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Abstract 

What do inferring what a person is thinking or feeling, judging a defendant’s guilt, and navigating a 
dimly lit room have in common? They involve perceptual uncertainty (e.g., a scowling face might 
indicate anger or concentration, for which different responses are appropriate) and behavioral risk (e.g., 
a cost to making the wrong response). Signal detection theory describes these types of decisions. In this 
tutorial, we show how incorporating the economic concept of utility allows signal detection theory to 
serve as a model of optimal decision making, going beyond its common use as an analytic method. This 
utility approach to signal detection theory clarifies otherwise enigmatic influences of perceptual 
uncertainty on measures of decision-making performance (accuracy and optimality) and on behavior (an 
inverse relationship between bias magnitude and sensitivity optimizes utility). A “utilized” signal 
detection theory offers the possibility of expanding the phenomena that can be understood within a 
decision-making framework. 
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The goal of this tutorial is to familiarize readers with aspects of signal detection theory (SDT; Green & 
Swets, 1966; Macmillan & Creelman, 1991) that stem from using it as a model of optimal decision 
making. SDT characterizes how perceivers separate meaningful information from “noise.” It is widely 
used to measure performance on perception, memory, and categorization tasks. In the realm of social 
perception, for example, when interacting with someone, it is advantageous to know whether the person 
is angry (and likely means you harm) or not. Signals such as the person’s facial expression inform this 
judgment. SDT is particularly useful in situations of uncertainty and risk. Uncertainty is present when 
the alternative options are perceptually similar to one another (e.g., a scowling facial expression 
sometimes means that the person is angry and sometimes means that the person is merely 
concentrating). Risk is present when misclassification carries some relative cost (e.g., when failing to 
correctly identify someone as angry incurs punishment that would otherwise have been avoided).1 

Overview of SDT 

SDT’s power as an analytic tool comes from separating a perceiver’s behavior into two underlying 
components, sensitivity and bias (see Précis of Signal Detection Theory in the Supplemental Material 
available online). Sensitivity is the perceiver’s ability to discriminate alternatives: targets (e.g., a person 
who is angry) versus foils (e.g., a person who is not angry). Response bias is the perceiver’s propensity 
to categorize stimuli as targets rather than foils and is described as liberal, neutral, or conservative. For 
example, if failing to correctly identify threat is relatively costly (resulting in, say, psychological or 
physical punishment), or if targets are common relative to foils, then a perceiver might treat equivocal 
stimuli as threatening targets rather than safe foils (a liberal bias, in which even mildly scowling faces 
are treated as angry). If, instead, incorrectly identifying a stimulus as a threat is relatively costly 
(resulting in, say, embarrassment arising from a misperceived need to apologize), or if targets are 
uncommon relative to foils, then a perceiver might treat equivocal stimuli as safe (a conservative bias, in 
which only strongly scowling faces are treated as angry). 

SDT is applicable across a spectrum from perceptual to conceptual domains. In fact, a diverse array of 
nonpsychophysical “perceptions” have been treated as involving issues of signal detection. The SDT 
framework has been used to examine eyewitnesses’ identification of suspects (Clark, 2012), decisions to 
place children in foster homes (Ruscio, 1998), memory (Wixted & Stretch, 2004), cancer detection 
(Abbey, Eckstein, & Boone, 2009), statistical hypothesis testing (Green & Swets, 1966), and diagnostic 
decisions more generally (Swets, Dawes, & Monahan, 2000). Here, we use social-threat detection as an 
example to illustrate our points (see the Supplemental Material for additional examples across the 
perceptual-conceptual spectrum: interoception, social perception, jury deliberation, and navigation 
speed). 

Despite SDT’s breadth of application, it is largely used in a descriptive way to compare sensitivity and 
bias across study conditions or people. For example, in a previous study, people with current depression 
exhibited decreased sensitivity for emotion perception, and people with remitted depression exhibited 
increased sensitivity and more neutral response bias for emotion perception, relative to control groups 
(Anderson et al., 2011). Yet SDT has much more to offer as a generative model of decision making. 
Combining SDT’s treatment of perceptual uncertainty with the behavioral-economic concept of utility 
(the net benefit expected to accrue from a series of decisions) highlights important aspects of decision 
making overlooked both by typical applications of SDT and by traditional models of decision making 
that focus on utility alone. 
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The Utility of Perception 

According to the utility-based approach to SDT, three parameters characterize the uncertainty and risk 
within a specific decision environment. 

Payoff: Every decision has its consequences. The payoff parameter describes the value of each of four 
possible decision outcomes: correct detections, missed detections, false alarms, and correction rejections 
(see Précis of Signal Detection Theory in the Supplemental Material). False alarms and missed 
detections incur relative costs to the perceiver, whereas correct rejections and correct detections impart 
relative benefits to the perceiver. In social-threat detection, for example, false alarms might lead to 
unnecessary apologetic disruptions of the social interaction or to unnecessary social avoidance, whereas 
missed detections might lead to punishment or other aversive outcomes. 

Base rate: The base-rate parameter describes the perceiver’s probability of encountering targets (e.g., a 
person who is angry) relative to foils (e.g., a person who is not angry). 

Similarity: Target and foil categories can be somewhat similar to one another, and this is the source of 
perceptual uncertainty. The similarity parameter models uncertainty by describing what targets and foils 
“look like.” For example, the physical similarity of facial expressions associated with two emotion 
categories can be modeled as Gaussian distributions over a continuous perceptual domain of facial 
expression intensity. There are two sources of perceptual uncertainty. Intrinsic sources are internal to the 
perceiver. They may include, for example, sensory-processing noise (e.g., Osborne, Lisberger, & Bialek, 
2005), poorly learned discrimination (e.g., Lynn, 2005), and, at an abstract level, perhaps even confusion 
about the difference between conceptual categories. Extrinsic sources are external to the perceiver, 
arising from the environment or the signaler. They may include, for example, environmental noise (e.g., 
Wollerman & Wiley, 2002), signal attenuation (e.g., Naguib, 2003), and variation in signaler 
expressivity (e.g., emotional expressivity: Zaki, Bolger, & Ochsner, 2009). Research in psychophysics 
often emphasizes intrinsic uncertainty. Research in applied decision making (e.g., medical diagnostics) 
and behavioral ecology often emphasizes extrinsic uncertainty. 

It is well known that payoffs and the base rate influence bias (Green & Swets, 1966; Macmillan & 
Creelman, 1991). Rare targets and costly false alarms promote a conservative bias (i.e., a higher 
threshold, or criterion, for judging that a target is present), whereas common targets and costly misses 
promote a liberal bias (i.e., a lower criterion for judging that a target is present; e.g., Quigley & Barrett, 
1999). The perceptual similarity between targets and foils influences sensitivity (i.e., perceivers have 
greater sensitivity when targets and foils are less perceptually similar to one another; Green & Swets, 
1966; Macmillan & Creelman, 1991). However, it is the utility-based approach to SDT (which combines 
uncertainty with behavioral economics) that quantifies and predicts these relationships between 
environmental parameters and behavior. 

Establishing the optimal criterion location 

In the presence of perceptual uncertainty, mistakes cannot be avoided. Consider, for example, the 
situation modeled in Figure 1a. A liberal criterion (identifying anger in faces with a low percentage of 
scowling) minimizes missed detections but increases exposure to false alarms. A conservative criterion 
(identifying anger in faces only when they have a high percentage of scowling) minimizes false alarms 
but increases exposure to missed detections. Therefore, perceivers should seek to optimize their criterion 
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location—to adopt a criterion that maximizes expected utility, producing the optimal blend of missed 
detections and false alarms in light of the environmental parameters. 

