PSET 2 Part 1

Andrey Kurenkov

CS231A

01/31/2023

Overview

- Lecture Review
- PSET 2

Lecture - Epipolar Geometry

Triangulation - determining a point in 3D space given its projections onto two, or more, images.

Two eyes help!

Lecture - Epipolar Geometry Epipolar geometry D p p e' e 02 • Epipolar Plane • Epipoles e, e' Baseline = intersections of baseline with image planes = projections of the other camera center • Epipolar Lines

Lecture - Epipolar Geometry

$$M = \begin{bmatrix} I & 0 \end{bmatrix} \qquad M' = \begin{bmatrix} R_{wc'}^T & -R_{wc'}^T T_{wc'} \end{bmatrix}$$

$$p = R_{wc'}p' + T_{wc'}$$

$$p^{T}Ep' = 0$$
$$\ell' = E^{T}p$$
$$Ee' = 0.$$
 Similarly $E^{T}e = 0.$

$$egin{aligned} M &= K \begin{bmatrix} I & 0 \end{bmatrix} & M' = K' \begin{bmatrix} R_{wc'}^T & -R_{wc'}^T T_{wc'} \end{bmatrix} \ p^T K^{-T} \begin{bmatrix} T_{ imes} \end{bmatrix} R K'^{-1} p' &= 0 \ F &= K^{-T} \begin{bmatrix} T_{ imes} \end{bmatrix} R K'^{-1} \, \mathrm{i} \,$$

 $\mathbf{T} = \begin{bmatrix} \mathbf{T} & \mathbf{0} & \mathbf{0} \end{bmatrix}$ $\mathbf{R} = \mathbf{I}$

How are p and p' $\Rightarrow (u \ v \ 1) \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & -T \\ 0 & T & 0 \end{bmatrix} \begin{bmatrix} u' \\ v' \\ 1 \end{bmatrix} = 0 \Rightarrow (u \ v \ 1) \begin{bmatrix} 0 \\ -T \\ Tv' \end{bmatrix} = 0 \Rightarrow Tv = Tv' \Rightarrow v = v'$

Rectification: making two images "parallel"

http://vision.middlebury.edu/stereo/

Disparity map / depth map

Correspondence problem

Correlation Methods (1970-)

Image 2

PSET 2

- 1. Problem 1 Fundamental Matrix Estimation From Point Correspondences
- 2. Problem 2 Matching Homographies for Image Rectification

Fundamental Matrix

A matrix which maps the relationship of correspondences between stereo images

Ex)

Image and correspondences given in the homework

How to compute F?

Eight point algorithm

[Eq. 13]
$$\mathbf{p}^{\mathrm{T}} \mathbf{F} \mathbf{p}' = \mathbf{0}$$
 \implies $p = \begin{bmatrix} u \\ v \\ 1 \end{bmatrix} \quad p' = \begin{bmatrix} u' \\ v' \\ 1 \end{bmatrix}$
 $(u, v, 1) \begin{pmatrix} F_{11} & F_{12} & F_{13} \\ F_{21} & F_{22} & F_{23} \\ F_{31} & F_{32} & F_{33} \end{pmatrix} \begin{pmatrix} u' \\ v' \\ 1 \end{pmatrix} = \mathbf{0} \quad \begin{pmatrix} F_{11} \\ F_{12} \\ F_{13} \\ F_{21} \\ F_{22} \\ F_{23} \\ F_{31} \\ F_{32} \\ F_{33} \end{pmatrix} = \mathbf{0}$
Let's take 8 corresponding points $\begin{bmatrix} Eq. 14 \end{bmatrix}$

How to compute F?

Eight point algorithm

Problem?

