
���������	�
�����
���
�����
��������

���	���

��	����������������

MODEL-DRIVEN DESIGN OF
GEO-INFORMATION SERVICES

Javier Marcelino Morales Guarin

March 2004

international institute for geo-information science and earth

observation, enschede, the netherlands

ITC Dissertation number 110
ITC, P.O. Box 6, 7500 AA Enschede, The Netherlands

CTIT Ph.D.-thesis series, no. 03-61
CTIT, P.O. Box 217, 7500 AE Enschede, The Netherlands

ISSN 1381-3617

ISBN 90-6164-222-1

Printed by ITC Printing Department

Copyright c© 2004 by Javier M. Morales G.

MODEL-DRIVEN DESIGN OF
GEO-INFORMATION SERVICES

PROEFSCHRIFT

ter verkrijging van
de graad van doctor aan de Universiteit Twente,

op gezag van de rector magnificus,
prof.dr. F.A. van Vught,

volgens besluit van het College voor Promoties
in het openbaar te verdedigen

op vrijdag 26 maart 2004 om 15.00 uur.

door

Javier Marcelino Morales Guarin

geboren op 16 januari 1968
te Bogotá, Colombia

This thesis is approved by
prof. dr. ir. C. A. Vissers, promotor

To the memory
of my Father

Marcelino Morales Bastidas
1938–1988

Preface

The technological advances of recent years have brought many changes to today’s society.
These changes have impacted the geo-information community, altering the way geo-informa-
tion is perceived, collected, managed and used. The advent of sophisticated communication
infrastructures, like the World Wide Web for example, opened the possibility for geo-infor-
mation users to exchange information or to use remote specialised geo-processing functions
that were inaccessible before. Such possibilities create new interesting opportunities in many
areas of our everyday lives.

To benefit from this modern technology, during the last decade a great deal of effort has
been directed towards the design and establishment of geo-information infrastructures. So
far, the main purpose of developing these infrastructures has been, to make geographic
data broadly available, accessible and shareable for a multiplicity of users from different
application domains.

The notion of developing distributed applications complementary to these infrastructures,
which was initially neglected, is starting to draw attention. This is an important development
specially because experience has shown that such infrastructures can only become useful and
profitable, when they are deployed in the context of a variety of end-user application services.

New initiatives of distributed geo-processing have consequently appeared, namely distributed
GIS (Geographic Information Systems), internet GIS, and more recently, there have been
some developments in the area of web services. Unfortunately, a lot of attention has been
given to implement distributed geo-components, partially disregarding the development and
provision of guidelines to handle the reuse and combination of available geo-components and
the design of new geo-components.

There exist consequently a need focus on the use of techniques to conceptualise distributed
geo-processing systems as an important step in their development process. This would lead
to obtaining a conceptual description also called abstract specification of every system part
and every system function (internal or external). Such descriptions could be developed
according to, for example, different sets of concerns or points of interest.

Two important considerations have to be taken into account for the conceptual design of
high quality distributed geo-processing systems: (1) the specification and development of
composable and shareable artefacts, viz., data, processes, operations, resources, value-added
products; (2) the construction of geo-information services by assembling these prefabricated
and configurable artefacts, enhancing the degree of tailorability provided by these systems.

iii

Preface

Both (1) and (2) can be achieved by following an appropriate design methodology.

This thesis aims at the development of a methodology to support the design of distributed
geo-information services. The methodology features a systematic approach to master com-
plex designs, and incorporates proper concepts that enable the effective structuring of such
designs. A system architecture upon which to deployed the designs is also proposed. This
architecture is used to help deriving the necessary abstraction levels and identifying the
various milestones.

The methodology is organised around two perspectives, the internal and external perspective.
These perspectives are used to focus the design activities on specifics aspects of the system.
A set of general purpose design concepts is provided to capture relevant information about
the system according to the concerns associated with these perspectives.

The methodology proposes the use of a repository service to organise the creation, updating,
validation, accessing and sharing of service models and service instances. The repository
defines necessary and sufficient conditions for services to interact, while leaving maximum
freedom to implementors to realise these services.

iv

Acknowledgements

There are a number of people who has, in one way or another, contributed to make this work
possible. I would like to thank some of them here.

First, I want to express my sincere gratitude to my promoter Prof. dr. Chris Vissers for his
contribution, support, guidance and encouragement throughout the duration of this work.
I would also like to thank Dr. Lúıs Ferreira Pires and Dr. Marten van Sinderen for their
ever-lasting support and for providing me with outstanding professional guidance, feedback
and advice even beyond the topics of this thesis. Their contribution was indispensable for
the completion of this work as was their stimulating personal friendship.

A special word of thanks is due to Dr. Radwan who created the opportunity and laid the
foundation for this work. He has been a continuous source of inspiration and has continuously
provided me with the professional and personal support required to finalise this work. It was
a privilege to have him as my supervisor and more importantly as an outstanding friend.

I am deeply indebted to the Geographic Institute Agust́ın Codazzi, IGAC, for offering me the
chance to develop the ideas conveyed in this thesis. My gratitude goes to Santiago Borrero,
former Director General of IGAC, for seeing the importance of my studies and for providing
me with his endorsement and support. I want to express my sincerest gratitude to Amparo
Figueroa and Ana Lucia Vallejo for their endless support and contribution to overcome the
operational hurdles surrounding my studies.

I would also like to thank Chris Paresi, Dr. Liesbeth Kosters, Prof. dr. Martin Hale, and
Loes Colenbrander for their support. I want to thank all my colleagues in the former GMI
department, the members of educational affairs and all members of the PhD community at
ITC.

I want to thank my direct circle of friends who provided me with their friendship, time and
advice to escape from the long and lonely hours of work, and who became a second family
in this far away land.

I extend my very special thanks to Dr. Rolf de By who lightened the spark back in 1997
at the very beginning of my research carrier, and who provided me with views, feedback
and valuable professional and scientific advice. His support throughout the duration of this
research was invaluable but I would especially like to thank him for being such a great friend.