 

Figure. 1. Illustration of how one person (the perceiver, or decision maker) might establish the optimal 
criterion location in evaluating facial expressions to gauge the threat presented by another person (the 
sender, or signaler). The payoff, base-rate, and similarity parameters can be combined to derive a utility 
function for the decision environment that they characterize (a). The location in the stimulus domain (x-
axis) with the highest utility is the decision criterion location that will maximize benefit over a series of 
decisions (the criterion of correctly estimated parameters). A simulated perceiver who misestimates 
payoffs (dotted utility function) may adopt a suboptimally neutral decision criterion (criterion of 
misestimated payoffs). This perceiver’s expected utility is dictated by the intersection (denoted by the 
asterisk) of his or her criterion and the utility function derived from correctly estimated parameters. The 
y-axis for the signal distributions (probability density) is not shown. The graph in (b) shows that this 
perceiver’s misestimate is suboptimal: The rate of utility gain (accumulation of points) over a series of 
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trials is shallower than would have been the case if all the parameters had been estimated correctly. 
Parameter values for these models are provided in the Supplemental Material. 

The SDT utility function uses the payoff, base-rate, and similarity parameters to calculate the expected 
value (to the perceiver) of placing a decision criterion at any given location in the perceptual domain 
(see The Signal Utility Estimator and Receiver Operating Characteristics, in the Supplemental Material). 
For example, it is possible to compute the expected utility of placing a decision criterion at each facial 
expression along the continuum in Figure 1a. The criterion location with the highest expected utility will 
maximize net benefit over a series of decisions. By modeling the environmental parameters that underlie 
bias and sensitivity, one can mathematically predict perceivers’ optimality within environments or 
experimental conditions of a study or empirically compare perceivers’ optimality across environments or 
experimental conditions. 

To implement these ideas within an experiment in a laboratory setting, one can create different decision 
environments by assigning values to the three parameters (see Lynn, Cnaani, & Papaj, 2005, for an 
example with nonhumans; see Lynn, Zhang, & Barrett, 2012, for an example with humans). Payoffs can 
be implemented behaviorally. For example, participants can earn or lose points depending on the 
outcome of each trial. In this way, it is possible to set unequal payoff outcomes (e.g., a missed detection 
and a false alarm might have different costs in a particular context). Outside the laboratory, payoffs may 
not be known or easily quantified, of course. In such cases, a ratio of payoffs might be used. For 
example, Clark (2012) explored the utility of eyewitness-lineup reforms using a 10:1 ratio of the cost of 
missed detections (the perpetrator goes free) to false alarms (the wrong person is identified as the 
perpetrator). Base rate can be implemented as the proportion of targets to foils shown. The base rate can 
model, for example, the fact that some people with whom a perceiver interacts may be angry more often 
than other people. The similarity parameter can be implemented with targets and foils randomly drawn 
from their respective distributions imposed on a continuum of stimuli. 

Because criterion location is a function of the three environmental parameters, suboptimal bias or 
sensitivity in a perceiver can be understood as a perceiver’s “misestimate” of one or more parameters, 
which can result in suboptimal decisions (Fig. 1b). Individual differences, alone or in interaction with 
the decision environment, may influence parameter estimates (see Estimating Perceivers' Parameter 
Values in the Supplemental Material; Lynn et al., 2012). 

The application of utility to SDT is not new—it was part of the theory’s initial development in 
psychophysics (Green & Swets, 1966; Tanner & Swets, 1954). Nonetheless, a “utilized” SDT—which 
incorporates the notion that perceivers attempt to maximize net benefit while operating under perceptual 
uncertainty2—generates a number of unexpected but important theoretical observations that have yet to 
be widely explored in the psychological literature. One surprising observation is that there are contexts 
in which maximizing accuracy conflicts with maximizing utility, so that there are common situations in 
which accuracy should be sacrificed to achieve effective decision making. This conflict has implications 
for the use of accuracy as a measure of performance. A second surprising observation is that there is a 
functional relationship between bias and sensitivity: Within a perceiver, the optimal criterion location is 
not independent of sensitivity. Probably the most widely appreciated insight of SDT is its separation of 
sensitivity and bias as factors explaining behavior (Swets, Tanner, & Birdsall, 1961), and many users 
believe that these two parameters are orthogonal, or independent of one another. This relationship 
between sensitivity and bias has implications for interpreting differences in sensitivity and bias among 
perceivers or different contexts. 
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Measuring Behavior: Optimal Is Better Than Accurate 

One clear tenet of SDT is that estimates of accuracy (i.e., the proportion of trials garnering correct 
response) should be abandoned in favor of estimates of bias and sensitivity as measures of performance 
when feasible (Macmillan & Creelman, 1991). There are two reasons to avoid accuracy. First, accuracy 
does not account for two aspects of decision making under uncertainty and risk that are important for a 
full understanding of the perceiver’s behavior: Accuracy confounds the effects of sensitivity and bias on 
performance, and this is true whether one applies a utility framework to SDT or not. Second, the 
inadequacy of accuracy is compounded under economic risk, when payoffs should optimally bias 
behavior, because accuracy is the simple tally of correct and incorrect decisions without regard to their 
actual benefits and costs. 

Accuracy confounds sensitivity and bias 

Accuracy is not a good indicator of what people are doing; it does not describe their behavior. This is 
because accuracy is blind to the separate contributions of sensitivity and bias to decision making. 
Although this fact is well known, it is less appreciated that multiple combinations of sensitivity and bias 
values produce the same accuracy (Fig. 2). The overt behaviors that yield a given accuracy level may 
encompass dramatic extremes of liberal and conservative bias. Consequently, the researcher analyzing 
accuracy rather than optimality will pool participants who are potentially behaving quite differently 
from one another (Lynn, Hoge, Fischer, Barrett, & Simon, in press). 

 

Figure 2. Illustration showing that multiple combinations of sensitivity and response bias produce the 
same accuracy. For example, the iso-accuracy gradients in this simulated neutral-bias environment show 
that at moderate sensitivity (d! = 2), both liberal bias (c = −0.5) and conservative bias (c = 0.5) can 
produce accuracy near .8. Parameter values for this model are provided in the Supplemental Material. 
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Accuracy is blind to payoffs but not base rate 

When benefits and costs differ, accuracy is not a good indicator of how well people are doing; it is an 
inadequate measure of their performance. Accuracy is blind to the influences of benefits and costs on 
decision making (Egan, 1975; Maddox & Bohil, 2005) because it is determined without regard to the 
value the perceiver accrues for those decisions. This means that maximizing accuracy and maximizing 
utility can be at odds with one another in environments in which bias is due to payoffs. However, 
because accuracy is derived from the proportions of correct and incorrect responses, it is congruent with 
utility in environments in which bias is due to the base rate. 

A comparison of simulated environments with different sources of bias exemplifies these points (Table 
1). When payoffs alone bias behavior (the payoff environment, in which false alarms are relatively 
costly but the base rate is balanced at .5), accuracy is highest when bias equals 0 (neutral bias). 
Nevertheless, utility is maximized when bias equals 0.4 (i.e., a somewhat conservative bias). Utility at 
the criterion that maximizes accuracy is 7.1 points, less than the maximum utility possible, 7.5 points. 
Accuracy at the criterion that maximizes utility is .82, less than the maximum accuracy possible, .84. 
Perceivers with bias of 0 will achieve lower maximum utility over a series of decisions than will those 
with bias of 0.4, despite exhibiting higher accuracy. When the base rate alone biases behavior (the base-
rate environment, in which benefits and costs cancel each other out but the base rate is .3), the amount of 
bias that maximizes accuracy also maximizes utility (again at bias = 0.4). For comparison, Table 1 also 
contains results for neutral and base-rate-and-payoff environments. When benefits and costs differ, then, 
optimally biased decision making will yield lower accuracy than unbiased decision making, despite its 
greater utility. Consequently, accuracy cannot properly describe performance in environments in which 
there is risk due to payoffs. 

