Managing diseases affecting Rhode Island Shellfisheries Marta Gomez-Chiarri, University of Rhode Island gomezchi@uri.edu

The role of disease mortality on fisheries

Understanding and Managing Diseases

HOSTS Immunity Physiology Genetics

PATHOGENS Microbial community Interactions

ENVIRONMENT Temperature, Hypoxia, Acidification, Storms, Food availability, Pollutants

Managing Diseases of Marine Organisms

Pathology Microbiology Biochemistry Chemistry Immunology Nutrition Genetics Genomics Ecology

Responses of organisms to climate change: Identification of the causative agent of Sea Star Wasting Disease

Gary Wessel - Brown University

Marta Gomez-Chiarri, Ed Baker, and Caitlin DelSesto Bucci - University of Rhode Island

Roxanna Smolowitz – Roger Williams University

Bucci et al. 2017 – PLOS One

Effects of climate change on species: Disease Monitoring

Rhode Island

Responses of organisms to climate change: What is the adaptive potential?

OPEN OACCESS Freely available online

PLOS ONE

Transcriptome of American Oysters, *Crassostrea virginica,* in Response to Bacterial Challenge: Insights into Potential Mechanisms of Disease Resistance

lan C. McDowell¹, Chamilani Nikapitiya¹, Derek Aguiar², Christopher E. Lane¹, Sorin Istrail², Marta Gomez-Chiarri¹*

1 College of the Environment and Life Sciences, University of Rhode Island, Kingston, Rhode Island, United States of America, 2 Department of Computer Science and Center for Computational Molecular Biology, Brown University, Providence, Rhode Island, United States of America

Fish & Shellfish Immunology 53 (2016) 13-23

Multi-species protein similarity clustering reveals novel expanded immune gene families in the eastern oyster *Crassostrea virginica*

Ian C. McDowell, Tejashree H. Modak, Chris E. Lane, Marta Gomez-Chiarri^{*} University of Rhode Island, Kingston, RI, USA

Oysters as a model to investigate adaptation to environmental stress *Gomez-Chiarri, Proestou, Puritz, Putnam*

Organism Overview ; Organelle Annotation Report [1]

Crassostrea virginica (eastern oyster)

The eastern oyster is a mollusk of commercial importance

Lineage: Eukaryota[2659]; Metazoa[874]; Lophotrochozoa[28]; Mollusca[18]; Bivalvia[10]; Pteriomorphia[7]; Ostreoida[2]; Ostreoidea Ostreidae[2]; Crassostrea[2]; Crassostrea virginica[1]

The Crassostrea virginica, or eastern oyster, is a filter-feeding mollusk. It is a marine animal and consumes phytoplankton. This species is abundant on the east coast of America, and is of commercial value.

Summary

Submitter:	McDonnell Genome Institute - Washington University School of Medicine
Assembly level:	Chromosome
Assembly:	GCA_002022765.4 C_virginica-3.0 scaffolds: 11 contigs: 669 N50: 1,971,208 L50: 108
BioProjects:	PRJNA379157, PRJNA376014
Whole Genome Shotgun (WG	S): INSDC: MWPT00000000.3
Statistics:	total length (Mb): 684.741
	protein count: 60213
	GC%: 34.8191
NCBI Annotation Release:	100

Exploiting microbial-microbial interactions to manage disease

Kathy **Castro**, Barbara Somers, Mitch Hatzipetro, **Gómez-Chiarri**, Murni Karim, Saebom Sohn, Tejashree Modak, Melissa Hoffman, Sam Hughes, **David Nelson**, Jason LaPorte, Weijing Zhao, Chris Schuttert, Linda Kessner **Anton Post**, Rebecca Stevick, **David Rowley**, Christine Dao, Megan Hamblin, Hilary Ranson, **Ying Zhang**, Zachary Pimentel (URI); **Roxanne Smolowitz**, **Dale Leavitt**, **Karin Tammi, Karen Markey (RWU)**

Probiotics and Aquatic Animals

Disease protection in other farmed organisms as diet or water additive

- Developed 2 probiotics that increase oyster and scallop larval survival after disease challenge in the lab and the hatchery
- Probiotic treatment has an effect on the microbial community in the _ hatchery (*microbiome studies*)
- Complex mechanisms of action: -
 - Antibiotic and biofilm production
 - Quorum quenching
 - Immune modulation
- Role of algal probiotic interactions

Candidate bacterial probiotics that could to **slow down or stop** the progression of Epizootic Shell Disease in lobsters.

Credit: Mitch Hatzpietro & Melissa Hoffman 2016

Kathy Castro David Nelson David Rowley

Melissa Hoffman Grace Underwood Hilary Ranson Mitch Hatzipetro Barbara Somers

Screen isolated probiotics on post-larval lobsters (PLs)

- Most candidates were safe to PL lobsters (*Loktanella* spp. may cause lesions)
- Pre-incubation with candidate probiotics reduced PL mortality under stress conditions
- S4 persists in the water longer and forms stronger biofilms *in vivo* when compared with other treatments

Pathogens, Nitrogen, and Changing Climate: Understanding impacts of multiple stressors on Narragansett Bay shellfish Ashley Hamilton, Serena Moseman-Valtierra, Marta Gomez-Chiarri (URI) & Roxanna Smolowitz (RWU)

Pathogens, Nitrogen, and Changing Climate: Understanding impacts of multiple stressors on Narragansett Bay shellfish Ashley Hamilton, Serena Moseman-Valtierra, Marta Gomez-Chiarri (URI) & Roxanna Smolowitz (RWU)

