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Path Analysis

Model specification

There two main ways of communicating the system of equations that represents a theoretical model. Either
with a set of simultaneous equations, or with a path diagram. Below we explore both and provide an example.

Path Model Assumptions

For this example we will be accepting a number of assumptions.

1. All causal relations are linear and additive
2. All models are recursive
e results in uncorrelated error terms
e no two-way causal relations
e no feedback loops
3. Error terms are uncorrelated with other independent variables
4. There is a weak causal ordering
5. Causal closure, meaning all of the relevant causal variables are included in the model

If these assumptions are met, then we can use least squares regression for our estimation. In what follows we
will be fitting our model to the standardized data.

A simple example

Figure 1: Regression path diagram
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Based on Figure 1 we have a simple multiple regression, this is not any more difficult than what we have seen
previously. Everything that we know from multiple regression should replicate in this situation. However,
there is another aspect to this illustration that is important, namely that the goal of path modeling, and the
multivariate extensions such as SEM and latent variable modeling, is to reproduce the variance-covariance
matrix of the variables included. In this example we will be using z-scores, so we will be interested in
reproducing the correlation matrix among the variables z1, 22, and z3.



Simultaneous equation modeling approach

The equation that represents the path model above in Figure 1 can be expressed as,

z1; = P1222i + B1323i + Pralai- (1)
In our following steps we will work to compute the correlations among each of the variables, based on

the model. That is, we will compute the correlations using Equation 1 above to see how each relations is
decomposed based on our theoretical arrangement.

Correlation 715

In order to compute the model-based expected correlation between z; and zo we will multiply both sides of
the equation by zo and simplify.

1 1 1 1

sXz1i20i = 3 8P1222i22 + 3 XP1323i22i + 7 X P1aUaiz2i

I¥z1522i = Pros L2nizai + Prsw B23i22i + Pla = Slai 2
riz = P12(1) + B13r2s + Brara2

It is important to note that, by assumption errors are uncorrelated with all other predictors, thus r,2 = 0.
Making this substitution we obtain,

r12 = P12 + Bisras (2)

represents our model based estimation of the correlation between z; and zs.

Correlation ri3

In order to compute the model-based expected correlation between z; and z3 we will multiply both sides of
the equation by z3 and simplify.

132123 = 25B1222i23 + = XP1323123i + + S B1alaiZsi
T3 = Biar23 + f13(1) +0 (3)
r13 = B1ar23 + P13

Parameter estimation of 35 and (i3

Now that we have the model implied correlations for both r15 and r13, we can focus on the estimation of the
parameters [12 and (13. Starting from the model implied relations among the variables, the estimation of
these parameters can be expressed using our earlier solutions in equations 2 and 3.

To begin, we will focus on the estimation of 815. Our first step is to solve for the parameter (13 from equation
3. We do this in order to get an equation that expresses 13 in terms of 512, we will need this to solve for §1s.

T3 = Bioras + Bi3
P13 =113 — B12723

Substituting this expression into equation 2 we obtain,



T2 = P12+ (113 — Biar23)r2s3

T2 = P12 + 13723 — Biards
T2 — T13T23 = P12 — Biar3s ’
T2 — 13723 = Pr2(1 — 7"53)
T12 — T137T23
fro = ——F— (4)
L =73

A similar process can be performed for the estimation of S13.

Standard Error of Estimation

Finally, we will solve for the model based correlation of z1; with itself. We multiply through our structural
equation by zy;,

%2211'211' = %2512221'211‘ + %2513231'21:' + %Eﬂlauaizli
1 = Biar12 + B13713 + B1aT1a
BraTia =1~ (Biari2 + Bi3r13)

Recall that the multiple R? for a model is equal to E’;ZI BypTyp, Where k is the number of predictors for the

variable y. In our above equation this translates to R? = 19712 + B13713, thus we can express the above
equation as,

ﬂlarla =1- R2~ (5)

You may also notice that since u,; is uncorrelated with any other predictor, the correlation r1, = f1,. This
results in our final expression of the equation 5,

6%11:17}22 6
Bra = VI— R, (6)

This last expression is our standard error of the estimate from the model.



Data Example
Motivation

The difference from what we have seen before is that now we are considering multiple equations with multiple
outcomes possible. Note that each equation is still for a single outcome, but we can consider the entire system
of equations. This allows us to not only see the influence of other inputs on relations among predictors and
outcomes, as with Moderation, in this framework we are interested in the possible mechanisms of causation.
These causal relations can be either direct or indirect meaning that they can operate through other variables.

These data represent a subset of 62 academic professionals who were measured on a number of variables
including:

o sex : Biological sex of respondent (male=1)

e time : Time, in years, since earning their PhD
e pub : Number of publications

e c¢it : Number of citations

e salary : Annual salary in dollars

Table 1: Descriptive statistics

mean sd min max range se
time 6.790 4.278 1 21 20 0.543
pub 18.177 14.004 1 69 68 1.779
sex 0.565 0.500 0 1 1 0.063
cit 40.226 17.172 1 90 89 2.181

salary  54815.758 9706.023 37939 83503 45564 1232.666

Below we present a path diagram in Figure 2, as well as the mathematical specification of the system of
equations in Equation 7.

Zero-order correlations

It is always informative to look at the raw associations among the variables before any modeling is proposed.
Below is the correlation table for these data.