Table&1.&Expected&Accuracy,&Criterion&Locations,&Bias,&and&Utility&in&Four&Simulated&Decision&
Environments.&
Measure! Type&of&decision&environment&

Neutral& Base&rate& Base&rate&and&payoff& Payoff&
Maximum&accuracy& .84& .86& .86& .84&
Criterion&location&that&maximizes&accuracy&& 50.0& 50.4& 50.4& 50.0&
Bias&that&maximizes&accuracy& 0.0& 0.4& 0.4& 0.0&
Utility&at&the&criterion&location&that&
maximizes&accuracy& 6.8& 7.2& 7.7& 7.1&
Maximum&utility& 6.8& 7.2& 8.0& 7.5&
Criterion&location&that&maximizes&utility& 50.0& 50.4& 50.8& 50.4&
Bias&that&maximizes&utility& 0.0& 0.4& 0.8& 0.4&
Accuracy&at&the&criterion&location&that&
maximizes&utility& .84& .86& .85& .82&
Note:&Values&for&expected&accuracy,&criterion&location&(percentage&of&range),&bias&(c),&and&utility&(points&accrued)&were&
derived&by&applying&each&environment’s&parameters&to&the&utility&function&in&signal&detection&theory.&The&parameter&values&
for&the&neutral&environment&are&as&follows:&correct&detections&and&correct&rejections&=&10&points;&missed&detections&and&
false&alarms&=&−10&points;&base&rate&=&.5;&and&means&of&target&and&foil&signal&distributions&=&60%&and&40%&of&the&perceptual&
domain’s&range,&respectively,&with&standard&deviation&=&10%&for&both&distributions.&The&baseYrate&environment&is&identical&
to&the&neutral&environment&except&that&the&base&rate&is&reduced&to&.3.&The&payoff&environment&is&identical&to&the&neutral&
environment&except&that&false&alarms&are&more&costly&(−15&points)&and&missed&detections&less&costly&(−1&point).&The&baseY
rateYandYpayoff&environment&combines&the&base&rate&and&payoffs&from&the&baseYrate&and&payoff&environments,&
respectively;&the&similarity&parameter&values&are&the&same&as&in&the&neutral&environment.&
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Behavioral data also indicate that accuracy sometimes reflects the optimality of decision making and 
sometimes does not, depending on the environment. For example, in one study, participants who were 
engaged in an emotion-perception experiment of the sort described in Figure 1a attempted to maximize 
points earned over 178 trials (see Lynn et al., 2012, for methodological details). Additional analyses (not 
reported in Lynn et al.) showed that accuracy did not reflect the optimality of decision making when bias 
was caused by payoffs (as illustrated in Table 1). For participants in a condition that implemented a 
liberal environmental bias via relatively costly missed detections (all else being equal), more liberal 
response bias was associated with lower accuracy, ρ = .50 (all ρs are one-tailed partial correlations 
controlling for sensitivity, d!), p < .001, n = 67. Additionally, more liberal response bias was associated 
with more points earned, ρ = −.82, p < .001, whereas higher accuracy was marginally associated with 
fewer points earned, ρ = −.17. p > .086. 

In contrast, accuracy did reflect the optimality of decision making when bias was caused by the base rate 
of targets (as illustrated in Table 1). For participants in a condition that implemented a conservative 
environmental bias via a relatively low base rate (i.e., targets were less common than foils), more 
conservative response bias was associated with higher accuracy, ρ = .91, p < .001, n = 75. Additionally, 
more conservative response bias and higher accuracy were associated with more points earned—bias: 
ρ = .50, p < .001; accuracy: ρ = .58, p < .001. 

Humans appear to more easily adapt their response bias to the base rate than to payoffs (Bohil & 
Maddox, 2001). This discrepancy leads to an observed response bias that maximizes accuracy at the 
expense of optimality (Maddox & Bohil, 2005). When payoffs matter, perceivers maximizing accuracy 
over optimality will accrue less benefit than could otherwise be the case. By ignoring the differences 
between benefits and costs, such perceivers are unable to tune their bias to balance those differences. 
Moreover, when the payoff matrix and base rate demand bias in opposing directions (i.e., liberal- vs. 
conservative-going bias), perceivers who neglect payoffs could exhibit bias in the wrong direction 
relative to what is optimal for the environment. 

Many studies are blind to the difference between optimality and accuracy as a consequence of not 
assigning separate payoff values to correct detections and correct rejections, or to false alarms and 
missed detections. Emphasizing accuracy instead of optimality corresponds to a misalignment of 
behavior with the contingencies of the decision because those contingencies are ignored. In social-threat 
perception, for example, emphasizing accuracy over a series of judgments could correspond to 
considering the costs of false alarms and missed detections to be of equal value, and the benefits of 
correct detections and correct rejections to be of equal value. It may be appropriate for participants to 
assume balanced payoffs in most laboratory experiments of emotion perception, but the use of balanced 
payoffs reduces the experiments’ ecological validity because it seems unlikely for payoffs to be 
balanced outside the laboratory. Outside the laboratory, decisions involve benefits and costs, and 
maximizing net benefit, not accuracy, is what matters. Testing perceivers under conditions that demand 
a nonneutral bias and measuring performance as accumulated payoff, or optimality of bias, rather than 
accuracy, better reflects decisions made outside the laboratory. 

Interaction of Uncertainty and Risk: The Relationship Between Sensitivity and Bias 

Perceivers maximizing utility experience a functional relationship between bias and sensitivity predicted 
by the SDT utility function. This relationship dictates that, given some nonneutral response bias required 
by the environment (determined by base rate, payoffs, or both), to maximize their utility, perceivers with 
low sensitivity should be more biased than perceivers with high sensitivity. 
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To get an intuitive feel for this relationship, consider walking through an obstacle-strewn room as a 
signal detection issue (this example is further developed in the Supplemental Material). Why do people 
navigate space more cautiously in conditions of poor visibility than in conditions of good visibility? A 
missed detection (say, stepping barefoot on an object) is costly (it is painful to the perceiver and may 
break the object). When the room is well lit, a person can walk quickly through the room. When the 
room is dimly lit, the person walks more cautiously, reducing the frequency of missed detections that 
would otherwise occur. This increased caution corresponds to a change in bias. What about the 
environment has changed to cause this change in bias? The benefits and costs of correct and incorrect 
judgments about the presence or absence of obstacles in the person’s path have not changed, nor has the 
base rate of encountering obstacles. Only the perceptual similarity between targets and foils has 
changed: Obstacles and clear space look more similar in the dark, which reduces the person’s sensitivity 
to discriminate obstacles against the background. In this example, a decrease in sensitivity leads to a 
more liberal bias, which produces a change in response: Decreased walking speed results in fewer 
missed detections and more false alarms. 

In short, decreased sensitivity makes errors more likely. Perceivers can mitigate this increased risk to 
some extent by adopting a more extreme bias. The consequence of this functional relationship is that 
more extreme behavior is associated with greater uncertainty (see Fig. 3 and also Receiver Operating 
Characteristics in the Supplemental Material). 

 

Figure 3. Optimizing performance in a biased environment. As illustrated by these two models for 
environments with low and high similarity of targets and foils, to offset the decrement in performance 
(lower utility) caused by high similarity (low sensitivity), perceivers should adopt a more extreme bias 
(depicted by the rightward shift of the criterion for the high-similarity utility function). In these models, 
the maximum sensitivity (d′) is 2.0 for the low-similarity environment and 1.1 for the high-similarity 
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environment. Given these levels of sensitivity, the amount of bias (c) that will optimize a perceiver’s 
decisions is 0.7 for the low-similarity environment and 1.2 for the high-similarity environment. Note 
that bias as measured by the ratio of target to foil likelihood at the criterion (β) is 4.0 in both models and 
does not explicitly reflect the difference in behavior. Parameter values for these models are provided in 
the Supplemental Material. 

