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Abstract. Artin groups are easily defined but most of them are
poorly understood. In this survey I try to highlight precisely where
the problems begin. The first part reviews the close connection be-
tween Coxeter groups and Artin groups as well as the associated
topological spaces used to investigate them. The second part de-
scribes the location of the border between the Artin groups we
understand at a very basic level and those that remain fundamen-
tally mysterious. The third part highlights those collections of
Artin groups (and their relatives) that are not currently under-
stood but which we are likely to understand sometime soon.

Artin groups, also known as Artin-Tits groups, are easy to define
via presentations but they are often very poorly understood. In this
article, when I say that we “understand” a particular group, what I
mean is do we know how to solve its word problem. As is well-known,
this is equivalent to being able to construct arbitrarily large portions of
its Cayley graph and arbitrarily large portions of the universal cover of
its presentation 2-complex. It is in this sense that most Artin groups
are poorly understood. For most Artin groups we do not know how to
solve the word problem.

In this survey I try to highlight exactly where the problems begin.
It is divided into three parts and each part corresponds to one of the
lectures in the short course I gave at the winter braids conference in
Caen in early March 2017. The first part reviews the close connection
between Coxeter groups and Artin groups with a particular focus on the
associated topological spaces used to investigate them. The second part
summarizes exactly which collections of Artin groups we understand
at a basic level and which ones remain mysterious. And the third part
highlights those collections of Artin groups (and their relatives) that
are not currently understood but which we are likely to understand in
the near future. In keeping with the informal nature of this survey, I
have retained some of the blackboard images used in my talks.
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Part 1. Among friends

In Part 1 we are “among friends” since the material is more or less
familiar and it is organized around the contributions of the mathemati-
cians H.S.M. Coxeter, Jacques Tits, Mike Davis and Mario Salvetti. It
contains a quick review of some background material about Coxeter
groups and Artin groups starting with Coxeter presentations, the Tits
representation and Davis complexes and then proceeding on to Sal-
vetti complexes and Artin groups. For the purposes of this article, I
assume that the reader is familiar with Coxeter groups at the level of
Humphreys introductory text [Hum90]. For Artin groups, there is no
standard introductory text, but the interested reader can find a more
detailed development of some of these ideas in the recent survey articles
by Luis Paris [Par14a, Par14b].

1. Coxeter

This section first recalls the basic facts about Coxeter groups and
the presentations and diagrams used to define them and then describes
the important special cases where these groups act geometrically and
irreducibly on spheres and euclidean spaces.

1.1. Presentations and Diagrams. The groups known as Coxeter
groups and Artin groups are easy to define using presentations and
there are two main conventions for encoding these presentations in
diagrams with edge labels.

Definition 1.1 (Coxeter groups and Artin groups). A braid relation of
length m between generators a and b equates the two strictly alternat-
ing positive words of length m. For m = 2,3,4, . . . these relations are
ab = ba, aba = bab, abab = baba, and so on. An Artin presentation has at
most one braid relation for each pair of distinct generators and no other
relations. Coxeter presentations add relations that make each genera-
tor an involution. Artin groups are defined by Artin presentations and
Coxeter groups are defined by Coxeter presentations.

Remark 1.2 (Conventions). There are two conventions for encoding
these presentations as an edge-labeled simple graph with vertices in-
dexing generators and decorated edges indicating braid relations. In
what I call the classical notation, generators that commute correspond
to vertices that are not connected by an edge, generators satisfying the
classical braid relation aba = bab are connected by an unlabeled edge,
braid relations with m > 3 require a label and the lack of a relation
is indicated by an edge with an infinity symbol. In what I call the
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m Classical Modern
2 no edge no label

3 no label label 3

> 3 label m label m

∞ label ∞ no edge

Table 1. The two diagram conventions for Coxeter
groups and Artin groups.

modern notation, generators that commute correspond to vertices with
an unlabeled edge, braid relations with m > 2 require a label and the
lack of a relation is indicated by the lack of an edge. See Table 1.

Example 1.3 (A small example). Consider the following simple graph.

Γ =a

b

c

d

If we view Γ as encoding an Artin presentation using the classical no-
tation, then the corresponding Artin group is the one defined by the
following presentation.

Art(Γ) = ⟨a, b, c, d
aba = bab, ad = da, bdb = dbd
aca = cac, bcb = cbc, cdc = dcd

⟩

To define the corresponding Coxeter group one would also add the
relations a2 = b2 = c2 = d2 = 1.

Remark 1.4 (Structure and use). The two conventions highlight differ-
ent aspects of the Coxeter groups and Artin groups they define. When
a diagram is disconnected in the classical notation, this means that the
Coxeter group (and the Artin group) defined by this diagram splits as
a direct product of the groups defined by its connected components.
When a diagram is discconnected in the modern notation, this means
that the Coxeter group (and the Artin group) defined by this diagram
splits as a free product of the groups defined by its connected com-
ponents. The convention chosen often depends on the type of groups
under investigation. The modern notation makes it very easy to de-
fine a right-angled Artin group, where every relation is a commutation
relation, because these diagrams are simple unlabeled graphs without
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Classical Modern
disconnected direct product free product

no labels small-type right-angled

Table 2. The two conventions highlight different as-
pects of the structure of the corresponding groups and
they make different types of groups easy to define.

loops or multiple edges. In the classical notation these simple unlabeled
graphs define the Artin groups of small type. See Table 2.

1.2. Spherical Coxeter groups. One of the main motivations for
introducing a general theory of Coxeter groups is the elegance and im-
portance of the groups generated by reflections acting geometrically
and irreducibly on spheres and euclidean spaces. Recall that a group is
said to act geometrically when its action is properly discontinuous and
cocompact by isometries and that an action on euclidean space is irre-
ducible if there does not exist a nontrivial orthogonal decomposition of
the underlying space so that the group splits as a product of subgroups
acting on these subspaces. We begin with the reflection groups acting
geometrically and irreducibly on spheres.

Definition 1.5 (Spherical Coxeter groups). The irreducible spherical
Coxeter groups are those groups generated by reflections that act geo-
metrically and irreducibly on a sphere in some euclidean space fixing
its center. They are also known as the finite Coxeter groups or fi-
nite reflection groups. The adjective spherical highlights the type of
geometry used in its definition. The classification of such groups is
classical and essentially due to Coxeter. All of these groups have Cox-
eter presentations that are encoded in the well-known Dynkin diagrams
using the classical notation. The type of a Dynkin diagram is its name
in the Cartan-Killing classification and it is crystallographic or non-
crystalographic depending on whether or not it extends to a euclidean
Coxeter group. The crystallographic types consist of three infinite fam-
ilies (An, Bn = Cn, and Dn) and five sporadic examples (G2, F4, E6,
E7, and E8). The non-crystallographic types are H3, H4 and I2(m)

for m ≠ 3,4,6. The subscript is the dimension of the euclidean space
containing the sphere on which it acts.

Example 1.6 (Simplices and cubes). The spherical Coxeter groups
of types A and B are the best known and represent the symmetry
groups of regular simplices and high-dimensional cubes, respectively.
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Figure 1. The spherical Coxeter group Cox(B3).

As groups they are the symmetric groups and extensions of symmetric
groups by elementary 2-groups called signed symmetric groups. For
example, the group Cox(A3) ≅ Sym4 is the symmetric group of a
regular tetrahedron and the group Cox(B3) ≅ (Z2)

3 ⋊Sym3 and is the
group of symmetries of the 3-cube shown in Figure 1. More generally,
the symmetry group of a regular euclidean polytope is an example of a
spherical Coxeter group and every irreducible spherical Coxeter group
whose Dynkin diagram has no branch point defines the symmetry group
of a regular polytope.

Definition 1.7 (Simplices and tilings). For each irreducible spherical
Coxeter group W = Cox(Xn), the fixed hyperplanes of its reflections
partition the unit sphere into a tiling by simplicial simplices where
every dihedral angle is of the form π

m for some integer m > 1. Let
σ be one such top-dimensional simplex. The tiling can be recovered
by reflecting in the sides of σ and the group can be recovered since
it acts simply transitively on the images of σ in the tiling. This is
illustrated in Figure 1 if one intersects the cell structure shown with a
small sphere around the center of the cube. The cube in the upper left
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Figure 2. The Sym4 Permutahedron.

shades a tetrahedron which intersects with the small sphere to produce
a spherical triangle with dihedral angles π

4 , π
3 and π

2 . The other three
cubes illustrate the image of this tetrahedron under the action of the
three reflections in its sides.

Given a spherical Coxeter group W , it is easy to construct a highly
regular euclidean polytope called a W -permutahedron.

Definition 1.8 (W -permutahedra). Let W = Cox(Xn) be an irre-
ducible spherical Coxeter group, let σ be one of the top-dimensional
simplices in the corresponding tiling of the sphere and let C be the
simplicial euclidean cone generated by non-negative scalar multiples of
the points in σ. There is a unique point x in the simplicial cone C that
is distance 1

2 from each of its facets. The convex hull of the W -orbit
of x is euclidean polytope PW called a (metric) W -permutahedron. Be-
cause x is distance 1

2 from each facet, every edge in the 1-skeleton of
PW has unit length. When the spherical Coxeter group W is reducible,
one takes a direct metric product of the permutahedra for each of its
irreducible components.