“Quiero extender el mayor de los agradecimientos a mi querida madre, Socorro de Morales,
por su cariño, sus oraciones y consejos, por su respaldo y comprensión y por estar alĺı siempre

v

Acknowledgements

que el camino se hizo duro y la carga mas pesada. Mama, he dedicado este trabajo a ti y a
la memoria de mi padre”

Further, I can not thank my wife, Liliana, enough for her patience and support during all
these years, but more importantly, I must thank her for her sacrifice in putting aside her
own professional aspirations and committing fully to our family and to the cause of this
endeavour. It is beyond any doubt that I would not have been able to complete this work
without her encouragement, care, company and love. I owe you more than I will ever be
able to repay. Finally, I want to thank our children Diego Nicolas and Maria Paula for their
understanding, for condoning my absences, for providing me with their smiles and for being
a continuous source of inspiration.

vi

Contents

Preface iii

Acknowledgements v

List of Figures xi

List of Tables xv

1 Introduction 5
1.1 Motivation . 5
1.2 Geo-information systems . 7
1.3 Systems and distributed systems . 8
1.4 Design methodology . 9
1.5 Objective . 10
1.6 Approach . 11
1.7 Structure of the thesis . 11

2 Geo-information concepts 13
2.1 The geo-information infrastructure concept 13
2.2 GDI components . 15
2.3 Geographic data . 17
2.4 Representations of geographic data . 19

2.4.1 Vector-based representations 20
2.4.2 Raster-based representations 22

2.5 Organisation of geographic data . 24
2.5.1 Conceptual schema . 24
2.5.2 Building geographic databases 25

2.6 Describing geographic data . 26
2.6.1 Levels of metadata . 27
2.6.2 Metadata standards . 28

2.7 Geo-information services . 29
2.7.1 GSI . 29
2.7.2 GSP-node . 31

vii

Contents

3 System’s representation and architecting 33
3.1 System architecting . 33
3.2 Architectural principles . 35

3.2.1 Abstraction . 35
3.2.2 A model of a system . 36
3.2.3 Abstraction levels . 37
3.2.4 Views . 38

3.3 Development strategies . 40
3.3.1 Early development models . 40
3.3.2 Object-oriented development 42
3.3.3 The Unified Process . 43
3.3.4 Catalysis . 45
3.3.5 The Model Driven Architecture 46
3.3.6 Conclusion . 48

4 Geo-services design methodology (GSDM) 49
4.1 Introducing GSDM . 49
4.2 GSDM overview and scope . 50
4.3 The role of models . 53
4.4 Metamodel for GSI . 56
4.5 Architectural elements . 59

5 Design concepts 61
5.1 Entity structures . 61

5.1.1 Entities . 62
5.1.2 Interaction points . 62

5.2 Behaviour concepts . 63
5.2.1 Actions . 63
5.2.2 Interactions . 65
5.2.3 Causality relations . 67
5.2.4 Conjunction of causality conditions 69
5.2.5 Disjunction of causality conditions 70
5.2.6 Action attribute constraints . 71

5.3 Decomposition . 76
5.3.1 Entity decomposition . 76
5.3.2 Action decomposition . 77

5.4 Behaviour Structuring . 78
5.4.1 Causality-oriented structuring 78
5.4.2 Constraint-oriented structuring 83

6 The external perspective 85
6.1 The GSI system . 85
6.2 Design trajectory . 87
6.3 Design concepts . 88

6.3.1 Functional entity . 88
6.3.2 Interactions . 89

viii

Contents

6.4 Spatial data types . 91
6.5 Service design . 93

6.5.1 Service definition . 94
6.5.2 Extended service definition . 95
6.5.3 Interaction signatures . 96
6.5.4 Behaviour model . 101

7 The internal perspective model 103
7.1 Decomposition goals . 103

7.1.1 Criteria . 104
7.1.2 Decomposition pattern . 106
7.1.3 Recursive pattern application 107

7.2 Decomposition method . 108
7.2.1 Overview . 108
7.2.2 Introduction of internal behaviour 111
7.2.3 Composition structures . 112

7.3 Correctness assessment . 113
7.4 Service descriptions . 117

7.4.1 Data descriptions . 118
7.4.2 Processing descriptions . 119

7.5 Design example . 120
7.5.1 Introduction of internal actions 121
7.5.2 Restructuring . 123
7.5.3 Assignment of sub-behaviours 125

8 Case study: land information service 129
8.1 Overview . 129
8.2 Service walkthrough . 130
8.3 External perspective model . 131
8.4 Internal perspective . 133

8.4.1 Introduction of internal actions 133
8.4.2 Restructuring . 134
8.4.3 Assignment of sub-behaviours 136

9 Conclusions 139
9.1 General considerations . 139
9.2 Main contributions . 140
9.3 Further Research . 142

Appendices 145

A Services metadata 145
A.1 Service descriptions . 145
A.2 The metadata elements . 146
A.3 Service metadata schema . 147

B Repository schema 153

ix

Contents

C GML Overview 163

Bibliography 167

Index 185

Summary 189

Samenvatting 191

Curriculum Vitae 193

ITC Dissertations 195

x

List of Figures

1.1 The elements of a design methodology 9

2.1 GDI components . 15
2.2 GDI typical architecture . 16
2.3 Linear feature representation . 20
2.4 Region features representation . 21
2.5 Vector-based representation of geographic data 22
2.6 Regular tessellations . 22
2.7 Representations of geographic data . 23
2.8 Conceptual and logical abstraction levels 25
2.9 The GSI system concept . 30
2.10 GSI-node internal structure . 31

3.1 A system development process . 34
3.2 Abstract representation of an underground system 36
3.3 System and model . 37
3.4 Abstraction, refinement and levels of abstraction 38
3.5 RM-ODP viewpoints on a system . 39
3.6 The waterfall model . 40
3.7 Iterative development methods . 41
3.8 The Unified Process life cycle . 44
3.9 The levels of description according to Catalysis 46
3.10 The Model Driven Architecture framework 47