The line of optimal response 

A line of optimal response (LOR; Fig. 4; Lynn et al., 2012) depicts the functional relationship between 
bias and sensitivity. Any unique set of environmental base-rate and payoff values has a unique LOR. 
The LOR can be derived from the equation relating the likelihood ratio of the signal distributions at a 
given criterion (a measure of bias called beta, β; see Précis of Signal Detection Theory in the 
Supplemental Material) to the criterion or center measure of bias, c, and sensitivity, measured as d! 
(Macmillan & Creelman, 1991, Equation 2.10): 

β = e(cd
!
) (1) 

Providing the environment’s optimal beta value and solving for c (i.e., log(β)/d!) over a range of d! 
values yields the LOR. The environment’s optimal beta value can be calculated from the base rate and 
payoffs (Tanner & Swets, 1954, Equation 2; see also Wiley, 1994): 

βoptimal = (1 – α)/(α) × (j – a)/(h – m) (2) 

where α is the base rate and j, a, h, and m are the payoffs for correct rejections, false alarms, correct 
detections, and missed detections, respectively (see The Signal Utility Estimator in the Supplemental 
Material). 
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Figure 4. Illustration of the relationship between bias and sensitivity according to the utility approach 
to signal detection theory. Mathematical modeling shows that for the utility of perceptual decisions to be 
maximized, a perceiver’s sensitivity and response-bias magnitude should be inversely related. A line of 
optimal response (LOR; dashed line) is defined by the bias that yields maximum utility for any given 
level of sensitivity, for constant base-rate and payoff values. The nonzero slope of the LOR indicates 
that the decrease in utility that results from reduced sensitivity can be mitigated by increased magnitude 
of bias (here, a more conservative-going bias). Parameter values for this model are provided in the 
Supplemental Material. 

The value of βoptimal is constant for all sensitivity values; it is set by the environmental payoffs and base 
rate, and is not a function of sensitivity. By Equation 1, which defines beta in terms of c and d!, c must 
change with sensitivity if beta is constant. Although there is a literature examining beta (e.g., Snodgrass 
& Corwin, 1988; Wood, 1976), we have chosen to focus on how c changes with sensitivity (Stretch & 
Wixted, 1998). Focusing on the lability of c, rather than the stability of beta, emphasizes how 
perceivers’ behavior—which stimuli they categorize as targets and which as foils—should differ 
between environments that differ in target-foil similarity or among individuals who differ in sensitivity 
(e.g., in the high- and low-similarity environments of Fig. 3, β does not change, but c does). 

We interpret the distance from the point defined by a perceiver’s observed sensitivity and bias (d!, c) to 
the LOR as a measure of how well the perceiver is able to adjust his or her bias to optimally 
accommodate his or her level of sensitivity. We have elected to measure distance to the LOR as 
euclidean distance rather than vertical distance, as a means of accounting for the unknown bivariate 
error distribution in the estimates of sensitivity and bias (Lynn et al., 2012). 

Sensitivity as a source of bias 

Surprisingly, this functional relationship means that low sensitivity can prompt extreme bias, just as the 
payoff and base-rate parameters can. As a consequence, bias can change solely from a difference in the 
perceived similarity of targets and foils, without any changes in the parameters commonly understood to 
drive bias (i.e., base rate and payoffs).3 In studies that have found response bias (c) to be inversely 
associated with perceptual sensitivity (d!), the associations have sometimes been explained as 
methodological or measurement artifact (e.g., See, Warm, Dember, & Howe, 1997; Snodgrass & 
Corwin, 1988). However, when sensitivity and bias magnitude (measured as either c or the criterion’s 
location in the perceptual domain) vary inversely between conditions, low sensitivity should be 
considered as a possible explanation for extreme bias. 

Recognizing a functional relationship between sensitivity and bias is critical because it has the potential 
to reverse researchers’ conclusions about differences in bias that are observed whenever signal detection 
issues occur (i.e., decisions involving category uncertainty and costly miscategorization). For example, 
under the assumption that bias is functionally independent of sensitivity, perceivers exhibiting poor 
sensitivity combined with extreme bias (relative to a control group) would be considered to exhibit two 
separate impairments in decision making: poor sensitivity and extreme bias. For decision making to be 
optimal, however, bias magnitude should vary inversely with sensitivity, particularly at low sensitivity. 
According to the utility-based account, therefore, more extreme bias may reflect not an impairment but a 
normal adaptive mechanism that offsets the single impairment, poor sensitivity. Conversely, under the 
independence assumption, perceivers exhibiting poor sensitivity with no difference in bias (relative to 
more sensitive individuals) would be considered to exhibit a single impairment, in sensitivity. In fact, 
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such individuals may have a dual impairment: poor sensitivity coupled with failure to calibrate their 
bias to their poor sensitivity. 

In the study by Lynn et al. (2012), perceivers exhibited wide variation in their ability to optimally adjust 
their bias to their sensitivity, but an inverse relationship between bias magnitude and sensitivity did 
function to maximize utility (Fig. 5; results not reported in Lynn et al.). As predicted by the utility 
approach to SDT, perceivers with poor sensitivity (d!) exhibited more extreme bias (c) than did 
perceivers with better sensitivity, both in an environment using payoffs to induce a liberal bias, r = .26, p 
< .023, n = 67, and in an environment using the base rate to induce a conservative bias, r = −.48, p < 
.001, n = 75. Furthermore, as predicted, perceivers with more optimal bias (shorter distance from the 
LOR) earned more points over the series of trials (liberal payoff environment: ρ = −.81, p < .001; 
conservative base-rate environment: ρ = −.50, p < .001). Thus, perceivers who adopted a more extreme 
bias that reflected their reduced sensitivity made more optimal perceptual decisions. 

 

Figure 5.Illustration of the inverse relationship between bias magnitude and sensitivity in conservatively 
and liberally biased decision environments (data from Lynn, Zhang, & Barrett, 2012). Participants in 
both environments showed more extreme bias as their sensitivity decreased, as predicted by the lines of 
optimal response (LORs; dashed lines) for the environments’ parameter values. Perceivers closer to their 
environment’s LOR earned significantly more points than those farther away, which indicates that the 
inverse relationship is driven by utility maximization. 

Conclusions 

SDT is a well-established analytic tool for describing decision-making performance in a wide variety of 
domains, ranging from the perceptual to the conceptual. A utilized SDT goes farther—it provides a 
theoretical framework to predict or explain behavior. The SDT utility function (Swets et al., 1961) 



 

 

13 

makes SDT a predictive tool by modeling the perceptual uncertainty and behavioral risk that are 
inherent to many decisions both inside and outside the laboratory. The model can be used to generate 
novel experimental questions about computational processes underlying bias and sensitivity and 
functional decision making (e.g., see Affective Calibration in Mental Illness in the Supplemental 
Material). 

Understanding decision making and criterion placement as dependent on perceivers’ subjective 
estimates of parameters that characterize the environment has exciting ramifications. First, designing 
experiments to manipulate the payoff, base-rate, and similarity parameters, and measuring the optimality 
of decision making, will provide a more mechanistic approach to understanding the factors that underlie 
perceivers’ bias and sensitivity. Examining how perceivers make decisions in biased conditions will 
yield better understanding of decision making because biased environments are more realistic than those 
that are typically implemented in cognitive and perceptual experiments, in which payoffs are unspecified 
and the base rate is balanced across alternatives. 

Second, adopting SDT as a theoretical model of decision making offers a path by which behavioral-
economic and neuroeconomic studies of judgment and decision making can investigate the influence of 
uncertainty. Examining perceivers operating under uncertainty would reflect decision making in more 
realistic environments than are typically employed in judgment and decision-making tasks that 
manipulate economic risk—variation in payoffs—but ignore signal-borne risk—variation in what 
options look like. 

Sensitivity to the three signal parameters is taxonomically widespread, exhibited by vertebrates and 
arthropods (e.g., Lynn, 2010). Model-driven approaches (Glimcher & Rustichini, 2004; Gold & 
Shadlen, 2007; Redish, 2004; Redish, Jensen, & Johnson, 2008) in which these three parameters are 
systematically manipulated may thus permit a broadly comparative investigation of how decision 
making is accomplished across levels of biological organization and complexity. 
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Notes 

1. These definitions of uncertainty and risk differ somewhat from those used in the literature on 
economic decision making, where commonly risk is defined as knowable variation in the value (payoff) 
of a decision’s outcome and uncertainty as unknowable variation in that value (e.g., see the review by 
Volz & Gigerenzer, 2012). 