The name comes from the special case where W is the symmetric
group Symn. In this case the convex hull of the n! points formed by
all possible permutations of the coordinates of the vector (1,2, . . . , n)
is a (rescaled) version of the W -permutahedron. The permutahedron
associated to the symmetric group on 4 elements is shown in Figure 2.
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Ã1

∞

Ãn

C̃n

B̃n

D̃n

G̃2

F̃4

Ẽ6

Ẽ7

Ẽ8

Figure 3. Four infinite families and five sporadic examples.

1.3. Euclidean Coxeter groups. We now shift our attention to the
reflection groups that act geometrically and irreducibly on some eu-
clidean space. Recall that these are the groups whose structure plays
a large role in the classification of complex semisimple Lie algebras.

Definition 1.9 (Euclidean Coxeter groups). The irreducible euclidean
Coxeter groups are the groups generated by reflections that act geo-
metrically and irreducibly on euclidean space. They are also known as
affine Coxeter groups or affine reflection groups. Affine geometry is a
type of geoemtry that only preserves parallism and does not preserve
distances and angles. Thus euclidean is a more approrpriate descrip-
tion of the type of geometry preserved by these groups despite the fact
that affine is adjective that is standard in the literature. The classifica-
tion of such groups is also classical and their presentations are encoded
in the extended Dynkin diagrams shown in Figure 3. Since the only
edge labels that occur in euclidean Coxeter groups are 4 and 6, these
are usually replaced by double and triple edges, respectively. There
are four infinite families (Ãn, B̃n, C̃n and D̃n) and and five sporadic

examples (G̃2, F̃4, Ẽ6, Ẽ7, and Ẽ8). The subscript is the dimension of
the euclidean space on which it acts. Removing the white dot and the
attached dashed edge or edges from the extended Dynkin diagram X̃n

produces the corresponding ordinary Dynkin diagram Xn that defines
a closely related spherical Coxeter group.

The extended Dynkin diagrams shown in Figure 3 index many dif-
ferent types of objects. They index, for example, euclidean simplices
with restricted dihedral angles.
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Definition 1.10 (Euclidean Coxeter simplices). Each extended Dynkin
diagram encodes a simplex in euclidean space, unique up to rescaling,
with the following properties: the vertices of the diagram are in bijec-
tion with the facets of the simplex, i.e. its codimension 1 faces, and
vertices s and t in the diagram are connected with 0, 1, 2, or 3 edges
iff the corresponding facets intersect with a dihedral angle of π

2 , π
3 ,

π
4 , or π

6 , respectively. These conventions are sufficient to describe the
simplices associated to each diagram with one exception: the diagram
Ã1 corresponds to a 1-simplex in R1 whose facets are its endpoints.
These do not intersect and this is indicated by the infinity label on its
unique edge. The extended Dynkin diagrams form a complete list of
those euclidean simplices where every dihedral angle is of the form π

m

for some integer m > 1. We call these euclidean Coxeter simplices.

From these euclidean Coxeter simplices we can construct an associ-
ated tiling of euclidean space and recover the corresponding euclidean
Coxeter group.

Definition 1.11 (Euclidean tilings). Let X̃n be an extended Dynkin
diagram and let σ be the corresponding euclidean n-simplex described
above. The group generated by the collection of n + 1 reflections
which fix some facet of σ is the corresponding euclidean Coxeter group
W = Cox(X̃n) and the images of σ under the action of W group tile
euclidean n-space. As an illustration, consider the extended Dynkin
diagram of type G̃2. It represents a euclidean triangle with dihedral
angles π

3 , π
6 and π

2 and the euclidean Coxeter group Cox(G̃2) gener-
ated by the reflections in its sides is associated with the tiling of R2

by congruent 30-60-90 triangles shown in Figure 4. In this recycled
figure, the shaded portions can be safely ignored: the focus here is on
the underlying tiling.

2. Tits

The general theory of Coxeter groups was pioneered by Jacques Tits
in the early 1960s with the spherical and euclidean Coxeter groups as
key examples that motivate their introduction. In that first unpub-
lished paper from 1961, Tits defines general Coxeter groups using the
simple presentations we know today and he proves that every Coxeter
group has a faithful linear representation preserving a symmetric bilin-
ear form (Theorem 2.4). As a consequence, every Coxeter group has a
solvable word problem. In 2013 this historically significant early arti-
cle was finally published as part of his collected works. See Volume I,
Chapter 43, p.803-818 in [Tit13]. In this section we recall the definition
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Figure 4. The euclidean Coxeter Group Cox(G̃2).

of Tits’ linear representation. For additional details see standard refer-
ences such as [Hum90], [BB05] or [Dav08]. We begin with the Coxeter
matrix.

Definition 2.1 (Coxeter matrix). Let W be a Coxeter group with
generators s1, s2, . . . , sn and let mij = mji be the length of the Artin
relation involving si and sj. When i = j we define mii = 1 and when
there is no relation between si and sj we define mij = ∞. The Coxeter
matrix M is the n by n matrix whose (i, j)-entry is cos(π− π

mij
). When

mij = ∞, π
mij

= 0 and the coresponding matrix entry is −1. The Coxeter

matrix M can be used to define a symmetric bilinear form on V = Rn

by the formula ⟨u, v⟩ = utrMv for column vectors u and v.

Example 2.2. Let W = ⟨a, b, c ∣ ab = ba, bcb = cbc, a2 = b2 = c2 = 1⟩ be a
Coxeter group with s1 = a, s2 = b and s3 = c. Then m12 = 2 , m13 = ∞

and m23 = 3 and the corresponding Coxeter matrix is

M =

⎡
⎢
⎢
⎢
⎢
⎢
⎣

1 0 −1
0 1 −1

2

−1 −1
2 1

⎤
⎥
⎥
⎥
⎥
⎥
⎦

.

This groupW is a hyperbolic triangle group and we use it as a running
example for the remainder of Part 1. For every Coxeter group W Tits
defined a linear representation as follows.
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Definition 2.3 (Tits representation). Let W be a Coxeter group with
generators s1, s2, . . . , sn, let V = Rn be a vector space with standard
basis {e1, e2, . . . , en} and let ⟨u, v⟩ be the symmetric bilinear form on V
defined using the Coxeter matrix M . The i-th generator si is sent to the
linear transformation ri defined by the equation ri(v) = v − 2⟨v, ei⟩ei.
This is a reflection that sends the basis vector ei to −ei and it fixes
pointwise its orthogonal complement. It is easy to check that each ri is
an involution as required and that all the other relations are satisfied
so that this map on generators extends to a group homomorphism
from W to GL(V ). Moreover, each generator preserves the symmetric
bilinear form and thus the image of the entire group W is contained in
the corresponding orthogonal group of invertible linear transformations
that preserve this form.

Tits proved is that this linear representation is always faithful.

Theorem 2.4 (Faithful representation). For every Coxeter group W ,
its Tits representation is faithful.

Remark 2.5 (Types of Coxeter groups). Since the Coxeter matrix is
real and symmetric, it is diagonalizable and all of its eigenvalues are
real. The signature of a Coxeter matrix is a triple (p, n, z) where p,
n and z are the number of positive, negative and zero eigenvalues, re-
spectively, counted with multiplicity. Coxeter groups can be coarsely
classified by the signature of the symmetric bilinear forms they pre-
serve. The irreducible spherical and euclidean groups are those that
preserve positive definite (n = z = 0) and positive semi-definite forms
(n = 0, z > 0), respectively. When the Coxeter matrix has at least one
zero eigenvalue, the corresponding symmetric bilinear form is singular.

Singular forms cause a slight problem. For now we assume that
the form is nonsingular and return to the singular case at the end of
the section. For every Coxeter group, one can use its faithful linear
representation to can find a nice space on which it acts. This might
be a sphere, euclidean space, hyperbolic space, or more generally the
interior of its Tits cone.

Definition 2.6 (Tits cone). Let W be a Coxeter group with Coxeter
matrix M . When M is nonsingular, the hyperplanes orthogonal to the
standard basis vectors ei bound a closed simplicial cone C. The the
union of the images of C under the action of W is called the Tits cone.

Example 2.7 (A hyperbolic example). The Coxeter matrix of the
group described in Example 2.2 has two positive eigenvalues and one
negative eigenvalue. Thus the linear transformations that preserve the
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bilinear form preserve the surfaces of the form x2+y2−z2 = k (once the
matrices are rewritten with respect to a different basis). The level set
of this form is a double cone when k = 0, a hyperboloid of one sheet
when k = 1 and a hyperboloid of two sheets when k = −1. The original
basis vectors e1, e2 and e3 have length 1 and live in the hyperboloid of
one sheet. For each ei we define the half-space of points that have a
non-negative inner product with ei and let C be the simplicial cone that
is their intersection. Two of the three rays of C intersect the interior of
the upper sheet of the hyperboloid of two sheets and the third lies in the
light cone. The intersection of C with the upper sheet of the hyperboloid
of two sheets is a hyperbolic triangle with one ideal vertex. This is
easier to see in the disk model. The upper sheet of the hyperboloid of
two sheets is one of the standard models of the hyperbolic plane and
the Coxeter group W acts on this plane generated by reflections. In the
hyperbolic plane there is a triangle with angles π

2 , π
3 and 0 where one of

its vertices is an ideal vertex that corresponds to the intersect of C with
the upper sheet. The tiling of the hyperbolic plane by the reflections
of this triangle in its sides is sketched in Figure 5. The union of the
orbits of the closed hyperbolic triangle under the action of W includes
every point in the interior of the disk plus the countable set of points
that form the orbit of the ideal vertex of the triangle under the action
of W . Back in R3 the Tits cone contains the positive linear multiples
of every point in the upper sheet of the hyperboloid of two sheets plus
a countable set of rays in the upper cone of the double cone. Passing
to the interior of the Tits cone removes the countable set of rays.