4.1 Main phases and scope of GSDM . 52
4.2 Architectural elements, element models and service models 53
4.3 Role of the metamodel in the GSI architecture 54
4.4 Metamodels and system models . 55
4.5 A metamodel for GSI services . 57
4.6 Modelling dimensions . 59

5.1 Entities with shared interaction points 62
5.2 Action representation . 65
5.3 Interaction representation . 66
5.4 Some simple action relations . 69
5.5 Conjunction of causality conditions . 70

xi

List of Figures

5.6 Disjunction of causality conditions . 71
5.7 Attribute value domain . 73
5.8 Attribute reference relation . 74
5.9 Implicit time reference (impossible action) 75
5.10 Attribute causality condition . 75
5.11 Entity decomposition . 76
5.12 Action decomposition . 77
5.13 Action distribution . 78
5.14 Causality-oriented structuring . 79
5.15 Multiple entry points and exit points 80
5.16 Parameterised exits and entries . 81
5.17 Repetition of a sub-behaviour . 82
5.18 Recursive instantiation of sub-behaviour D 82
5.19 Constraint-oriented decomposition . 83

6.1 The GSI as a target oriented system 86
6.2 Design trajectory at the external perspective level 87
6.3 Different types of functional entities 89
6.4 Special case of the information attribute of an interaction 90
6.5 The data type concept . 92
6.6 The use of spatial data types . 93
6.7 TD-service definition . 94
6.8 Interactions at the service and extended service levels 95
6.9 Interactions between two behaviour blocks 97
6.10 Interaction signature . 97
6.11 Items coupled to actions . 98
6.12 Examples of interaction types [1] . 99
6.13 Examples of interaction types [2] . 100
6.14 Interactions definition for service chaining 101
6.15 refinement of the TD-service definition 102

7.1 Decomposition step . 105
7.2 Mediated compositions . 106
7.3 Recursive mediated compositions . 107
7.4 Decomposition method . 108
7.5 Step 1: transformation to integrated form 109
7.6 Step 2: introduction of internal actions 110
7.7 Step 3: constraint-oriented restructuring 110
7.8 Step 4: assignment of behaviours to elements 111
7.9 Composition structures . 112
7.10 Correctness assessment . 114
7.11 Abstract behaviour . 115
7.12 Refinement of an abstract behaviour into two concrete behaviours . . 116
7.13 Alternative refinement of an abstract behaviour into two concrete be-

haviours . 116

xii

List of Figures

7.14 Alternative refinement of an abstract behaviour into two concrete be-
haviours . 117

7.15 Metadata elements . 118
7.16 Simple route service EP model . 120
7.17 Introduction of internal actions to the SimpleRoute behaviour 121
7.18 Item representation of the SimpleRoute behaviour 122
7.19 Extended route service EP model . 123
7.20 Extended route service process flow . 124
7.21 Data elements diagram of the extended route determination service . . 125
7.22 Restructured specification of the extended route service 126

8.1 The Land Information Service external perspective 131
8.2 Information diagram of the LI-Service 132
8.3 General service process . 134
8.4 Initial internal perspective design . 135
8.5 WeatherData service interaction diagram 135
8.6 Introduction of the action generate area of interest 136
8.7 Behaviour definition for the imageProcessing element 137
8.8 Behaviour definition for the featureExtraction element 137

B.1 Repository schema - part I . 155
B.2 Repository schema - part II . 156
B.3 Repository schema - part III . 157

C.1 GML Geometry schema (class representation) 165
C.2 GML Feature schema (class representation) 165
C.3 GML Geometry schema . 166

xiii

List of Figures

xiv

List of Tables

2.1 Selection of framework data for NGDI 18

3.1 RM-ODP Viewpoints and focus of concern 39

5.1 Common action relations . 72

B.1 Structure of the GSDM repository documents 153

xv

List of Tables

xvi

Chapter 1

Introduction

Anything I’ve ever done
that ultimately was worthwhile...

initially scared me to death.

Betty Bender

In this chapter we introduce the research accounted for in this thesis by explain-
ing the motivation, introducing the objectives and illustrating the approach followed
to achieve the objectives. The chapter opens in section 1.1 with the description
of the motivation for the work; section 1.2 analyses trends in geo-information sys-
tems; section 1.3 introduces some terminology used throughout the thesis; section 1.4
discusses system development, development methods and the main aspects of devel-
opment methodologies; section 1.5 defines the research objectives; section 1.6 outlines
the approach; the chapter closes with the presentation of the overall structure of the
thesis in section 1.7.

1.1 Motivation

We are living in an age where information plays a central role in our daily activities,
driving and constraining every decision that we make. A good indication of the impact
of information awareness can be seen, for example, at the financial markets, where
interest rate values and share transactions change as some international facts become
known.

We can also see information as an important decision factor in a more familiar situ-
ation, for instance when driving along the highway, where you make changes in your
planned route as a traffic report becomes available. In this second example however,

5

1.1. Motivation

one may require more information than just the traffic data. To make a satisfactory
change of route chances are that you will need some additional information such as
data about the road network, possibly some relief characteristics (the topography of
the area you are in), proximity to built-up areas (cities, towns). This extra informa-
tion is known as geographic information or geo-information .

Geo-information has always been used by individuals when they are having to find
their way in unfamiliar territories. But beyond that, geo-information was almost
exclusively used and valued by professionals, e.g., the military or the city planners,
who exploit it to support some of their specific activities. This particularly exclusive
use of geo-information by these so called traditional users was caused by the high cost
and effort required to access these data and manipulate it properly.

During the last decade however, technological improvements have been facilitating
the access to geo-information, and have been reducing the effort and skills required to
use it effectively. As a consequence, the use of geo-information is expanding beyond
the traditional users, to include new user communities. These new user communi-
ties now see how their activities can benefit from the proper use of geo-information,
mainly because they have easier access to it and to the tools needed for its manipula-
tion. Examples of these user communities include, among others, telecommunications,
emergency services, transport companies and tourism.