2. It is perceptual uncertainty, modeled by the similarity parameter, that distinguishes SDT from other 
models of decision making. Other models of decision making attempt to account for how decisions are 
influenced by variability in benefits and costs accrued from correct or incorrect decisions, by variability 
in the probability of alternative choices or events, and by variability in factors internal to the decision 
maker that affect risk sensitivity, singly or in combination (e.g., see reviews in Krebs & Kacelnik, 1991; 
McNamara, Houston, & Collins, 2001). Game-theoretic approaches to decision making additionally 
account for the effect of other individuals’ responses on the decision maker’s own behavior (e.g., 
Grafen, 1991). Yet these models ignore that a perceiver’s expectations of the payoff to be accrued, the 
probabilities of alternative choices, the responses of others, and even the perceiver’s own body state 
(e.g., homeostatic and metabolic response) are based on signals emitted by the resources, game partners, 
body, and so forth. SDT posits that these signals themselves have variation. 

3. Sensitivity and bias independently characterize decision making: A perceiver’s ability to distinguish 
targets from foils is conceptually separate from his or her estimate of the payoffs and base rate. 
Additionally, the measures d! and c are estimated with statistical independence from one another 
(Dusoir, 1975; Macmillan & Creelman, 1990; See, Warm, Dember, & Howe, 1997; Snodgrass & 
Corwin, 1988). Nonetheless, these notions of conceptual and statistical independence have inadvertently 
influenced assumptions about functional independence, such that there exists a misconception that a 
perceiver’s observed bias should be independent of his or her observed sensitivity. The utility approach 
to SDT shows instead that a perceiver’s observed bias and sensitivity are functionally related by the goal 
of maximizing utility. 
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PRÉCIS*OF*SIGNAL*DETECTION*THEORY*
In signal detection theory (SDT), a perceiver is conceived of as placing a threshold, called a decision 
criterion, at some position on a continuous perceptual domain (e.g., "57% scowling" in Fig. S1). Stimuli 
with an appearance to one side of the criterion (here, rightward) are, on average, acted upon by the 
perceiver as if they are "targets" (here, indicating that a person is a threat). Stimuli on the other side of 
the criterion are treated "foils" (indicating that the person is not a threat). Perceivers thereby make a 
decision with four possible outcomes: (1) Classifying a stimulus as a target when it is, in fact, a target 
(threatening faces correctly identified) is a called a correct detection. (2) Classifying a stimulus as a 
target when it actually is a foil (non-threatening expressions mistaken for threatening faces) is a false 
alarm. (3) Classifying a stimulus as foil when it actually is a target (threatening faces mistaken for non-
threatening faces) is a missed detection. (4) Classifying a stimulus as a foil when it is, in fact, a foil (non-
threatening faces correctly identified) is a correct rejection.  
 

!

Fig.!S1.!Elements!of!a!signaling!system.!In!a!social!threat!detection!scenario,!facial!expressions!are!evaluated!by!

one!person!(the!perceiver!or!decision!maker)!to!gauge!another!person's!(the!sender!or!signaler)!threat!to!the!

perceiver.!Stimuli,!depicted!on!the!xBaxis,!comprise!two!categories:!facial!expressions!associated!with!threat!(i.e.,!

targets,!defining!what!the!sender!looks!like!when!he!or!she!is!angry)!and!expressions!not!associated!with!threat!

(i.e.,!foils,!defining!what!the!sender!looks!like!when!he!or!she!is!not!angry).!However,!the!signals!from!either!

category!vary!in!appearance!(here,!neutral!to!strongly!scowling)!characterized!by!a!distribution!(here,!Gaussian)!

over!a!perceptual!domain,!such!as!"scowl!intensity."!Any!signal!value!(particular!facial!expression!exemplar)!

might!come!from!either!category,!with!a!likelihood!given!by!the!target!and!foil!distributions.!Perceivers!

therefore!experience!uncertainty!about!the!category!membership!of!any!given!signal.!For!example,!sometimes!a!

scowl!is!emitted!by!a!person!when!he!or!she!is!angry,!and!sometimes!that!same&intensity!of!scowl!may!be!

emitted!by!the!person!when!he!or!she!is!not!angry,!but!rather!is!concentrating.!In!our!examples,!the!perceiver!

responds!to!facial!expressions!right!of!criterion!(vertical!red!arrow)!as!if!they!were!threatening!and!to!facial!
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expressions!left!of!criterion!as!if!they!were!safe.!Measures!of!sensitivity!(e.g.,!d')!characterize!overlap!of!the!
target!and!foil!distributions,!which!corresponds!to!perceptual!uncertainty.!Measures!of!bias!(e.g.,!c&and&β)!
characterize!the!decision!criterion's!location!on!the!perceptual!domain.!c,!for!"criterion,"!represents!the!
distance!(in!units!of!standard!deviation)!from!the!decision!criterion's!location!on!the!xBaxis!to!the!"crossBover!
point"!of!the!signal!distributions!(vertical!dashed!line).!β, beta,!represents!the!ratio!of!target:foil!likelihood!
(horizontal!dashed!lines)!at!the!decision!criterion!location.!!

 
Measures of sensitivity and bias (Fig. S1 and main text) are derived from the numbers of correct 
detections and false alarms committed over a series of decisions. For "yes/no" decisions such as the 
examples in this tutorial, these measures can be calculated from observed frequencies of correct 
detections (CDs), missed detections (MDs), false alarms (FAs) and correct rejections (CRs): 
 
d'=z(CDs/(CDs+MDs))-z(FAs/(FAs+CRs)) (S1) 
c=-0.5*(z(CDs/(CDs+MDs))+z(FAs/(FAs+CRs))) (S2) 
 
where z is the inverse of the normal cumulative distribution function (Macmillan & Creelman, 1991). 
The formula for beta is given as Equation 1 of the main text. See Macmillan & Creelman (1991) for 
adjustments to these formulae for other experimental designs, such as 2-alternative forced-choice. 
Measures of sensitivity are estimates of perceptual uncertainty. Measures of bias are estimates of 
criterion location. The combination of sensitivity and bias determine overt behavior–a perceiver might 
correctly withdraw from a person who means harm, unnecessarily disrupt the social interaction to a 
false alarm, fail to take appropriate defensive action during a misdetection, or appropriately affiliate 
during a correct rejection. Uncertainty causes the perceiver to make mistakes no matter what criterion 
is adopted; missed detections cannot be reduced without increasing false alarms.  
 
We view the unidimentional nature of the perceptual domain as an heuristic. On a conceptual level, the 
unidimentional domain is considered a "degree-of-evidence" variable: the likelihood that a signal is a 
target relative to a foil, whatever its sensory dimension(s) might be (Swets, 1998). As a physical 
stimulus measurement, a single dimension may be realistic in some applications (e.g., visual contrast). 
In other applications a single dimension may be highly salient to the decision (e.g., facial expression 
intensity is salient to mental state attribution). In still other applications, multiple or complex 
dimensions (e.g., guilt vs. innocence) might be reasoned about heuristically on a single conceptual 
dimension. When multiple dimensions are known and measurable, multi-dimensional extensions to 
SDT may be applied (Ashby, 2000; Bohil, Szalma, & Hancock, In press). Another alternative is to 
reduce dimensionality via statistical techniques such as principal component analysis, as implemented 
in computational models of perception (e.g., Edelman & Intrator, 1997). Applied solutions to 
dimensionality reduction have used multidimensional scaling to determine relevant perceptual 
dimensions, followed by discriminant function analysis to derive a single mathematical dimension that 
best separates the categories over the multiple perceptual dimensions (Getty, Pickett, D'Orsi, & Swets, 
1988). The discriminant function can then be used as a computational aid in decision making (Getty et 
al., 1988; Swets, 1998). 
 
