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ABSTRACT. Euler’s theorem on the Euler characteristic of planar graphs is a fundamental result, and is usually
proved using induction (for example, see Theorem 53.3 in our textbook). Here I present a totally different proof,
discovered jointly by Stephanie Mathew (and undergraduate at the time) and Red Burton (a computer program
designed by Siemion Fajtlowicz to make conjectures in graph theory and combinatorics). I learned of this proof
thanks to the remarkable website of David Eppstein, who has compiled twenty proofs of Euler’s formula (as well
as many other lovely expository articles).

1. EULERIAN PATHS

The Königsberg Bridge problem inspired Euler to study what are now called Eulerian paths on a graph: a
path that traverses each edge precisely once. As we saw in class, an Eulerian path has a rather special feature:
all of the intermediate vertices on an Eulerian path (i.e. any vertex that isn’t the first or the last one) have
even degree. Note that if our Eulerian path happens to return to where it started, then there’s nothing that
distinguishes an initial vertex from an intermediate one, which proves the following:

Proposition 1.1. In any Eulerian tour of a graph (i.e. a path that starts and ends at the same vertex and
traverses each edge of the graph exactly once), every vertex has even degree.

This gives us a way to prove that a given graph doesn’t have an Eulerian tour – just find some vertex of odd
degree. But what if we want to prove that a graph does have an Eulerian tour? Does it suffice to prove that
every vertex has even degree? Euler discovered that it does!

Theorem 1.2. Any connected graph whose vertices all have even degree has an Eulerian tour.

We illustrate the proof before writing it down formally. Given a graph G, pick a random vertex v0 and take
a random walk along the edges of G, labeling each vertex on your walk and deleting any edge you traverse.
Eventually you’ll get back to v0 and get stuck. Whatever’s left of the original graph consists of a bunch of
small connected graphs: G1 containing v1, G2 containing v2, etc. All the vertices in all the Gi’s still have even
degree, so by induction, each of these graphs must have an Eulerian tour. This gives us an Eulerian tour of our
original graph G: start at v0, walk to v1, take an Eulerian tour of G1, walk to v2, take an Eulerian tour of G2,
etc!
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Proof. We induct on the number of edges of the graph. Consider a connected graph G in which every vertex
has even degree, and pick any vertex v0 of G. Start walking from v0 along edges at random, labeling vi the ith

vertex you arrive at along the walk. As you walk, delete every edge you traverse. Keep walking until you get
stuck somewhere (i.e. until you get to a vertex where there are no edges you can take to leave). This vertex
must be v0, since otherwise it would have odd degree!

Now consider the graph G′ that remains after taking the above walk. First observe that since we walked along
an Eulerian tour, we’ve removed an even number of edges from each of the vertices vi; this means that every
vertex in G′ still has even degree. For each j ≥ 1, let Gj denote the connected component of G′ that contains
vj , unless vj is already a vertex in some previously defined Gi with i < j, in which case set Gj to be the lone
vertex vj with no edges.

Note that each Gj is a connected graph in which every vertex has even degree. Since Gj has a smaller
number of edges than G, our inductive hypothesis guarantees that Gj has an Eulerian tour for every j. We’ve
thus constructed an Eulerian tour of our original graph G: starting at v0, walk to v1 and take the Eulerian tour
of G1, then walk to v2 and take the Eulerian tour of G2, etc. �

Combined, our results completely characterize graphs that have Eulerian tours:

Theorem 1.3. A graph has an Eulerian tour if and only if it’s connected and every vertex has even degree.

2. EULER’S FORMULA

Given a graph G, let V (G) denote the number of vertices of G, E(G) the number of edges of G, and F (G)
the number of faces of G (i.e. the number of two dimensional pieces G partitions the plane into). When there
is no ambiguity, we shall simply write V , E, and F . Our goal is to prove the following fundamental discovery
of Euler:

Theorem 2.1 (Euler’s Formula). For any connected planar graph, V − E + F = 2.

Remark. The quantity V − E + F is called the Euler characteristic of a graph.

The first insight we’ll need to prove this was conjectured by Red Burton, a computer program designed by
Siemion Fajtlowicz:

Proposition 2.2. Euler’s formula V − E + F = 2 holds for any graph that has an Eulerian tour.

Before proving this, we use it to give a quick Theorem 2.1. This proof was discovered by Stephanie Mathew
when she was a sophomore engineering student at the University of Houston.

Proof of Theorem 2.1. Given a connected planar graph G. We form a new graph G′ on the same set of vertices
as G as follows: for every edge e in G, add an edge parallel to it (see picture below). Note that each edge we
add in this way adds precisely one face, whence

E(G′) = 2E(G) and F (G′) = F (G) + E(G).

This immediately implies that the Euler characteristic of G′ is the same as the Euler characteristic of G. But by
Theorem 1.3 we know G′ has an Eulerian tour, whence Proposition 2.2 implies that the Euler characteristic of
G′ is 2. It follows that the Euler characteristic of G is also 2, as claimed. �
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It remains only to prove Red Burton’s conjecture.

Proof of Proposition 2.2. Let G be a graph that has an Eulerian tour. This Eulerian tour traverses each edge
precisely once, but it might visit a vertex multiple times. For any vertex v, let r(v) denote the redundancy of
v: the number of times the Eulerian tour revisits v (see example below). Since we are considering an Eulerian
tour, we immediately see that ∑

v∈V

r(v) = E + 1− V.

On the other hand, every time you return to a vertex you create a new interior face, whence the left hand side
of the above equation counts the number of interior faces:∑

v∈V

r(v) = F − 1.

Combining the above two identities yields Euler’s formula for the case of an Eulerian graph. �
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r(x) = r(y) = 0, while r(v) = r(w) = 1
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