As individuals start to have easier access to geo-information, a more sophisticated
spatial awareness is being developed. This results in geo-information being required
to support many daily activities. Nowadays, it is not uncommon to hear questions like,
“which areas of the city are not covered by our retail offices?” or “how much overlap
is there between retail offices A and B” or “what is the shortest route to supply all
our retail offices.” All these questions have location as a key ingredient. This growing
dependence of people and organisations on geo-information has converted it into a
precious resource.

Traditional users differ form other users in the sense that they know how geographic
data is collected and represented, and they have a specific use for it. Consequently,
they have well-defined requirements and furthermore, these requirements are to a
large extent fulfilled by the conventional methods of geo-information production used
by geo-information providers.

Nevertheless, as the use of information increases, these traditional users are identify-
ing new application areas where geo-information can be exploited, hence, expanding
their set of requirements making them more diverse and difficult to satisfy. Moreover,
other users who are less aware of the nature of the data and require it for a vari-
ety of applications, turn to have a much wider and less specific set of requirements.
This forces geo-information providers to deal with a large variety of information re-
quirements to satisfy. It is a challenge for any provider to satisfy these requirements,
especially if we take into account that the way information is perceived, expected and
used depends very much on the current forms and shapes of markets, projects, and
technology.

6

Chapter 1. Introduction

Most of the existing information providers rely on supportive systems (geo-informa-
tion systems) that have been specifically designed to deal with a standard set of
requirements, mainly those of traditional users. Systems that deal with requirements
of this sort, are designed using system design methods that put the emphasis on static
aspects of the system, such as data and structure. This has been traditionally the
case with the design of geo-information systems. As a result these systems produce
specific, static and pre-defined products. Unfortunately, these ever-lasting products
do no longer fulfil the requirements of the users.

The requirements for these systems no longer remain static, but they keep on chang-
ing, mainly because users want to influence the products in many different ways, and
because new technology offers a bunch of opportunities. Therefore, we have to extend
the methodologies for geo-information system design such that these methodologies
can support the development of systems that can cope with dynamically changing
requirements.

This change can be achieved using a systematic methodology that pays attention
not only to the structural aspects of the system but also to the system’s behaviour.
Analysing behaviour and possibly separating different behavioural patterns that might
be reused, we can identify elements that could be assembled in multiple combinations,
facilitating the generation of a larger set of services. Based on this idea we can design
more flexible and adaptive architectures, where we can benefit from functionality
reuse, and we can generate more tailored services to satisfy a wider group of users.

1.2 Geo-information systems

Geographic data fundamentally encompasses people’s perception of real world phe-
nomena such as, rivers, roads, cities, etc. To store information about geographic
objects in an information system we use spatial data types. Spatial data types are a
specialisation of traditional data types such as records or structured text. These data
types represent geographic objects as geometric features with an associated location.

Geo-information systems are information systems that store and manage information
about geographic objects. This information is mainly collected, maintained and pro-
vided to geo-information users who employ this information to solve spatial problems.
Spatial problems are those which make implicit or explicit reference to locations or
positions relative to the Earth.

Before technological advances like the World Wide Web emerged, geo-information
was not very accessible for the general public, and it was stored at isolated informa-
tion systems and in proprietary formats. With the advent of the World Wide Web,
developments in data formats and data transmission followed, which have greatly fa-
cilitated access to and have increased the availability of geo-information. As a result,
users do not have to rely on single data sources, but they can solve their spatial
problems using multiple interconnected collections of geographic data.

7

1.3. Systems and distributed systems

The same technological advances have also opened the possibility to use remote geo-
processing functions. Many specialised operations that were inaccessible before can
now be accessed and exploited by users, who can incorporate them in their specific
problem-solving approaches.

We see future geo-information systems as distributed systems from which specialised
geo-information services can be generated by exploiting artefacts (data and functions)
that are located in an infrastructure of interconnected service nodes. These artefacts
are combined to define large geo-processing tasks that provide a more diverse func-
tionality than that of the artefacts in isolation. From all of these considerations we
can derive some important issues to concentrate on when proposing new directions in
geo-information system design: composition, distribution, coordination and reuse.

The development of systems with these characteristics can be rather complex, there-
fore we require the use of structured methods to analyse, model, design and redesign
the system. With the help of these methods, knowledge about the artefacts of the
system and their relevant characteristics can be captured. This makes it possible
to specify complex interactions between these artefacts for the generation of system
services.

We distinguish three different classes of artefacts: data elements, processing elements
and connecting elements. Processing elements generate or transform data elements;
data elements contain the information that is used or manipulated by the processing
elements; connecting elements represent the properties and constraints that govern
the interactions between elements.

1.3 Systems and distributed systems

Organisations rely on different systems to support their activities, and to assist them
in obtaining the information they need. Here we introduce a precise notion of system.
A system is an entity formed by a configuration of interacting parts, put together to
serve a purpose. A part of a system can be considered a system in itself and generally
a system as a whole can be a subsystem or a component of a larger system.

In some cases, the parts of a system or subsystems have to operate somewhat inde-
pendently from each other, which allows these parts, for example, to be placed close
to geographically separated users, and still perform together as a single unit. In such
cases the system is called a distributed system.

A distributed system is defined as a system whose parts are physically or logically
separated and operate in a partly autonomous way. Each part of a distributed system
exhibits a behaviour that is partially independent from other parts. Examples of
distributed systems are organisations, communication networks and the World Wide
Web.

8

Chapter 1. Introduction

1.4 Design methodology

A design methodology provides a set of structured procedures and rules that guide
a designer in the process of designing a system. During this design process a series
of models is created that represent the system and parts thereof. These models
describe relevant aspects of the system under consideration, allowing for a better
understanding of the system. In these models designers express their ideas as to how
to achieve predefined design goals. An effective design methodology should support
designers in the production of accurate designs in a target application domain.

A design methodology is defined as a collection of design methods based on design con-
cepts and supported by design tools. Design concepts are used to represent primitive
elements and their characteristics in an application domain. These design concepts
are expressed via a textual or graphical design notation.