When the Coxeter matrix M is singular, an extra step is needed.

Remark 2.8 (Singular forms). When the Coxeter matrix M is singu-
lar, the hyperplanes orthogonal to the basis vectors ei do not bound a
simplicial cone. Tits’ solution is to replace each matrix in the linear
representation with its inverse transpose. In this contragradient repre-
sentation the generators are still reflections that fix a hyperplane and
send some vector to its negative, but now these hyperplanes always
bound a simplicial cone. The orbit of this cone under the action of W
is the official definition of the Tits cone. When M is non-singular the
two representations are equivalent and this step is optional.

3. Davis

In [Dav83] Mike Davis introduced a very cell complex space for each
Coxeter group W . It can be constructed from the cell structure dual
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Figure 5. A tiling of the hyperbolic plane generated by
the reflections in the sides of a triangle with angles π

2 , π
3

and 0. The original triangle has been shaded.

to the Tits cone or from the Cayley graph by adding various W ′-
permutahedra. We continue using the (2,3,∞) Coxeter group from
Example 2.2 to illustrate these ideas.

Definition 3.1 (Cayley graph). The unoriented (right) Cayley graph
of W with respect to its standard generating set S is the 1-skeleton of
the cell complex dual to the Tits cone. Concretely, the Cayley graph
has a vertex labeled w corresponding to image wC of the simplicial
cone C for each w ∈W and two vertices are connected by an undirected
edge if and only if the corresponding simplicial cones share a common
codimension 1 face.

Example 3.2 (Cayley graph). A portion of the Cayley graph of the
Coxeter group defined in Example 2.2 is shown in Figure 6 superim-
posed on the triangular tiling of the hyperbolic plane. When the disk
model of the hyperbolic plane is replaced by the hyperboloid model
and the points in the upper sheet of the hyperboloid replaced by all of
their positive scalar multiples, the Cayley graph as shown in Figure 6
can be seen to correspond to the description given in Definition 3.1.

The Davis complex of a Coxeter group W can be constructed by
attaching permutahedra to its unoriented Cayley graph.

Definition 3.3 (Davis complex). Let W be a Coxeter group and let
Γ be its unoriented Cayley graph. For each subset S′ ⊂ S such that
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Figure 6. A portion of the Cayley graph of our running
example superimposed on the corresponding triangular
tiling of the hyperbolic plane.

the parabolic subgroup W ′ = ⟨S′⟩ is finite and for each element w ∈W
we attach a metric W ′-permutahedron to the vertices of Γ labeled by
the elements in the coset wW ′ in W . When w′W ′ and w′′W ′′ are two
such cosets and w′W ′ ⊂ w′′W ′′ then we identify the W ′-permutahedron
attached to the vertices labeled by the elements in w′W ′ as a face of the
W ′′-permutahedron attached to the vertices labeled by the elements in
w′′W ′′.

The main idea behind Davis’ construction should be clear from our
running example.

Example 3.4 (Davis complex). A portion of the Davis complex for
our running example is shown in Figure 7. For each subset S′ of the
standard generating set S generates a finite subgroup W ′, there are
many copies of the 1-skeleton of a W ′-permutahedron in the Cayley
graph ofW whose vertices are labeled by the elements in the coset wW ′.
In this case, generators a and b generate Klein 4-group and b and c
generate a 6-element dihedral group. The corresponding permutahedra
are the regular square and the regular hexagon with unit side lengths.
A square is attached to every 4-cycle labeled by a and b and a hexagon
is attached to every 6-cycle labeled by b and c.

The piecewise euclidean metrics on the various permutahedra added
to the Cayley graph to form the Davis complex are compatible where
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Figure 7. A portion of the Davis complex for our run-
ning example.

they overlap and the result is a global geodesic metric called the Mous-
song metric. Gabor Moussong was a student of Mike Davis and in his
1988 dissertation he proved that the Davis complex with the Moussong
metric is what is known as a complete CAT(0) space.

Theorem 3.5 (CAT(0)). Every Coxeter group W is a CAT(0) group.
In particular, the Davis complex of W with the Moussong metric is a
complete CAT(0) space and the action of W on its Davis complex is
geometric, i.e. properly discontinuous, cocompact and by isometries.

A proof of this result can be found in [Dav08]. For more information
about CAT(0) spaces and CAT(0) groups see [BH99].

Remark 3.6 (Cell structure and stabilizers). The cell structure of the
Davis complex as described here is not quite the same as the one orig-
inally used by Davis in [Dav83]. The official version is a subdivision
of the one given here and it has a number of technical advantages.
In Davis’ cell structure the fixed spaces of the generating reflections
are subcomplexes, the natural fundamental domain for the action W
(which has been shaded in Figures 7 and 8) is a subcomplex and all
points in the same cell has the same stabilizer. The cell structure used
here, on the other hand, is conceptually easy to describe and it also
makes it easy to describe the Salvetti complex as a modified version of
the Davis complex as we do in the next section.
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Figure 8. A portion of the Davis complex for our run-
ning example with stablizer information added.

4. Salvetti

In this section we very briefly describe the spaces that enable the
transition from Coxeter groups to Artin groups. For the details see
Luis Paris’ survey articles [Par14a, Par14b] and the references therein.
We begin with the notion of the braid group of a group action.

Definition 4.1 (Braid group of an action). For any group G acting
on a space X a point x ∈ X is said to be regular when its G-stabilizer
is trivial, the space of regular orbits is the quotient of the subspace of
regular points by the free G-action and the braid group of G acting on
X is the fundamental group of the space of regular orbits. Thus, to
find the braid group of a group G acting on a space X one first removes
the points with non-trivial stabilizers, then quotients by the resulting
free G-action and finally takes the fundamental group of the quotient.

The name “braid group” alludes to the fact that when the symmetric
group Symn acts on Cn by permuting coordinates, the braid group of
this action is Artin’s classical braid group Braidn.

Example 4.2 (Artin’s braid group). The braid group of Symn acting
on Cn by coordinate permutation is Artin’s braid group. To see this
note that a point z⃗ = (z1, z2, . . . , zn) ∈ Cn can be represented by n
labeled points in the complex plane. A point in Cn is not regular if
and only if it has coordinates that are equal. Thus the space of regular
points are parameterized by n distinct labelled points in C. Quotienting
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Figure 9. The Braid Arrangement

by the free action of Symn corresponds to removing the labels. Finally
a loop based at a particular point in Cn corresponds to a motion of n
unlabeled points in C that starts and ends at the same configuration
and the points remain distinct throughout. Tracing this out over time
reveals a braid. See Figure 9.

For each Coxeter group with n standard generators, the interior of
its Tits cone is a subspace of Rn. Artin groups are defined using the
corresponding subspace of Cn.

Definition 4.3 (Artin groups). For each labeled diagram Γ the Artin
group Art(Γ) can be defined as the braid group of the action of
Cox(Γ) on the interior of its complexified Tits cone which we denote
CTits○(Γ). The only points with non-trivial stabilizers are those in the
fixed hyperplanes of the reflections in Cox(Γ) so Cox(Γ) acts freely
on CTits○(Γ) ∖H where H is the union of these hyperplanes.

Rather than work with this space directly, or even define it more
precisely, we describe instead a space homotopy equivalent to it which
is much easier to visualize and understand. It is defined using oriented
permutahedra.

Definition 4.4 (Oriented W -Permutahedra). Let v be a vertex of a
polytope P that is a W -permutahedron. There is a unique vertex
v′ that is directly oppostive v so that the vector from v to v′ passes
through the center of P . We orient each edge in the 1-skeleton of P so
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Figure 10. An example of the Salvetti complex as an
oriented version of the Davis complex.

that its dot product with the vector from v to v′ is positive. We are
essentially using this vector to define a height function. Note that P
has as many orientations as it has vertices.

Definition 4.5 (Oriented Davis Complex). Let Γ be a labeled diagram
and let Davis(Γ) be the Davis complex of the corresponding Coxeter
group Cox(Γ). The oriented Davis complex keeps the same vertex
set but it replaces each W ′-permutahedron in the Davis complex with
multiple copies, one for each possible orientation. When a permutahe-
dron has a smaller permutahedron as a face, the oriented version of the
larger one is attached to the oriented version of the smaller one where
the orientations are compatible. The resulting space is also known as
the Salvetti complex and we denote it be Salv(Γ). The Coxeter group
Cox(Γ) acts freely on the Salvetti complex Salv(Γ) and its quotient
is a 1-vertex complex that has one oriented W ′-permutahedron for each
subset S′ of the standard generating set S for which W ′ = ⟨S′⟩ is finite.
Its fundamental group is the Artin group Art(Γ). In some parts of the
literature, the name “Salvetti complex” is used to denote this 1-vertex
quotient.