It is common to use or assume normal, bell-shaped (Gaussian) signal distributions (probability density 
functions defined by means and standard deviations) to characterize targets and foils. Nonetheless, the 
central tenets of SDT apply to any distribution shape (e.g., Egan, 1975; Wiley, 1994; Bradbury & 
Vehrencamp, 1998). 
 

EXAMPLE*APPLICATIONS*OF*SDT*
SDT is applicable across a spectrum of perceptual to conceptual domains. Although SDT is most well 
known for application to exteroceptive perception, on the perceptual end of the spectrum, SDT is 
applicable to phenomena that extend beyond the exteroceptive five senses. For example, interoception, 
a person's perception of sensations from the internal environment of his or her body (e.g., Critchley & 
Harrison, 2013) involves decisions about whether or not the sensations are normal or are symptoms 
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indicative of illness and should be reported to a physician. Someone experiencing tightness in the chest 
must decide, for example, if the sensation is due to temporary anxiety or heart attack. The cost of a false 
alarm might include unnecessary worry and doctor visits, whereas the cost of a missed detection would 
include progression of serious illness. The base rate represents the probability that the interoceptive 
percept is a target, a feeling indicating an illness that would benefit from medical attention, vs. a foil, a 
feeling that does not stem from such illness. The signal distributions of the similarity parameter might 
vary over a domain characterized as "degree of abnormality" in the perceiver's bodily feelings, mood, or 
perceptual experience.  
 
On the conceptual end of the spectrum, jurors, for example, must discriminate incriminating from 
exculpatory evidence to decide a defendant's guilt or innocence. Here, the "perceptual" domain might 
comprise an abstract domain of what evidence of guilt vs. innocence "looks like," where "looks like" can 
be considered a metaphoric shorthand for probative value. The cost of a false alarm is conviction of the 
innocent, whereas the cost of a missed detection is the guilty evading justice. The base rate represents 
the proportion of cases that go to trial in which the defendant is, in fact, guilty. The signal distributions 
of the similarity parameter represent what evidence "looks like" when a person is guilty (targets) vs. 
innocent (foils). Jury deliberation exemplifies a signal detection issue in which the costs are not borne 
by the perceiver (i.e., the jury) directly, but by other elements of a larger "perceptual" system of which 
the jury is a representative part. Here, society and the defendant accrue the payoffs. 
 
Some decisions are a blend of perceptual and conceptual components. Emotion perception, such as the 
social threat perception example used throughout the main text, is both perceptual and conceptual. It 
involves action identification (is the person smiling/scowling) and mental state inference (is the person 
angry or happy) (Wegner & Vallacher, 1986; Gilbert, 1998; Kozak, Marsh, & Wegner, 2006).  
 
SDT can also be applied to decisions that involve continuously variable responses as opposed to 
dichotomous responses. For example, navigation–moving a body or other object through a space–
involves decisions about travel speed, a continuous variable. The decision might be reframed 
dichotomously, however, as whether or not to accelerate or decelerate relative to some baseline (e.g., 
current velocity), making it amenable to signal detection theory. The cost of a false alarm might include 
missed opportunities resulting from overly cautious, slow movement, whereas the cost of a missed 
detection includes collision with an obstacle. The base rate represents the encounter rate with obstacles. 
To transform decisions about continuously variable velocity into a dichotomous judgment about 
whether to increase or decrease velocity, the perceptual domain might be taken to be contrast level of 
obstacles against the background, with the similarity parameter defined by signal distributions of 
contrast level that afford deceleration (targets) vs. acceleration (foils). 
 
Optimal*is*better*than*accurate*
Emphasizing accuracy over a series of judgments, in lieu of optimality, corresponds to misalignment of 
behavior with the contingencies of the decision because those contingencies are ignored (see Fig. 2 and 
Table 1 of main text). As in social threat perception (discussed in main text), in interoception, jury 
deliberation, and navigation, emphasizing accuracy over a series of judgments could correspond to 
considering the costs of false alarm and missed detection to be of equal value, and the benefits of 
correct detection and correct rejection to be of equal value.  
 
In jury deliberation, for example, emphasizing accuracy could correspond to minimizing the number of 
missed convictions of the guilty (missed detections) and false imprisonments of the innocent (false 
alarms), without distinguishing the difference in the costs to society between the two. While a jury's 
sensitivity (ability to discriminate guilt from innocence) should always be maximized for an individual 
case, using accuracy as a metric of policy effectiveness would run contrary to the maxims of "innocent 
until proven guilty" and "beyond reasonable doubt." These principles signify a willingness to tolerate 
missed convictions of the guilty over false imprisonments of the innocent, embodying a conservative 
bias (Lillquist, 2002).  
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In navigating obstacles, for example, some contexts may be liberally biased due to a high cost of missed 
detection–e.g., collisions between a body or vehicle and an obstacle. Other contexts may be 
conservatively biased due to a high cost of false alarm–e.g., the time lost by slow travel. Emphasizing 
accuracy (proportion of obstacles avoided) over a series of movements would ignore the difference in 
payoffs between contexts. 
 
Like accuracy, precision (the proportion of "target" responses given to true targets) is also derived from 
simple proportions of correct and incorrect responses. Therefore, the arguments here against accuracy 
also apply to precision. 
!

Interaction*of*uncertainty*and*risk*
For perceivers, the consequence of the functional relationship between sensitivity and bias (Figs. 3 and 
4 of main text) is more extreme behavior associated with greater uncertainty. This relationship is 
described for social threat and navigation in the main text, but can be interpreted for our other 
examples as well. In interoception, a person with less interoceptive sensitivity (ability to tell real from 
false "symptoms") might tend towards hypochondriasis or hysteria (a liberal bias to judge interoceptive 
percepts as abnormal), or stoicism or flat affect (a conservative bias to judge interoceptive percepts as 
normal) as a result of an inability to discriminate changes in his or her internal milieu. In jury 
deliberation, evidence that affords greater uncertainty will amplify a juror's bias in judgments of guilt vs. 
innocence. A juror's beliefs about the base rate of guilty defendants who go to trial and the benefits and 
costs of correct vs. incorrect judgments will control his or her direction of bias (liberal or conservative). 
 

THE*SIGNAL*UTILITY*ESTIMATOR*
Signal detection theory's utility function (Equation 2 of Swets, Tanner, & Birdsall, 1961; Equation 1.14 of 
Green & Swets, 1966) specifies three parameters that define a perceptual environment: relative base 
rate of target occurrence, payoffs accrued by each decision, and the similarity of target and foil signal 
distributions. In a given environment (defined by values of the three parameters) we can calculate the 
expected utility for every possible criterion location (each interval of facial expression in Fig. 1 of the 
main text, for example). The point of maximum utility corresponds to the optimal criterion location for 
a given set of parameter values. 
 
Following Sperling's (1984) and Wiley's (1994) nomenclature, the function is written as: 
 Û(x) =  α h P[CD] + α m P[MD] + (1 – α) a P[FA] + (1 – α) j P[CR] (S3) 
 
where: 
 Û(x) = estimated utility over the stimulus domain, x 
 
Base rate Parameter 
 α = alpha, the base rate or relative probability of encountering a target signal; 1–α equals the 

relative probability of encountering a signal from the foil distribution 
 
Payoff Parameter (costs might be negative or simply less positive than benefits) 
 h = benefit of correct detection 
 m = cost of missed detection 
 a = cost of false alarm 
 j = benefit of correct rejection 
 
Similarity Parameter 
 P[CD] = probability of correct detection, measured as the integral of the target distribution from 

criterion to infinity, over x  
 P[MD] = probability of missed detection, equal to 1-P[CD] 
 P[FA] = probability of false alarm, measured as the integral of the foil distribution from criterion 

to infinity, over x 
 P[CR] = probability of correct rejection, equal to 1-P[FA] 
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This equation constitutes a mathematical model, which we call the Signal Utility Estimator (SUE). Each 
criterion location yields correct detection and false alarm rates, from which measures of bias and 
sensitivity (and accuracy) can be calculated. In this way, the SUE can use the three parameters to 
determine how sensitivity and bias change with changes in uncertainty and risk, so as to optimize the 
utility of decision making.  
 
