objects that are representable on a computer, and, second, to have
a rigorous control on the errors arising from the discretization. We note that in this
respect, arithmetic operations are special, since controlling them rigorously requires an
explicit knowledge of how rounding is performed by the computer. Nevertheless, we
emphasize that the main difficulties related to discretization are usually concerned with
the specific transformations involved in the functional equation under study, the control
of numerical rounding being typically of no particular relevance.

To address discretization issues, one introduces the notions of bounds and standard
sets. Denoting, for any set X, by P(X) the set of all subsets of 3, we start by defining
what we call a bound in the context of computer—assisted proofs.

Definition 3.1. Let ¢ be a map from D, C X to ¥'. Denote by f the set map obtained
by lifting ¢ in the canonical way, that is, D; = P(D,) and f(S) = {s' € X' | s’ =
¢(s) for some s € S} for every S € D;. We say that a set map g : P(X) 2 D, — P(¥)
is a bound on ¢ if D; 2 D, and if f(S) C g(S) for all S € D,,.

We remark that g being a bound on ¢ means ¢(s) € g(S) whenever s € S € D, .
Bounds of this type have the following two properties. First, they make it possible
to estimate complicated maps in terms of simpler ones, since the composition of two
bounds, if well defined, provides a bound on the composition. Second, they can be
implemented on a computer. Indeed, given a set X, we start by specifying a finite
collection of sets std(X) C P(X) that can be represented on the computer with a given
data type. The elements of std(X) are referred to as the standard sets of 3. Next,

f Mostly standard Fortran 77. Some extensions that can be found on most popular compilers
(SUN(TM), Microsoft(TM)PowerFortran,...) are used for convenience. In particular, we make use of
the double precision complex data type complex*16.
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given a map ¢: ¥ 2 D, — ¥, we construct a bound on ¢ within the class of maps
g: std(¥) 2 D, — std(¥'). Finally, it is in general possible to characterize the images
of g in std(X') constructively and implement this map on the computer. We note that
one can usually choose std(X) and std(X') specifically adapted to the map ¢ in order
to improve the bounds g that can be constructed.

Unless specified otherwise, the standard sets for a Cartesian product ¥ x £/ will
be defined by setting std(X x ¥') = std(X) x std(X').

3.1. Operations Involving Real and Complex Numbers

In our application of the above mentioned procedure to the case of real numbers, we
have followed the approach of [KSW] which is based on the 64 bit IEEE standard for
floating point arithmetics. This standard specifies two things: a format for floating
point numbers (IEEE numbers) and rules concerning rounding after the operations
+,—, %,/ and NE We will not discuss the detail of the implementation, but refer the
interested reader to the corresponding section of [KSW]. We first choose a subset S of
IEEE numbers, the “safe range”, for which no underflows nor overflows can occur. The
standard sets of IR and R’ are defined as follows.

Definition 3.2. We define std(IR) as the collection of all (closed) intervals |a, b] with
a < b elements of S. We define std(R%.) as the subset of std(IR) made of intervals [a, b]
with a > 0.

To represent an interval in std(IR) on the computer, we use for convenience the
data type for complex numbers available in Fortran. Given a < b € S, the procedure
sbound returns the interval [a, b], whereas, given the interval [a, b] € std(R), r1l and ru,
respectively, returns a and b. We add two more functions, siconst and srconst, which,
given r € § an integral constant, and, respectively, r € § an IEEE number, return the
(unique) singleton in std(IR) containing 7.

By using the TEEE specifications related to the rounding occurring after the op-
erations 4, —, *, / and /> one first writes two functions, rup and rdown, which, given
7, the rounded result of any of these operations, compute an upper bound and a lower
bound, respectively, on the exact result r. If these bounds do not belong to S, a flag is
raised and the program stops. In a straightforward manner, one next constructs bounds
in std(R) (in the sense of Definition 3.1) on the maps x — —z (sneg), |z| (sabs), 1/z
(sinv), z? (spower2), /z (ssqrt), and (z,y) — = + y (ssum), £ — y (sdiff), z xy
(sprod) and z/y (squot). We will also need a bound on the function z — exp(x). The
precision with which this function is evaluated is not specified by the IEEE standard.
Hence, we make use of the bounds constructed so far and compose them in the follow-
ing way. First, we use exp(nz) = exp(x)"™ to restrict the Taylor expansion of exp(x)
to cases where |z| < 0.03. Next, we compute the first three terms in the expansion
and bound the tail by a geometrical series. This bound is implemented in the function
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sexp. We note that it is only involved in the computation of the weight w4 and is not
required to be of great accuracy. Finally, we will need to evaluate for = close to zero
andn=20,...,3,

o (=2)"
Log,(z) = —(—z)™" Z

k=n+1

(3.1)

Note that the second factor is just the tail of the Taylor expansion of log(1l + z). In
particular, Logy(z) = log(1 + z). One easily checks that the inequalities

m-+ $m+

m _x)k T 1 m (—J?)k 1
_ _ <L < ‘ ‘
’;k+n ‘m+n+1‘_ ogn(:v)_ ;k—l—n—'_ m+n-+1

are valid for all m > 1. With m = 4, a sufficiently accurate bound is constructed in
selogne from the previous inequalities.

We end this section with the discussion of a bound on the discrete convolution. For

r= (rg,..-,7,_q1) and s = (sg;...,8,_1) € R", the discrete convolution r * s is the
element of R?"~! given by
(r*s), = Zrisj, k=0,...,2n—2. (3.2)
it+i=k

Computing r * s according to (3.2) involves @(n?) operations, and becomes impractical
for large n. The standard strategy is to go into Fourier space where the convolution
becomes the pointwise product of vectors. The gain in computational time is due to
the fact that the discrete Fourier transform can be implemented with an O(nlog,n)
algorithm, known as the Fast Fourier Transform (FFT). More precisely, the discrete
Fourier transform is a map from C™ to C" defined by

n—1 .
21k
(f(z))k: Eoexp(z - )zj, k=0,...,n—1, (3.3)
J:
for z = (24,...,2,_,) € C". The inverse Fourier transform F~! is given by
n—1 .
1 2mky
-1 —
(F (z))k: Ejé()exp(—z - )zj, k=0,...,n—1. (3.4)

For r, s € R"™ as above, one has the well known relation
(r*s), = (F Y FF- -FG))y, k=0,...,2n—2, (3.5)

where 7 = (rg,...,7,_1,0,...,0) € R*" and 5 = (sg,...,5,_1,0,...,0) € R*™. An
efficient implementation of (3.3) and (3.4) follows from the observation that if n is even,
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then F(z) can be decomposed into the sum of the Fourier transform of two vectors in
RS Hence, for n a power of 2, one can repeat this decomposition log, n times until
only the Fourier transform of a single complex number remains to be computed. F(z)
is finally obtained by summing the intermediate Fourier transforms, which needs O(n)
operations.

In order to implement a bound on the discrete Fourier transform, we first need to
choose the standard sets of C. For our purpose, it is sufficient to define them in terms
of std(IR) as follows.

Definition 3.3. We define std(C) to be the collection of all sets R + i I of the form
R+ixI={z+i-yecC|lzecR,yel} (3.6)
with R and I elements of std(IR).

The only operations in € involved in the FFT algorithm are the addition and pro-
duct, bounds on which are readily implemented from our bounds acting on std(IR). One
also needs bounds on the trigonometric factors appearing in (3.3) and (3.4). From the
periodicity properties of the functions sin and cos, one first notes that it is sufficient to
construct a bound on the maps (I, m) — sin(lw/m), cos(lw/m) where m > 4 is a power
of 2 and [/ ranges in {0,...,m/4}. The case [ = 0 is trivial. For [ =1 and m = 4,8, ...,
one evaluates sin and cos recursively: For m = 4 one has cos(n/4) = sin(n/4) = 1/V/2,
and for m > 4 a power of 2 one uses the half angle formulas

1 + cos(x)
2 b

sin(z/2) = L Sn@)

cos(x/2) = 2 cos(@/2)

Finally, for [ > 1, one applies the double angle formulas.

Remark. Bounds on the Fourier transform and inverse Fourier transform are imple-
mented in the procedure fft according to the FFT algorithm. We do not enter into
the details of this algorithm, and refer the reader to [PFTV], from which the code has
been adapted to interval analysis using the bounds described above. Adapting again to
interval analysis a code from [PFTV], a bound on the discrete convolution 7 — 7 x r is
implemented in the procedure fastconvolutioni, while the general case (r,s) — 7 *x s
is implemented in fastconvolution2. Those bounds are restricted to vectors whose
dimension is a power of 2. In the sequel, we actually compute the discrete convolution
of vectors of the form r = (0,r,...,7,,0), n a power of 2. The first two elements and
last two elements of such convolution are trivially zero and are updated directly in the
procedures fastconvolutionl and fastconvolution2. For convenience later on, see

Section 4.4, we also add at the beginning and the end of the result one element zero.
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3.2. Standard Sets of B4

We now describe the standard sets of the Banach spaces Baﬂ. As mentioned above,
the choice of these sets should be adapted to the problem in order to optimize the
bounds that one needs to construct. Although functions in B4 are in general irregular,
the fixed points of the maps N, are smooth. Furthermore, these maps are continuous
and preserve the regularity. Therefore, we will take for our standard sets of B, balls
centered at regular functions. To represent a regular function on the computer, we will
rely on the approximation scheme of spline interpolation.

A spline function of order n is a function in C"~! which is piecewise polynomial,

each of the polynomials being of degree n. For our purpose, it is sufficient to consider
splines of order one as the centers of our standard sets, i.e., continuous piecewise affine
functions. This choice is a compromise between the quality of the approximation and
the simplicity of the bounds that we will have to construct. Note that increasing the
order of the interpolation does not lead in general to better approximations. Indeed,
for a function f € C*°([a,b]) and a typical partition of [a,b] with mesh size € > 0, the
associated interpolation of f by a spline g of order n — 1 satisfies for a norm of L'~type

If = gll = €™l ™.

Hence, depending upon the behavior of f("), it can become better to consider finer
partitions of [a, b| rather than to increase the order of the interpolation.

We now introduce a few objects that will be used to define the standard sets of
B,gs-

Definition 3.4. For n > 2, we denote by P, the set of all partitions p of RY of the
form
p={0<zy<2,<...<z, <00} (3.7)

Furthermore, we denote by P, the subset of P, made of uniform partitions, i.e., parti-
tions p = {z,;};_, € P, satisfying z, —x, , =¢,i=1,...,n, for some ¢ > 0.

The uniform partitions have been introduced in order to simplify the implemen-
tation of a bound on the convolution operator. For p = {z,}i-, € P,, and A > 0, we
adopt the convention to denote by Ap the partition {A\z,},. Next, we describe more
precisely the piecewise affine functions we will work with.

Definition 3.5. We define A to be the set of all functions p € C°(R, ) for which there
is an n > 2 and a partition p = {z;};—, € P, such that p is affine on [z, _,,z;] for
i=1,...,n and p(x) = 0 for x & (x,,x,). Furthermore, A" denotes the subset of A
consisting of those functions for which p can be chosen uniform.

We note that A, A* C B4 for all o, 8 > 0. Given a partition p = {z;}{_, € P,

and a set of values v = {v;}1, € R™"! satisfying v, = v,, = 0, we denote by 7T;(p,v)
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the linear interpolation of (p,v) in A, i.e.,

v, + 73211:2 (x —x;) for z € [z;,x;,,,] and i € {0,...,n — 1},
Ti(p,v)(z) = (3.8)
0 otherwise.

Conversely, associated with every function p € A, there is a pair (p,v) in P, x R™, for
some n > 2, satisfying 7;(p,v) = p. If p # 0 and if one imposes a minimality condition
on n, then the associated pair (p,v) is unique.

Definition 3.6. For p # 0 a function in A, let
n(p) = min{n > 2| 3 (p,v) € P, x R**! such that 7, (p,v) = p},

and define m(p) to be the (unique) element of P,y x R+ satisfying Ti(7(p)) = p.

Note that by definition of A, one has always 7(p) = (-, {pi}?:(’é)) with py = p,,(,) = 0.
In order to define the standard sets of A and A", we need to choose the standard sets
of P, and Py,.

