PSET 2 Part 1

Andrey Kurenkov

CS231A

01/31/2023

Overview

- Lecture Review
- PSET 2

Lecture - Epipolar Geometry

Triangulation - determining a point in 3D space given its projections onto two, or more, images.

Two eyes help!

Lecture - Epipolar Geometry

Epipolar geometry

- Epipolar Plane
- Epipoles e, e^{\prime}
- Baseline
$=$ intersections of baseline with image planes
$=$ projections of the other camera center
- Epipolar Lines

Lecture - Epipolar Geometry

$$
M=\left[\begin{array}{ll}
I & 0
\end{array}\right] \quad M^{\prime}=\left[\begin{array}{ll}
R_{w c^{\prime}}^{T} & -R_{w c^{\prime}}^{T} T_{w c^{\prime}}
\end{array}\right]
$$

$$
p=R_{w c^{\prime}} p^{\prime}+T_{w c^{\prime}}
$$

$$
p^{T} E p^{\prime}=0
$$

$$
\ell^{\prime}=E^{T} p
$$

$E e^{\prime}=0$. Similarly $E^{T} e=0$.

$$
\mathrm{p}^{\mathrm{T}} \cdot\left[\mathrm{~T} \times\left(\mathrm{R} \mathrm{p}^{\prime}\right)\right]=0 \rightarrow \mathrm{p}^{\mathrm{T}} \cdot\left[\mathrm{~T}_{\times}\right] \cdot \mathrm{R} \mathrm{p}^{\prime}=0
$$

$$
\begin{gathered}
M=K\left[\begin{array}{ll}
I & 0
\end{array}\right] \quad M^{\prime}=K^{\prime}\left[\begin{array}{ll}
R_{w c^{\prime}}^{T} & \left.-R_{w c^{\prime}}^{T} T_{w c^{\prime}}\right] \\
p^{T} K^{-T}\left[T_{\times}\right] R K^{\prime-1} p^{\prime}=0 \\
F=K^{-T}\left[T_{\times}\right] R K^{\prime-1}
\end{array}\right.
\end{gathered}
$$

Lecture - Stereo Systems

How are
$\begin{aligned} & \mathrm{p} \text { and } \mathrm{p}^{\prime} \\ & \text { related? }\end{aligned} \Rightarrow\left(\begin{array}{lll}u & v & 1\end{array}\right)\left[\begin{array}{ccc}0 & 0 & 0 \\ 0 & 0 & -T \\ 0 & T & 0\end{array}\right]\left(\begin{array}{c}u^{\prime} \\ v^{\prime} \\ 1\end{array}\right)=0 \Rightarrow\left(\begin{array}{lll}u & v & 1\end{array}\right)\left(\begin{array}{c}0 \\ -T \\ T v^{\prime}\end{array}\right)=0 \Rightarrow T v=T v^{\prime}$
$\Rightarrow v=v^{\prime}$

Lecture - Stereo Systems

Rectification: making two images "parallel"

Lecture - Stereo Systems

Lecture - Stereo Systems

$$
p=\left[\begin{array}{c}
p_{u} \\
p_{v} \\
1
\end{array}\right] \quad p^{\prime}=\left[\begin{array}{c}
p_{u}^{\prime} \\
p_{v} \\
1
\end{array}\right] \quad \begin{gathered}
\text { disparity }=p_{u}-p_{u}^{\prime} \quad \propto \frac{B \cdot f}{z} \quad[\text { Eq. 1] } \\
\text { Disparity is inversely proportional to depth z! }
\end{gathered}
$$

Lecture - Stereo Systems

http://vision.middlebury.edu/stereo/

Disparity map / depth map

Lecture - Stereo Systems

Correspondence problem

Correlation Methods (1970-)

PSET 2

1. Problem 1 - Fundamental Matrix Estimation From Point Correspondences
2. Problem 2 - Matching Homographies for Image Rectification

Fundamental Matrix
A matrix which maps the relationship of correspondences between stereo images

[Eq. 13] $\mathrm{p}^{\mathrm{T}} \mathrm{F} \mathrm{p}^{\prime}=0$
$F=K^{-T} \cdot\left[T_{x}\right] \cdot R K^{\prime-1}$

Ex)

Image and
correspondences given in the homework

How to compute F?
Eight point algorithm

$$
\text { [Eq. 13] } \mathrm{p}^{\mathrm{T}} \mathrm{~F} \mathrm{p}^{\prime}=0 \quad \boldsymbol{p}=\left[\begin{array}{l}
u \\
v \\
1
\end{array}\right] \quad p^{\prime}=\left[\begin{array}{c}
u^{\prime} \\
v^{\prime} \\
1
\end{array}\right]
$$

$(u, v, 1)\left(\begin{array}{lll}F_{11} & F_{12} & F_{13} \\ F_{21} & F_{22} & F_{23} \\ F_{31} & F_{32} & F_{33}\end{array}\right)\left(\begin{array}{l}u^{\prime} \\ v^{\prime} \\ 1\end{array}\right)=0 \quad\left(\begin{array}{l}F_{11} \\ F_{12} \\ F_{13} \\ F_{21} \\ F_{22} \\ \left(u u^{\prime}, u v^{\prime}, u, v u^{\prime}, v v^{\prime}, v, u^{\prime}, v^{\prime}, 1\right) \\ F_{23} \\ F_{31} \\ F_{32} \\ F_{33}\end{array}\right)=0$
[Eq. 14]

How to compute F?
Eight point algorithm

Problem?

