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Chapter 36

In Chapter 35, we saw how light beams passing through different slits can 
interfere with each other and how a beam after passing through a single slit 
flares-diffracts- in Young's experiment. Diffraction through a single slit or past 
either a narrow obstacle or an edge produces rich interference patterns. The 
physics of diffraction plays an important role in many scientific and 
engineering fields.

In this chapter we explain diffraction using the wave nature of light and 
discuss several applications of diffraction in science and technology.  

Diffraction

36-
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Diffraction Pattern from a single narrow slit.
Diffraction and the Wave Theory of Light
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explained using geometrical 
optics (Ch. 34)!
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When the path length difference between rays r1
and r2 is λ/2, the two rays will be out of phase when 
they reach P1 on the screen, resulting in destructive 
interference at P1. The path length difference is the 
distance from the starting point of r2 at the center of 
the slit to point b.

For D>>a, the path length difference between rays 
r1 and r2 is (a/2) sin θ.

36-Fig. 36-4

Diffraction by a Single Slit: Locating the Minima
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Repeat previous analysis for pairs of rays, each separated by a 
vertical distance of a/2 at the slit.

Setting path length difference to λ/2 for each pair of rays, we 
obtain the first dark fringes at:

36-
Fig. 36-5

Diffraction by a Single Slit: Locating the Minima, Cont'd

(first minimum)sin sin
2 2
a aλθ θ λ= → =

For second minimum, divide slit into 4 zones of equal widths 
a/4 (separation between pairs of rays). Destructive interference 
occurs when the path length difference for each pair is λ/2.

(second minimum)sin sin 2
4 2
a aλθ θ λ= → =

Dividing the slit into increasingly larger even numbers of zones, 
we can find higher order minima:

(minima-dark fringes)sin ,   for 1, 2,3a m mθ λ= = K
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To obtain the locations of the minima, the slit was equally divided into N zones, 
each with width ∆x. Each zone acts as a source of Huygens wavelets. Now 
these zones can be superimposed at the screen to obtain the intensity as 
function of θ, the angle to the central axis.

To find the net electric field Eθ (intensity α Eθ
2) at point P on the screen, we 

need the phase relationships among the wavelets arriving from different zones:

Intensity in Single-Slit Diffraction, Qualitatively
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Here we will show that the intensity at the screen due to 
a single slit is:

36-Fig. 36-7

Intensity in Single-Slit Diffraction, Quantitatively

( )
2sin      (36-5)mI I αθ

α
 =  
 

1where  sin      (36-6)
2

aπα φ θ
λ

= =

,      for 1, 2,3m mα π= = K
In Eq. 36-5, minima occur when:

sin ,      for 1, 2,3

or     sin ,     for 1, 2,3    
(minima-dark fringes)

am m

a m m

ππ θ
λ

θ λ

= =

= =

K

K

If we put this into Eq. 36-6 we find:
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If we divide slit into infinitesimally wide zones ∆x, the arc of the phasors
approaches the arc of a circle. The length of the arc is Em. φ is the difference in 
phase between the infinitesimal vectors at the left and right ends of the arc. φ is 
also the angle between the 2 radii marked R.

Proof of Eqs. 36-5 and 36-6

36-
Fig. 36-8
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1
21

2

sinmEEθ φ
φ

=Solving the previous 2 equations for Eθ one obtains:

( ) ( )
22

2

sin
m

m m

I E I I
I E

θθ αθ
α

 = → =  
 

The intensity at the screen is therefore:

( )2 sinaπφ θ
λ

 =  
 

φ is related to the path length difference across the 
entire slit:
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Diffraction by a Circular Aperture

36-
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Rayleigh’s Criterion: two point sources are barely resolvable if their angular 
separation θR results in the central maximum of the diffraction pattern of one 
source’s image is centered on the first minimum of the diffraction pattern of the 
other source’s image.

Resolvability

36-

Fig. 36-10
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Double slit experiment described in Ch. 35 where assumed that the slit width 
a<<λ. What if this is not the case? 