Example 4.6 (Oriented Davis Complex). Let W = Cox(Γ) be the
2-generator Coxeter group where the generators commute. The group
W is the Klein 4 group and its Davis complex is a unit square. The
corresponding Salvetti complex has the same 4 vertices, each original
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Cox(Γ) ↷ Tits○(Γ) ≅ Davis(Γ)

Cox(Γ) ↷ CTits○(Γ) ∖H ≅ Salv(Γ)

Art(Γ) = π1(Salv(Γ)/Cox(Γ))

Figure 11. A summary of the spaces and groups dis-
cussed in Part 1.

edge becomes two oriented edges and the original square becoomes 4
oriented squares. The result is a torus with 4 vertices, 8 edges and 4
squares on which the group W acts freely. See Figure 10. In order to
make the torus easier to see, I have shown the 4 squares paired up into
two annuli being attached to the 1-skeleton. The quotient by W is a
torus with 1 vertex, 2 edges and 1 square whose fundamental group is
the corresponding Artin group isomorphic to Z ×Z.

The main theorem is that the Salvetti complex is homotopically
equivalent to space used to officially define the Artin groups.

Theorem 4.7 (Salvetti complex). For each labeled diagram Γ, the
space CTits○(Γ) ∖ H, interior of the complexified Tits cone with its
hyperplanes removed, is equivariantly homotopy equivalent to the Sal-
vetti complex Salv(Γ).

Definition 4.8 (Universal cover). The K(π,1) conjecture asserts that
for every diagram Γ the Salvetti complex Salv(Γ) is a classifying space
for the Artin group Art(Γ), which is true if and only if its is con-
tractible. By Theorem 4.7 this is equivalent to studying CTits○(Γ)∖H

and its universal cover.

Remark 4.9 (Summary). A summary of the spaces and groups dis-
cussed in Part 1 is shown in Figure 11. For each labeled diagram Γ the
Coxeter group Cox(Γ) acts on the interior of its Tits cone which is
homotopy equivalent to the piecewise euclidean CAT(0) space known
as the Davis complex and the corresponding action on the Davis com-
plex is geometric. Next, the Coxeter group Cox(Γ) acts freely on the
complexified interior of its Tits cone with the fixed hyperplanes re-
moved, a space which is homotopy equivalent to the Salvetti complex
Salv(Γ). Finally the quotient of the Salvetti complex Salv(Γ) by the
free Cox(Γ) action is a space whose fundamental group is the Artin
group Art(Γ).
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Part 2. On the edge

In Part 2 we are “on the edge” in the sense that the border separating
those Artin groups whose structure we basically understand from those
about which we know very little has the feeling of the edge of a sharp
cliff. On one side there are groups about which we know quite a bit
and on the other side there are groups about which we essentially know
nothing beyond a few basic facts about small slices of the groups. Con-
tinuing the metaphor, the goal of this part is to describe the location
of this cliff edge where our basic knowledge of the structure of Artin
groups completely disappears. A secondary goal is to explain why I
say that most Artin groups remain fundamentally mysterious. The
sections in this part discuss the big picture, the Artin groups that we
understand, the parts of Artin groups that we understand and finally
the Artin groups that we do not understand.

5. Big Picture

In this section I focus on the big picture and the long view. Artin
groups are closely related to Coxeter groups, are defined by simple
presentations and have been studied since the 1970s. Highlights of this
early work include the articles by Pierre Deligne [Del72] and by Egbert
Brieskorn and Kyoji Saito [BS72] that investigate the Artin groups
corresponding to finite Coxeter groups as well as the 1983 dissertation
by Harm van der Lek under the supervision of Looijenga [vdL83] that
derives presentations for arbitrary Artin groups viewed as the braid
groups of Coxeter groups acting on the interior of their complexified
Tits cones. We begin with a comment that drives much of our intuition
about the class of Artin groups.

Remark 5.1 (Algorithmic properties). Over the years there has been a
fair amount of process in understanding some special classes of Artin
groups and to date every Artin group that has been understood and
every portion of an Artin group that has been understood has turned
out to have very good algorithmic properties. The natural conjecture
is that all Artin groups are well-behaved.

On the other hand, in the 1990s I heard Ruth Charney give a survey
talk about what was known and not known about Artin groups and I
remember being amazed at the vast amount that was not known about
these groups, particularly since the defining presentations for Artin
groups are so nice and so much is known about Coxeter groups. In
many ways this part is a lack-of-progress report since the boundary
between those Artin groups where we know how to solve the word
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problem and those where we do not has changed very little over the
past two decades. There is also no getting around the fact that the
algorithm properties of many Artin groups are very poorly understood.
In a relatively recent survey article [GP12] Eddy Godelle and Luis Paris
highlight some of the basic conjectures that remain wide open about
general Artin groups.

Conjecture 5.2. There are four basic conjectures about irreducible
Artin groups.

A) Every Artin group is torsion-free
B) Every non-spherical Artin group has trivial center
C) Every Artin group has a solvable word problem
D) Artin groups satisfy the K(π,1) conjecture

Remark 5.3 (A small example, revisited). Consider the Artin group
defined by the small presentation in Example 1.3. Even for this example
there is very little that is known. By the work of Ruth Charney we know
that the K(π,1) conjecture is true for this group and as a consequence
it is also torsion-free [Cha04], but we do not know how to solve its word
problem and it is unclear whether or not it has a trivial center. For
graphs that are even slightly more complicated, all four of the basic
conjectures are open.

For comparison, consider how much more we know about general
Coxeter groups. Every Coxeter group is defined by a simple presenta-
tion, has a faithful linear representation, is an automatic group and is
a CAT(0) group. In particular, every Coxeter group act geometrically
on a simply-connected non-positively curved piecewise euclidean cell
complex known as the Davis complex with Moussong’s metric. They
fit into many of the powerful theories of geometric group theory and are
algorithmically very nice. The contrast between what we know about
Coxeter groups and what we know about Artin groups is very stark.

6. Known groups

This section describes those classes of Artin groups for which we
know how to solve the word problem. After a short structural result
that greatly simplifies the types of groups we need to consider, we
discuss two broad categories of Artin groups: those where the corre-
sponding Coxeter matrix is positive semi-definite and those where the
dimension of the corresponding Salvetti complex is very low.

6.1. Local properties. We begin with an early structural result by
van der Lek that makes it easy to reduce to the case where every pair



THE MYSTERIOUS GEOMETRY OF ARTIN GROUPS 21

of generators satisfies some nontrivial braid relation. Recall the notion
of a parabolic subgroup.

Definition 6.1 (Parabolic subgroups). Let Γ be a labeled diagram,
let A = Art(Γ) be the corresponding Artin group and let the set S
indexing the vertices of Γ be the standard generating set of A. For
each subset S′ ⊂ S let Γ′ be the full subgraph of Γ with vertex set S′

and let A′ be the subgroup of A generated by S′. The subgroup A′

is called a parabolic subgroup and since it satisfies the braid relations
among the generators in S′ that are encoded by the edges of Γ′, A′

is the homorphic image of the Artin group Art(Γ′) defined by the
portion of the original Artin presentation restricted to S′.

In 1983 Harm van der Lek proved the following result as part of his
dissertation [vdL83]. For a modern proof see [Par14a].

Theorem 6.2 (Parabolic subgroups). Let A = Art(Γ) be an Artin
group with standard generating set S and diagram Γ. If A′ is a parabolic
subgroup of A generated by the subset S′ ⊂ S and Γ′ is the corresponding
subgraph of Γ, then the natural homomorphism from Art(Γ′) onto A′

is an isomorphism. In particular, A′ is also an Artin group and its
Artin presentation is the obvious one obtained by restricting the Artin
presentation of A to the generators in S′.

Remark 6.3 (Injectivity). Van der Lek proved A′ is an Artin group by
proving that the map from Art(Γ′) to A′ is injective. We should note
that this is somewhat surprising from an algebraic perspective since
neither A nor A′ necessarily has a decidable word problem. The proof
is elementary algebraic topology: if Y is a subspace of X and there
is a retraction from X to Y , then π1(Y ) injects into π1(X), and this
does not require either fundamental group to have a decidable word
problem. Van der Lek works with the complexified Tits cones with the
fixed hyperplanes removed and finds such a retraction. Recently Ruth
Charney and Luis Paris showed that these parabolic subgroups are also
convex in their Cayley graphs [CP14] by applying similar ideas to the
Salvetti complex.

As an immediate consequence of Theorem 6.2, an Artin group with
a pair of standard generators that do not satisfy a nontrivial braid re-
lation (i.e. where some m is equal to ∞) can be decomposed as an
amalgamated free product of Artin groups with strictly fewer genera-
tors.

Corollary 6.4 (Decompositions). Let A = Art(Γ) be an Artin group
with standard generating set S. If there exist generators a and b in S
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that do not satisfy a nontrivial braid relation, then the Artin group A
is an amalgamated free product of the parabolic subgroups generated by
S∖{a} and S∖{b} amalgamated along the parabolic subgroup generated
by S ∖ {a, b}.

Recall that an amalgamated free product has a solvable word prob-
lem if and only if the factor groups and the amalgamating subgroup
have solvable word problems. Thus it makes sense to make the follow-
ing definition.