To enable the composition of design concepts, an underlying syntax is required that
defines them precisely and unambiguously. This syntax enforces the proper use of the
design concepts when they are combined to create designs. Designs are expressed by
means of models, which in turn are written using a design notation.

A design methodology defines an organised set of guidelines, design steps and struc-
turing techniques that are necessary to produce models of elements in an application
domain. Tools provide (semi)-automated support for the production and analysis of
these models, facilitating their creation, validation and verification.

The application domain defines the environment in which a design methodology is

Design-Methodology.pdf

Design
Concept

Application
domain

Design
notation

represents

Design
Method

manipulates

characterises

Design

Tool
uses

supported by

describes

conceived
with

supported by

Model

written
using

defines

guides

Figure 1.1: The elements of a design methodology

9

1.5. Objective

applied. It characterises the objects that are represented with the models created
with the methodology. In our case these objects are distributed geo-information
systems, parts of these systems, and the objects with which these systems interact.
Figure 1.1 shows the relationships between the different elements comprising a design
methodology.

Our group at the University of Twente has developed a methodology for the design of
distributed systems that emphasises conceptual modelling of behaviour [FP94]. This
methodology is supported by a consistent set of design concepts, and by a language
that allows designers to represent instances of these concepts in designs. The de-
sign language is called Interaction Systems Design Language (ISDL) [QFPS02]. The
language has been formalised [Qua98] in order to enforce precision and to allow com-
parison of designs. For example, the formalisation makes it possible to establish the
mutual correctness of designs that are specified at different abstraction levels.

1.5 Objective

Modelling techniques allow the creation of models, of different aspects of a system,
such as requirements, structure, or functionality. The generation of these models,
prior to any implementation or improvement efforts, helps to achieve the proposed
design goals.

In the case of a system that operates in a dynamic environment, where requirements
are not stable, these models are of even greater importance. The reason is that such
models can be the mechanism used to identify the system’s parts and functions and
manipulate them to obtain compliant architectures.

To facilitate the design of adaptable and conforming systems, system models should
be generated in an integrated manner. A method is necessary to consider all aspects
at various abstraction levels and therefore it helps to enforce the adaptability and
compliance with changing requirements.

This research has focused on the development of a design methodology for geo-in-
formation systems. We do this by defining concepts and structuring techniques to
support the specification and development process of geo-information systems. Spe-
cific objectives of our research have been:

• To identify suitable architectural concepts that allow developers to model and
specify geo-information systems;

• To propose a suitable system architecture for the provision of geo-information
services;

• To define a methodology that supports abstraction, modularity and other struc-
turing mechanisms and that uses architectural concepts, for capturing knowl-

10

Chapter 1. Introduction

edge about the fundamental elements of geo-information systems. Such knowl-
edge is represented in models that express structure and behaviour of the system;

• To develop a framework for the use of system elements as building blocks in
multiple model-driven compositions for the construction of complex services.

1.6 Approach

The approach we adopted to achieve our objectives is as follows:

• Investigate the state-of-the-art in geo-information systems and geo-information
sharing. This investigation is used as the basis to introduce a geo-information
services architecture;

• Study the different ways of formalising systems, focusing especially on how to
specify system behaviour and interaction systems;

• Introduce a methodology based on a sound design model that supports the
development of geo-information systems. The methodology aids at managing
the complexity of this system development process. This methodology helps to
structure the basic elements of the system and provides guidelines to combine
these elements systematically to form more complex element specifications;

• Propose a set of design concepts that can be used to create abstract models of
system services. Services are specified by combining sets of predefined elements.
These elements could be either elementary definitions or complex definitions,
which were defined to provide an intermediate service. These models also serve
to evaluate the functionality of a system, and as a template for implementation;

• Evaluate the methodology through the use of a comprehensive case study.

1.7 Structure of the thesis

The remaining chapters of this thesis are organised as follows:

Chapter 2 presents an overview of the state-of-the-art in geo-information systems
with specific emphasis on geo-information infrastructures. The chapter also motivates
and introduces the concept of geo-information service infrastructure (GSI) and a
supporting architecture.

Chapter 3 discusses the concepts that underline system design. The chapter motivates
the need for a process to guide the activities involved in developing systems. It
provides an overview of techniques used to manage the complexity of the development

11

1.7. Structure of the thesis

process. The chapter also identifies and analyses the various strategies available to
steer the development process.

Chapter 4 introduces the Geo-Services Design Methodology (GSDM), which has been
tailored to the development of geo-information systems.

Chapter 5 introduces the design concepts, and their combination rules, necessary to
represent architectures of distributed systems.

Chapter 6 explains how to define GSI-services according to the external perspective.
This perspective looks at the system from the point of view of its surrounding environ-
ment. The chapter also introduces a metamodel to facilitate the seamless interchange
of service definitions.

Chapter 7 describes how to define GSI-services according to the internal perspec-
tive. The chapter explains the architectural style defined to guide and constrain the
definition of components. The chapter shows how to use these design concepts to rep-
resent elements of a geo-information system. The chapter also includes the proposed
strategies to assemble elements into chains to define complex services.

Chapter 8 provides a comprehensive example on the design of a Land Information
Service that illustrates the main features of the methodology.

Chapter 9 summarises the research achievements, presents the conclusions, and pro-
vides some directions for further research and development.

12

Chapter 2

Geo-information concepts

To invent something,
you need a bit of imagination and a pile of junk.

Thomas A. Edison

This chapter presents an overview of state-of-the-art in geo-information systems and
motivates and introduces the concept of geo-information service infrastructure. We
start by introducing the concept of geo-information infrastructure as a mechanism to
discover and access geographic data, with its main components, and then we examine
each of those components in detail.

The chapter is organised as follows: section 2.1 deals with the issues of geo-informa-
tion infrastructure; section 2.2 outlines the components of a GDI; section 2.3 explains
geographic information in detail; section 2.4 concentrates on how we represent and
structure geographic data; section 2.5 describes how to organise geographic data such
that it can be used in a variety of applications; section 2.6 discusses aspects of docu-
menting geographic data; and finally, section 2.7 wraps up the chapter by introducing
the concept of the geo-information services infrastructure.