Definition 3.7. Forn > 2, we define std(P,,) to be the collection of all sets (X, ..., X,,)
of the form

(Xo,.- X)) ={{z;} e € P | g € Xpy -2, € X, 1, (3.9)

with X, ..., X,, any increasing sequence of n+1 pairwise disjoint elements of std(IRY, ).
Similarly, we define std(P,,) as the collection of all sets (A, E) of the form

(A,E)={peP!|p={a+tic}} y,a€ Aand c € E}, (3.10)
with A, E € std(R?,).

Note that std(P,,) is not a subset of std(P,). Indeed, the sets (A4, E) contain
only uniform partitions, whereas there are always non—uniform partitions in each set
(X, ---,X,,) which is not a singleton. The standard sets of A and A" are defined in
terms of std(P,,) and std(P,y) as follows.

Definition 3.8. Let N = 2°°. We define std(A), respectively std(A"), to be the collec-
tion of all sets (P, V') of the form

(P,V)={pe Al p=T,(p,v),p€ Pandv eV}, (3.11)
with P € std(P,), respectively P € std(P"), V € std(R"*') and 2 <n < N.

Finally, we introduce the standard sets of B8,5. They will be of two types, denoted
by std(B,) and std(B,s)"
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Definition 3.9. Let > 0 and B > 0. We define std(B,,z), respectively std(B,z)", to
be the collection of all sets (P,V,G) of the form

(P,V,G)={f¢€ Byl f=p+g, pe(PV), g€B,zand g,z < G}, (3.12)
with (P, V) € std(A), respectively (P,V) € std(A"), and G € S, G > 0.

Hence, a set (P,V,G) is the union of all balls of radius G that are centered at
piecewise affine functions belonging to (P, V).

Remark. In our program, the data type with which a set (P,V,G) is represented,
with P € std(P,) and V € std(R"*!), is a 2 x (n + 2) matrix, say £, with entries of
complex data type. (Recall that we use the Fortran data type for complex numbers
to represent the elements of std(IR) and std(lR%).) The entries £(1,0) up to £(1,n)
contain V', and £(1,n + 1) contains the interval [0, G]. The entries £(0,0) up to £(0,n)
contain the partition P. If P = (A, E) € std(P,,), then £(0,0)= A and £(0,n + 1)=
E. If P ¢ std(P,)), then £(0,n + 1)= [0,0]. Given an integer n > 2 and a,¢ € S,
a,e > 0, the procedure fzero returns a standard set (P,V,G) € std(B,z)" where
G =0,V =(0,0],...,[0,0]) and P contains the partition {a + ie};_,. Finally, given
(P,V,G) € std(B,g) and an integer i, the procedure get £ on_i returns two elements
of std(IR?, ) and two elements of std(IR) containing respectively z;_,,z;, p;_; and p; for

all p € (P,V), 7(p) = ({}. {p;})}or

We end this section with a few comments about the strategy that we will adopt
when constructing bounds on the various maps that enter the definition of Ny. Some of
these maps are linear and preserve A. Let £ be such a map. Then, for f = p+ g with
p € A, the piecewise affine part p and the general term g can be treated separately, and
since the piecewise affine parts carry the relevant information, it is natural to describe
the affine part of £(f) by L(p) and its general term by L£(g). Moreover, the choice of
the standard set image in std(.4) containing L£(p) is straightforward. For instance, the
product of a function f € B,z by a scalar A € R is bounded using (Ap) = (p, Av), where
(p,v) = m(p), and |[Agl|,5 = |A|l|gllog- This bound is implemented in the procedure
fmult. In general, however, the maps that will be considered do not preserve A. Let
U: B,z — B, be such a transformation. For f = p+ g with p € A and g € B4, we
write

U(p+g) =U(p) +W(p,9)

Since U(p) ¢ A, we will consider the linear interpolation p € A of U(p) at well chosen
points. This choice will usually be a compromise between the quality of the approxima-
tion and the simplicity of the implementation. One then has

Up+9)=p+W(p,9)+ U(p) — ),

and the last two terms on the RHS correspond to the general term g of U(p + g). They
will be bounded using first

19llcn < IV (s 9)licn + U (p) = llcy-
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Next, explicit formulas involving p, g and the values of U(p) at the chosen interpolation
points, together with the use of interval analysis, will lead to a rigorous upper bound on
the previous expression, and hence to the representable G € S entering Definition 3.9.
We note that the elements of std(IR) defining the piecewise affine function p consist
in general of intervals of non zero length. Nevertheless, since the bound G has been
computed for all reals in those intervals, one can “close” each of them by picking ar-
bitrarily one of the representable numbers it contains. This will prevent the standard
sets containing the piecewise affine part from “opening up” substantially when bounds
are composed, in particular when evaluating convolution products.

4. Operations Involving Functions

In this section, we construct bounds (in the sense of Section 3) on the various maps
that enter the definition of the transformations N,. Most of the bounds given here
follow from direct calculations and are easy to prove. We have grouped some of these
calculations in the appendix.

In the following, we will usually consider f € B, of the form f = p+g, where p € A
will always stand for the piecewise affine part of f and g € B4 for the general term of
f. Furthermore, when not explicitly mentioned otherwise, n(p) and 7 (p) = (p,v) will
be denoted by n and ({z;};_ o, {p;}i—o), respectively. Finally, we denote the interval
[, _q,z;] by L, i=1,...,n.

4.1. Elementary Operations

We start with the map f — || f[|,5, @ bound on which is constructed from std(B,s) to
std(IR ) using the triangle inequality and, for the piecewise affine part, the estimate

ollag =3 | 5(@) () o
< > sup (wap(2))(z; xi—1)W- (4.1)

The convexity of w4 leads to

2161}) Wog(x) = max{w,g(z;_1), wap(z;)}- (4.2)

We next consider the mass M(f) and the expectation E(f) of a function f € B4, for
which it will be sufficient to construct bounds from std(B,4)* to std(IR). By linearity,
we can first treat separately the affine part p, and by using p, = p,, = 0, a direct
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calculation yields
n—1
M(p) =€) p; (4.3)
i=1

Bp)=c Y piz, (4.4

where e = z,—z. Using M (p)—|M(g)| < M(f) < M(p)+|M(g)| and the corresponding
inequality for E(f), we get the desired bounds by estimating the mass and expectation
of the general term g with (2.12) and (2.13). The supremum of 1/w,4 appearing in

(2.12) is taken at x, = \/a/f3, which leads to

sup( ! )zexp(—2\/07,6). (4.5)

x>0 \Wqup ("I;)

Similarly, one computes

sup(w T ) _ L+ vi+dap exp(—+v/1 + 4ap). (4.6)

>0 ﬁ(x) 2/8

We end this section with the discussion of a bound on the addition of two functions
f1: o € B,z. Due to the linearity of this map and the fact that the addition of two
functions in A is again in .A, it is natural to choose for the general term of f; + f, the
addition of the general terms of those two functions, whose norm is bounded by using the
triangle inequality. It then remains to construct a bound on the map + : AxA — A. Let
p1, py € A such that 7(p,) = (p;,v,) € P, x R"" and 7(p,) = (py,v,) € P, x R™T.
If p; and p, have no common nodes, then (p, w) = m(p;+py) € Ppyypmig X R, with
p being the refined partition made of the ordered union of p, and p,. The last is valid
only if p; and p, have no common nodes and we shall construct a bound whose domain
is restricted to such cases. Hence, denoting p = {y,}77" ' and w = {w,}74" ", one
defines for each ¢ = 0,...,n +m+ 1,

(v1); + p2((p1);) if 3 j such that y; = (py);,
)

(v2); + p1((p2);) if 3 j such that y; = (p,);-

w; = (p; + po)(y;) = { j

To implement this bound with interval analysis, we must check first that the nodes in
std(IR%,) of the standard sets P, € std(P,) and P, € std(P,,) containing the partition
p; and p, are pairwise disjoint intervals. This implies that every function in (P}, V])
is linear on each node of P,, and vice versa. This in turn implies that a bound on the
evaluation p,((p;);) and p;((py);) is readily obtained from (3.8) using interval analysis.
We note finally that when the standard set containing p; (p,) is in std(A"Y), i.e., with
P, (P,) of the form (A, E), we first proceed to the evaluation of the nodes in terms of

A and E.
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Finally, one constructs a bound on the difference of two functions by composing
the previous bound with a bound on the unary minus B,5 > f — —f obtained from

H - gHaﬂ = HgHa,B and 71'(—,0) = (p7 —’U), where (pa /U) = ﬂ-(p)

Remark. A bound on the weight w, s 1s computed in the procedure sw. The inequality
(4.1) is implemented in snorm_pl, whereas (4.2) and (4.6) are implemented in ssup_of_w
and ssup_of x_over_w, respectively. For several intervals I C R}, we will need to
evaluate later the quantities sup,c; 1/w,g(z), [;w, and [I|~" f, w, where |I| denotes
the length of I. By using the convexity of w, a bound on the first quantity is computed
in ssup_of_winverse, whereas the other two quantities are bounded in sint_of _w. The
other bounds described in this section are implemented in the procedures snorm, smass,
sexpectation, fadd and fdiff.

4.2. The Scaling Operator

It will be sufficient for our purpose to construct a bound on

Sy :Baﬂ—>3%7 (4.7
f(@) = h(z) = Mf(Az), '

acting from std(B,5)" to std(B,/4),)"- We recall that the scaling operators are bounded
under constraints which translate in this particular case into A < 4 (if @ > 0) and
v < AB. It will be checked by the program that these inequalities are satisfied for the
values of A, o, 8 and y we will use. Since S, is linear and preserves A", we can treat
separately the piecewise affine part and the general term. A bound on S, : A" — A"
is obtained from the relation 7 (S,p) = (p/A, Av), where (p,v) = 7(p). For the general
term we estimate using (4.5),

Wa.(z/N)
820l < sup =220

= exp(~2v/a(l =N/ (B =1/ ) llgllap: (4.8)

”g”aﬂ

the last equality being valid under the conditions on A, a, 8 and vy mentioned above.
Note that the scaling operator (4.7) is a strict contraction for v/ < A < 4. This will
be used to improve the bound on N, /\1 (f) = S, f =S, f that we shall construct later.
In (4.7), taking a larger target space, i.e., B(a/ah with o > 4, would lead to a better

contraction. Nevertheless, o = 4 is the largest value for which N, ; maps Baﬂ into Baw
cf. (2.8).

Remark. A bound on S, : A* — A" is implemented in the procedure fscale_pl, and

the bound (4.8) in fscale_gen. Those two procedures are called in fscale to build the
desired bound on the operator (4.7).
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4.3. The Operator T
We now construct a bound on the operator

T: Baﬂ _>Bﬁa

1,1 (4.9)
= h(z) = = f(=
Fl@) = hiz) = 5 £(),
acting from std(B,5)" to std(Bg,). For f = p+ g with p € A and g € B4, one has
Tf=Tp+ Tg. Since Tp is not piecewise linear, we must first choose a function p € A
which approximates T'p. Denoting again m(p) = ({z,;}i—o, {p;}izy), We consider for p
the linear interpolation of T'p at the nodes

537‘:1/33”_1, iZO,...,n. (4.10)
Therefore, we define p to be
p="T(5,7), (4.11)
where p = {Z,}7_,, and ¥ = {p, }i_, with
p; = (Tp)(F;) = 22 _ipp_ss i=0,...,n. (4.12)

Next, the general term § of T'f is given by § = Tp — p + Tg, and we use (2.10) to
estimate

19llga < I TP = Allga + llgllap: (4.13)

In order to bound the first term on the RHS of (4.13), we use again (2.10) together with
the linearity of 7" and the fact that it is an involution. This leads to

ITp = plliga = llp = Thllag

<> sw (o) [ |(p=T5) @) do (114

=1 z€l;

Finally, an explicit bound on the integral appearing in the previous expression follows
from a direct calculation and is given in the next lemma.

Lemma 4.1. Let p € A", and p be defined as in (4.11). With 7(p) = ({z;}i—o, {P; }izo)
€=z, —x, and I, = [z,_,, z;], one has

3

[ o= 15 @) do < 5 (o (1+ )l - pic

+s‘ﬁ—£‘+e(xi—e/2) Pi —pigl‘). (4.15)

2
Ti1 L; Ti_q T;

Ti1

Remark. A bound on T": B, 5 — Bg, is implemented as described here in the procedure
ft.
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4.4. The Convolution
For a, 8 > 0 and « € [a, 4], we consider in this section the operator
C:B,s X Byg — By
(f,h) — fxh.