W is highly unbalanced (not well conditioned)

	Estimating F											
W	$u_{2}u'_{2}$ $u_{3}u'_{3}$ $u_{4}u'_{4}$ $u_{5}u'_{5}$ $u_{6}u'_{6}$	$u_{2}v'_{2}$ $u_{3}v'_{3}$ $u_{4}v'_{4}$ $u_{5}v'_{5}$ $u_{6}v'_{6}$	$u_2 \\ u_3 \\ u_4 \\ u_5 \\ u_6$	$v_{1}u'_{1}$ $v_{2}u'_{2}$ $v_{3}u'_{3}$ $v_{4}u'_{4}$ $v_{5}u'_{5}$ $v_{6}u'_{6}$ $v_{7}u'_{7}$ $v_{8}u'_{8}$	$ \begin{array}{c} v_{2}v'_{2} \\ v_{3}v'_{3} \\ v_{4}v'_{4} \\ v_{5}v'_{5} \\ v_{6}v'_{6} \end{array} $	$ \begin{array}{c} v_2 \\ v_3 \\ v_4 \\ v_5 \\ v_6 \end{array} $	u' ₂ u' ₃ u' ₄ u' ₅ u' ₆	v' ₁ v' ₂ v' ₃ v' ₄ v' ₅ v' ₆ v' ₇ v' ₈	$ \begin{array}{c} 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ F \\ 1 \\ F \\ F$	= 0	[Eqs. 15]	

- Homogeneous system $\mathbf{W}\mathbf{f}=\mathbf{0}$
- Rank 8 → A non-zero solution exists (unique)
 If N>8 → Lsq. solution by SVD! → F̂ ||f||=1

Final step

Reduce rank(F) to 2

$$F = U \begin{bmatrix} s_1 & 0 & 0 \\ 0 & s_2 & 0 \\ 0 & 0 & 0 \end{bmatrix} V^T \qquad \text{Where:} \\ U \begin{bmatrix} s_1 & 0 & 0 \\ 0 & s_2 & 0 \\ 0 & 0 & s_3 \end{bmatrix} V^T = SVD(\hat{F})$$
[HZ] pag 281, chapter 11, "Computation of F"

Possible improvement?

Pre-condition our linear system to get more stable result

origin = centroid of the points

mean square distance of the image points from origin is ~2px

Coordinate system of the image after applying T

- Origin = centroid of image points
- Mean square distance of the image points from origin is ~2 pixels

The Normalized Eight-Point Algorithm

- 0. Compute T and T' for image 1 and 2, respectively
- 1. Normalize coordinates in images 1 and 2: $q_i = T \ p_i \qquad q_i' = T' \ p_i'$
- 2. Use the eight-point algorithm to compute \hat{F}_q from the corresponding points ${\bf q_i}$ and ${\bf q_i'}$.
- 1. Enforce the rank-2 constraint: $\rightarrow F_q$ such that: 2. De-normalize F_q : $F = T'^T F_q T$ det(F_q) = 0

Epipolar lines

Make two images parallel to each other \Rightarrow epipole at infinity along the horizontal axis

Make two images parallel to each other ⇒ epipole at infinity along the horizontal axis

$$Ee' = 0$$
. Similarly $E^T e = 0$.

- 1. Find epipoles
- 2. Solve for E

- 1. Alternative
- Epipolar line I = Fp'
- Epipole lies on epipolar lines $I \cdot x = 0$
- Epipole is an intersection of all epipolar lines

 Compute epipole
 Due to noisy measurement, not all epipolar lines intersect in a single point
 ⇒ Find a point that minimizes least square error of fitting a point to all the epipolar lines