2.1 The geo-information infrastructure concept

Geographic information has always been a part of most cultures, because spatial
thinking is an essential factor in people’s relationship with the surrounding physical
and cultural environment. This information is required in a wide variety of forms and
contexts because linking location to information is a process that applies to many as-
pects of business and community decision-making. Individuals make temporary maps
to remind themselves or show others how to find their way in an unfamiliar territory
(way finding). The use of maps has increased as we develop sophisticated spatial

13

2.1. The geo-information infrastructure concept

awareness and spatial communication abilities that came to support other activi-
ties besides the physical way finding. These other activities include urban planning,
hazard management, intelligence gathering and cartography. The efficient creation,
storage, processing, presentation and dissemination of geographic information is ‘the’
big challenge these days. Having the ability to use this information efficiently is a
strategic resource for now and into the future.

In the last decade, more and more volume of geographic data has been created to
support geography-based analysis within multiple disciplines such as cartography,
and cadastre. Due to advances in technology and to increasing users’ awareness of
the usefulness of geographic data, society’s reliance on such data has grown substan-
tially. This fact, together with the extended availability of methods and tools for the
collection, processing, analysis and presentation of geographic data has led to a change
in the way geo-information is produced, used and shared. The conventional approach
of closed production systems with proprietary structure and purpose is changing into
more open systems that allow data to be widely available for users with purposes
possibly different from those for which the data was originally produced.

The opportunities for lower costs and shorter production times that were foreseen
from the possibility of using existing data from different sources motivated users to
share data. To satisfy this increasing need for data to be shared among multiple
user communities and disciplines, a data sharing scheme has been put forward by
some of the experts in the field. The idea was to establish a mechanism by which
multiple collections of geographic data could be made available for everyone’s use.
This mechanism is known as the geo-information infrastructure or Geospatial Data
Infrastructure (GDI).

A GDI is defined as the relevant base collection of technologies, policies and institu-
tional arrangements that facilitate the availability of and access to geospatial data.
The GDI provides the basis for spatial data discovery, evaluation, and application
for users and providers within all levels of government, the commercial sector, the
non-profit sector, academia and by citizens in general [Dou01].

The benefits of this mechanism are, a.o., reduced data collection times and cost, fast
and wider access to data, interoperability between geo-applications and generation of
data for multiple uses. Internet technology acted as a facilitator for the evolution of
this concept into a tangible reality. Existing geospatial data infrastructures include:

• The Spatial Information Council – ANZLIC (Australia & New Zealand)[ANZ02];
• The Colombian Spatial Data Infrastructure – ICDE [ICD02];
• The Dutch Council for Geographic Information – RAVI [RAV02];
• The National System for Geographic Information – SNIG (Portugal) [SNI02];
• The National Geospatial Data Framework – NGDF (United Kingdom) [NGD02];
• The National Spatial Data Infrastructure – NSDI (USA) [FGD03];
• Common and Open (Geo-)Spatial Data Infrastructure – GDI-NRW (North

Rhine Westphalia, Germany) [GDI02].

14

Chapter 2. Geo-information concepts

As the definition of GDI implies, such a data sharing scheme can only be realised if
data producers at local, regional and/or national levels (depending on the scope of
the GDI) agree on a set of legal, economical and technical principles that enable the
discovery of and access to their geographic data.

2.2 GDI components

From the technical point of view, a GDI is a facility that acts as intermediary between
producers and users of geographic data to facilitate data sharing. To make data
sharing possible, data has to be made known, analysable and accessible. In order to
realise these goals, various issues have to be addressed.

Existing data has to be organised to form data collections. A data collection is a set
of structured or semi-structured geographic data collected by a data producer and
stored in a proprietary format.

Data stored in data collections has to be described. Data producers with interest in
sharing their data should create precise descriptions of their data collections. These
descriptions should allow potential users to analyse and evaluate the collections’ con-
tents and determine their fitness for use. Such descriptions should also include infor-
mation concerning the means to access and retrieve the data stored in the collection.

According to the principles behind the GDI initiatives, data descriptions as explained
above are created in the form of metadata. Metadata is a formalised set of properties
that describe with significant amount of detail the characteristics of the contents of a
data collection.

When creating metadata, one follows a set of rules that delineate how to describe a
collection of data (in our case geographic data), in terms of its contents, quality, con-

. . .
Elevation

Rivers

. . .
Roads

Administrative
Units

. . .
Soil

Land Use

Clearinghouse server

. . .

Catalogue

Metadata entries

Metadata entries
Metadata entries

User Interface
&

search and query
applications

Data providers’ servers
(data collections or datasets)

User requests

GDI-Components.pdf

vertices

end-nodes

(a) (b) (c)

Linear-Representation.pdf Tessellations.pdf

Figure 2.1: GDI components

15

2.2. GDI components

GDI-Configuration-C.pdf

Detailed metadata

request / response

General metadata

request / response

Geographic Information

request / response

Network (Internet)

Network (Internet)

Data provider (1)Data provider (1)

data
collection

detailed
metadata

Data provider (3)Data provider (3)

data
collection

detailed
metadata

User (1)User (1) User (2)User (2) User (n)User (n)

Data provider (n)Data provider (n)

data
collectiondetailed

metadata

Catalogue

general
metadata

Clearinghouse
Server

Clearinghouse
Server

Figure 2.2: GDI typical architecture

dition, geographical extent, currentness and other factors of relevance to the potential
users.

Different data providers wishing to make their data available through a GDI should
follow the same set of rules to create their metadata. There exist various standards
that provide common terminology and rules to describe geographic data. Some of
these standards are described in section 2.6.2.

Within a GDI, data descriptions are organised and arranged as metadata entries (see
Figure 2.1). A metadata entry contains information that describes a data collection.
The arrangement of metadata entries results in a central catalogue that allows one
to search and find data collections. A user interface allows users to interact with the
catalogue to ask for and retrieve metadata entries. Figure 2.1 shows the relationships
between the different elements mentioned above.