As mentioned before, we specifically introduced standard sets of piecewise affine func-
tions defined on uniform partitions in order to simplify the construction of a bound on
the convolution. Hence, our bound will act from std(B,z)" x std(B,g)* to std(B, )"
To simplify further the explicit expressions which we shall derive below, we restrict its
domain to pairs (Fy, F,) for which the standard sets (A, E;) and (A,, E,) containing
the partitions associated with the affine functions in F, and F), satisfy F;, = E, and
both F; and E, are singletons. This ensures that all affine functions in F} and F, are
defined on (uniform) partitions with identical mesh size.

(4.16)

Let f = p+g; and h =0 + g, with p,0 € A* and g, g;, € B,5. Then, one has
fxh=pxo+pxg,+g;x*h. (4.17)

The relevant information is carried by the term p * o. Since it does not belong to A, we
will proceed as in the previous section and approximate it by a function p € A“. The
general term of f x h will be given by

g:(p*a—ﬁ)—i-p*gh—l-gf*h. (4.18)

One can estimate the last two terms on the RHS of the previous expression using
the bound (2.8). However, estimating the norm of the first term requires an explicit
expression for (p * o)(x), z > 0. We now derive this expression, which will be used
also to specify p. We first state an intermediate result whose proof can be found in the
appendix.

Lemma 4.2. If p,o € A" have uniform partitions with identical mesh size e, then
(px o) € A*. Furthermore, assume n(p) = n(o) = n, denote w(p) = ({z,;},{p;})i—0,
m(o) = ({y;}, {0, )y, and define {s, }3", to be the discrete convolution of {p,}?_, and
{o:}ice, Le.,
S = Z ;0 ;- (4.19)
i+i=k
Then n((p+0)") =2n, and (p* )" = T, ({2 Yoo, {vi }1mo) Where

2, = T+ Yo + ke, (4.20)
1
vy = g(8k+1 — 28k + Sk—l)’ (421)

with the convention s_; = s, ., = 0.

We now specify the nature of p x 0.

28



Lemma 4.3. Let p,0 € A" as in Lemma 4.2 and define p to be the partition {2z, }i",
where z,, is given by (4.20). Then p* o is in C*(R"), has support in [z, zy,] and is
there identical to its natural cubic spline approximation ¢ at the nodes of p, i.e., with
the boundary conditions ¢"(z,) = ¢" (z,,) = 0.

Proof. First, it follows from supp(p) C (z,, x,,) and supp(c) C (¥, ¥,,) that the support
of pxoisin (zy+yy, 2, + ¥, )- Then, the regularity properties of the convolution imply
p*o € C? (R™). To see that p * o is equal to its natural cubic spline approximation at
the nodes a = 7z, < 2; < ... < z,, = b, one shows that it minimizes the quantity

b
/ ¢ (x)da

over all ¢ € C?[a,b] satisfying ¢(z,) = (p*0)(2), k = 0,...,2n. Let ¢ be such a
function. Setting ¢, = p * o, one has

b b
/ o' (2)?dz = / (@) + (¢ — o) (2))2de

a

b

b b
- / ol ()?dz + 2 / o1(2) (0 — pg)" (@)dz + / (¢ — o) (2)%dz. (4.22)

a a

We will see that the second term on the RHS is zero, yielding

b b
/ go”(:v)2dm > / cpg (:C)2d£L'.
a a

The conclusion then follows from a well known result in spline theory, see for instance
[N], which ensures that such a minimization problem has a unique solution given by
the natural cubic spline interpolation of the data points entering the constraints of the
minimization problem. It remains to see that the second term on the RHS of (4.22) is
zero, i.e., that ¢} and (¢ — ¢,)” are orthogonal in L?[a,b]. From Lemma 4.2, we have
wo € A, where A denotes the subspace of L?[a, b] consisting of all functions 7 € A
with 7(7) = (p,,-) and p, a subpartition of p. Next, we observe that every ¢ € C?[a, b]
with ¢(z,) =0, k =0, ..., 2n, satisfies ¢" € .Aj: a basis of A, is given by {rehan it o
being the “hat” function centered at 2, i.e., with x; the characteristic function of the
interval I,

Tk (x) = X[zk_l,zk](x) (m - Zk—l) + X(Zk,2k+1]($) (zk+1 - m)’

and a simple calculation using integration by parts leads to

b
[ @ =0,
k=1,...,2n — 1. We conclude the proof by noting that the conditions of the mini-

mization problem are (¢ — ¢y)(2,) =0, £ =0,...,2n.
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As a consequence, it follows that p x o is given on each interval [z;,2,,4], k¥ =
0,...,2n — 1, by the cubic polynomial

(p*0)(z, +0) = Cy(k) + C (k)0 + Cy (k)0 + C3(k)6?, (4.23)

6 € [0,¢], where the coefficients C;(k) take the form

€
Cy(k) = 6 (3k+1 + 4sp + 5_1),

1
01(k) = §(Sk+1 - 3k—1)a

1 (4.24)
Cy(k) = %(Sk—}-l — 28, + Sk—l)a

1
Cs(k) = @(sku — 385k41 35K — Sp_1),

using again the convention s_; = s,,.; = 0. Indeed, Cy(k) is just (p x 0)"(2,)/2 and
has been directly computed in Lemma 4.2. Using (p * 0)(2y) = (p * 0)(2,,) = 0, the
remaining coefficients are obtained from C, (k) and the formula for natural cubic spline
interpolation, see for instance [ANW].

A natural choice for the affine part p of p x ¢ would be to consider the linear
interpolation of the values of p x o at the points 2, k = 0,...,2n. However, that would
amount to double the number of parameters and would lead eventually to memory
problems when estimating the precision of the approximate fixed point f§+. Hence, we
choose here to define p in terms of the same number of parameters as p and o, and we

consider
p=Ti({za oo {Co(2D) }o), (4.25)
Note that the nodes z,, generate a uniform partition, so that p € A".

To conclude this section, we come back to the general term g of f x h given by
(4.18). We first use the triangle inequality and (2.8) to get

1911y < llpx o = pllyg + [lollapllgnllas + 197l lapl Pl ap- (4.26)

The bound on the map f +— |[|f]|,5 described earlier allows us to estimate the last
two terms on the RHS of (4.26). A bound on the first term is obtained by a direct
calculation using (4.25) and the explicit expression (4.23). The result is formulated in
the next lemma.

Lemma 4.4. Let p,o and p defined as above. Then

n—1

- 4 3e
oo = llyg < < 3 sup w,(2) (51Co 20+ 1)|+ L (G20 +1C5(2 +1)))). (427
1=0 T

where I} = [2y, 297, 5]
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Remarks.

e By definition of A, the first and last two elements of the discrete convolution (4.19)
are trivially zero, so that only the convolution of {p, ?2_11 and {o, ?2_11 needs to be
computed. Furthermore, recall that in order to simplify the implementation of the
bound on the discrete convolution, we have restricted its domain to the standard
sets of std(IR"™) for which n is a power of 2. Hence, our bound on the convolution
(4.16) is defined only on elements of std(B,5)" with partitions in std(7,;) such that

n — 1 is a power of 2.

e Bounds on the quantities si_lCi(k), 1 = 0,...,3 respectively, are computed in
the procedure cubic_spline_coeff and saved in the vectors st0, stl, st2 and
st3. Note that the interpolation (4.25) and the bound (4.27) provide a bound
on the convolution from std(A") x std(A“) to std(B,z). It is implemented in the
procedure fcubic_to_pwlinear. Finally, fconvolute2 computes the desired bound
on (4.16), making first use of fastconvolution2 to get the discrete convolution
(4.19), whereas fconvolutel is adapted to the special case f = h. Those two
subroutines have a call to sexp_of_tconv, which has been introduced to compute
an accurate bound on the expectation of N. /\2( f), cf. (2.6), and will be explained in
Section 5.1.

4.5. The Identity

Another operator we need to consider is the identity. Indeed, we recall that ultimately
we want to compose the bounds constructed so far in order to get bounds on the
maps of interest. However, the bounds constructed so far do not have always matching
range and domain, and cannot in general be composed as such. In particular, the
bound on the operator T' applies in std(B,4) whereas the convolution is defined only on
std(B,g)" X std(B,g)". Furthermore, the bound on the convolution is defined for pairs
whose affine parts satisfy constraints on the mesh of their partitions. Hence, we need
a bound on the identity map I : B,; — B,z defined from std(B,z) to std(B,z)" such
that the affine part of all functions in every standard set image is ensured to possess a
given partition.

Let p = (zg,...,2,,) € P, a fixed but arbitrary uniform partition, and f = p+g
with p € A and g € B, 5. For the new affine part p of f with partition p, we would like
to consider the linear spline interpolation of p at the nodes of p. However, in order for
p to be in A%, one must ensure p to be continuous, so that we define

ﬁ: 7-1(pa {O,p(.l‘l),...,p(.’l?n_l),(]}). (428)

Then, from
the new general term g reads (p — p) + ¢g and its norm is simply bounded by
=0+ 9llap < llp=pllap + llgllap- (4.29)
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The first term on the RHS is bounded using the bounds constructed previously on the
norm in B,z and the difference of two functions.

For every uniform partition p, the previous construction leads to a specific bound
on the identity map. This bound can be optimized from case to case by adapting p
to the function p so that |[p — p|,s is minimal. Again, our approach is to seek for a
compromise between accuracy and simplicity of the implementation. First, we choose
not to increase the number of parameters from p to g, so that n < n(p). Hence, the only
free parameters for p are the first node z, and last node z,,. Given a 7 > 0, the interval
(x4, x,) is chosen to be the smallest interval such that |[p(z)| < 7 for z & (zy,z,)-
This interval might be fairly different from supp(p), leading to a mesh ¢ smaller than
| supp(p)|/n and hence a better approximation of p on regions where the information
is more relevant. The cutoff 7 may vary from place to place in the proof and has been
determined empirically.

Remark. Given an integer n > 2, and two positive representable numbers z, and s,
the procedure fidentity constructs a standard set in std(P, ) containing the uniform
partition p with supp(p) = (zy, 2y + $), and computes a bound on the identity map
as described above. The representable numbers z, and s which describe the support
adapted to a given function are determined in the procedure rsupport.

5. The Maps N,

The goal of this section is to explain how bound (2.19) of Proposition 2.6 is computed
and how inequality (2.11) of Theorem 2.4 is checked. A major step is to compute N,
and N, _ on various functions of B,,, with p, v, A™ and AT as in Proposition 2.6. We
will see in Section 5.2 that these maps must be estimated from B, to B, y+,/x-), @

Lo Since AT/A™ x~ 14+ 7-107". In the sequel we denote
§ = A7 /AT, and begin in the next section by describing the construction of a bound on
the maps N, : B, = B, /5)-

space slightly smaller than B

5.1. A Bound on N,

We recall that for A > 0, N, : B, /H — B, s is well defined provided 1/6 < A < 4,
cf. Proposition 2.2, and is given by

NA(F) = ex (DN () + exNR (f), (5.1)
where
NA(F) = S\ (F * 1),
NR(f) = T(TNL(f) * TNX(F)),
(f) = ﬁl _czE(Nf(f))
NITRITMMER

(5.4)
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The expression (5.4) is more convenient for our present purpose than (2.7). In principle,
one readily gets a bound on N, by composing the bounds constructed in the previous
section. However, one can without too much effort improve this bound in two ways.

First, the distributivity and commutativity properties of the operators involved in
(5.1) give us the freedom to choose the order in which the bounds are composed. The
order can affect the estimates, since in general these properties are not shared by the
bounds. Regarding N )}, the fact that S, preserves A" yields slightly better estimates
by using

N)%(f) = 5\f %Sy /, (5.5)

instead of (5.2). Furthermore, in order to get as much contraction as possible from the
scaling operator, cf. Section 4.2, one chooses the sequence of spaces

S
1, A *
N)\ . Bl“/ — B%(y/é-) — B“(y/é-). (56)

A bound on (5.6) follows by composing the bounds of Section 4. We now turn to Ny and,
as above, let S, act first, considering (5.3) with A/} as in (5.5). Regarding the choice
of spaces, we note that one could exploit the operators T" and the outer convolution to
estimate N} in the smaller space B, (1 /s5): as needed. That would permit us to consider
v instead of v/d in (5.6) for which S, is a better contraction. Nevertheless, ¢ is so close
to one that it does not lead to any significant improvement, and for convenience one
simply constructs a bound on N, f by composing the previous bound on N ; and a bound

on the map

T * T
Buwssy = Bussyw = Busow — Buwye)- (5.7)

The target space of the convolution above is chosen in order to minimize the norm of
the general term arising from the convolution of the piecewise affine part.

