
Scheduling -- Overview
! Simple: put a variety of jobs on N processors

P1

P2

PN

…

Scheduling: what job to run?
! We’ll have three main goals (many others possible)
! minimize response/completion time

– response time = what the user sees: elapsed time to echo
keystroke to editor (acceptable delay ~50-100 ms)

– completion time: start to finish of job

! Maximize throughput: operations (=jobs) per second
– minimize overhead (context switching)
– efficient use of resources (CPU, disk, cache, …)

! Fairness: share CPU “equitably”
– Tension: unfair makes system faster...

timegcc
completion

When does scheduler make decisions?
! Non preemptive minimum:

– process runs until voluntarily relinquish CPU:
» process blocks on an event (e.g., I/O or synchronization)
» process terminates

! Preemptive minimum
– All of the above, plus:
– Event completes: process moves from blocked to ready
– Timer interrupts
– Impl: process can be interrupted in favor of another

running

Yield
ready

blocked
I/O,join,block

I/o completes,
child exits, unlock

dead

scheduled

exit

Implicit insight: I/O device = special CPU
! I/O device ~ one special purpose CPU

– “special purpose” = disk drive can only run a disk job, tape drive
a tape job, …

! Implication: computer system with n I/O devices ~ n+1 CPU
multiprocessor
– Result: all I/O devices + CPU busy = n+1 fold speedup!

– overlap them just right? ave. completion time ~ halved.

emacs
grep

Matrix mult

Blocked on disk

running

Process *model*
! Process alternates between CPU and I/O bursts

– CPU-bound job: long CPU bursts

– I/O-bound job: short CPU bursts

– I/O burst = process idle, switch to another “for free”
– Problem: don’t know job’s type before running

! An underlying assumption:
– “response time” most important for interactive jobs, which

will be I/O bound

emacsemacs

Matrix mult

Universal scheduling theme
! General multiplexing theme: what’s “the best way” to run

n processes on k nodes? (k < n)
– we’re (probably) always going to do a bad job

! Problem 1: mutually exclusive objectives
– no one best way
– latency vs. throughput conflicts
– speed vs. fairness

! Problem 2: incomplete knowledge
– User determines what’s most important. Can’t mind read.
– Need future knowledge to make decision and evaluate

impact

! Problem 3: real systems = mathematically intractable
– Scheduling very ad hoc. “Try and see”

CS 140 - Summer 2008 - Handout #6

Scheduling
! Until now: Processes. From now on: resources

– Resources are things operated on by processes

– e.g., CPU time, disk blocks, memory page, network bufs

! Two ways to categorize resources:
– Non-preemptible: once given, can’t be reused until process

gives back. Locks, disk space for files, terminal.

– Preemptible: once given, can be taken away and returned.
Register file, CPU, memory.

! A bit arbitrary, since you can frequently convert non-pre-
emptible to preemptible:
– create a copy & use indirection to rename

– e.g., Physical memory pages: use virtual memory to allow
transparent movement of page contents to/from disk.

How to allocate resources?
! Space sharing (horizontal):

– How should the resource split up?

– Used for resources not easily pre-emptible

» e.g., disk space, terminal

– Or when not *cheaply* preemptible

» e.g., divide memory up rather than swap entire thing to disk on
context switch.

! Time sharing (vertical):
– Given some partitioning, who gets to use a given piece (and

for how long)?

– Happens whenever there are more requests than can be
immediately granted

– implication: resource cannot be divided further (CPU, disk
arm) or it’s easily/cheaply pre-emptible (e.g., registers)

! Minimize latency: metrics = response time (user

time scales ~50-100 ms) or job completion time

! Maximize throughput: Maximize jobs / time.

! Maximize utilization: keep I/O devices busy.

Recurring theme with OS scheduling

! Fairness: everyone gets to make progress, no

one starves

Goals of “the perfect CPU scheduler” Problem cases

! I/O goes idle because of blindness about job
types

! Optimization involves favoring jobs of type “A”
over “B”. Lots of A’s? B’s starve.