Diffraction by a Double Slit

36-

Fig. 36-14

Two vanishingly narrow slits a<<λ
Single slit a~λ

Two Single slits a~λ

( ) ( )
2

2 sincos   (double slit)mI I αθ β
α

 =  
 

sindπβ θ
λ

=

sinaπα θ
λ

=
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Device with N slits (rulings) can be used to manipulate light, such as separate 
different wavelengths of light that are contained in a single beam. How does a 
diffraction grating affect monochromatic light?

Diffraction Gratings

36-

Fig. 36-17 Fig. 36-18

sin   for 0,1, 2   (maxima-lines)d m mθ λ= = K
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Width of Lines

36-

Fig. 36-19

Fig. 36-20

The ability of the diffraction grating to resolve (separate) different wavlength
depends on the width of the lines (maxima)
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In this course, a sound wave is roughly defined as any longitudinal wave 
(particles moving along the direction of wave propagation).

Width of Lines, cont’d

36-

Fig. 36-21

hwsin   ,    sin hw hwNd θ λ θ θ∆ = ∆ ≈ ∆

hw    (half width of central line)
Nd
λθ∆ =

hw  (half width of line at )
cosNd
λθ θ

θ
∆ =
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Separates different wavelengths (colors) of light into distinct diffraction lines

Grating Spectroscope

36-Fig. 36-22

Fig. 36-23
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Gratings embedded in device send out hundreds or even thousands of 
diffraction orders to produce virtual images that vary with viewing angle. 
Complicated to design and extremely difficult to counterfeit, so makes an 
excellent security graphic. 

Optically Variable Graphics

36-Fig. 36-25
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Dispersion: the angular spreading of different wavelengths by a grating

Gratings: Dispersion and Resolving Power

36-

   (dispersion defined)D θ
λ

∆
=

∆

 (dispersion of a grating)  (36-30)
cos
mD

d θ
=

Resolving Power

avg    (resolving power defined)R
λ

λ
=

∆
 (resolving power of a grating)  (36-32)R Nm=
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Proof of Eq. 36-30

36-

sind mθ λ=

Differential of first equation (what 
change in angle does a change in 
wavelength produce?)

Angular position of maxima

( )cosd d mdθ θ λ=

For small angles

( )cosd mθ θ λ∆ = ∆

  and   d dθ θ λ λ→ ∆ → ∆

( )cos
m

d
θ
λ θ

∆
=

∆
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Proof of Eq. 36-32

36-

hw cosNd
λθ

θ
∆ =

Substituting for ∆θ in calculation on 
previous slide

Rayleigh's criterion for half-width 
to resolve two lines

hw

m
N

θ θ
λ λ

∆ → ∆

→ = ∆

R Nmλ
λ

= =
∆
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In this course, a sound wave is roughly defined as any longitudinal wave 
(particles moving along the direction of wave propagation).

Dispersion and Resolving Power Compared

36-

Fig. 36-26

Grating N d (nm) θ D (o/µm) R

A 10 000 2540 13.4o 23.2            10 000

B 20 000 2540 13.4o 23.2          20 000

C 10 000 1360 25.5o 46.3          10 000

Data are for λ = 589 nm and m = 1

Table 36-1
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X-rays are electromagnetic radiation with wavelength ~1 Å = 10-10 m (visible 
light ~5.5x10-7 m)

X-Ray Diffraction

36-

Fig. 36-27

X-ray generation

X-ray wavelengths to short to be resolved 
by a standard optical grating

( )( )1 1 1 0.1 nm
sin sin 0.0019

3000 nm
m
d
λθ − −= = = °
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Diffraction of x-rays by crystal: spacing d of 
adjacent crystal planes on the order of 0.1 nm

→ three-dimensional diffraction grating with 
diffraction maxima along angles where reflections 
from different planes interfere constructively

X-Ray Diffraction, cont’d

36-Fig. 36-28

2 sin   for 0,1, 2   (Bragg's law)d m mθ λ= = K
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Fig. 36-29

interplanar spacing d is relatedto the 
unit cell dimensaion a0

X-Ray Diffraction, cont’d

2 05
0 045   or  0.2236

20
ad a d a= = =

Not only can crystals be used to 
separate different x-ray wavelengths, 
but x-rays in turn can be used to study 
crystals, for example determine the 
type crystal ordering and a0