W is highly unbalanced (not well conditioned)

- Homogeneous system $\mathbf{W f}=0$
- Rank $8 \rightarrow$ A non-zero solution exists (unique)
- If $\mathrm{N}>8 \rightarrow$ Lsq. solution by SVD! $\rightarrow \hat{\mathrm{F}}$

$$
\|\mathbf{f}\|=1
$$

Final step

Reduce rank(F) to 2

$$
\begin{aligned}
& F=U\left[\begin{array}{ccc}
s_{1} & 0 & 0 \\
0 & s_{2} & 0 \\
0 & 0 & 0
\end{array}\right] V^{T} \quad \text { Where: } \\
& \quad U\left[\begin{array}{ccc}
s_{1} & 0 & 0 \\
0 & s_{2} & 0 \\
0 & 0 & s_{3}
\end{array}\right] V^{T}=\operatorname{SVD}(\hat{F})
\end{aligned}
$$

Possible improvement?

Pre-condition our linear system to get more stable result

origin $=$ centroid of the points

mean square distance of the

image points from origin is $\sim 2 p x$

Coordinate system of the image before applying T

Coordinate system of the image after applying T

- Origin = centroid of image points
- Mean square distance of the image points from origin is ~ 2 pixels

The Normalized Eight-Point Algorithm

0 . Compute T and T^{\prime} for image 1 and 2 , respectively

1. Normalize coordinates in images 1 and 2 :

$$
q_{i}=T p_{i} \quad q_{i}^{\prime}=T^{\prime} p_{i}^{\prime}
$$

2. Use the eight-point algorithm to compute \hat{F}_{q} from the corresponding points q_{i} and q_{i}^{\prime}.
3. Enforce the rank-2 constraint: $\rightarrow \mathrm{F}_{\mathrm{q}} \quad$ such that:
4. De-normalize $\mathrm{F}_{\mathrm{q}}: F=T^{\prime T} F_{q} T \quad\left\{\begin{array}{c}\mathrm{q}^{\mathrm{T}} \mathrm{F}_{\mathrm{q}} \mathrm{q}^{\prime}=0 \\ \operatorname{det}\left(\mathrm{~F}_{\mathrm{q}}\right)=0\end{array}\right.$

Epipolar lines

Distance to epipolar lines
Computing epipolar lines from F
I = Fp'

$$
l^{\prime}=F^{\wedge} T p
$$

$\operatorname{distance}\left(a x+b y+c=0,\left(x_{0}, y_{0}\right)\right)=\frac{\left|a x_{0}+b y_{0}+c\right|}{\sqrt{a^{2}+b^{2}}}$.

$$
p^{T} \cdot F p^{\prime}=0
$$

Epipolar Constraint

- $I=F p^{\prime}$ is the epipolar line associated with p^{\prime}
- $I^{\prime}=F^{\top} p$ is the epipolar line associated with p

Make two images parallel to each other \Rightarrow epipole at infinity along the horizontal axis

Make two images parallel to each other
\Rightarrow epipole at infinity along the horizontal axis

$$
E e^{\prime}=0 \text {. Similarly } E^{T} e=0 .
$$

1. Find epipoles
2. Solve for E

1. Alternative

- Epipolar line I = Fp'
- Epipole lies on epipolar lines I. x = 0
- Epipole is an intersection of all epipolar lines

1. Compute epipole

Due to noisy measurement, not all epipolar lines intersect in a single point
\Rightarrow Find a point that minimizes least square error of fitting a point to all the
 epipolar lines
\Rightarrow Solve least square by SVD

$$
\left[\begin{array}{c}
\ell_{1}^{T} \\
\vdots \\
\ell_{n}^{T}
\end{array}\right] e=0
$$

2. Find two homographies that shift epipoles to infinity
a. Find homography H_2 that maps the second epipole e' to a horizontal axis at infinity ($\mathrm{f}, \mathbf{0}, 0$)
b. Find the matching homography $\mathrm{H}_{-} 1$
 for the first image

Find homography H_2 that maps the second epipole e' to a horizontal axis at infinity (f, 0, 0)
i. Translate the second image s.t. the center is at $(0,0,1)$ in homogeneous coord (\boldsymbol{T})
ii. Apply rotation to place the epipole on the horizontal axis $(f, 0,1)(R)$
iii. Bring epipole at infinity on the horizontal axis (f, 0, 0) (G)

$$
H_{2}=T^{-1} G R T
$$

Find homography H_2 that maps the second epipole e' to a horizontal axis at infinity ($\mathrm{f}, 0,0$)
i. Translate the second image s.t. the center is at $(0,0,1)$ in homogeneous coord (\boldsymbol{T})

$$
T=\left[\begin{array}{ccc}
1 & 0 & -\frac{\text { width }}{2} \\
0 & 1 & -\frac{\text { height }}{2} \\
0 & 0 & 1^{2}
\end{array}\right]
$$