! Interactive process trapped behind others.
Response time suffers for no (good?) reason.

! Priorities: A depends on B. A’s priority > B’s. B
never runs.

First come first served (FCFS or FIFO)

! Simplest scheduling algorithm:

– Run jobs in order that they arrive

– Uni-programming: Run until done (non-
preemptive)

– Multi-programming: put job at back of queue
when blocks on I/O (we’ll assume this)

– Advantage: dirt simple

More FCFS

! Disadvantage: wait time depends on arrival order

! unfair to later jobs (worst case: long job arrives first)

» example: three jobs (times: A=100, B=1, C=2) arrive nearly
simultaneously – what’s the average completion time?

time 100 101 103

cpu A B C

 And now?

cpu

time 1 3 103

AB C

FCFS Convoy effect
! A CPU bound job will hold CPU until done, or it

causes an I/O burst (rare occurrence, since the
thread is CPU-bound)
– long periods where no I/O requests issued, and CPU held

– Result: poor I/O device utilization

! Example: one CPU bound job, many I/O bound
» CPU bound runs (I/O devices idle)

» CPU bound blocks

» I/O bound job(s) run, quickly block on I/O

» CPU bound runs again

» I/O completes

» CPU bound still runs while I/O devices idle (continues…)

– Simple hack: run process whose I/O completed?

» What is a potential problem?

Round robin (RR)
! Solution to job monopolizing CPU? Interrupt it.

– Run job for some “time slice,” when time is up, or it blocks,

it moves to back of a FIFO queue

– most systems do some flavor of this

! Advantage:

– fair allocation of CPU across jobs

– low average waiting time when job lengths vary:

1 2 3 4 5

103CPU

time

A B CA CA

 What is avg completion time?

Round Robin’s Big Disadvantage

! Varying sized jobs are good, but what about same-

sized jobs? Assume 2 jobs of time=100 each:

time

1 2 3 4 5

199 200CPU A BA BA BA BA

 Avg. completion time?

 How does this compare with FCFS for same two jobs?

RR Time slice tradeoffs
! Performance depends on length of the timeslice

– Context switching isn’t a free operation.

– If timeslice time is set too high (attempting to amortize
context switch cost), you get FCFS. (i.e. processes will
finish or block before their slice is up anyway)

– If it’s set too low you’re spending all of your time context
switching between threads.

– Timeslice frequently set to ~100 milliseconds

– Context switches typically cost < 1 millisecond

 Moral: context switching is usually negligible (< 1% per
timeslice in above example) unless you context switch too
frequently and lose all productivity.

Priority scheduling
! Obvious: not all jobs equal

– So: rank them.

! Each process has a priority

– run highest priority ready job in system round robin among
processes of equal priority

– Priorities can be static or dynamic (Or both: Unix)

– Most systems use some variant of this

! Common use: couple priority to job characteristic

– Fight starvation? Increase priority as (time last ran)

– Keep I/O busy? Increase priority for jobs that often block on I/O

! Priorities can create deadlock.

– Fact: high priority always runs over low priority.

– So?

Handling thread dependencies
! Priority inversion, e.g. T1 at high priority, T2 at low

– T2 acquires lock L.

– Scenario 1: T1 tries to acquire L, fails, spins. T2 never gets
to run.

– Scenario 2: T1 tries to acquire L, fails, blocks. T3 enters
system at medium priority. T2 never gets to run.

! Scheduling = deciding who should make progress
– Obvious: a thread’s importance should increase with the

importance of those that depend on it.

– Naïve priority schemes violate this

! “Priority donation”
– Thread’s priority scales w/ priority of dependent threads

Shortest time to completion first (STCF)
! STCF (or shortest-job-first)

– run whatever job has least amount of stuff to do

– can be pre-emptive or non-pre-emptive

! Example: same jobs (given jobs A, B, C)
– average completion = (1+3+103) / 3 = ~35 (vs ~100 for FCFS)

cpu

time

AB C

1 2 100

! Provably optimal: moving shorter job before longer

job improves waiting time of short job more than

harms waiting time for long job.