Table 2: correlation raw data

time  pub sex cit salary

time 1.000 0.651 0.210 0.373 0.608
pub 0.651 1.000 0.159 0.333 0.506
sex 0.210 0.159 1.000 0.149 0.201
cit 0.373 0.333 0.149 1.000  0.550
salary 0.608 0.506 0.201 0.550  1.000

The entire system can be expressed as,

time ~ sex
pub ~ sex + time (7)
cit  ~ sex + time + pub
salary ~ sex + time + pub + cit



Figure 2: Path diagram

Model fit using linear multiple regression

Next we explore what the estimates will be for each of our linear equations using the multiple regression
estimation framework.

time ~ sex

Estimate Std. Error t value Pr(>|t|)
sex 0.21 0.125 1.674 0.099

pub ~ sex + time

Estimate Std. Error t value Pr(>|t|)

sex 0.023 0.1 0.234 0.816
time 0.646 0.1 6.442 0.000

cit ~ sex + time + pub

Estimate Std. Error t value Pr(>|t|)

sex 0.071 0.122 0.578 0.566
time 0.257 0.159 1.620 0.110
pub 0.155 0.157 0.983 0.330

salary ~ sex + time + pub + cit

Estimate Std. Error t value Pr(>|t|)

sex 0.047 0.095 0.498 0.621
time 0.378 0.126 3.002 0.004
pub 0.134 0.123 1.089 0.281
cit 0.357 0.101 3.542 0.001
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Structural Equation Modeling of the System

Next we will use the R package lavaan to fit the above model to the our data.

suppressMessages (library(lavaan))
figl2.2.1 _mod = '

time ~ sex

pub ~ sex + time

cit ~ sex + time + pub
salary ~ sex + time + pub + cit'

fit = sem(figl2.2.1_mod, data=dat)
summary (fit,fit.measures=T)

lavaan (0.5-22) converged normally after 135 iterations

Number of observations 62
Estimator ML
Minimum Function Test Statistic 0.000
Degrees of freedom 0

Model test baseline model:

Minimum Function Test Statistic 91.009
Degrees of freedom 10
P-value 0.000

User model versus baseline model:

Comparative Fit Index (CFI) 1.000
Tucker-Lewis Index (TLI) 1.000

Loglikelihood and Information Criteria:

Loglikelihood user model (HO) -1348.081
Loglikelihood unrestricted model (H1) -1348.081
Number of free parameters 14
Akaike (AIC) 2724.162
Bayesian (BIC) 2753.942
Sample-size adjusted Bayesian (BIC) 2709.893

Root Mean Square Error of Approximation:

RMSEA 0.000
90 Percent Confidence Interval 0.000 0.000
P-value RMSEA <= 0.05 NA

Standardized Root Mean Square Residual:
SRMR 0.000
Parameter Estimates:

Information Expected



Standard Errors Standard

Regressions:
Estimate Std.Err z-value P(>|zl)
time ~
sex 1.794 1.063 1.688 0.091
pub ~
sex 0.657 2.762 0.238 0.812
time 2.114 0.323 6.548 0.000
cit ~
sex 2.426 4.096 0.592 0.554
time 1.034 0.622 1.661 0.097
pub 0.190 0.188 1.008 0.314
salary -~
sex 917.767 1783.362 0.515 0.607
time 857.006 276.091 3.104 0.002
pub 92.746 82.391 1.126 0.260
cit 201.931 55.141 3.662 0.000
Variances:
Estimate Std.Err z-value P(>|zl)
.time 17.214 3.092 5.568 0.000
.pub 111.191 19.971 5.568 0.000
.cit 244 .239 43.867 5.568 0.000
.salary 46042901.212 8269549.178 5.568 0.000



Estimation comparisons

Below we present tables of estimates from both the SEM as well as the multiple equations using linear
regression.

Table 7: Standardized estimates from SEM

lhs rhs std.all z  pvalue

time sex 0.210 1.688  0.091
pub sex 0.023 0.238  0.812
pub time  0.646 6.548  0.000
cit sex 0.071 0.592  0.554
cit time  0.257 1.661  0.097
cit pub 0.155 1.008 0.314
salary  sex 0.047 0.515  0.607
salary time 0.378 3.104  0.002
salary pub 0.134 1.126  0.260
salary cit 0.357 3.662  0.000

Table 8: Estimates from linear regression models

Estimate Std. Error t value Pr(>]t|)

time ~ sex 0.210 0.125 1.674 0.099
pub ~ sex 0.023 0.100 0.234 0.816
pub ~ time 0.646 0.100 6.442 0.000
cit ~ sex 0.071 0.122 0.578 0.566
cit ~ time 0.257 0.159 1.620 0.110
cit ~ pub 0.155 0.157 0.983 0.330
salary ~ sex 0.047 0.095 0.498 0.621
salary ~ time 0.378 0.126 3.002 0.004
salary ~ pub 0.134 0.123 1.089 0.281
salary ~ cit 0.357 0.101 3.542 0.001

Table 9: correlation raw data

time  pub sex cit salary

time 1.000 0.651 0.210 0.373  0.608
pub 0.651 1.000 0.159 0.333  0.506
sex 0.210 0.159 1.000 0.149 0.201
cit 0.373 0.333 0.149 1.000 0.550
salary 0.608 0.506 0.201 0.550 1.000
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