From the architectural point of view, data collections are located in distributed data
servers and the catalogue is situated in an independent server that is commonly known
as the clearinghouse server. Users can connect to the clearinghouse server to formulate
their queries using, for example, a web browser.

Figure 2.2 shows one possible configuration of a GDI. The users post queries to the
clearinghouse server to find out about availability of data. The queries are answered
based on the contents of the catalogue, which in this case contains general (general)

16

Chapter 2. Geo-information concepts

metadata.

If a user finds a particular data collection useful for her/his application, s/he can
request more specific descriptive details on that particular data collection. A search
is then executed at the data provider site where more detailed metadata is stored to
provide the user with the requested additional information. Figure 2.2 shows these
two different query types; a dash-dot-line is used to represent a query to the catalogue
(for general or global metadata), while a dashed-line represents queries for detailed
metadata. The solid line represents requests for the data itself.

As a result of a query for metadata, a user obtains the following information: the
name of the provider(s) that supply the required data; the web address(es) of the
server(s) through which the data can be accessed; and, the conditions (e.g., price)
and instructions on how the data can be retrieved.

2.3 Geographic data

Geographic data is the most important constituent of a GDI. Geographic data funda-
mentally encompasses people’s perception of real world phenomena. These phenom-
ena can be either natural such as trees, rivers, continents, rainfall and temperature,
or man-made such as towns, buildings and roads. We make observations of these
geographic elements to obtain relevant information about them. The information col-
lected on these elements lets us determine, a.o., what they are, where they are and
what shape they have.

Geographic data is used to perform multiple analysis mainly to support decision-mak-
ing (e.g., where to locate a new railroad or how to get from A to B). Therefore it has
to be organised and stored in a structured way. Normally, a collection of this data
is arranged in descriptions composed of two parts: a descriptive part, consisting of
a type or a name and all other specific attributes (the what), and a positional part,
consisting of a geographic reference and certain shape determined by its boundaries
(the where, the what shape).

Based on the information that we collect about geographic elements we see that these
elements manifest themselves in two different ways: as clearly identifiable elements
with clear-cut boundary, or as vaguely distinctive elements with indistinguishable
boundary. In order to represent these two kinds of elements in a proper way they are
classified in two groups: objects and fields, respectively.

Geographic objects are phenomena with well-defined spatial limits. This implies clear
shape and size. Examples include buildings, railways, roads and water bodies. Geo-
graphic fields, in contrast, are those elements for which no distinct limit or boundary
can be drawn. Examples are soil type, elevation, and temperature.

Objects and fields also differentiate from each other in the way their attribute values

17

2.3. Geographic data

Table 2.1: Selection of framework data for NGDI (source: [Ons02])

Country
Geographic Data Types

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

Australia • • • • • • • ◦ ◦ •
Canada • • • • • • • ◦ ◦ ◦ • ◦
Colombia • • • • • • • ◦
Cyprus • • • • • • ◦
Finland • • • ◦ ◦
France • • • ◦
Germany • • • • •
Greece • • • • • ◦ ◦ • ◦
Hungary • • • • • • ◦ ◦ ◦
India • ◦
Indonesia • • • • ◦ •
Japan • • • • • • • ◦
Kiribati • •
Malaysia • • •
Mexico • • • • • • ◦ • ◦ ◦
The Netherlands • • • ◦ ◦ • ◦ ◦
New Zealand • • • • ◦ ◦
Northern Ireland • • • • • • ◦ • ◦
Russian Federation • • • • • • • ◦
South Africa • • • • • • ◦
Sweden • • • • • ◦ • ◦ ◦ ◦ ◦
United Kingdom • • • • • • • ◦ ◦ ◦ • ◦
United States • • • • • • • ◦

Total (23) 19 22 12 16 21 12 13 4 6 7 5 11 4 3 2 4 1 3 1 2 1

• selected for framework data of NGDI

◦ not selected

Geographic Data Types

1. geodetic 11. place names

2. land surface elevation/topographic 12. land use/land cover/vegetation

3. digital imagery 13. geology

4. government boundaries/ 14. real state price register/land valuation

administrative boundaries 15. land title register

5. cadastral/land ownership 16. postal address

6. transportation/roads 17. wetlands

7. hydrography/rivers and lakes 18. soils

planimetric 19. register of private companies

8. ocean coastlines 20. gravity network

9. bathymetry 21. zoning and registration

10. physical features/build

are handled. Geographic objects are qualified using discrete attributes. For instance,
a building has a number of stories, 5 or 6, a specific use, residential or industrial.
Geographic fields, however, have attributes with values that vary continuously over
space. This means that a different attribute value can be determined for different
positions within the area represented by a field. Temperature, for example, varies in
time and continuously over geographic areas.

We usually arrange geographic objects in groups. Such grouping depends very much
on the views of particular user communities. Typical examples of these collections

18

Chapter 2. Geo-information concepts

are, the railways in a transportation system, the railway stations in that system, and
the parcels in a cadastral system.

Geographic objects can also be organised at higher aggregation levels like, plots that
form a neighbourhood, neighbourhoods that form a municipality. These aggregations
can be useful for certain types of analysis, like capacity or connectivity computations.
For example, if one needs to know how much water flows into a lake, rivers, streams
and lakes will have to be studied together as a hydrographic system, to enable a query
that can provide the required (capacity) answer.

Geographic data is collected to support a wide range of applications. Within the
context of a GDI, however, the question arises whether data collected for one appli-
cation can be effectively used for another. This consideration leads us to distinguish
between three categories of geographic data: framework data, foundation data and
application-specific data.

Framework data is collected with a broad audience in mind and can be used by
multiple user communities with different expertise in multiple domains of interest.
Foundation data is collected with the aim of satisfying the needs of a single user
community with a particular expertise or domain of interest. Application-specific
data is collected to serve no other purpose but an individual application with a highly
specialised and narrow scope.