The second improvement concerns the computation of the coefficient ¢, (f). An
estimation of the quantity E(NZ(f)) entering (5.4) is of poor quality if obtained by
composing the bound on N f described above and the bound on the expectation as
given in the previous section. Exploiting the structure of N )\2 and the fact that it maps
into a smaller space, due to the outer convolution, leads to a substantial improvement.
Defining

E:B,s xB,s > R

(f; h) = E(T(f * h)),

one has E(NL(f)) = E(TNy(f), TNy (f)). In order to construct a bound on & acting
from std(B,5)" X std(B,g)" to std(IR), we first observe that for g € B, ,

(5.8)

*1 T
Bl < [ Slo(e)ldo <sup
0

qll - 5.9
sup ol (5:9)
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Next, for f = p+g; and h = o + g, with p,o0 € A" and g;, g;, € B4, one has

E(fih) =E(T(p*x0)) + E(T(p*gy+g;*h)), (5.10)

and, since p* gy, + gy * h € B(44)5, one obtains from (5.9) the following estimate on the
second term in the RHS of (5.10),

I
|E(T(p* gy, + g *h))| < sup oy UlPllapllgnllas + llagllasllillag)-  (5.11)
z>0 ,3( a)(x)

Finally, the first term on the RHS of (5.10) can be computed explicitly. We use the
same notation as in Section 4.4. Then, p * o is given on each interval [z, 2 -|-1]7 k=
0,...,2n — 1, by the cubic polynomial
(p*0) (2, +0) = Cy(k) + C1 (k)6 + CQ(k)92 + C3(k)03a
where the coefficients C;(k) are given by (4.24). Hence,
1
BI(+0) = [ Soro)@)d

2n—1

N Z/ e+ 5777 (Co t ebCi(k) +°6°Cy(k) +°6°Cy (k) db, (5.12)
2 5

and using

1 n a n
T
de=a" de =1L
/0 a:—}—l/ax ¢ /0 a:—l-lx 08 (a).

where Log,, is defined in (3.1), one can integrate each term in (5.12) and gets finally

2n—1
E(T(p*o) Z Z emC,, Logm( c ) (5.13)
k=0 m=0 K

Remark. A bound on (5.8) is implemented in sexp_of_tconv. Since the quantities
entering (5.13) are computed during the estimation of the convolution, this subroutine
is called in fconvolutel and fconvolute2. A bound on N, is implemented in £N. This
subroutine also returns a standard set containing the coefficient c, (f) that will be used
to check (2.11), treating separately the special case where the value of E(f) is known
exactly, cf. Section 5.3.
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5.2. Existence of the Family of Fixed Points: First Estimate

We now explain how the quantity ¢ entering inequality (2.19) of Proposition 2.6 is
computed. Recall that it consists in an upper bound on

Mt (FX6) = PRt (5.14)

uniform in k € [§,1], 6 = A~ /AT, where A~ < A", iz and v are given in Proposition 2.6,
and f£+ is an approximate fixed point in A". From the definition of N At and My
cf. (2.14) and (2.18), it follows that

IMixe o (F3) = P Ly S IMITN s () = PRl s (5.15)

and from (2.9) one obtains

||N)\+,n(f£+) - fg“r”p,u < ||SK(N)\+(f£+) - fg+)||uu + ||Snf)(\)+ - f£+||p,u
< W (F35) = R lusa) T 118 = DRl (5:16)

The last inequality is valid since f£+ and N4 ( fg+) belong to B, /5. Indeed, fg+ has

compact support in (0,00), and N, preserves this property. Therefore, Ny (fys) €
B,z and ngr € B, for all @, > 0. By composing the bounds constructed in the
previous sections, one gets an estimate for the first term on the RHS of (5.16). At this
point, the only dependence on the parameter « lies in the second term of (5.16), which
one bounds uniformly using the following result.

Lemma 5.1. Let 0 < k < 1 and f € Wll(]R"',waB(m)dm). If f' € B,,,, for somey > B/,
then

1Sk = Dfllap < 1 = 6)(Ifllap + 2F" @)llags/n))- (5.17)

By definition, the function f£+ € A" satisfies the hypothesis of Lemma 5.1 for all
a, > 0. Furthermore, the bound (5.17) is decreasing in x. Hence, one has for all
k € [4,1],

1S, = V)Xl < (=) (13 + N12(F32) @) u ) - (5.18)

Collecting the inequalities (5.15), (5.16) and (5.18) yields the desired bound ¢ on (5.14),
uniform in K € [J,1]. The only missing information is the norm of the operator M
appearing in (5.15), which will be given in Section 7.2.

We end this section with the

Proof of Lemma 5.1. For f € W} (R*,dz), one can rewrite

Sf@) = £(z) = (s = D) +x [ ).
Hence,

1S = Dfllap < (1 =)l fllap + K/Ooo dz wop(7) /w ' (y)ldy. (5.19)
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Furthermore,

" twwy@) [ 1@l = [yl @) [ v
I / J /

T

< [l ) a0, s /)

S 1—& sup ma‘x{waﬂ (y)7 waﬂ (y/ﬁ?)}

ko y>0 Wo(B/k) (v)

19 F (W)l ags/m)-

Finally, one checks that the supremum in the previous expression is bounded by one for
k < 1, which leads to (5.17).

Remark. The quantity € is computed in the procedure compute residual. This
procedure also returns a bound on the first term in the RHS of (5.16), a quantity
that will be used in Section 5.3. The bound (5.17) is implemented in the procedure
snorm_of_Skappaml, where the second term on the RHS of (5.17) is estimated using,

for p € A with m(p) = ({z;}, {p; })izo:
1 n
120" ()| a1y < 3 Z SUP Wa(8/r) (@)]p; — pical(z; + 2;_4). (5.20)
i=1 T

Finally, the (positive) representable numbers that describe the approximate fixed point
fye € A" are contained in the file fpoint.1lp. The first two numbers in this file are
the boundary points of supp(fy+). They determine the partition p € P?, n = 27 +1,
satisfying 7(fy+) = (p,-). The last 2'” numbers are the (nonzero) entries of the vector
v, where m(fy+) = (-,v). Given a nonnegative G € S, the subroutine read fp reads the
file fpoint.1p and constructs a standard set (P, V, G) with (P, V) € std(A") containing

0
Ia+-

5.3. Existence of the Fixed Point f,.

Recall that once the existence of the continuous family {f,} of fixed points of N, is
established for A € [A™, A"], our main result, namely the existence of a A* € [A~, A™]
and a function f* satisfying S,.D(f*) = f*, follows from

Cx- (f)r) <c¢ < C)\+(f)\+)’

where ¢, is given by (1.10) and c,(f) by (5.4). Checking this inequality amounts to
computing for each of the three quantities involved a standard set in std(IR).
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Let us start with ¢y (fy+). Suppose that one has a standard set, say in std(B,,,),
containing the fixed point f,+. Then one readily gets a standard set in std(IR) containing
cy+ (fy+) by composing our bounds to compute

& 1 - ¢, E(NZ: (frr))
2 M(fx+)

The previous expression follows from (5.4) and E(f,+) = 1, a property satisfied by
definition of the maps N,, cf. (2.2). In order to check that ¢; < ¢,+(fy+), the size of
the standard set obtained from (5.21) must be small enough, which ultimately requires to
localize well enough the fixed point f,,. In particular, Proposition 2.6 implies only that
fa+ € Ba(fyy) with 7 = /(1 —g). This cannot be used to construct a suitable standard
set containing f, 4, since the ball B( f£+) also contains the fixed point fyi 5 = Ssfy-
for which ¢, 1 (S5fy-) = ¢,-(fy-) < ¢;. In order to get a suitable standard set, we first
use that the approximate fixed point fg+ has been numerically determined as a very
good approximation of f,;, and exploit our bounds to compute

[Mixs (F34) = ey S IMIIN - (F32) = PRl
<é, (5.22)

ext(fa+) = (5.21)

with &’ ~ 4.97-1077 (to be compared with & ~ 1.15 - 10™*). Next, since by Proposi-
tion 2.6, M, = M, ; is a contraction on the ball B,.(fy:) € B,, with rate ¢ < 1,
one infers from (5.22) and the contraction mapping principle that

6/

0
— < .
||f)\+ f)\""“y,u ~1—gq

Finally, one constructs in std(B,,) the standard set whose affine part is given by the
singleton {fy+} and whose general term has norm &’/(1 —¢). This set contains f,; and
allows to check that ¢; < cy+(fy+)-

We now consider ¢, (f,-), setting again 6 = A~ /AT. For convenience, we work
with the fixed point f,+ 5 of M, ; whose existence is guaranteed in B, ( fg+) € B, by
Proposition 2.6. Lemma 2.5 implies that fy- =S 5f)+ 5 and identity (2.16) leads to

& 1- CzE(N,\2+ (f,\+,5))
2 M(fy+ 5) ’

where E(fy+ 5) = 1/d has been used. In order to check that c,- (f,-) < ¢, using the
previous relation, we must localize f,4 5 closely enough. For this purpose, we have

cx-(fr-) = (f)\+,6) =0

(5.23)

determined a very good approximation ff\)_ to the fixed point f,_. As f§‘)+, it is given
by the linear interpolation of 2! positive values at well chosen points. First, we check
using our bounds that fy_ satisfies

1S5 53 = faelluw < (5.24)
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with r as in Proposition 2.6, and,

Mot 5(S5£3-) = S5 3N < IMIIN s 5(S5F3-) = S5-Il
= M| 155N 55+ (=) = S5 S3- Il
< IMIHINA-(F3-) = 3=y
<e", (5.25)
with ¢’ ~ 4.97-107". Inequality (5.24) ensures that Syfy_ € B,(fys). Hence, Propo-
sition 2.6 and inequality (5.25) imply by the contraction mapping principle that

"
9

0
||fA+,6 - Séf)\— ||;u/ < 1— q
As above, this leads to the construction of a suitable standard set in std(B,,,) containing
the fixed point fy+ 5.

To conclude, we emphasize that the accuracy of the bounds on (5.21) and (5.23) is
crucial, since it determines how close to A* one can take A~ and AT, and since, on the
other hand, the size of the interval [A~, AT] must be small enough in order to prove the
existence of the family {f,} cpn- a+)-

Remark. The bounds &' and ¢” are computed in the subroutine compute_residual
introduced earlier. The computations of c¢y; (fy+) and ¢, (fy-)/d are carried out in
the subroutine fN, in which a bound on the maps N, is implemented as explained in
Section 5.1. The remainder of the procedure described in this section is worked out at
the end of the main program. The (positive) representable numbers that describe fg,
are contained in the file fpoint.1m. This file is organized in the same way as fpoint.1p,
and a standard set containing fg_ is constructed by the subroutine read fp described
in Section 5.2.

6. Contractivity Properties of DN,

As mentioned in Section 2, the tangent map DN, (f) is a contraction on certain sub-
spaces of B,g with finite codimension. The main goal of this section is to describe
these subspaces and compute the contraction factors. Those will be used in Section 7
to estimate the norm of the tangent map of M, .. We first introduce some notations

and check that Ay is C' on its domain of definition. The (Fréchet) derivative of N, at
f € B, is explicitly given by

DNA(N)h = 8y (263(F) f b+ 46, T(T(f+ )« T(f £ B) +85(f 1) f f),  (6.1)
where the variation 6, (f, h) of ¢, (f) is such that
E(DN,(f)h) = 0. (6.2)
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Indeed, since all functions in the range of N, have the same expectation, the tangent
space contains only functions with expectation zero. Defining Ny and N7 as in (2.4)
and (2.5), we rewrite (6.1) as

DN, ()b = ex(F)DNy ()b + ca DN (f)h + 8\ (f, h) N (F), (6.3)
where

DN (f)h = 28,(f * h), :
DN (f)h = 2T (TN (f) * TDNy (f)h). (6.5)

From the condition (6.2), d, is expressed in terms of the expectation of the three terms
on the RHS of (6.3). Using the relations (1.23), one gets

M) | B0, BN
M) "B T MDED

Now, for a > 0 and 8, A > 0, one easily checks that the estimates of Proposition 2.2
imply that whenever N, : B,5/H — B, is well defined, i.e., o < 4o/, 7 < AB, it is
continuously differentiable on B, /M.