Definition 6.5 (Local properties). An Artin group in which every pair
of generators satisfies a non-trivial braid relation is sometimes called
2-local in the literature. Let A be a collection of 2-local Artin groups.
We say an Artin group is locally in A if every (irreducible) parabolic
subgroup that is 2-local belongs to A. The notation loc(A) refers to
the collection of all Artin groups that are locally in A. Note that by
Corollary 6.4 the Artin groups in loc(A) can be repeatedly decom-
posed until we reach a point where the factor groups and amalgamating
subgroups are (direct products of groups) in A and thus the original
group can be built up as an iterated amalgamated free products of
Artin groups where the groups at the start of the process all belong
to A. In particular, if all of the Artin groups in A have a solvable
word problem, then all of the groups in loc(A) have a solvable word
problem.

We should note that this notion of a local property is not standard
in the literature but as should become clear, it is a useful notation to
have around for succinctly describing various classes of Artin groups.

6.2. Positive semi-definite Coxeter matrix. We now turn our at-
tention to the Artin groups for which we know how to solve the word
problem and they roughly fall into two categories. The first of these is
where the Coxeter matrix positive semi-definite. The easiest class to
define and the one where we know the most about the groups is the
class of right-angled Artin groups.

Definition 6.6 (Right-angled Artin groups). The simplest Artin group
is the one with only 1 generator and it is the integers Z. If every ir-
reducible component of an Artin group is Z then all of its generators
commute and it is in the collection Z of finitely generated free abelian
groups. An Artin group is right-angled if every relation is a commuta-
tion, i.e. every m is either 2 or ∞, and the collection of all right-angled
Artin groups is the same as the class loc(Z) of all locally abelian Artin
groups or the class loc(Z) of all locally Z Artin groups.
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Every right-angled Artin group is the fundamental group of a non-
positively curved cube complex and this makes it easy to solve all
four of the basic conjectures for these groups (Conjecture 5.2). Partly
because their algebraic and geometric structures are so well understood,
they have played a prominent role in the construction of the Bestvina-
Brady examples in the late 90s [BB97] and in the recent work of Agol,
Wise and their coauthors related to the fine structure of hyperbolic
3-manifolds [Ago08, Ago13, Wis12].

Definition 6.7 (Spherical Artin groups). An Artin group A =Art(Γ)

is called spherical or finite-type if the corresponding Coxeter group
W = Cox(Γ) acts geometrically on a sphere or, equivalently, W is
finite.

The systematic study of Artin groups began in 1972 with the pair
of adjacent articles in the Inventiones by Pierre Deligne [Del72] and
by Egbert Brieskorn and Kyoji Saito [BS72] in which they establish
all four of the basic conjectures for the class S of all spherical Artin
groups. The Deligne argument is geometric and only covers the crys-
tallographic Artin groups. The Brieskorn-Saito argument is more alge-
braic and it applies to all spherical Artin groups. Dehornoy and Paris
axiomatized these algebraic arguments to define Garside structures.
The class loc(S) of locally spherical Artin groups is called FC-type in
the literature.

An Artin group is euclidean if the corresponding Coxeter group is
euclidean. As noted earlier, these groups are more commonly referred
to as affine in the literature. A few years ago Robert Sulway and I
were able to prove the following result.

Theorem 6.8 (Euclidean Artin groups). Every irreducible euclidean
Artin group is a torsion-free centerless group with a solvable word prob-
lem and a finite-dimensional classifying space.

Theorem 6.8 answers three of the four basic questions about these
Artin groups. The proof uses an alternative infinite presentation called
the “dual presentation” and an alternative version of Garside theory
suitable for infinite presentations. It does not answer the K(π,1) con-
jecture for these groups because the classifying spaces that we construct
are not known to be homotopy equivalent to the one-vertex versions
of the Salvetti complexes for these groups. See [MS] for the proof and
[McC] for a survey of the results leading up to this result. Let E denote
the class of euclidean Artin groups in the broad sense that also includes
the spherical ones. The class loc(E) of locally euclidean Artin groups
is a natural extension of the Artin groups of FC-type and all of these
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groups are now known to have a solvable word problem. We should
also note that the K(π,1) conjecture has been shown to hold for some
of euclidean Artin groups. ADD CITES

6.3. Low-dimensional Salvetti complex. We now turn our atten-
tion to Artin groups whose Salvetti complex has a very low dimension.
These Artin groups have a completely different flavor from those in the
previous subsection.

Definition 6.9 (Large-type Artin groups). An Artin group is said to
be of large-type if its presentation has no commuting relations, i.e. if
every braid relation has length at least 3. We write L for the class of
all large-type Artin groups.

The class L can be understood using a variation of traditional small
cancellation theory. The original article by Appel and Schupp is [AS83]
and in [McC10] I give an alternative geometric proof of their key lemma.

Definition 6.10 (2-dimensional Artin groups). An Artin group is said
to be 2-dimensional if every 3-generator parabolic subgroup is not
spherical. This is equivalent to requiring that the corresponding Sal-
vetti complex be at most 2-dimensional. We write 2D to denote this
class of Artin groups. Note that this class includes all of the large-
type Artin groups. Chermak solved the word problem for the class 2D
[Che98].

Definition 6.11 (Charney’s extension). In [Cha04] Ruth Charney was
able to prove that the K(π,1) conjecture holds for a slight extension
of the class of 2-dimensional Artin groups. We write C for the class
of Artin groups covered by Charney’s results. Since her proof uses
the structure of the non-locally finite Deligne complex rather than the
Salvetti complex it is unclear, at least to me, whether or not this implies
that the word problem is solvable for the groups in C. The irreducible
pieces of the 2-local groups in Charney’s class have Salvetti complexes
that are at most 3-dimensional.

6.4. Summary. The following of a summary of the classes of Artin
groups described above. Recall that Z is the class of free abelian
groups, loc(Z) is the class of right-angled Artin groups, S is the class
of all spherical Artin groups, loc(S) is the class of Artin groups of
FC-type, E is class of euclidean Artin groups (in the broad sense that
includes the spherical ones) and loc(E) is the new class of all locally
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euclidean Artin groups. There are obvious inclusions among them.

loc(Z) ↪ loc(S) ↪ loc(E)

↪ ↪ ↪

Z ↪ S ↪ E

In addition L is the class of Artin groups of large-type, 2D is the class
of 2-dimensional Artin groups and C is Charney’s extension. All three
of these classes is already locally closed. The inclusions among them
are as follows.

L ↪ 2D ↪ C

The word problem has been solved for the Artin groups in loc(E∪2D),
i.e. the Artin groups where every 2-local piece is either euclidean of 2-
dimensional and, to the best of my knowledge, these are the only Artin
groups where the word problem has been solved. A similar statement
can be made for the K(π,1) conjecture. To the best of my knowledge,
the K(π,1) conjecture has only been shown to hold for those Artin
groups where every 2-local piece is in Charney’s extension C or is a
spherical Artin group in S or it is one of a small number of euclidean
Artin groups where the conjecture has been solved. See for example
[CMS10].

Remark 6.12 (Cubulating Artin groups). Given the spectacular suc-
cesses that Wise, Agol and their coauthors have achieved by reducing
questions about hyperbolic 3-manifolds to questions about right-angled
Artin groups, it is natural to ask whether a similar reduction is possible
for arbitrary Artin groups. This reduction process is called cubulating
a group, so the question becomes can all Artin groups be cubulated? In
particular does every Artin group virtually embed into a right-angled
Artin group in a particuarly nice way? The answer is no even for
some 2-dimensional Artin groups and for the 4-string braid group. See
[HJP16] for details.

7. Known parts

In this section we shift our focus to the parts of Artin groups whose
structure is known. We begin with the Artin monoids, which turn out
to be much easier to work with than Artin groups.

Definition 7.1 (Artin monoids). An Artin monoid is the monoid de-
fined by the same presentation as the corresponding Artin group. The
word problem for an Artin monoid is trivially solvable because the all
of the relations preserve length and there are only finitely many words
of a fixed length.
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Although the brute force algorithm is not practical, it does mean
that Artin monoids can be easily investigated, and there do exist good
algorithms for working with Artin monoids. As in the case of a par-
abolic subgroup, there is a natural monoid homomorphism from the
Artin monoid to the Artin group with the same presentation, but it is
not immediately obvious whether or not this natural map is injective.
This question remained open for a number of years before it was finally
resolved by Luis Paris in 2002 [Par02].

Theorem 7.2 (Artin monoids inject). Every Artin monoid injects into
the corresponding Artin group.

Somewhat surprisingly, the proof of this theorem is derived from
the proof that braid groups are linear, a result proved independently
by Daan Krammer and Stephen Bigelow around 2000 [Kra00, Big01,
Kra02]. Bigelow’s proof was more topological while Krammer’s proof
was more algebraic. François Digne and independently Arjeh Cohen
and David Wales extended Krammer’s algebraic proof to show that all
spherical Artin groups are linear [CW02, Dig03]. Luis Paris extended
this representation further to arbitrary Artin groups, but in the gen-
eral case the representation only shows that the positive monoid has
a faithful linear representation. And as a consequence, the map from
the monoid to the group must be injective. The next portion of an
Artin group that we want to consider is the subgroup generated by the
squares of the standard generators.

