CS 140 - Summer 2008 - Handout #6

Scheduling -- Overview

Simple: put a variety of jobs on N processors

o<
V<>

Scheduling: what job to run?

We’'ll have three main goals (many others possible)
minimize response/completion time

response time = what the user sees: elapsed time to echo
keystroke to editor (acceptable delay ~50-100 ms)

completion time: start to finish of job
m—““‘e

o completion ) .
Maximize throughput: operations (=jobs) per second

minimize overhead (context switching)

efficient use of resources (CPU, disk, cache, ...)
Fairness: share CPU “equitably”

Tension: unfair makes system faster...

When does scheduler make decisions?

Non preemptive minimum:
process runs until voluntarily relinquish CPU:

process blocks on an event (e.g., I/Q or synchronization)
process terminates

I/0 completes,
child exits, unlock

Preemptive minimum
All of the above, plus: scheduled

Event completes: process moves from blocked to ready
Timer interrupts

Impl: process can be interrupted in favor of another

Implicit insight: /O device = special CPU
1/0 device ~ one special purpose CPU

“special purpose” = disk drive can only run a disk job, tape drive
a tape job, ...

Implication: computer system with n I/O devices ~ n+1 CPU
multiprocessor

Result: all /0 devices + CPU busy = n+1 fold speedup!

Process *model*

Process alternates between CPU and I/O bursts
CPU-bound job: long CPU bursts

1/0-bound '|ob: short CPU bursts

1/0 burst = process idle, switch to another “for free”
Problem: don’t know job’s type before running
An underlying assumption:

“response time” most important for interactive jobs, which
will be 1/0 bound

Universal scheduling theme

General multiplexing theme: what'’s “the best way” to run
n processes on k nodes? (k <n)
we’re (probably) always going to do a bad job
Problem 1: mutually exclusive objectives
no one best way
latency vs. throughput conflicts
speed vs. fairness
Problem 2: incomplete knowledge
User determines what’s most important. Can’t mind read.
Need future knowledge to make decision and evaluate
impact
Problem 3: real systems = mathematically intractable
Scheduling very ad hoc. “Try and see”




Scheduling

Until now: Processes. From now on: resources
Resources are things operated on by processes
e.g., CPU time, disk blocks, memory page, network bufs

Two ways to categorize resources:

Non-preemptible: once given, can’t be reused until process
gives back. Locks, disk space for files, terminal.

Preemptible: once given, can be taken away and returned.
Register file, CPU, memory.
A bit arbitrary, since you can frequently convert non-pre-
emptible to preemptible:
create a copy & use indirection to rename

e.g., Physical memory pages: use virtual memory to allow
transparent movement of page contents to/from disk.

How to allocate resources?

Space sharing (horizontal):
How should the resource split up?
Used for resources not easily pre-emptible
e.g., disk space, terminal
Or when not *cheaply* preemptible
e.g., divide memory up rather than swap entire thing to disk on
context switch.
Time sharing (vertical):
Given some partitioning, who gets to use a given piece (and
for how long)?
Happens whenever there are more requests than can be
immediately granted
implication: resource cannot be divided further (CPU, disk
arm) or it’s easily/cheaply pre-emptible (e.g., registers)

Goals of “the perfect CPU scheduler”

Minimize latency: metrics = response time (user
time scales ~50-100 ms) or job completion time

Maximize throughput: Maximize jobs / time.
Maximize utilization: keep I/O devices busy.
Recurring theme with OS scheduling

Fairness: everyone gets to make progress, no
one starves

Problem cases
1/0 goes idle because of blindness about job
types
Optimization involves favoring jobs of type “A”
over “B”. Lots of A’s? B’s starve.
Interactive process trapped behind others.
Response time suffers for no (good?) reason.
Priorities: A depends on B. A’s priority > B’s. B
never runs.

First come first served (FCFS or FIFO)

Simplest scheduling algorithm:
Run jobs in order that they arrive
Uni-programming: Run until done (non-
preemptive)
Multi-programming: put job at back of queue
when blocks on I/O (we’ll assume this)
Advantage: dirt simple

More FCFS

Disadvantage: wait time depends on arrival order

unfair to later jobs (worst case: long job arrives first)
example: three jobs (times: A=100, B=1, C=2) arrive nearly
simultaneously — what'’s the average completion time?

cpu A B @
time 100 101 103

And now?

cpu B c A

time 1 3 103




FCFS Convoy effect

A CPU bound job will hold CPU until done, or it
causes an /O burst (rare occurrence, since the
thread is CPU-bound)
long periods where no I/O requests issued, and CPU held
Result: poor I/0 device utilization

Example: one CPU bound job, many I/O bound
CPU bound runs (I/O devices idle)
CPU bound blocks
1/0 bound job(s) run, quickly block on 1/0
CPU bound runs again
1/0 completes
CPU bound still runs while I/0 devices idle (continues...)
Simple hack: run process whose /O completed?
What is a potential problem?

Round robin (RR)

Solution to job monopolizing CPU? Interrupt it.

Run job for some “time slice,” when time is up, or it blocks,
it moves to back of a FIFO queue

most systems do some flavor of this
Advantage:
fair allocation of CPU across jobs
low average waiting time when job lengths vary:
1 23405

CPUABCAC A

time
What is avg completion time?

Round Robin’s Big Disadvantage

Varying sized jobs are good, but what about same-
sized jobs? Assume 2 jobs of time=100 each:

1 2345
CPUABABA ——o0—Pp ABAB

time

Avg. completion time?