We will need later to estimate DN, (f) for N, : B,z — B, with v slightly larger
than 8. In this case, the conditions for DN, (f) to be bounded become v/8 < A < 4.
We will see below that under the stronger conditions v/ < A < 4, the tangent map
DN, (f) is actually compact provided f is sufficiently regular, i.e., there is a sequence of
subspaces of finite codimension on which DN, (f) converges to zero. These subspaces
are defined as follows.

(1) = = () (6.6)

Definition 6.1. For p = {z,,...,z,} a partition in P, and a,b > 0, we define the
following subspaces of B4,

Lo, ={h € Byyn= 0] supp(h) € (0,a)},
C,=1{he L'(R,)| supp(h) C (20, x,,), / Z h(z)de =0fori=1,...,n},

Tj—1

Furthermore, we denote by Bgﬂ the following subspace of B, g,

Bls=Ly ®C,®R5" (6.7)

03

For a small enough and b large enough, it turns out that when restricted to L3,
Rg, and C,, respectively, the tangent map of N, at a function f in Wi(R 4 Wop(T)d)

has norms of value (’)(e_l/“||f||aﬁ), (’)(e_b||f||a5), and O(|p| ||f'l| 53), where |p| denotes
the mesh size of the partition p. More generally, if C,, consists of functions whose n —1
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first moments vanish on every interval of the partition p, the norm of the tangent map
restricted to C, is O(|p["||f ()] |wp)s Provided that the base function f is regular enough.
For our purpose, it is sufficient to consider n = 1.

Before deriving explicitly the contraction factors, we remark that we will need to
evaluate later DN, (f) on the complement of B} in B,4. It is easily seen that for a
given partition p, every h € B,5 can be uniquely decomposed into a sum h = g+ 7
where g € Bgﬂ and where 7 is constant on each interval of the partition p and satisfies
supp(7) = supp(p). More precisely, with p = {z,,...,z,} and x; the characteristic
function of the interval I, one has

where VP is the n-dimensional vector space defined by

n
VP =717 = AiXpgi_r.o N € R} (6.9)

=1
Section 6.4 is devoted to the construction of a bound on the map DN, (f) : VP — B,,,.

Remark. In (6.3), there are factors that depend only on the base function f. These
factors, namely Ny (f), TNy (f) and their norms, together with ¢, (f), E(f) and M(f),
are computed once and for all in the subroutine compute_constant_terms using the
bounds of Section 4. (This subroutine makes use of snorm_of_der_pl, a function com-
mented in the final remark of Section 6.1.) According to Proposition 2.6, A = A* and
f is represented by the standard set in std(B,,)" whose affine part is the singleton
{f):+} and whose general term g satisfies ||g|| u <9 10™*. Finally, for given standard
sets containing M (h), E(h) and E(DNZ(f)h), a bound on &, (f, h) is computed in the
procedure sdeltal using (6.6).

6.1. Oscillatory Functions

We derive now an upper bound on the norm of the operator DN, (f) : ¢, = B,.,, with

ay?

C, as in Definition 6.1 and with f = p+g € B, 3/H, p € A*. For the first two terms
in (6.3), and for ||g|[,s small, the contraction factor will come from the convolution

in DN, )f Hence, we first use the bounds obtained in Proposition 2.2 and get in full
generality

DN (H)hllany < Clex(F + 265 INX (F)llan) IDNX ()l gy + 185(F, ) IINAl(f)IIEW- )
6.10
In the previous expression, only the quantities that depend on A remain to be estimated.

Let us begin with 0,(f,h). For h € C,, one has M(h) = 0 and the first term in
(6.6) vanishes. Next, F/(h) is expressed in term of the largest interval in the partition p.
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Denoting p = {zy,...,x,} and I, = [z,_;,z,], i = 1,...,n, the identity fIi h(z)dz =0
implies

‘/ xh(x da: ‘/ Lit Lo )h(w)dm‘ < %(wi—xi_l)/‘h |h(x)| dx,

which in turn yields

B(h)| < )l (6.11)

ax X; — X, sup(
{ % 1}w>0 waﬂ

l\DIn—\

Finally, since DN (f)h € B4+, it follows from (2.13) that

|[E(DNR(f)R)] < 2sup(

x>0

7)“/\&( oy [IDNZ ()| g (6.12)
a(4'y)( )

Inserting (6.11) and (6.12) into (6.6) leads to an estimate for the second term on the
RHS of (6.10). In order to bound the RHS of (6.12) and the first term on the RHS of
(6.10), it then remains to estimate | DNy ()Pl oy

In order to treat DNy (f), one has the possibility to exploit, as in the previous
section, the distributivity of the scaling operator S, with respect to the convolution. It
turns out that the order is not crucial and we consider for simplicity

25

We begin with the convolution and use the following result.

Lemma 6.2. Let f € Wll(]RJr,waﬁ(a:) dz) and h € C, with p = {z,...,z,}. Then,

1
17 * hllaays < ap®If laplPllag: (6.14)
where, denoting I, = [z,_,,z,],

Cap(P) =  max {sup ;)/ W5 (T) da:}. (6.15)

= 1’ ik ‘7:61 wa,B(x z

Since for p € A one has by definition p € W (R, w,5(z)dz), the previous lemma
together with Proposition 2.2 imply, with f =p+g, p€ A%, g € B3, and h € C,

1 * hllaays < lo* Allgays + 119llapllPllap

1
< (5Cas@P lag + 19llap ) 17l op- (6.16)
2
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Next, since v/8 < A < 4, inequality (4.8) applies (with « replaced by 4«), and we finally
obtain

_ar1
IDAG (£)llary < 267 (Seas @Il + I9ap ) Fllas: (6.17)

where A = 2y/a(4 — \) (B —v/N).

A few comments are in order. In (6.17), the contraction factor is not only given by
Cap(P) but also by how close in B, 4 the base function f is to a regular function together

with the norm of that function in Wi (R, w,g(z)dz). The fact that the fixed point
whose existence we want to prove is smooth plays an important role here. To make a
connection with Proposition 2.6, the quantity |||, in (6.17) is the radius of the ball
on which the tangent maps DM, . need to be contractions. All the other terms can
be made as small as we wish by letting the size of the largest interval in p go to zero,
cf. (6.11) and (6.15). Note that c,4(p) depends sensitively on « and 3, and optimizing
this factor requires to consider a partition p with smaller intervals where the weight
w,p varies strongly. We will encounter later other optimization criteria for p. We shall
denote by p,. the partition p which we will eventually choose, cf. Section 7.1.

We end this section with the

Proof of Lemma 6.2. Define the function h; by

@) = | " he) de,

0

for z € (z,,z,), and hy(z) = 0 otherwise. Note that h} = h and, by definition of A,
hqi(z;) =0 for i =0,...,n. Hence, integration by parts leads to

1f * Pllcaays = I % Pallaays < 1 g1 n ]l

It remains to estimate the norm of h, in term of h. For i =1,...,n and = € [z,_{, z;],
one has

Ty

(@) =5 [ mera) <5 [ s

which in turn yields

[NEDY | waple) (o)
1 n
< 52:;/1 Wop () /I (h(€)] dé dx
1

1
- - d } Bl .
< 21:‘??’_‘,"{2‘612 0y (@) /1 Wop(x) dz t|h]l 4

/ h(€) dé| +
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Remark. The quantity c,4(p,.) is computed in the subroutine swsupint. (See the final
remark of Section 7.1 for a description of the parameters related to the partition p,.)
The estimates (6.11), (6.12) and (6.17) are implemented in fDN_center to compute
(6.10), with a call to the subroutine sdeltal to get d,(f,h). The quantity |[p'|l,s
entering (6.17) is bounded in snorm_of_der_pl by

16l op < Zsupw @)lp; = pj_1l; (6.18)
j=12€1

where m(p) = ({y;}, {; Do and I; = [y, ,)

6.2. Functions with Support Near the Origin

In this section, we consider DN, (f) acting on functions h € L2 for a small enough.
As in the previous section, but for different reasons, the contractivity properties of
DN, (f) are entirely due to the term DA, (f). Indeed, since the functions f which
will be considered have in general a support given by IR_, the support of DN () h
for h € L7, is also equal to R due to the convolution. Hence, the size of DN’ S(f)his
essentially given by the size of DN (f) h, and we proceed as before starting with the
bound (6.10) on ||[DN,(f)hll,.

The last term in the expression (6.6) for d, (f, ) is again bounded using (6.12). The
h-dependent coefficients of the first two terms in (6.6) are given by M (h) and E(h),
which are bounded using

M(B)| < —— ||l s (6.19)
waﬁ(a)

E®) < —||]ls, (6.20)
wa,B(a’)

provided a < y/a/f for the first inequality, and a < (1 ++v1+ 4aﬁ) /2 for the second
inequality, cf. the discussion of (4.5) and (4.6).

It remains to bound DN, ; (f)h in B,,. We consider

25
DN} : By % L& —— Blpoyp —— By, (6.21)

with 7 € [A, 4] a parameter to be chosen later. For the convolution, we use the

Lemma 6.3. Let f € B,5 and h € Lf,. Then, for1 <n <4,

175 Al gy < exo (= TEZDY gy i (6.22)
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Proof. Exploiting supp(h) C (0,a), we proceed as in Proposition 2.2 and get

17 5 Bligays < sup exp(~ag(a ) 1flaglblap

a>y>0

where
r+y 0

zy T+y

9(z,y) =

Since g(z,y) > 0 for n < 4, one has sup exp(—ag) = exp(—«inf g) and, using n > 1, we

compute
2— 2 —
nf g(z.y)= inf ViI2 =) _ /2= i)
aizgo a>y>0 y a

We now turn to the scaling operator. Since supp(f * h) = R, for functions f that
will be considered, the following general bound is optimal,

1539llay < exp(=2v/ (1 = A/m) (B = 7/A)) 9l (yays- (6.23)

which is valid provided v/8 < A < 7. From (6.23) and (6.22), we get a bound on
| DN ( f)h|lo,- We now optimize the parameter 5. Since ultimately we will get the
needed contraction factor by choosing a small enough, and since (6.23) does not depend
on a, we consider (6.22) only. For A > 1, the maximum of ,/7(2 — /1) on [A, 4] is taken
at n = A, and one gets finally

||DJ\/’>}(f)h||a7 <2 exp(—M)

[ lapllPllap- (6.24)
Recall that (6.24) is valid provided v/ < A < 4. Furthermore, it leads for a small
enough to a strict contraction only if A < 4: this is the first compactness condition.

Before ending this section, let us comment on the optimization of the contraction
factor. Instead of (6.21), one can consider DN (f)h = 2(S, f * Syh) with Sy : B,z —

Bo/n)y and n € [A, 4] a parameter to be optimized. Since Syh € E‘(Ié;\n)w is of order

(9(@_1/ ) if n > A, one gets a second a-dependent contraction factor from the convolu-
tion. However, optimizing 7 leads to the same bound as (6.24), and we use (6.21) for
convenience of implementation.