STCF Optimality Intuition
! consider 4 jobs, a, b, c, d, run in lexical order

– the first (a) finishes at time a

– the second (b) finishes at time a+b

– the third (c) finishes at time a+b+c

– the fourth (d) finishes at time a+b+c+d

– therefore average completion = (4a+3b+2c+d)/4

– minimizing this requires a <= b <= c <= d.

CPU

time

DA CB
a a+b a+b+c a+b+c+d

How to know job length?
! Have user tell us. If they lie, kill the job.

– Not so useful in practice (though used in batch queues)

! Use the past to predict the future #1:

– long running job will probably take a long time more

! Use the past to predict the future #2:

– view job as sequence of sequentially alternating CPU and I/O
jobs

– If previous CPU jobs in the sequence have run quickly, future
ones will to (“usually”)

– What to do if past != future?

gcc
Sample

emacsemacs

Approximate STCF
! ~STCF: predict length of current CPU burst using length

of previous burst

– record length of previous burst (0 when just created)

– At scheduling event (unblock, block, exit, …) pick smallest

“past run length” off of ready Q

9 10 3 0
pick

100ms

9 10 9 100
pick

tim
e

9 10 3 100
pick

9ms

Practical STCF
! Disk: can predict length of next “job”!

– Job = Request from disk.

– Job length ~ cost of moving disk arm to position of the
requested disk block. (Farther away = more costly.)

! STCF for disks: shortest-seek-time-first (SSTF)
– Do read/write request closest to current position

– Pre-emptive: if new jobs arrive that can be serviced on the
way, do these too.

! Problem:
– Problem? Solution:

– Elevator algorithm: Disk arm has direction, do closest
request in that direction. Sweeps from one end to other

~STCF vs RR

! Two processes P1, P2

emacs

running

blocked blocked blockedP1

P2

10ms 1ms 10ms 1ms 10ms 1ms ….

P2
100ms 1ms

P2
100ms 1ms

P1

I/O idle I/O busy I/O idle ...

P1

RR with 100ms time slice: I/O idle ~90%

– 1ms time slice? RR would interrupt P1 9 times for no
reason (since it would still be blocked on I/O)

! ~STCF Offers better I/O utilization

Generalizing: priorities + history
! ~STCF good core idea but doesn’t have enough state

– The usual STCF problem: starvation (when?)

– Sol’n: compute priority as a function of both CPU time P
has consumed and time since P last ran

! Multi-level feedback queue (or exponential Q)
– Priority scheme where adjust priorities to penalize CPU

intensive programs and favor I/O intensive

– Pioneered by CTSS (MIT in 1962)

– Implemented by you (or should be!)

priority Tim
e s

inc
e l

ast
 ra

n
CPU consumed

A simple multi-level feedback queue
! Attacks both efficiency and response time problems

– efficiency: long time quanta = low switching overhead

– response time: quickly run after becoming unblocked

! Priority queue organization: one ready queue for each pri. level

– process created: give high priority and short time slice

– if process uses up the time slice without blocking:

» priority = priority - 1; time_slice = time_slice * 2;

priority

Some problems

! Can’t low priority threads starve?

– Ad hoc: when skipped over, increase priority

! What about when past doesn’t predict future?

– E.g., CPU bound switches to I/O bound

– Want past predictions to “age” and count less towards

current view of the world.

Summary
! FIFO:

– + simple

– - short jobs can get stuck behind long ones; poor I/O

! RR:
– + better for short jobs

– - poor when jobs are the same length

! STCF:
– + optimal (avg. response time, avg. time-to-completion)

– - hard to predict the future

– - unfair

! Multi-level feedback:
– + approximate STCF

– - unfair to long running jobs