Definition 7.3 (Tits conjecture). Let A =Art(Γ) be an Artin group
with standard generating set S and let T be the subgroup of A gen-
erated by the squares of the generators in S. There are some obvious
relations satisfied by the generators of T . For example, if a and b in S
commute in A, then a2 and b2 commute in T . Jacques Tits conjectured
that these relations are sufficient to define the group structure of T . In
particular, he conjectured that T is always a right-angled Artin group.
This is called the Tits conjecture.

There is a natural map from a right-angled Artin group to the Artin
group in question where the generators of the domain are sent to the
squares of the standard generators in the range. As in the previous
case what is not clear is whether or not this map is injective. In [CP01]
John Crisp and Luis Paris found a way to represent an arbitrary Artin
group inside a mapping class group of a surface and they showed that
the image of the right-angled Artin group injected into the mapping
class group. Therefore the map into the Artin group must also be
injective and this is enough to prove the Tits conjecture.
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And this concludes our quick tour of the known positive results about
the word problem for Artin groups and for portions of Artin groups.
There are many more concrete results that have been shown about
those classes of Artin groups where the word problem or the K(π,1)
conjecture has been solved, but I am passing over those in silence in
order to highlight the vast void at the center of the field.

8. Unknown groups

After completing the survey of the positive results about Artin groups
with a solvable word problem, it is now time to examine what Artin
groups are left. As noted at the beginning of Section 6 it is sufficient
to study Artin groups that are 2-local since the extension to groups
that have missing relations is straight-forward. There is also a second
reduction that remains merely conjectural at present.

Definition 8.1 (Small-type). Let A =Art(Γ) be an Artin group with
standard generating set S. The Artin group A is said to be small-type
or simply laced if for every pair of distinct generators a and b in S they
either commute or they satisfy the classic braid relation of length 3,
i.e. either ab = ba or aba = bab. In the classic notation small-type Artin
groups are precisely those Artin groups defined by unlabeled graphs.

Remark 8.2 (Small-type). John Crisp created a general method that
can be used to prove that one Artin monoid injects into another [Cri99]
and this can be used to prove that every Artin monoid injects into an
Artin monoid of small type. Luis Paris uses this result as part of
his proof that every Artin monoid injects into its Artin group [Par02].
Crisp and Paris also use this as part of their proof of the Tits conjecture
[CP01].

It is natural to conjecture that these injections on the monoid level
extend to the group level but this is currently an open question. If
this is true then small-type Artin groups are universal Artin groups in
that every other Artin group can be realized as a (non-parabolic) sub-
group of a small-type Artin group. As a consequence the remainder of
this section focuses only on Artin groups that are small-type. Unfortu-
nately, there are very few small-type Artin groups that we understand.
Let Γ be a connected simple graph and let G = Art(Γ) be the corre-
sponding irreducible small-type Artin group. If we search through the
classes of Artin groups whose word problem we know how to solve and
restrict our attention to those that are small-type, the list of examples
is very short.
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Theorem 8.3 (Small-type). Let A = Art(Γ) be a small-type Artin
group defined by a simple connected unlabeled graph Γ. The only cases
where we know how to solve the word problem for group A is when

(1) Γ is a complete graph and A is large-type,
(2) Γ is an ADE Dynkin diagram and A is spherical, or
(3) Γ is an extended ADE Dynkin diagram and A is euclidean.

And this is the complete list! In other words, every small-type Artin
group defined by any connected graph that is not complete, not a
Dynkin diagram and not an extended Dynkin diagram has a word
problem that we do not know how to solve. The small presentation
given in Example 1.3 is a border case since it happens to be contained
in Charney’s extension so the K(π,1) conjecture is known to hold for
this group, but we do not know how to solve its word problem. For
almost all small-type Artin groups our ignornance is more extreme.
The highly restricted nature of the list given in Theorem 8.3 becomes
clear once we restrict our attention to special classes of graphs.

Definition 8.4 (Bipartite). A complete bipartite graph Γ is a graph
whose vertices can be split into two non-empty subsets so that Γ con-
tains an edge between two vertices if and only if one of these vertices
belong to one subset and the other belongs to the other subset. We
write Km,n to denote the corresponding complete bipartite graph with
m vertices on one subset and n vertices in the other. The corresponding
small-type Artin group has the following presentation.

Art(Km,n) = ⟨
a1, a2, . . . , am
b1, b2, . . . , bm

aiai′ = ai′ai, aibjai = bjaibj
bjbj′ = bj′bj

⟩

Remark 8.5 (Bipartite). There are only 5 cases where we know how
to solve the word problem for the bipartite Artin group Art(Km,n)

and these are when mn ≤ 4. The Artin group is spherical for mn < 4
and euclidean for mn = 4. Concretely K1,1 = A2, K1,2 = A3, K1,3 = D4,

K1,4 = D̃4 and K2,2 = Ã3. The rest of these groups have word problems
that we do not know how to solve.

An even more restricted class is the collection of graphs known as
stars or claws. A star is a connected graph of the form K1,n in which all
of its edges have a vertex in common. The progress in understanding
the Artin groups defined by stars has been extremely slow.

Example 8.6 (Stars). Our progress in understand the word problem
for Artin groups defined by stars is shown in Figure 12. Only the first
four examples have word problems that we know how to solve and
the positive results about these four examples are roughly thirty to
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Braid3 Braid4 Art(D4) Art(D̃4) Art(K1,5)

Dehn Artin Br-Sa/Deligne M-Sulway ???
1910s 1940s 1970s 2010s ???

Figure 12. The slow progress in understanding the
word problem for Artin groups defined by stars.

forty years apart. Our understanding of the first example comes from
the work of Max Dehn on the fundamental group of the trefoil knot
complement in the 1910s, our understanding of the second example
comes from Emil Artin’s solution to the word problem for all braid
groups in the 1940s, our understanding of the third example comes from
the detailed investigations of the structure of spherical Artin groups by
Deligne and, independently Brieskorn and Saito in the 1970s and our
understanding of the fourth example comes from my recent work with
Rob Sulway on the structure of euclidean Artin groups. And we do not
yet know how to solve the word problem for the Artin group Art(K1,5).

Once one realizes that the small-type Artin groups are the key class
of Artin groups that one needs to understand in order to have a good
understanding of all Artin groups, it becomes clear that most Artin
groups remain fundamentally mysterious.

Part 3. Over the horizon

In Part 3 the focus shifts to those collections of groups that are just
“over the horizon” in the following sense. They are not currently well
understood but they are the ones that are (in my opinion) likely to be
better understood in the near future. The collections of groups that
I focus on are complex euclidean braid groups, extended affine Artin
groups and Lorenzian Artin groups. The first two classes are merely
close relatives of Artin groups, but the similarities and differences are
interesting. The third class is the obvious next step when trying to
understand Artin groups using the signature of their associated bilinear
form.

9. Extended affine Artin groups

Despite the wide-spread assumption that all Artin groups should
have good algorithmic properties, we saw in Part 2 that the only ones
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where we truly understand their algebraic structure are those con-
structed from 2-local Artin groups where the associated Coxeter matrix
is positive semi-definite or the associated Salvetti complex is very low
dimensional. It could easily be the case that these are the only Artin
groups with a nice algebraic structure. If this is indeed the case then
it might make sense to start looking at classes of groups that retain
some features of the Artin groups we understand while broadening the
definition to include other types of groups. In this section we look at
groups generated by reflections that preserve a positive semi-definite
quadratic form that are not necessarily Coxeter groups.

For every Coxeter group we can find a set of discrete vectors in a
vector space with a symmetric bilinear form that form a root system
for the Coxeter group. In particular, these vectors determine reflec-
tions that preserves the corresponding quadratic form that generate
the original Coxeter group and they are precisely the conjugacy class
of reflections in this Coxeter group. It is tempting to think that all
vector arrangements that look like root systems in a vector space with
a symmetric bilinear form generate Coxeter groups, but this intuition
is only true in the presence of additional contraints.

This section describes a concrete example where this intuition fails.
In particular, I want to describe a set of vectors that satisfy almost all
of the properties of being a root system in the classical sense. These
vectors are in the six-dimension vector space V = R4,0,2 whose positive
semi-definite form has 4 positive eigenvalues and 2 zeros. One portion
of the root system is closely related to the classical D4 root system in
R4.

Definition 9.1 (The D4 root system). The classical D4 root system
consists of the 24 vectors ΦD4 = {±ei ± ej ∣ i, j ∈ {1,2,3,4}} inside R4

with the standard positive definite inner product where the vectors
ei are the standard unit basis vectors. Note that there are exactly
3 ways to partition {1,2,3,4} into two sets of two: {{1,2},{3,4}},
{{1,3},{2,4}} and {{1,4},{2,3}}. Using this we can partition the 24
vectors in ΦD4 into 3 sets with 8 vectors each. Let Φkl = {±ei ± ej}
with i ≠ j ∈ {k, l} and define ΦA = Φ12 ∪ Φ34, ΦB = Φ13 ∪ Φ24, and
ΦC = Φ14 ∪ Φ23. Then ΦD4 = ΦA ∪ ΦB ∪ ΦC . Each of these 3 subsets
containing 8 vectors is an orthogonal frame, i.e. a set of vectors that
pairwise orthogonal or parallel.

The other portion is closely related to a discrete subset of the com-
plex plane called the Eisenstein integers.
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Definition 9.2 (Eisenstein integers). If ω = −1
2 +

√
3
2 i denotes a primi-

tive cube root of unity, then the ring E = Z[ω] ⊂ C is called the set of
Eisenstein integers.