Remark. The bounds (6.19), (6.20) and (6.24) are implemented in the procedure
fDN_left to compute (6.10). The conditions on a under which (6.19) and (6.20) are
valid are first checked, namely a < \/a/f and a < (1 + 1+ 4aﬂ)/2[3. An explicit
check of 7/ < X\ < 4 is also necessary. Up to now, this inequality was implicitly verified
when bounds were computed, as in (6.17) for instance.
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6.3. Functions with Support Near Infinity

We now consider functions h € Rg with b large enough. Here, the situation differs
from the previous cases in the sense that the term DNY(f)h is small independently of
the size of DN /\1( f)h. Indeed, the property of h to have support away from the origin
is preserved by DN, /\1 (f)- After applying the transformation T, one obtains a function
whose support is near the origin, and the result from the previous section related to the
convolution yields a second exponentially small factor. Hence, we simply start with the
triangle inequality to get from (6.3)

IDNL ()l < lex(DIDNX () llay + el DNR ()bl + 185(F5 1) ”N/\l(f)“((»y' |
6.25

Let us begin with the first term. The main contraction factor is here entirely due
to the scaling operator acting on Rg. Furthermore, for f € B,g, the map h — fxh

preserves "R,%. Hence, one has the choice of the order in which the scaling and the
convolution are composed. By letting the scaling act first, one gains a (b-independent)
contraction factor when applying this operator to the function f. Recall that S, :
Bug = B(q/4) 1s @ strict contraction for v/B < A < 4. One can improve this factor by
considering By, for the target space of S,. Hence, we consider finally

S
DN} /2:B,5 x RY —25 By, x RYA X B, . (6.26)

Provided v/8 < A, the scaling operator in (6.26) is bounded, and, since Syh has again
support away from the origin, the convolution above is well defined even for oo > 0. For
[ € B,g, one estimates as usual

wo, (T/A)
S < sup ———~
152y < 515 =5 1 g
= exp(=2v/a(B= /N ) 1fllas: (6.27)
and for h € Rg, one uses the knowledge about the support of h to get
wog(z/A)
Syhllgy < sup —22Z 1A,
130l < sup <2 L
= exp(—a/b—b(B — /M) [Ihllap (6.28)

the last equality being valid if b > /a/(8 —v/)). Next, we consider the convolution
in (6.26). For f € By, and h € Rg/ A, we proceed as in Proposition 2.2 and get

( wa,y(l' +y)

x h|l,, < sup h
£ % bl o Gy () 1 o el

z>0
y>b/X

(67
= —_— h
sup exp($+y)||f||07|| lloy

y>b/X

= exp(a/b)|[flloy I 7llo,- (6.29)
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Finally, (6.27), (6.28) and (6.29) lead to
DN ()l oy < 264 exp(=0(8 = 7/A)) [ Pllapll 1l s (6.30)

where A = 2y/a(B8 —v/A) — a(X — 1)/b. Although the convolution deteriorates the
b-independent factor given by the scaling, (6.26) is still a good choice due to the large
values of b that will be considered. Proceeding in this way is not crucial, but allows
to take smaller values for b, thereby saving about 10 percent of the computation time
devoted to the evaluation of DN, (f) on VP, the space of piecewise constant functions.
We conclude by observing that (6.30) yields a bound which is exponentially small in b
only if /8 < A: this is the second compactness condition.

Next, we consider the second term in (6.25). One has
IDNR ()l < 2ITNX(f) % TDNX ()]0

From DNy (f)h € RY/* it follows that TDN; (f)h € £}/°, and applying Lemma 6.3
with n =1 leads to

b
IDAZ ()l < 2ex (=2 ) INEC) g IDA () (6:31)

It remains to estimate &, (f, k). The expectation of DN (f)h is simply bounded
by
x

Wa (7)

Note that in the previous cases, we used the properties of the convolution near the
origin to bound this quantity according to (6.12). Here, these properties have been
used already in the bound (6.31) to extract a second exponentially small factor in b.
Therefore, inserting (6.31) into (6.32) leads to a better estimate than (6.12). Finally,
for h € ’Rbﬁ and b large, one has the following bounds on M (h) and E(h)

BN < sp( = N IDNR (Dl (6:32)

1 b
(M (h)| < m”h“aﬁ’ [E(h)] < mllhllaﬁa (6.33)

provided b > (/a/p for the first inequality, and b > (1 4 /1 + 4af) /28 for the second
inequality.

Remark. The bounds (6.30),(6.31), (6.32) and (6.33) are implemented in £DN_right to
estimate (6.25). The validity conditions of (6.28) and (6.33), namely b > /a/(8 — v/A)

(> +/a/B) and b > (1 + /1 + 4apB)/28, are explicitly checked.
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6.4. Piecewise Constant Functions

Finally, we consider the case of functions h in VP. On this space, the tangent map
DN, (f) is not a contraction and the relevant information is contained in the images
DN, (f)h of the basis vectors h of VP. Therefore, in order to keep track of this infor-
mation, we need to construct a bound on the tangent map in the sense of Section 3.
For p = {z¢,...,7,} and I; = (z;,z;_,), a basis of V¥ is given by {x; }i_,. Hence, we
introduce the following set X of characteristic functions,

X ={cX[4,a15)/c ER,a > 0,6 > 0},

and we construct a bound on DN : B, x X — B, acting from std(B,4)" x std(X)
to std(B,,), where we define std(X) to be the collection of all sets of the form

(A, B,C)={h € X | h=cX[y 41 Vitha € A,0 € B,c€ C} (6.34)

for C € std(IR) and A, B € std(RY).

Note that, once a bound on DN/} : B,z x X — B, has been obtained, composing
it with the bounds of Section 4 readily yields bounds on the first two terms of DN, (f)h,
cf. (6.3) and (6.5). To compute the coefficient 0, (f, k) in the third term of (6.3), the
only missing quantities are the mass and the expectation of h € X'. Those are obtained
from the equalities

M(X[a,a+(5]) =0 ’ E(X[a,a+5]) = (S(Cl + 5/2) (635)

It remains to construct a bound on DN/}. We consider

S
DN} /2:Bygx X =25 B x X —— B, (6.36)

4
The reason for this choice is as follows. Some of the functions h will have support close
to the origin or far away from the origin. In such cases, we know from the previous
sections that the scaling in (6.36) is a very good contraction. Hence, considering (6.36)
will automatically yield an extra contraction factor and improve the bound on the
convolution between S, h and the general term of S, f.

A bound on S, : X — X is easily obtained from

S)\X[a,a+5] = AX[a/A,(a+8)/A]"

Next, we construct a bound on the convolution defined from std(B., )" x std(X) to
std(B,,,)", withy € [(,4(]. Let f = p+g, p € A" and g € B, . One has fxh = pxh-+g*h,
and the second term of this equality will be a part of the general term g of f x h and
will be treated as usual. The first term contains the relevant information and needs
to be computed explicitly. In the sequel, we consider for simplicity h = X[a,a-+6]" Let
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m(p) = ({z;},{p;})iz, and denote by e the mesh of the uniform partition associated
with p. If € > 6, the function p x h takes a simpler form than in the case ¢ < §, and we
restrict the domain of our bound to such cases in order to simplify the implementation.
Define

Y = a+ xy + ke, k=0,...,n+1, (6.37)

and I, = [y, yk+l], k=0,...,n. It is clear from the properties of the convolution that
p * h is continuous and has a support equal to (y,,y, + 0). Next, a short computation
shows that provided € > J, p x h is given on the interval I; by

(P = 0p_1/2) + 00p_y + 0% (P} — pl_1)/2, 0<0 <4,
(p*h)(y +0) = (6.38)
8(py, — 0p}/2) + 00p} §<0<e,

with the convention that p_; = p,,,; = 0, and where

1 Pr+1 — Pk
Pk T e
Indeed, one has

a+d

)
sm+0)= [ pn+0-s)de= [ plap+o-0de (639

a

Two cases arise: if > 4, the function p in the above integral is given by

p(z) = pp + (T — 1) py.- (6.40)
Inserting (6.40) into (6.39) and integrating lead to the second part of (6.38). For 6 < 4,

we rewrite (6.39) as

6 5
(W +0) = [ pla+0-)de+ /9 Py +0-€)de.  (6.41)
0
In the first term, p is again given by (6.40), whereas in the second term one has

p(x) = pp + (= — 1) Py (6.42)

Inserting (6.40) and (6.42) into (6.41) yields the first part of (6.38). Next, we define
the affine part p of f * h to be the linear interpolation of p * h at the nodes {y, }. More
precisely, we consider

p="T ({?Jz ?:01’ {ﬁi ?;01)’ (6.43)

where
P = 0(pr, — 0p%_1/2), k=0,...,n+1. (6.44)
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Note that p € A". Finally, the general term of f x h is given by g = pxh—p+gxh
and one gets

For h = X[a,a-+5]> ON€ simply uses that

lhlley <6 5w wey(@).
z€[a,a+6]

To bound the first term on the RHS of (6.45), we first note that on the interval I,
k=0,...,n,

B) = e+ (y — y) oL~k
= 6(p — 6pp_1/2) + 6(y — y) (p) — 0(pk — Pl—_1)/2€)-

From this formula and the expression (6.38) for p * h, one computes for 6 € [0, ],

o 62

(prh = D)+ 0) = 0(5— 5 = 5 ) ok — Pkl (6.46)
and for 0 € [4, €],
N 8? 0
(o h =)y + 0 = (1= 2) 1ok = phsl- (6.47)

Therefore, integrating (6.46) and (6.47) leads to

lp b —plly, < supw,(z) [ [(pxx— ) (y)l dy

|
k=0 €1k T

1 0\
=6’ (Z - @) Z Sg}) Wep (2)|Prg1 — 20K + Pr—1l (6.48)
k=0%<"k

with the convention p_; = p, ., =0.

Remark. A set (A, B,C) € std(X) is represented on the computer by a vector, say
fb, with fb(1)=A4, fb(2)=B, and £fb(3)=C. The scaling S, : X — X is implemented
in fscale_chi. A bound on the convolution in (6.36) is implemented in the procedure
fconv_chi from (6.43), (6.45) and (6.48), where we first check the condition € > §. We
note that for the purpose of the proof of Proposition 2.6, the base function f is always
represented by the same standard set in std(B,4)". Hence, the only quantity in (6.44)
that may change from basis vector to basis vector is 6. By choice of the partition p,, see
Section 7.1, most of the basis vectors have equal J, and the computation of the p,’s is
carried out only once for such basis vectors. Finally, the bounds on the scaling and on
the convolution in (6.36) and the bounds from Section 4 are composed in the subroutine
£DN_chi to implement a bound on DN, (f) : X — B,,, f € B,g.
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7. The Tangent Maps DM, ,

In this section we explain how a uniform upper bound on the contraction rate of the op-
erators M,y , in a neighborhood of the fixed point f* is obtained for all x € [\~ /A", 1].
This will complete the proof of Proposition 2.6. We recall that the operators M, .
are given in terms of the original maps Ny , = S, Ny+ by

MX*‘,& :1+M(N/\+,n_1)7 (71)

where M is some fixed invertible linear map close to the inverse of 1 — DN,.(f,.). Since
N, A+, 18 already a good contraction on the subspaces B? , for certain partitions p, we
need M to be different from the identity only on the finite dimensional subspace VP, cf.
(6.8). In Section 7.1, we introduce some notation and express the norm of a linear map
in Baﬂ in terms of its norms when restricted to Bgﬂ and VP. The description of M is
given in Section 7.2. The last section is devoted to the final estimate needed to prove
Proposition 2.6.

7.1. Decomposition of the Operator Norm

Let p = {zy,...,,} be a partition in P,. In order to express the projector on V¥, we
introduce two maps associated with p: the finite rank operator Z,, : B,5 — IR"™ defined

by

[ARRS]

and J, : R" — VP defined by

jp{fi}?zl = Z fixa, (7.3)
i=1

where I, = (x,_, ;] and |I| is the Lebesgue measure of I C IR. With this notation, the
projector Q, on V¥ may be written as

Q, = 7,1, (7.4)

Let A be a bounded linear map in B,5. One has

1Al < 111, max{[| Alyell, ||A|3§ﬂ||}7 (7.5)
where || - ||, is the norm in B4 given by
11l = 19pfllap + 111 = Qp) fllas- (7.6)
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The norms || - [|,, and [| - ||, are equivalent, with

1fllag < 1F1ly < KSPN£lop (7.7)

for some constant Kgﬁ . From the definition of Bﬂﬂ and its subspaces L7, Cps ’R%, it
follows that

14lge Il = max{[[4] zzoll, [ lc, Il ||A\Rgn||}- (7-8)

Furthermore, one has
lAlyoll = max (|45, (7.9)

with 7, the characteristic function of I; normalized in B4, i.e.,

n;, = (/I w,5() da:)_lxli. (7.10)

i

Inserting (7.7), (7.8) and (7.9) into (7.5), one gets

1Al < K max{{||Am[| o5} 17||A|L§0||,||A|cp||,||A|R§n||}- (7.11)

For A= DM, ,(f), evaluating the quantities in the RHS of this expression will yield
the desired bound on the norm of the tangent map of M, .. The bounds obtained
in the previous section will allow us to estimate each of the last three quantities in one
step, by evaluating in turn [[DM,. ,(f)hll,p for all h in the unit balls of £7°, C, and
Rg". In contrast, the contractivity of M, . on VP follows from the specific choice of
the operator M, and an explicit computation of the n quantities ||An,||,s is required.
This accounts for most of the computation time of the proof.