Expressions*of*optimal*criterion*location*
There are a number of ways to calculate or express the optimal criterion location (see Stanislaw & 
Todorov, 1999, for a discussion of various meanings of "criterion" and "bias"). Iterating the Signal 
Utility Estimator over successive stimulus values produces criterion locations in units of the perceptual 
domain (e.g., percent scowl in Figs. 1 and 3 of the main text). Less computationally intensive methods 
rely on the common assumption that target and foil distributions are Gaussian distributions of equal 
variance. βoptimal (Equation 2 of the main text), yields criterion locations expressed in terms of target:foil 
distribution likelihood ratios (see Fig. S1). The criterion location can also be expressed in units of 
standard deviation from the mean of the foil distribution (Egan, 1975; Wickens, 2001; Johnstone, 
2002):  
 
x*=[ln(βoptimal)/d']+(d'/2) (S4) 
 
which can be transformed into units of the perceptual domain: 
 
!* = !*! + !Foil (S5) 
 

RECEIVER*OPERATING*CHARACTERISTICS*
The quantification of the relationship between possible criterion locations and the target and foil signal 
distributions is known as receiver operating characteristic (ROC) analysis (Egan, 1975). A ROC plots 
probability of false alarm against probability correct detection for all possible criterion locations over 
the target and foil distributions (Fig. S2). The ROC is useful for estimating aspects of the target and foil 
signal distributions that underlie a perceiver's performance and the influence of sensitivity on criterion 
location.  
 
To obtain the ROC for known target and foil distributions (e.g., for Fig. 3 in the main text), one can 
determine the correct detection and false alarm probabilities at every criterion location along the 
stimulus domain (e.g., every point on the x-axis of Fig. 3). To estimate the ROC for a perceiver, whose 
subjective target and foil distributions are of course unknown, several methods are have been used (see, 
e.g., Macmillan & Creelman, 1991; Stanislaw & Todorov, 1999; Blough, 2001). (1) A perceiver's criterion 
location can be directly manipulated by experimental changes in base rate and/or payoffs, while holding 
the perceiver's sensitivity constant. (2) A perceiver can be verbally instructed to adopt more 
conservative or liberal criteria. (3) A perceiver can give confidence ratings for his or her judgments over 
a number of stimulus values. Different confidence levels can then be transformed into estimates of 
behavior at different criterion locations.  
 
ROCs provide a measure of sensitivity. The less overlap of the signal distributions, the farther the ROC 
is from the major diagonal. A ROC that lies directly along the major diagonal corresponds to complete 
overlap of target and foil distributions–an inability to discriminate targets from foils. For ROCs derived 
from untransformed probabilities (Fig. S2a), the area under the ROC is a measure of sensitivity. A 
direct measure of area under the ROC is not dependent on any assumptions about the shapes of the 
underlying target and foil distributions (see Wiley, 1994, for an illustration of ROCs for different 
distribution shapes). However, some methods of estimating this area do make such assumptions 
despite sometimes being labeled "distribution-free" (see Snodgrass & Corwin [1988] and Pastore, 
Crawley, Berens, & Skelly [2003] for critiques). For ROCs derived from z-transformed (normal deviate) 
probabilities (Fig. S2b), distance from the major diagonal to the ROC is a measure of sensitivity (see 
Macmillan & Creelman [1991] for treatment of ROCs with slope≠1). 
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Fig.!S2.!Receiver!operating!characteristics!(ROCs).!(a)!ROCs!for!low!and!high!target:foil!similarity,!and!their!

corresponding!indifference!lines,!plotted!for!the!model!environments!in!Fig.!3!of!the!main!text.!The!point!at!

which!an!indifference!line!is!tangent!to!its!ROC!is!circled!and!corresponds!to!the!optimal!criterion!location.!(b)!

Normal!deviate!plots!of!two!ROCs.!A!ROC!derived!from!two!Gaussian!signal!distributions!will!have!a!slope!equal!

to!the!foil!standard!deviation!divided!by!the!target!standard!deviation.!In!panel!b,!the!equal!variance!ROC!is!the!

zBtransform!of!the!"low!similarity"!ROC!shown!in!panel!a!(target!and!foil!standard!deviations!of!10%!scowl).!The!

unequal!variance!ROC!depicts!an!increased!target!standard!deviation!(17.5%!scowl).!For!reference,!the!major!

diagonal!is!plotted!(gray!dashed!line).!!

 
In addition to sensitivity, the z-transform ROC can be used to estimate aspects of the similarity 
parameter more directly (Egan, 1975; Macmillan & Creelman, 1991). A ROC derived from Gaussian 
target and foil distributions of equal variance is a straight line with slope=1. Slope≠1 indicates unequal 
variance of the underlying target and foil distributions, in a foil:target ratio of slope:1 (Fig S2b). 
Crossing the major diagonal (illustrated in Fig. S2b) indicates that target and foil distributions have 
unequal variance (or unequal mean and variance) and, in addition, that the perceiver is failing to 
discriminate targets from foils on one end of the stimulus domain (Egan, 1975; Macmillan & Creelman, 
1991). These features can be used to test of the commonly made assumption that target and foil 
distributions have equal variance or to compare distribution variances among participants or conditions 
by comparing the slopes of the z-transformed ROC curves (Green & Swets, 1966; see Stanislaw & 
Todorov [1999] for slope estimates). In psychophysics, the normal distribution assumption appears well 
supported (Macmillan & Creelman, 1991). However, non-normal distributions could be a feature of 
some objective, environmental distributions (Wiley, 1994; Bradbury & Vehrencamp, 1998). 
 
ROCs also provide a means of visualizing of the relationship between optimal bias and sensitivity. The 
SDT utility function (Equation S3) can be rearranged to express the correct detection probability, P[CD], 
in terms of the false alarm probability, P[FA]:  
 

P[CD]= (1-α)(j-a)
α(h-m)

P[FA]+α( j −m)− j +U
α(h-m)  (S6) 

This rearrangement yields a straight line known as the iso-utility or indifference line, which can be 
plotted with the ROC curve (Fig. S2a). All points on this line (i.e., combinations of false alarm and 



Lynn!&!Barrett,!"Utilizing"!Signal!Detection!Theory,!Supplemental!Material!
!

7!

correct detection probabilities) yield the same expected utility, so a perceiver should be indifferent to 
(have no preference for) one combination vs. another. However, only points that lie on a perceiver's 
ROC are attainable by that perceiver. 
 
The slope of the indifference line is βoptimal (Equation 2 in the main text; Tanner & Swets, 1954). This 
correspondence means that, of all the possible criterion locations plotted by the ROC, the point whose 
tangent is the indifference line defines the correct detection and false alarm probability pair 
corresponding to the optimal threshold location for a given set of signal parameters (Egan, 1975). As a 
determination of optimal beta, the indifference line and ROC explicitly show the link between perceiver 
sensitivity and bias, and the influence of sensitivity, payoffs, and base rate on behavior. 
 

ESTIMATING*PERCEIVERS'*PARAMETER*VALUES*
If we adopt signal detection theory as a model of how perceivers make decisions under uncertainty and 
risk (Fig. S3), then it is of interest to know how well perceivers "estimate" the signal parameters that 
presumably underlie their behavior, according to such a model. The computational signal detection 
parameters (base rate, payoff, and similarity) and behavioral measures (bias, sensitivity, and utility) are 
expressed in terms of each other by the core signal detection theory equations illustrated in this tutorial 
(i.e., equations for beta, estimated utility, the indifference line, and criterion location). Mathematical 
optimization techniques (e.g., nonlinear programming) might be applied to estimate a perceiver's 
subjective values for the signal detection parameters. For example, Equations 1 and 2 of the main text 
both represent beta, Equation 1 in terms of observed behavior (sensitivity and bias) and Equation 2 in 
terms of payoffs and base rate (the indifference line slope). These equations permit the expression of 
observed behavior in terms of underlying computational parameters:  
 
e(cd') = (1-α)/(α) • (j-a)/(h-m) (S7) 
 
This equality can be expressed as an error to be minimized: 
 
Error2 = [e(cd') - (1-α)/(α) • (j-a)/(h-m)]2 (S8) 
 
Mathematical optimization techniques can be used to solve for parameter values that minimize this 
error, as a method of quantifying the parameter estimates that underlie a perceiver's observed behavior. 
 