The radical of a symmetric bilinear form is the set of vector that are
orthogonal to all other vectors and its dimension corresponds to the
multiplicity of 0 as a eigenvalue. Let R be the 2-dimensional radical of
the symmetric bilinear form on V = R4,0,2 and let a, b and c be any three
pairwise linearly independent vectors in R subject to the constraint
that a + b + c = 0. It is straightforward to find an identification of R
with the complex plane C so that the Z-span of a, b and c is identified
with the Eisenstein integers E and a, b and c are identified with the
three cube roots of unity. The subring 2E is a maximal ideal insie E
and the quotient E/2E is isomorphic to F4, the field with 4 elements.
The three nonzero cosets of 2E inside E are represented by a, b and c.
Let Φa = a + 2E , Φb = b + 2E and Φc = c + 2E .

Definition 9.3 (An extended affine root system). We define a “root
system” in the space V = R4,0,2 as follows. Let ΦAa = {u+v ∣ u ∈ ΦA, v ∈
Φa}, ΦBb = {u + v ∣ u ∈ ΦB, v ∈ Φb} and ΦCc = {u + v ∣ u ∈ ΦC , v ∈ Φc}.
And then let Φ = ΦAa ∪ ΦBb ∪ ΦCc. This is known in the literature as
the extended affine root system of type D̃

(1,1)
4 . Under the quotient map

from V to V /R, the roots in Φ are sent to the D4 root system ΦD4 .

It is easy to check that the vectors in Φ define reflections preserving
the bilinear form which preserves Φ as a set. The discrete group that
these reflection generate is called an extended affine Coxeter group but
it is not a Coxeter group in the traditional sense since it does not have
a Coxeter presentation. There is an official definition of an extended
affine root system and corresponding notions of extended affine Coxeter
groups, extended affine Artin groups and extended affine Lie algebras.
These root systems have been classified and presentations are known for
the extended affine Coxeter groups and extended affine Artin groups.
The study of these objects was initiated by Saito in the 1980s and 1990s
in a series of long papers [Sai74, Sai85, Sai90, ST97, SY00, Sai01] and
more recently there is an entire community dedicated to their study.
See the text [AAB+97] and the articles that have cited it.

I would like to propose that geometric group theorists who study
Coxeter groups and Artin groups should pay more attention to the
similarities and differences between ordinary Coxeter and Artin groups
and these extended affine Coxeter and Artin groups. The two commu-
nities do not appear to be interacting as much as they should and I
think that both would benefit from conversations with the other. As
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geometric group theorists, the natural questions about extended affine
Coxeter groups and Artin groups are to what extend the standard ma-
chinery extends to this expanded context. Is there a natural Davis
complex for the extended affine Coxeter groups? Is there a natural
Salvetti complex for the extended affine Artin groups? Are these ex-
tended affine Artin groups torsion-free? Do they have a decidable word
problem? Do they have a non-trivial center? Is the natural (conjec-
tural) space used to define them a K(π,1)? It appears, for the most
part, that research on these questions for these groups is just beginning.

10. Complex euclidean braid groups

In this section we consider a second class of groups that are closely
related to Artin groups with a positive semi-definite Coxeter matrix.
Rather than expanding the notion of a root system to include groups
with a larger radical, we consider the case where we expand the notion
of reflection to include complex reflections. The complex spherical
reflection groups are the complex analog of the spherical Coxeter groups
and they have been well studied. The complex euclidean reflection
groups are the analog of the euclidean or affine Coxeter groups and
these have received much less attention.

10.1. Complex Spherical Reflection Groups. We begin with the
notion of a complex spherical reflection group and the corresponding
complex spherical braid groups that are defined as the braid groups of
these group actions.

Definition 10.1 (Complex spherical reflections). A complex spherical
space is a complex vector space that comes equipped with a positive
definite hermitian form that is linear in the second coordinate, and a
complex spherical reflection is an operator on a complex spherical space
that fixes a codimensional one subspace and multiplying some vector
by a root of unity. A complex spherical reflection group, also known as
a finite complex reflection group or as a unitary reflection group, is a
finite group generated by complex spherical reflections acting on some
complex spherical space. Such groups have been classified ever since
they were introduced. There is a single triply-indexed infinite family
together with 34 exceptional groups. The original classification was
done by Shephard and Todd [ST54] and more modern proofs can be
found in [Coh76] and [LT09].

The simplest exceptional example of a complex spherical reflection
is the 24 element group of type G4 in the Shephard-Todd classication.
It has 4 complex reflections of order 3 and it acts on the 4-dimensional
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Figure 13. Martin Waldseemüller’s globe gores from 1507.

regular polytope called the 24-cell. In 2007 John Meier and I developed
a technique for visualizing the regular 4-dimensional polytopes as a
union of spherical lenses that has been very useful for seeing directly
how various groups act on these polytopes.

Definition 10.2 (Lunes and Lenses). A lune is a portion of a 2-sphere
bounded by two semicircular arcs with a common 0-sphere boundary
and its shape is completely determined by the angle at this these semi-
circles meet. Lunes are commonly used to display spherical data in
the plane in a way that the distortion is kept to a minimum. See, for
example, the globe gores used to display the Walseemüller map of the
earth from 1507 shown in Figure 13. A lens is a 3-dimensional analog
of a lune. Concretely, a lens is a portion of the 3-sphere determined
by two hemispheres sharing a common great circle boundary and the
shape of a lens is completely determined by the dihedral angle between
these hemispheres along the great circle where they meet.

In the same way that lunes can be used to display the map of a 2-
sphere such as the earth in R2 with very little distortion, lenses can be
used to display a map of the 3-sphere in R3 with very little distortion.

Definition 10.3 (6 lenses). To directly visualize the structure of the
24-cell it is useful to use the 6 lenses displayed in Figure 14. In the
picture C2 has been identified with the quaternions and quaternion la-
bels are given for the 24 points. The points used are {±1,±i,±j,±k} ∪
{
±1±i±j±k

2 }. The element ζ = 1+i+j+k
2 . Each of the six figures represents

one-sixth of the 3-sphere. The outside circle is a great circle in S3, the
solid lines live in the hemisphere that bounds the front of the lens, the
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Figure 14. Six lenses that together display the struc-
ture of the 24-cell. Each figure represents a one-sixth lens
in the 3-sphere with dihedral angle π

3 between its front
and back hemispheres. They are arranged so that every
front hemisphere is identified with the back hemisphere
of the next one when ordered in a counter-clockwise way.

dashed lines live in the hemisphere that bounds the back of the lens
and the dotted lines live in the interior of the lens. The dihedral angle
between the front and back hemispheres, along the outside boundary
circle is π

3 and all the edges are length π
3 . The six lenses are arranged so

that the front hemisphere of each lens is identified with the back hemi-
sphere the next one in counter-clockwise order. Each lens contains one
complete octahedral face at its center and six half octahedra, three bot-
toms halves corresponding to the squares in the front hemisphere and
three top halves corresponding to the squares in the back hemisphere.
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The label at the center of each lens is the coordinate of the center of
the euclidean octahedron spanned by the six nearby vertices.

The arrows in Figure 14 indicate how the 24 vertices move under
the map which right multiples the quaternions by ζ. The arrows glue
together form four oriented hexagons with vertices q⟨ζ⟩ that live in the
four complex lines qC where q is 1, i, j or k.

Example 10.4 (Braid(G4)). Using the 6 lens picture Ben Coté and
I were able to show that the hyperplane complement of the complex
spherical reflection group of type G4 is homotopy equivalent to a por-
tion of the 2-skeleton of the 24-cell. The quotient by the free action of
the G4 complex spherical reflection group is a 2-complex with a single
vertex which encodes the presentation ⟨a, b, c, d ∣ abd, bcd, cad⟩. Since
this is the dual Garside presentation of the 3-string braid group, the
corresponding complex spherical braid group in this case, which we
denote Braid(G4), is the 3-string braid group. Although this result is
not new, the deformation retraction from the hyperplane complement
to a portion of the 2-skeleton of the 24-cell is new, as is this particu-
lar method of visualizing the group and its action on C2. For a more
detailed description of this result see [CM].

10.2. Complex euclidean reflection groups. Passing from a vector
space to an affine space involves forgetting the location of the origin.
In this section we discuss complex euclidean reflection groups that act
on some complex euclidean space and the corresponding complex eu-
clidean braid groups that are the braid groups of these group actions.
These are the complex reflection analogs of euclidean Coxeter groups
and euclidean Artin groups.

Definition 10.5 (Complex euclidean reflections). A complex euclidean
space is a complex spherical space where the location of the origin has
been forgotten and a complex euclidean reflection is an operator on a
complex euclidean space that becomes a complex spherical reflection
with an appropriate choice of origin and corresponding choice of coor-
dinate system. A complex euclidean reflection group is a discrete group
generated by complex euclidean reflections that acts on some complex
euclidean space and the corresponding complex euclidean braid group
is the braid group of this group action.