This leads us to the problem of optimizing the partition p in (7.11) with respect
to A = DM, .(f). Roughly speaking, the size of the intervals in p = (2, ...,z,)
is determined by the contraction rate of A on C, that we need to obtain. Hence, the
number of intervals n is fixed by z, and z,,. In order to minimize n, we want to maximize
z, and minimize z,,. These two parameters determine the contraction rate of A on L3°
and ’Rz” Increasing a and B improves the contraction and allows to consider larger
z, and smaller z,,. However, large values of & and 3 deteriorate the estimate (2.19) of
Proposition 2.6, i.e., the precision of the approximate fixed point. Good values for «
and 3 have been found empirically to be @ = 0.5 and 8 = 0.9, for which z, = 0.065,
xz, = 11.83 and a (non—uniform) partition of 5050 intervals give the desired bound

n

(2.20). In the sequel, we will refer to this partition as p, and denote n, = 5050.

We end this section with the computation of the equivalence constant K I‘,’ﬁ . First,
we estimate ||Q, f||,5 - From

|—\|I| /f )da |I|51£(wa;(x)) /Iiwaﬂ(xw(xndx, (7.12)
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it follows

190 e = S-1T 0] [ wog(o) do
=1 I;

1 1
< max (— sup 7/ Wap () dm)||f|| '
=1,....,n |I7,‘ zel; waﬂ('r) I; alB a,B

Hence, the following inequality

1fllp = 112 fllap + 11 = Q) fllag < [Ifllap + 2112y fllap:

implies
1 1
K% <142 max (— supi/ w (a:)da:) (7.13)
P i:l,...,n |I'L‘ $€Ii waIB(./,U) Ii aﬁ

Note that the previous upper bound tends to 3 from above when n increases and when
the size of each interval goes to zero. Also, the weight contributes to this bound by its
largest variation on the intervals {I;}. We have already encountered a similar situation,
cf. (6.15), and we chose to consider a non-uniform partition with a higher density of
nodes where the weight varies strongly. For the partition p, introduced above, one has
K I’fr" < 3.15.

Remark. An upper bound on the equivalence constant K" is computed in the pro-
cedure compute_equiv_const, using swsupint to estimate the second term in the RHS
of (7.13). The first and last points in the partition p, are z, = 0.065 and z, = 11.83,

respectively. The first 100 (npr1) intervals are uniform with mesh ¢, = (z, - z,)10*
(sepsprl), whereas the remaining 4950 (npr2) intervals are uniform with mesh ¢, =
2¢,, (sepspr2).

7.2. The Operator M

As mentioned earlier, M should be a good approximation to the inverse of 1—DN,. (fy«),
and needs to be different from the identity on the finite dimensional space V" only.
Hence, for a certain partition p € P,, to be chosen later, we write

M= (1-Q, DN\« (£3+)Q,) (7.14)

where f£+ is the explicit approximate fixed point of N,; entering the statement of
Proposition 2.6. The previous expression involves the m x m matrix

A=T,DNy (f34) 7, (7.15)
and can be rewritten as

M=(1-J,AL)" ' =1+ J,A1 - A)"'T, (7.16)
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Since we look only for an approximation, the operations involved in the computation of
the matrices A and A(1— A)~! need not to be exact. Hence, the use of interval analysis
is not required here and we will rely on numerics only. The result of this operation will
be denoted by B, i.e.,

B~ A(1-A)™L (7.17)

With the notation
Cp = JpCT,

for C' an m x m real matrix, M is finally defined by

M=1+B,. (7.18)

We note that the numerical invertibility of 1 — A does not imply the invertibility
of M. Since this property is required in order for the fixed points of N, A+, and of
1+ M(N,+ . — 1) to be in correspondence, we must check that M is indeed invertible.
We exhibit a matrix C' for which (1 4+ B)C is invertible. This implies that the matrix
1 4+ B is invertible, which in turn ensures the invertibility of M. For C, we consider
the matrix 1 — A that has been previously numerically determined. Then, we check
rigorously with interval analysis that the matrix X given by

X=(1+B)C -1, (7.19)

satisfies
X <1, (7.20)

for some norm on R™. From this inequality, it then follows that 1 + X is invertible.
The norm on IR™ we use in the program is ||z|| = max,_, ., |z;[, that is, for C a real
matrix with coefficients {c;;},

n
111 = g, 3 e (7.21)
]:

We now discuss the choice of the partition p used in the definition of M. This
partition will be denoted by p,. Since the decomposition BZ% @ VPr has been introduced

in order to isolate the subspace BZ% on which N, A+ 18 @ contraction and since the non
trivial action of M should turn M, , into a contraction on V**, it is natural to require

Bl C Ker(B,, ).
This is in particular true if p_ is a subpartition of p, , i.e.,

Ps C Py (7.22)

There is no need for p, to be equal to p,. In particular, p, could have fewer nodes than
p,., which would improve performance with respect to memory and computation time.
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By trial and error, we have determined a small partition which satisfies (7.22) and leads
to a contraction on VPr. This (uniform) partition contains m, = 500 intervals. Hence,
B is a 500 x 500 matrix with entries in S, the set of (safe) representable real numbers.

For technical reason, the matrix A is not computed according to (7.15) with p = p,.
This would amount to computing the matrix elements a;; = (Z, DNy ( fg+)Jps§:j)i,
where {#} is the canonical basis of R™*. To avoid the writing of special procedures,
we want to use our bound on DN, acting on X even though interval analysis is not
required. However, the intervals in p, are too large for the 7, Z; to be in the domain
of this bound. (Recall the restriction on the domain of the convolution between a
characteristic and a piecewise linear function in Section 6.4.) Hence, we first divide
each interval in p, into d subintervals. This leads to a partition p, € P, whose
intervals are now small enough for d = 10. With {g,} denoting the canonical basis of

R™: | one has Tp, 25 = Zle Tp,Ja(j—1)+1- Next, in order to save some computation
time, we exploit the continuity of DN, ( fg+) to compute an approximated matrix A
given by

a;; = (Z,, DNy+ (f£+)jptﬂk(j))i, (7.23)

where J, = dJ,, and k(j) = d(j — 1/2).

We recall that in (7.23), the function DN, (f§+)jptgk(j) is given by our bound
as a sum p + g, with p € A and g a general term. For the purpose of computing A,
g is discarded and it remains to discuss the map Z, : A — R™°. We will need later
to evaluate this map rigorously and we now describe how to bound it. Let p € P,,
and 7m(p) = (p,,"). Define p = pUp, = {yj};-\;o and p; = p(y;). Then, writing
fj = (yj_l,yj), one has for:=1,...,m,

(z,0). = ﬁ 3 /I A(z) de = ﬁ 3 \ij\%. (7.24)

We restrict the domain of this bound to those p’s for which the support of the partition
p contains the support of p,- By proceeding so, we ensure that no information is lost
when projecting on VP.

We end this section by deriving an expression for the operator norm of M in B, .
Recall that this quantity was needed in Section 5, cf. (5.15), (5.22) and (5.25). We start
with the trivial estimate

IM[| <1T+IB,,I; (7.25)

and express the norm of the finite rank operator B, in terms of the partition p, and
the matrix elements of B. Let p = {z,,...,z,} € P,, I, = (z;_,,z;) and let C be an
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n X n matrix with real entries {c;;}. For f € B4, one estimates

R AR 3) SN ELE

=1 j=1
<Z|zf IZW/ 2) da,

and, using our previous bound (7 .12) on |(Z,f);l, one gets

IC, || < NP (), (7.26)

)) E:L: [n /1 Wap(2) dw). (7.27)

Remark. A bound on the map 7, : A — IR"™ is implemented in the procedure
projection, checking first the condition on its domain of definition and using fadd to
compute p and {p;}. In the procedure compute matrix, the matrix B (bm) is computed
using (7.17) and (7.23). A call to show_invertibility verifies that 1+ B is invertible.
For the numerical inversion of 1— A, we use the standard algorithm of Gauss elimination,
implemented in the subroutine gaussj. The operator norms of M and B, are com-
puted in compute matrix norm. Finally, the partition p, satisfies supp(p,) = supp(p,)
and is uniform with mesh e, = 10¢, (sepsps). Hence, it contains 500 (mps) intervals.

where

1
NeB(C) = max ( sup(
p ( ) j=1,..,n |I ‘ ,zEI

7.3. Existence of the Family of Fixed Points: Second Estimate

In this section, we derive a uniform bound on the norm of the tangent maps DM, < (f)
for x in [A"/AT,1], and f € B,(f31) C B,, with p =05, v =09 and r =9-10"* In
the sequel, we set § = A~ /AT, By definition, one has

DMy, (f) =1+ M(S DN+ (f) —1). (7.28)
For f € B,g5/H, DN, (f) is bounded from B, to B, provided v/8 < A < 4. Hence,
with 8 = v and v = v/k, S, DN+ (f) is bounded as a map from B,, to B, provided
1/k < AT < 4. One concludes that for all x € [§, 1], DM, .(f) is bounded as a map
from B, to B, provided 1 /6 < AT < 4. For the values of AT and A~ as given in the
statement of Proposition 2.6, the previous condition is satisfied.

To estimate the norm of DMy (f) in B, we proceed as outlined in Section 7.1
and bound each term on the RHS of (7.11). We start with the simple case h € B,
The property p, C p, implies B, h = 0, so that Mh = h. Hence,
IDM i o (F)Bll, < IMI IS DNy (£)A .

<M DN+ (DR oy 0 0)
<M DN+ (DOl sy (7.29)
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for all kK € [§,1]. An upper bound on ||M|| was described in the previous section.
Representing f by the standard set in std(B,,)" whose affine part is the singleton

{fY:} and whose general term has norm 7, the bounds of Section 6 yield 0.85 as an
upper bound on the RHS of (7.29) for all h in the unit ball of £}°, C, , and R7".

Next we consider the more delicate case of h € VP7. According to (7.11), one has to
estimate the n, quantities [|[DMy (f)n;ll,, where n; is the normalized characteristic

function of the i*" interval I, in the partition p,. Recalling that M =1+ B, , we get
from (7.28)

DM}\+’K(f)T]i = SKDNA+ (f)’l7Z + Bps (SnDN)\+ (f) — 1)’/]2 (730)

The bound on the map DN, (f) : X — B, previously constructed yields the function
DN, (f)n, represented by a standard set in std(.A) and a general term. We denote the
former by p, and the latter by g,, i.e.,

DN>\+ (f)m = p; T Y;s

and rewrite (7.30) as

DM+ (f)n; = S, (p; +9;) + B, (S.e(p; +95) — ;)

The norm of the first term is bounded as before for all x € [J, 1] by

To treat the remaining terms in (7.31), we express them as

S.pi + Bps(Snpi —n;) =5, (Pi + Bps(pi - 771))
+ BPS(S,i —1)p; (7.33)

As we shall see below, the last two terms are of order 1 — k, and the first term is
small due to the cancelations arising by construction from the action of M. This term,
therefore, needs to be computed explicitly.

Let us begin with this term first. One starts by factorizing the action of S, by
using again
1S, (05 + By, (p; = 1))l < s + By, (0i = 1)l w6y (7.34)

which is valid for all k € [§,1]. Next, since p, C p,, it is enough to construct a bound
on the map
AX X3 (p,x) = llp+ T,CL,(p = X1)l arys (7.35)
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for p € P,, and C an n x n matrix, restricted to intervals I satisfying I C I, for some
interval I; in the partition p. A bound on p — Z p has already been discussed in the
previous section. Denoting by I, the i interval in the partition p, one has (Z,x1); =0
if INI; =0, and otherwise

(Zpxr)s = /1] (7.36)
A bound on the map C : R"™ — IR" is readily implemented with interval analysis, and
it only remains to consider the map (p,v) = [|p + 0|4y (p;v) € A X R"™. Let us
denote m(p) = (p,,-), P = pUp, = {yj}év:o and p; = p(y;). Imposing the restriction
supp(p,) € supp(p), one obtains

|9+ vil +1p; 1+v\
||p+Jpv||a7_§j§jsupw o)\ = (7.37)
_j we]
I;cr

where T ; stands for the 4™ interval in p. This finishes the construction of a bound on
the map (7.35), which, given standard sets containing p, and 7;, provides an estimate
on the RHS of (7.34).