Find homography H_2 that maps the second epipole e' to a horizontal axis at infinity ($\mathrm{f}, 0,0$)
ii. Apply rotation to place the $\left(e_{1}^{\prime}, e_{2}^{\prime-}, 1\right)$ ר the horizontal axis $(f, 0,1)(\mathbb{R})$

The translated

$$
R=\left[\begin{array}{ccc}
\alpha \frac{e_{1}^{\prime}}{\sqrt{e_{1}^{\prime 2}+e_{2}^{\prime 2}}} & \alpha \frac{e_{2}^{\prime}}{\sqrt{e_{1}^{\prime 2}+e_{2}^{\prime 2}}} & 0 \\
-\alpha \frac{e_{2}^{\prime}}{\sqrt{e_{1}^{\prime 2}+e_{2}^{\prime 2}}} & \alpha \frac{e_{1}^{\prime}}{\sqrt{e_{1}^{\prime 2}+e_{2}^{\prime 2}}} & 0 \\
0 & 0 & 1
\end{array}\right]
$$

where $\alpha=1$ if $e_{1}^{\prime} \geq 0$ and $\alpha=-1$ otherwise.

Find homography H_2 that maps the second epipole e' to a horizontal axis at infinity (f, 0, 0)
iii. Bring epipole (f, 0, 1) at infinity on the horizontal axis (f, 0, 0) (G)

$$
G=\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
-\frac{1}{f} & 0 & 1
\end{array}\right]
$$

Find homography H_2 that maps the second epipole e' to a horizontal axis at infinity (f, 0, 0)
i. Translate the second image s.t. the center is at $(0,0,1)$ in homogeneous coord (\boldsymbol{T})
ii. Apply rotation to place the epipole on the horizontal axis (f, 0, 1) (R)
iii. Bring epipole at infinity on the horizontal axis (f, 0, 0) (G)

$$
H_{2}=T^{-1} G R T
$$

2. Find two homographies that shift epipoles to infinity
a. Find homography $\mathrm{H} _2$ that maps the second epipole e' to a horizontal axis at infinity (f, 0, 0)
b. Find the matching homography

Find the matching homography $H _1$ for the first image

$$
\arg \min _{H_{1}} \sum_{i}\left\|H_{1} p_{i}-H_{2} p_{i}^{\prime}\right\|^{2}
$$

Although the derivation is out of the scope of this class,

$$
H_{A}=\left[\begin{array}{ccc}
a_{1} & a_{2} & a_{3} \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]
$$

$$
\begin{array}{rl}
H_{1}=H_{A} H_{2} M & M
\end{array}=[e]_{\times} F+e v^{T}, ~ \begin{array}{lll}
v^{T} & =\left[\begin{array}{lll}
1 & 1 & 1
\end{array}\right]
\end{array}
$$

Find the matching homography H_1 for the first image

$$
\begin{gathered}
\arg \min _{H_{1}} \sum_{i}\left\|H_{1} p_{i}-H_{2} p_{i}^{\prime}\right\|^{2} \\
\hat{p}_{i}=H_{2} M p_{i} \\
\hat{p}_{A} H_{2} M \quad H_{2} p_{i}^{\prime} \\
\arg \min _{H_{A}} \sum_{i}\left\|H_{A} \hat{p}_{i}-\hat{p}_{i}^{\prime}\right\|^{2}
\end{gathered}
$$

Find the matching homography H_1 for the first image

$$
\begin{gathered}
\hat{p}_{i}=H_{2} M p_{i} \\
\hat{p}_{i}^{\prime}=H_{2} p_{i}^{\prime}
\end{gathered} H_{A}=\left[\begin{array}{ccc}
a_{1} & a_{2} & a_{3} \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right] \quad \text { Solving least-square } W \mathbf{a}=b \begin{gathered}
\hat{p}_{i}=\left(\hat{x}_{i}, \hat{y}_{i}, 1\right) \text { and } \hat{p}_{i}^{\prime}=\left(\hat{x}_{i}^{\prime}, \hat{y}_{i}^{\prime}, 1\right) \\
\arg \min _{\mathbf{a}} \sum_{i}\left(a_{1} \hat{x}_{i}+a_{2} \hat{y}_{i}+a_{3}-\hat{x}_{i}^{\prime}\right)^{2} \\
W=\left[\begin{array}{ccc}
\hat{x}_{1} & \hat{y}_{1} & 1 \\
& \vdots & \\
\hat{x}_{n} & \hat{y}_{n} & 1
\end{array}\right] \quad b=\left[\begin{array}{c}
\hat{x}_{1}^{\prime} \\
\vdots \\
\hat{x}_{n}^{\prime}
\end{array}\right]
\end{gathered}
$$

Thanks!

Questions