Example 10.6 (A 1-dimensional example). Let E be the subring of
Eisenstein integers in the complex plane C. For each point z in E there
is a complex reflection of order 3 that fixes z and rotates the remaining
points through a positive angle of 2π

3 around the point z. Let G be
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Figure 15. A 1-dimensional example of a complex eu-
clidean reflection group and the corresponding Voronoi
cell decomposition.

the group generated this discrete set of complex reflections. The result
is an example of a 1-dimensional complex euclidean reflection group.
The braid group of this example can be computed as follows. The
points in E are the only points with non-trivial stabilizers and once
they have been removed the group G acts freely. The quotient of C∖E
by this free G action is a triangular pillowcase with its three corners
removed and its fundamental group is F2, the free group of rank 2.
Alternatively, one can form the Vornoi cells around the set of the fixed
points of the complex reflections and then deform way the interiors of
the hexagons. The reflection group acts freely on this “chicken wire”
graph. The quotient graph Γ has 2 vertices, 3 edges and π1(Γ) = F2.
See Figure 15.

The discrete groups generated by complex euclidean reflections were
essentially classified by Popov in the 1982 [Pop82]. There are complex
euclidean notions of reducibility and equivalence and Popov proved
many structural results about the inequivalent irreducible complex eu-
clidean reflection groups. In addition he gave algorithms in various
subcases and produced a complete list of the resulting groups. The
details of the computations themselves were not included and in 2006
Goryunov and Man found an isolated example in dimension 2 that
was overlooked in Popov’s list [GM06]. It would be a service to the
community if someone went through and redid Popov’s computations
to provide a clean modern proof that the current augmented list of
examples is indeed complete.
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Figure 16. The Möbius-Kantor graph.

Remark 10.7 (Popov’s classification). Popov’s classification of inequiv-
alent irreducible complex euclidean reflection groups contains 30 infi-
nite families and 22 isolated examples. There are 17 infinite families
with a continuous parameter and these are closely connected to the
complexified versions of the real euclidean reflection groups. Of these
there are 7 that also have a discrete parameter. These correspond to
the Cartan-Killing types Ãn, B̃n, C̃n and D̃n. The remaining 13 infinite
families have only a discrete parameter indicating dimension. The 22
isolated examples mostly occur in very low dimensions.

Ben Coté and I have examined one of the smallest isolated exam-
ples that acts on C2. Since it is the only isolated example whose lin-
ear part is the complex spherical reflection group of type G4 in the
Shephard-Todd classification, we call this group Refl(G̃4), the com-

plex euclidean reflection group of type G̃4. In [CM] we prove the fol-
lowing.

Theorem 10.8 (Complement complex). The hyperplane complement

of Refl(G̃4) deformation retracts onto a non-positively curved piece-
wise euclidean 2-complex K in which every 2-cell is an equilateral tri-
angle and every vertex link is a Möbius-Kantor graph.

The Möbius-Kantor graph is a subgraph of the 1-skeleton of the
4-cube with 8 edges removed. See Figure 16. The key idea behind
the proof of Theorem 10.8 is to start with the discrete set of points
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that arise as 0-dimensional intersections of the fixed hyperplanes of the
complex euclidean reflections in Refl(G̃4) and then to deform away

the interiors of the corresponding Voronoi cells. For Refl(G̃4) this
Voronoi tiling is a tiling by 24-cells and the 3-complex that remains is
built out of octahedra. The second step is to see where the hyperplanes
themselves intersect this 3-complex and this occurs only in the interiors
of the octahedra. In fact, the local situation is exactly the same as the
one described in Example 10.4 so we can retract to a union of local
2-complexes that look like the Braid(G4) case. The corresponding
complex euclidean braid group, defined as the braid group of this group
action, has some surprising properties.

Theorem 10.9 (Isolated fixed points). The space of regular points for

the complex euclidean reflection group Refl(G̃4) acting on C2 is prop-
erly contained in its hyperplane complement because of the existence of
isolated fixed points.

The existence of these isolated fixed points that are not contained in
the union of the fixed hyperplanes of a complex euclidean reflections of
the group is one of the ways in which the complex euclidean situation is
very different from the case of Coxeter groups acting on their complexi-
fied Tits cones and from the case of complex spherical reflection groups
acting on some complex spherical space. In particular, these isolated
fixed points leads to the existence of torsion in the corresponding braid
group.

Theorem 10.10 (Braid group). The group Braid(G̃4) is a CAT(0)
group and it contains elements of order 2.

Proofs of these results can be found in [CM]. Althought there are
some special aspects of this particular example that make it difficult
to immediately extend it to other complex euclidean reflection groups,
it would be interesting to see whether other complex euclidean braid
groups have similar properties. In general, almost all questions about
complex euclidean braid groups remain completely unexamined. For
example, there are not even conjectural presentations for the these
types of braid groups.

11. Lorentzian Artin groups

In this final section we look at the prospects for making further
progress in our understanding of Artin groups themselves. We begin
with a discussion of the signature of a Coxeter matrix.
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Definition 11.1 (Signatures and types). Recall that the signature of
a reall symmetric matrix M such as a Coxeter matrix is (p, n, z) where
p, n and z are the number of positive, negative and zero eigenvalues of
M . We coarsely divide Coxeter groups and Artin groups into 3 types
based on the signature of its Coxeter matrix M . When M has no neg-
ative eigenvalues, it is spherical, when M has one negative eigenvalue
it is Lorentzian and when M has more than one negative eigenvalue it
is higher-rank. The adjective applied to a Coxeter or Artin presenta-
tion and the Coxeter group or Artin group it defines is the one for its
Coxeter matrix. Finally, when 0 eigenvalues exist we add the adjective
weakly. In this language, the positive semi-definite matrices that corre-
spond to euclidean Coxeter groups and euclidean Artin groups would
be described as weakly spherical.

Remark 11.2 (Lorentzian vs. hyperbolic). The definition of a hyper-
bolic Coxter group is not a stable definition in the literature. It might
refer to a Coxeter group that naturally acts cocompactly by isome-
tries on some hyperbolic space, or to a Coxeter group that naturally
acts by isometries on some hyperbolic space with co-finite volume, or
even to a Coxeter group that is Gromov hyperbolic. The first class of
Coxeter groups is contained in the second while the third is essentially
unrelated to either. The definition of a Lorenztian Coxeter group is a
generalization of the second definition in the following sense. The Tits
representation of a Lorenztian Coxeter group preserves a symmetric
bilinear form with a Lorentzian signature and thus the group naturally
acts on the hyperboloid model of hyperbolic space, but in general this
action is neither cocompact nor co-finite volume.

The spherical and weakly spherical Coxeter groups and Artin groups
are large classes that we already understand. If our goal is to under-
stand how to solve the word problem for all Artin groups, the obvious
next step is to try and understand those defined by Lorentzian and
weakly Lorenztian presentations. Unfortunately, we currently under-
stand essentially none of these groups.

Remark 11.3 (Find one example). Recall from the survey of known
results in Part 2 that the only small-type Lorentzian Artin groups where
we know how to decide the word problem are the large-type ones based
on complete graphs and this result uses a type of small-cancellation
theory that is unavailable for the other Lorenztian Artin groups. Thus,
it is interesting (and probably very hard) open problem to find at least
one small-type Lorentzian Artin group not defined by a complete graph
where we know how to solve its word problem.
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Small graphs that define Lorenztian Artin groups are very easy to
find.

Remark 11.4 (Small graphs). In 2013 Ryan Blair and Ryan Ottman
proved that none of the 996 connected graphs with fewer than 8 ver-
tices define Artin groups that are higher rank. Of these graphs 13
are spherical, 9 are weakly spherical or euclidean and 4 are complete
graphs that define Lorentzian groups. The remaining 970 small con-
nected graphs define Lorentzian Artin groups whose word problem we
do not know how to solve [BO13].

Another family of Lorenztian Artin groups that have simple presen-
tations are those defined by graphs that look like tripods.

Remark 11.5 (Tripods). Let Tp,q,r be the graph that is a tree with only
one branch point, the branch point has degree 3 and the arms contain
p, q and r vertices, respectively where the branch vertex counts as a
vertex in each of the arms. This tree defines a spherical Artin group
when 1

p +
1
q +

1
r > 1, it defines a weakly spherical Artin groups when this

sum is equal to 1, and it defines a Lorentzian Artin group when this
sum is less than 1. None of these Lorenztian Artin groups have a word
problem that we know how to solve.

Finally, if more symmetric presentations seem desirable, many of the
highly symmetric graphs studied by graph theorists define Artin groups
that are Lorenztian.

Remark 11.6 (Highly symmetric graphs). Several of the highly sym-
metric graphs studied by graph theorists define Artin groups that are
Lorenztian. These include the 10-vertex Petersen graph, the 50-vertex
Hoffman-Singleton graph and the 275-vertex McLaughlin graph and the
26-vertex incidence graph of the projective plane over the field with 3
elements. None of the corresponding Artin groups have word problems
that we know how to solve. All of these graphs define Lorenztian Cox-
eter groups that are loosely connected to the study of sporadic finite
simple groups, particularly the Monster finite simple group.

We know that these graphs (and many others) define Lorenztian
Coxeter groups and Artin groups because the eigenvalues of their Cox-
eter matrix can be read off from the spectrum of the adjacency matrix
of the graph. In particular the spectrum of a graph can be used to
immediately determine the type of Coxeter group and Artin group this
graph defines. Until we can solve the word problem for at least one of
these non-trivial Lorentzian Artin groups, the geometry of most Artin
groups will remain fundamentally mysterious.
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