Next, the second term in (7.33) is simply bounded by

1By, (S = Dpill, < 1IBy, [0S = 1) pill o (7.38)

The operator norm of B,, has been determined in the previous section, and Lemma 5.1
provides a bound uniform in  for the second factor, namely

1S = D)pill < L= 0)(lillw + 1203l ys))-
To treat the last term in (7.33), we use the

Lemma 7.1. Let p = {z,...,z,,} € P,,, C an n x n matrix with coefficients {cij}, and
0 < x < 1. Then the operator norm of (1 - S, )C, in B4 satisfies

I(1 = 8,)C, |l < RpP (k)N (C), (7.39)

where N;ﬁ (C) is given by (7.27) and

1 Ti—1/K z; /K
Rgﬂ( )= (1—n)+ max f (/ W, 5(7) da:—i—/ W, 5(7) da:).
L..m I; Ti—1 T

The only dependence on & in (7.39) is in the factor Rz‘ﬂ (k). Furthermore, Rgﬂ (k)
is decreasing in k. Hence, one obtains

11 = S50)By, (05 = )l < By (O)NG” (B)(llpill o + 1), (7.40)

pr =
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for all k € [4, 1].

Finally, a bound on [[DM, . (f)n;ll,,, follows from (7.32), (7.34), (7.38) and (7.40).
As mentioned earlier, computing this bound for the n,, = 5050 basis vectors n, of V¥~
accounts for most of the computation time. In the terms involving explicitly 7,, one
can, using the linearity, factorize the value of 7,, that is ([ 1. wuy)_l. Therefore, one only
needs to compute an upper bound on this quantity. Furthermore, by proceeding like
this one can take advantage of the fact that the value of x;, can be represented by the
standard set containing only the representable number one. This leads to a standard set
containing p, 4+ g, which is more localized and improves the quality of the final bound.

We end this section with the
Proof of Lemma 7.1. For f € B, one has

0= 80C,flas = [ ap(@]1 = 802 D1y T, )0, ()| da

i=1 j=1

< IENNY eyl [ wap(@I1= 8,0, (@) o ()

Furthermore, one has

o0 Ti—1/kK zi/k
[ w5t s [ vt o) [ [

i—1 I; T;

Factorizing [, w, 5 in the previous expression and inserting the bound (7.12) on |(Z,, f);|
into (7.41) finally leads to (7.39).
N

Remark. A bound on the map (p,v) = [|p+ J,, vl|,, is implemented in the procedure
snorm_add, and the product C'v is implemented in 1linear_app. A uniform bound on
the norm of (1 —S,)B,, is computed in compute norm of 1mSB. Given i € {1,...,n,},
the subroutine init_chi returns both a standard set in std(X’) containing x;, and the

value of 7, whereas the subroutine £DM_chi computes a bound on ||[DMyy . (£)n;ll .-

Finally, for all f € B,.(fy+) and & € [6, 1], a uniform bound on the norm of the tangent
maps DM, . (f) is implemented according to (7.11) in compute norm of DM.
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Appendix

Proof of Proposition 2.3.
If for some fixed A € (1,4) and o, 8 > 0, f, is a fixed point of N, and belongs to
Baﬂ\’H, then Remark 1.2 and Proposition 2.2 imply that f, € B. We now prove that,

in addition, f, is at least once differentiable, with f§ € B. The regularization properties
of the convolution imply then immediately that fy is of class C*°(IR, ). For {,n > 0, let

Bgl'n denote the Sobolev space of functions in B, with one (distributional) derivative in
B, i-e., 1

BCTI - {f < BCT)| I'e Bﬁn}’
with the norm

£ en = I llgn +11F ey -

In the sequel, we adopt the shorter notation B, = B, and Bg = Bég. One shows that
the fixed point f, belongs to Bé for all ¢ > 0 by the following argument. One exhibits
an h € Bgl» and two sequences {f,},~o and {g, },>¢ satisfying f, =h+ f,, + g, for all
n > 0, such that {f,},>, is Cauchy in B; and {95 }n>0 converges to zero in B.. Hence,
[y is equal in B, to a function belonging to Bé. Since N, preserves the regularity, this
function is also a fixed point of A,. Therefore, it is equal to f, in Bé.

We first construct recursively the sequences {f,,},,>o and {g,,},,>¢- Since f, belongs
to B, for all ¢ > 0, and since C5° (R ) is dense in B, there exist for every ¢, > 0 an
h € Bé and a g, € B, satistying

fx=h+gy, (A1)
with
190ll¢ < - (A.2)
Moreover, one defines
fo=0. (A.3)

Denoting ¢, (fy) = €, and Ny = &Ny + c, Ny, we now define for all n > 0,

fn+1 :N)\(h + fn) - h+ C)\(fn’gn)’

_ A4
In+1 = N)\(gn)7 (A4
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where

Cr(f,9) =N\(h+ f+9) =N, (h+ f) = N,(9).

Note that C, (f,g) contains only cross terms between h + f and g. We now check that
the sequences {f,},>o and {g, },,>o have the desired properties, i.e., f, = h+ f,, + g,,,
{gn}nz0 converges to zero in B, and {fn}nZO is Cauchy in Bg. Since f, is a fixed point
of NV, it first follows from (A.1) and (A.4) that

fA = h + fn —l_ gn7
for all n > 0. Furthermore, ¢ > 0 and A € (1,4) together with Proposition 2.2 imply

that {g,,},>0 converges to zero in B,. Indeed, N, is well defined as a map from B, to
B, and the bounds obtained in the proof of Proposition 2.2 lead to

lgnlle < EAllgn_1ll¢ + callgn_llc-

Applying this inequality recursively and using ||g,|| ¢ <0y <1, one gets for all n > 1

where
d=(Cy+cy)y <1

for ¢, small enough. Note that (A.1), (A.2) and (A.5) imply, for J§, small enough, the
uniform bound

1fnlle < WX = Rlle + llgnlle
< 25, (A.6)

Next, in order to show that f,, € Bé for all n > 0, one proceeds as in Proposition 2.2

and studies the maps which enter the definition of Ny and C,, i.e., S,, T and the
convolution operator. From (2.8) and (f * g)' = f' * g, it follows that

”f *g||%40')7' < ||f||$’7||g||073 (A7)

whereas (2.9) together with A > 1 and (S, f)’ = AS, f' leads to

||S)\f||z-0'/)\)()\7') S ||f||0’7’ + A||f,||0"r
<A/l (A.8)

(A.7) and (A.8) imply in particular
ISx(F * 9)ltac a0 < M Nl (A.9)
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We now show that for all 7 > 7/, T is a bounded operator from B! to Bl . One has
”Tf“T’a' = ||f||0'7" < ||f||07” and using

(TF) (@) = = (20(T ) () + (1)),

one gets

oo

T F) ]y <2 /

0

*© 1
L@ [T @ ot [ 5w, @) 170 do
=2 - , d T , "'(z)d
/0 (2 |f](@) a:+/0 2w, (@) | |(z) dz
2
< 25up LF T (@) g1
z>0 waT(x)

< C, 111 (A.10)

oT)?

where C,__, is finite as long as 7 > 7'. In particular, since A > 1, (A.9) and (A.10) imply
ITS\(f * 9llgacsny < ClIFNealle,
which in turn, with A < 4, leads to
IT(TS\(f * 9) * TSx(3* 9))ll; < ClIFlIclgllllallc gl (A.11)

Therefore, N, is well defined as a map from Bé to Bé for >0 and X € (1,4). Assume
now that f, € Bé and that J, is small enough. Then, (A.6), (A.9), and (A.11) lead to

WA+ £ < IRABIE + CIL (AL + 117,10
1_
< Cy+ S0l (A12)

for some positive § < 1. Similarly, using (A.5) and (A.6), one gets
1Cx (s 90N < Cllgalle (1,11 + 1IRlle)- (A.13)
Therefore, (A.12) and (A.13) lead, together with (A.5), to

1 fnsalle < Co + 0115,

Using this bound recursively, one obtains f, € Bé for all n > 0, together with the
uniform estimate

Il < €, 308 < K. (A.14)
k=0
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Finally, we check that the sequence {f,},~, is Cauchy in Bé. Since (A.5), (A.13)
and (A.14) imply that B
Tim_[Cy (70, 1E = 0.

it only remains to show that {N'y(h+ f,)},>0 is Cauchy in Bgl-. We first verify that the
sequence {h,,},,>q, With B
b = Nx (e f),
is Cauchy in B(l4C /N(¢)- Since A € (1,4), this implies in particular the convergence of
{NY(h+ fo)}nso in Bgl.. Defining
N(F,9) = S,(f *9),

one has
||hn - h’mH(lfT < 2”‘/(/)%(}7’3 fn) _'/\N/—)}(ha .fm)”iT + ||N)}(fn) _N)}(‘fm)“i'r

S 2||N)}(h’ fn - fm)H(lf'r + ||N)}(fn’ f'n, - fm)”i'r + ”N)}(fm’fm - fn)”i'r’
which leads, with (A.9) and (A.14), to

1 = B ltacnyne) < CQIRIE + 1Fllg + 1fmll) 1 = Finlle

Therefore, the convergence of {h,,} in B(l4c /0 (x¢) follows from the convergence of {g,,}
in B,. Finally, in order to see that {/\; S(h+ f,)} is Cauchy in Bgl-, one observes that

where

F(f)=T(Tf*Tf),
and that the bounds obtained above imply the continuity of F' as a map from B(I4C JA)AC)
to Bgl- for ¢ > 0 and A € (1,4). Hence, the convergence of {N;(h+ f,)} in Bgl. follows
from the convergence of {h, } in 6(14C/>\)(>\C)'

N
Proof of Lemma 4.1.
For z € I,, the functions p and T'p are given by
o) = = (pilo = ,2) + s (= ), (A15)
n = (o= 1) (FanaG - ) +otal—- 7))
= (apialm — )+ el - 3i0)), (A.16)



and one computes
p(z) = Th(x)| = |p(x) — p(1/x)/=?|

Pi—1(33i - 33)(1 - xxgl) - Pi(w - 331‘—1)(% - 1)‘

= ‘Pi—l(x - 371'—1)2 — pi(w; — 37)2 — 3x(z;p; — 371‘—1Pz'—1)|

ex3
erlpi —pial | mipi — 1P |} p; — 372—1/0'_1|
S _( 1 11— + 1 11— 11— + (K (3 1 ). (A.17)
4 x z? x3
Integrating the expression on the RHS of (A.17) leads to the stated result.
|

Proof of Lemma 4.2.

By definition of A, it is clear that (p * 0)"” € A. Furthermore, because p and o have
a uniform partition with identical mesh size ¢, (p x )" is also defined on a uniform
partition. Tt is given by {2, }i~, where 2, is defined in (4.20). It remains to compute

v = (9 0)" (). With §/(5) = Sy pixy, () and 0'(z) = ST, alx,, (2), where
pi = (p; — pi—1)/e and 0 = (0; — 0;_1) /e, one gets

. /1
U =€ E PO -
i+j=k+1

Expressing the RHS of the previous equality in terms of the coefficients (4.19) finally
leads to the relation (4.21).

Proof of Lemma 4.4.

For k=21,1=0,...,n—1, and 6 € (0,2¢), one has

~ 0
Al +0) = Colk) + 5 (Colk +2) = Gy () ).
The continuity properties of p x o imply
Co(k +1) = Cy(k) + €0, (k) + 2Cy (k) + > Cy(k),
Cy(k+1) = C,(k) + 2eC, (k) + 3e2Cy(k),
Cy(k + 1) = Cy(k) + 3eC5(k),
k=0,...,2n—1. For # € (0,¢), these relations allow us to write
~ o€ €
plz +0) = Cy(k) + 0C, (k) + 50(202(k +1) = SCa(k) + S Calk + 1)),
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and, from (4.23),
(p %) (2 + 0) = Co(k) + 0C; (k) + 6% (Cy(k + 1) — (3 — )Cy(k) ).

Hence,

(5 — p* o)z +0) =02 — 0)C,(k+1) + 9(9(35 —9)— %)cg(k) + 627903@ +1),

which leads to the estimate

[ o= px o wlay < (B1Ca0k + 1) + 51050+ SIC 5+ 1)),

2k

For 6 € (e, 2¢), one proceeds similarly and obtains

[ o= sy < 2 (21eah+ 1)1+ S0+ 50,6 + 1)),

ZE41

and the bound (4.27) follows immediately.
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