How does this compare with FCFS for same two jobs?

RR Time slice tradeoffs

Performance depends on length of the timeslice
Context switching isn’t a free operation.

If timeslice time is set too high (attempting to amortize
context switch cost), you get FCFS. (i.e. processes will
finish or block before their slice is up anyway)

If it’s set too low you’re spending all of your time context
switching between threads.

Timeslice frequently set to ~100 milliseconds
Context switches typically cost < 1 millisecond

Moral: context switching is usually negligible (< 1% per
timeslice in above example) unless you context switch too
frequently and lose all productivity.

Priority scheduling

Obvious: not all jobs equal
So: rank them.
Each process has a priority

run highest priority ready job in system round robin among
processes of equal priority

Priorities can be static or dynamic (Or both: Unix)

Most systems use some variant of this
Common use: couple priority to job characteristic

Fight starvation? Increase priority as (time last ran)

Keep I/0 busy? Increase priority for jobs that often block on 1/0
Priorities can create deadlock.

Fact: high priority always runs over low priority.

So?

Handling thread dependencies

Priority inversion, e.g. T1 at high priority, T2 at low
T2 acquires lock L.

Scenario 1: T1 tries to acquire L, fails, spins. T2 never gets
to run.

Scenario 2: T1 tries to acquire L, fails, blocks. T3 enters
system at medium priority. T2 never gets to run.
Scheduling = deciding who should make progress

Obvious: a thread’s importance should increase with the
importance of those that depend on it.

Naive priority schemes violate this
“Priority donation”
Thread’s priority scales w/ priority of dependent threads




Shortest time to completion first (STCF)

STCF (or shortest-job-first)
run whatever job has least amount of stuff to do
can be pre-emptive or non-pre-emptive
Example: same jobs (given jobs A, B, C)
average completion = (1+3+103) / 3 = ~35 (vs ~100 for FCFS)
1 2 100

cpu B C A

time
Provably optimal: moving shorter job before longer

job improves waiting time of short job more than
harms waiting time for long job.

How to know job length?

Have user tell us. If they lie, kill the job.

Not so useful in practice (though used in batch queues)
Use the past to predict the future #1:

long running job will probably take a long time more

sy ——gcq 1]

Use the past to predict the future #2:

view job as sequence of sequentially alternating CPU and I/10

If previous CPU jobs in the sequence have run quickly, future
ones will to (“usually”)

What to do if past != future?

STCF Optimality Intuition

consider 4 jobs, a, b, ¢, d, run in lexical order

a at +D+C a+b+c+d

time

the first (a) finishes at time a

the second (b) finishes at time a+b

the third (c) finishes at time a+b+c

the fourth (d) finishes at time a+b+c+d
therefore average completion = (4a+3b+2c+d)/4
minimizing this requires a<=b <=c <=d.

Practical STCF

Disk: can predict length of next “job”!
Job = Request from disk.

Job length ~ cost of moving disk arm to position of the
requested disk block. (Farther away = more costly.)

STCF for disks: shortest-seek-time-first (SSTF)
Do read/write request closest to current position

Pre-emptive: if new jobs arrive that can be serviced on the
way, do these too.

Problem:
Problem? Solution:

Elevator algorithm: Disk arm has direction, do closest
request in that direction. Sweeps from one end to other

Approximate STCF

~STCF: predict length of current CPU burst using length
of previous burst
record length of previous burst (0 when just created)

At scheduling event (unblock, block, exit, ...) pick smallest
“past run length” off of ready Q

CHE-EHE -~ =

9ms

CHo-EHE < ]

2W!I

~STCF vs RR

Two processes P1, P2

10ms 1ms 10ms Ims 10ms 1ms ...

SO — 2 R
o E—E—

RR with 100ms time slice: I/0 idle ~90% ;
<

1m me
&\ P1 * P1,
Y Y

I/Oidle I/O busy I/O idle
1ms time slice? RR would interrupt P1 9 times for no
reason (since it would still be blocked on I/0)

~STCF Offers better I/0 utilization




Generalizing: priorities + history

~STCF good core idea but doesn’t have enough state
The usual STCF problem: starvation (when?)

Sol’n: compute priority as a function of both CPU time P
has consumed and time since P last ran
cp

v
%"Ie

Ay1dorud

Multi-level feedback queue (or exponential Q)

Priority scheme where adjust priorities to penalize CPU
intensive programs and favor l/O intensive

Pioneered by CTSS (MIT in 1962)
Implemented by you (or should be!)

A simple multi-level feedback queue

Attacks both efficiency and response time problems
efficiency: long time quanta = low switching overhead
response time: quickly run after becoming unblocked
Priority queue organization: one ready queue for each pri. level

-

1

At1dorud

process created: give high priority and short time slice
if process uses up the time slice without blocking:
priority = priority - 1; time_slice = time_slice * 2;

Some problems

Can’t low priority threads starve?
Ad hoc: when skipped over, increase priority

What about when past doesn’t predict future?
E.g., CPU bound switches to /0 bound

Want past predictions to “age” and count less towards
current view of the world.

Summary
FIFO:

+ simple
- short jobs can get stuck behind long ones; poor I/O
RR:
+ better for short jobs
- poor when jobs are the same length
STCF:
+ optimal (avg. response time, avg. time-to-completion)
- hard to predict the future
- unfair
Multi-level feedback:
+ approximate STCF
- unfair to long running jobs