!
Fig.!S3.!A!conceptual!model!of!how!individual!differences!could!underlie!differences!in!signal!detection.!Threats!

in!the!world!can!be!described!by!objective!environmental!parameters:!their!perceptual!similarity!to!nonBthreats,!

the!base!rate!of!occurrence,!the!benefits!and!costs!of!correctly!or!incorrectly!recognizing!them.!To!effectively!

recognize!threats!vs.!nonBthreats,!the!brain!must!accurately!estimate!the!environmental!parameters.!These!

estimates!are!modulated!(red!arrows)!by!a!perceiver’s!individual!characteristics!(e.g.,!affective!state,!personality!

traits,!working!memory!capacity).!Different!characteristics!may!abet!or!interfere!with!subjective!estimates!of!the!

objective!environmental!parameters.!
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PARAMETER*VALUES*USED*TO*GENERATE*FIGURES*IN*THE*MAIN*TEXT*

Figure*1*
For the correctly estimated environment, parameters are: benefit of correct detection of targets=10 
points, missed detection of targets=-1 point, false alarm to foils=-15 points, and correct rejection of 
foils=10 points; base rate=0.25 (25% percent of signals originate from the "target" distribution); and a 
similarity parameter defined by Gaussian distributions with the mean of target and foil expressions at 
60% and 40% scowl intensity, respectively, and standard deviation=15% for both distributions. For the 
misestimating perceiver, costs are misestimated as missed detection=-15, false alarm=-1, with other 
parameters as above. Point accumulation (panel b) reflects the average of 10 repetitions of 1000 signals 
drawn randomly under the given parameters.  
 
Figure*2*
Correct detections and correct rejections=10 points, missed detections and false alarms=-10 points; 
base rate=0.5; and similarity parameter with mean target and foil expressions at 60% and 40% 
intensity, respectively, and standard deviation=10% for both distributions. 
 
Figure*3*
Correct detections and correct rejections=10 points, missed detections=-3 points, and false alarms=-7 
points; base rate=0.25. For the "low similarity" environment, mean of target and foil expressions at 
60% and 40% scowl intensity, respectively, and standard deviation=10% scowl for both distributions. 
For the "high similarity" environment, target and foil standard deviations=17.5% scowl, with other 
parameters as for the low similarity function. 
 
Figure*4*
Correct detections and correct rejections=10 points, missed detections=-3 points, and false alarms=-7 
points; base rate=0.25. These are the same values as used in Fig. 3. 
 
Figure*5*
Lines of optimal response are plotted for two experimental conditions from Lynn et al. (2012). For the 
"conservative base rate environment," the payoff and base rate are the same as for the utility functions 
in Fig. 3 and the line of optimal response in Fig. 4. For the "liberal payoff environment," correct 
detections and correct rejections=10 points, missed detections=-15 points, and false alarms=-1 point; 
base rate=0.5. 
 

AFFECTIVE*CALIBRATION*IN*MENTAL*ILLNESS:*AN*EXAMPLE*OF*SDT*AS*A*MODEL*
More than a decade ago, Quigley and Barrett (1999) used signal detection theory to understand how 
momentary judgments about the presence or absence of threat become pathologically impaired due to 
prior experiences with threat. They argued that people who live in a context where the base rate of 
threat is high, or a missed threat is costly, develop a "zero-miss" judgment strategy that functions to 
minimize missed detections of threat. As a simplified example, imagine that a child raised in an abusive 
household gauges whether or not an aversive outcome such as criticism or physical punishment is 
imminent by reading the facial expression of his or her care giver. On occasions when the child can 
correctly detect this threat, it can be mitigated by, e.g., engaging in an appeasement behavior. We can 
assume that the care giver's threatening and non-threatening facial expressions (the signal) can be 
characterized by a mean and variance (Fig. 1 of main text). Framing this example as a signal detection 
issue suggests that, when faced with uncertainty (i.e., Is the care giver angry?), the child should respond 
to expressions perceived as above some criterion of "angry-looking" as if they indicate threat (i.e., 
perform the appeasement behavior) and respond to those expressions below criterion as if they indicate 
no threat (i.e., do nothing). Quigley & Barrett hypothesized that when threat is frequent and missed 
detections are costly (either psychologically or physically), perceivers will adopt a very liberal threshold 
in an attempt to mitigate threat as completely as possible. This liberal classification strategy minimizes 
missed detections of threat, but it simultaneously maximizes false alarms—responses to signals as if 
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they are threatening when in fact they are not—and so leads to frequent performance of the 
appeasement behavior when it is not needed, at some behavioral or social cost. 
 
In contexts characterized by frequent, costly, ambiguous signals of threat, SDT indicates that the zero-
miss strategy is adaptive (Fig. S4a). However, what happens if one's cognitive model of the decision-
making context is "miscalibrated" in some way? What happens when the person operating under a zero-
miss strategy finds him or herself in a non-threatening environment (e.g., the child develops nurturant 
relationships as an adult)? In this new context, not only is threat very infrequent, but the relative costs 
of false alarm appeasement behaviors may have increased. These costs, including interpersonal 
disruption, behavioral restriction, and needless anxiety (Mathews, 1994), accumulate rapidly and are no 
longer balanced by escape from real harm, making the zero-miss strategy maladaptive in the new 
context (Fig. S4b). Though a reevaluated criterion is called for, some people appear to be unable to 
update their representations of the environmental parameters in an adaptive manner. 
 

*
Fig.*S4.!Number!of!responses,!by!outcome!type,!given!to!100!signals!(model!generated!data).!(a)!Using!an!

accurate!estimation!of!base!rate!in!a!threatening!environment!(in!which!50%!of!signals!are!threatening)!

produces!a!zeroBmiss!classification!strategy!that!adaptively!reflects!the!environment.!(b)!The!same!perceiver!in!a!

nonBthreatening!environment!(5%!of!signals!threatening)!carries!a!miscalibrated!base!rate!estimate.!Though!still!

exhibiting!zeroBmiss,!the!strategy!is!now!maladaptive,!resulting!in!copious!false!alarms.!Data!are!derived!from!

the!SDT!utility!function!equation,!with!payoffs:!correct!detections=1,!false!alarms=B1,!correct!rejections=1,!and!

missed!detections=B100;!base!rates!given!above;!and!similarity:!mean!of!target!and!foil!expressions!at!60%!and!

40%!scowl!intensity,!respectively,!and!standard!deviation=10%!for!both!distributions.!

 
In fact, abused children appear to judge facial expressions of anger very much as Quigley and Barrett 
(1999) described. Abused children exhibited a liberal threshold when identifying partially angry faces 
(blends of angry and one other emotional expression), but did not differ from controls in performance 
on non-blended faces or blends that did not include anger (Pollak & Kistler, 2002).  
 
Frequent threat-associated or mood congruent false alarms also characterize the pathology of many 
psychiatric illnesses; for example, the self-esteem issues of depression and the social withdrawal and 
paranoia of schizophrenia can be viewed as a result of a zero-miss strategy. What is more, interactions 
among the three parameters on criterion placement mean that miscalibration of any one of the three 
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environmental parameters (payoff, base rate, or via the the functional relationship between sensitivity 
and bias, even similarity) is capable of producing identical criterion placement and behavior.  
 
Characterizing psychopathology as impaired optimality of signal detection suggests that calibration may 
be dependent on internal states of the perceiver (Fig. S3). Congruent with this idea, Lynn et al (2012) 
found, in a control sample, associations between affective state (valence and arousal) and ability to 
adapt to changes in the three environmental parameters.  
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