 \Rightarrow Solve least square by SVD

$$\begin{bmatrix} \ell_1^T \\ \vdots \\ \ell_n^T \end{bmatrix} e = 0$$

- 2. Find two homographies that shift epipoles to infinity
- a. Find homography H_2 that maps the second epipole e' to a horizontal axis at infinity (f, 0, 0)
- b. Find the matching homography H_1 for the first image

i. Translate the second image s.t. the center is at (0, 0, 1) in homogeneous coord (*T*)

ii. Apply rotation to place the epipole on the horizontal axis (f, 0, 1) (R)

iii. Bring epipole at infinity on the horizontal axis (f, 0, 0) (${\it G})$ $H_2 = T^{-1} GRT$

i. Translate the second image s.t. the center is at (0, 0, 1) in homogeneous coord (T)

$$T = \begin{bmatrix} 1 & 0 & -\frac{\text{width}}{2} \\ 0 & 1 & -\frac{\text{height}}{2} \\ 0 & 0 & 1 \end{bmatrix}$$

ii. Apply rotation to place the $(e'_1, e'_2, 1)$ the horizontal axis (f, 0, 1) (**R**)

The translated

$$R = \begin{bmatrix} \alpha \frac{e_1'}{\sqrt{e_1'^2 + e_2'^2}} & \alpha \frac{e_2'}{\sqrt{e_1'^2 + e_2'^2}} & 0\\ -\alpha \frac{e_2'}{\sqrt{e_1'^2 + e_2'^2}} & \alpha \frac{e_1'}{\sqrt{e_1'^2 + e_2'^2}} & 0\\ 0 & 0 & 1 \end{bmatrix}$$

where $\alpha = 1$ if $e'_1 \ge 0$ and $\alpha = -1$ otherwise.

iii. Bring epipole (f, 0, 1) at infinity on the horizontal axis (f, 0, 0) (G)

$$G = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ -\frac{1}{f} & 0 & 1 \end{bmatrix}$$

i. Translate the second image s.t. the center is at (0, 0, 1) in homogeneous coord (*T*)

ii. Apply rotation to place the epipole on the horizontal axis (f, 0, 1) (**R**)

iii. Bring epipole at infinity on the horizontal axis (f, 0, 0) (**G**) $H_2 = T^{-1} GRT$

2. Find two homographies that shift epipoles to infinity

- a. Find homography H_2 that maps the second epipole e' to a horizontal axis at infinity (f, 0, 0)
- b. Find the matching homography H_1 for the first image

Find the matching homography H_1 for the first image

$$\arg\min_{H_1} \sum_i \|H_1 p_i - H_2 p_i'\|^2$$

Although the derivation is out of the scope of this class,

$$H_A = \begin{bmatrix} a_1 & a_2 & a_3 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

$$H_1 = H_A H_2 M \qquad M = [e]_{\times} F + ev^T$$
$$v^T = \begin{bmatrix} 1 & 1 & 1 \end{bmatrix}$$

Find the matching homography H_1 for the first image

$$rg \min_{H_1} \sum_i \|H_1 p_i - H_2 p_i'\|^2 \ \hat{p}_i = H_2 M p_i \ \hat{p}_i' = H_2 M p_i \ \hat{p}_i' = H_2 p_i'$$

$$\arg\min_{H_A} \sum_i \|H_A \hat{p}_i - \hat{p}'_i\|^2$$

Find the matching homography H_1 for the first image

$$\hat{p}_i = H_2 M p_i \hat{p}'_i = H_2 p'_i$$

$$H_A = \begin{bmatrix} a_1 & a_2 & a_3 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

 $\hat{p}_i = (\hat{x}_i, \hat{y}_i, 1) \text{ and } \hat{p}'_i = (\hat{x}'_i, \hat{y}'_i, 1)$ $\arg\min_{\mathbf{a}} \sum_i (a_1 \hat{x}_i + a_2 \hat{y}_i + a_3 - \hat{x}'_i)^2$ Solving least-square $W\mathbf{a} = b$

$$W = \begin{bmatrix} \hat{x}_1 & \hat{y}_1 & 1 \\ \vdots \\ \hat{x}_n & \hat{y}_n & 1 \end{bmatrix} \qquad b = \begin{bmatrix} \hat{x}'_1 \\ \vdots \\ \hat{x}'_n \end{bmatrix}$$

Thanks!

Questions