Table 2.1 [Ons02] shows the result of a survey in multiple countries to determine what
data should be considered as framework data in the context of a National Geospatial
Data Infrastructure (NGDI). Different countries selected from a list of geographic data
types the most relevant ones (in terms of data sharing) according to their individual
needs. These are shown as empty circles in Table 2.1. From this list 8 types were
selected as being framework data, which are shown as filled circles in Table 2.1.

2.4 Representations of geographic data

This section introduces concepts required to create descriptions of geographic data
such that this data can be organised and stored, e.g., in databases.

Digital representations of geometric data can be created using a variety of alternatives.
This could be seen as a benefit because we can represent our data in the form that suits
our specific application the best. However, if everyone chooses his own representation
of data, the possibility of sharing data among multiple application domains diminishes
considerably. This is because users and their intended applications are very diverse
and, data collected and structured in an application-specific way becomes hard to
re-use (see section 2.3).

The method selected to represent and store geographic data has huge implications
on its possible uses. Therefore, it is important to understand the notions behind

19

2.4. Representations of geographic data

geographic data representation. We use this notion in section 6.4 when we explain
data definitions. The two most used computer representations of geographic data
are vector-based and raster-based representations [By01, Wor95]. In the sequel, we
describe in detail these representation methods, and we also discuss their suitability
to represent geographic objects and geographic fields.

2.4.1 Vector-based representations

The representation of a geographic element consist of two parts: a descriptive part
and a positional part (see section 2.3). In vector-based representations, an attempt
is made to associate zero-, one- or two-dimensional features to the positional-part of
geographic elements. This type of representation is also referred to as entity-based,
feature-based or object-based representation. This representation method is the most
suitable to handle geographic objects.

Zero-dimensional features or points are defined as a single coordinate pair (x, y) or
coordinate triple (x, y, z), and are used to represent geographic elements with an area
that is too small or irrelevant with respect to the scope of the spatial application.
The values of the coordinates define the location of the element. Transmission towers,
water valves, cities, airports, museums, churches are some of the elements that are
often represented as points.

One-dimensional features or lines are defined by two delimiting end nodes and zero
or more internal nodes or vertices that form segments or edges. Nodes are defined
like points as discussed before, but they do not serve any purpose other than to help
defining the shape of the line.

Linear features are used to represent geographic elements such as roads, rivers, pipe-
lines, power lines, railroads. Multiple connected lines are often used for representing
networks, especially when there is the need to study, for example, connectivity in a
road network, or, capacity when monitoring a river system. Figure 2.3 shows a line
representation with four segments connected by three vertices and delimited by two
end nodes.

. . .
Elevation

Rivers

. . .
Roads

Administrative
Units

. . .
Soil

Land Use

Clearinghouse server

. . .

Catalogue

Metadata entries

Metadata entries
Metadata entries

User Interface
&

search and query
applications

Data providers’ servers
(data collections or datasets)

User requests

GDI-Components.pdf

vertices

end nodes

(a) (b) (c)

Linear-Representation.pdf Tessellations.pdf

Figure 2.3: Linear feature representation

20

Chapter 2. Geo-information concepts

CC

DD

BB

EE
3

1
2

4

5

6

b

a

c

de

f

g

h

i

arc from to left right vertices

a
b
c
d
e
f
g
h
i

2
1
1
5
3
5
4
6
3

5
2
4
6
1
3
2
4
6

A
A
D
E
A
A
D
C
C

B
D
C
B
C
E
B
B
E

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

Region-Representation.pdf

AA

Figure 2.4: Region features representation

Two-dimensional features or regions are defined by a set of interconnected arcs (lines)
that determine the boundary of the polygon that encloses a region. For every arc,
we store its external nodes, its left and right polygons and the list of vertices. This
representation form is called the boundary model.

Figure 2.4 shows a group of regions B, C, D, E. The list of arcs contains the initial
and final nodes, in the columns left and right, that define the direction in which arcs
have been represented, their left and right polygons, and the list of vertices (which
have been omitted in Figure 2.4). Arc d, for example, starts in node 5 and ends in
node 6, and it has polygon E to the left and polygon B to the right. Polygon A
in the table denotes the outside polygon. The outside polygon represents the area
surrounding the area of interest, or the external area.

The boundary model is often called the topological model since it captures some topo-
logical information, like, e.g., polygon neighbourhood. Region features are mostly
used to depict geographic elements with large areas like lakes, parcels and adminis-
trative units.

Figure 2.5 shows some geographic elements represented using points, lines and regions,
with a corresponding attribute value. The lake element in Figure 2.5, for example,
is represented by a region feature and has the attribute value 4. The house and the
transmission tower are portrayed as points, while the road and railroad are depicted
as lines.

The decision on which type of feature to use to represent an element depends on the
application requirements. Here, the house is represented as a point, but if we need to
make some analysis based on the area of the house for taxation purposes, then it is
necessary to represent the house as a region. Shape and size of the elements can be
represented more accurately with this type of representation.

21

2.4. Representations of geographic data

1 2

3

4 5

Vector-based
Representation

Geographic
Elements

Vector-Representation.pdf

Figure 2.5: Vector-based representation of geographic data

2.4.2 Raster-based representations

The raster-based representation approach makes use of tessellations for the represen-
tation of geographic elements. A tessellation can be defined as a repeating pattern
of interconnected shapes. With a tessellation, the whole study area is partitioned
into an arrangement of pairwise, disjoint cells. Each cell is associated with attribute
values or labels that indicate to which geographic element it belongs.

Tessellations can be regular or irregular. A regular tessellation is formed by cells that
are congruent regular polygons. Regular means that the sides of the polygon are all
the same length, and congruent means that also all the polygons are of the same size
and shape, such as in Figure 2.6.

Irregular tessellations are partitions of the study space into disjoint cells, but in this
case the cells may vary in shape and size. A well-known form of irregular tessellation
is the region quadtree. It is also made up of square cells, but in this case adjacent
cells with the same attribute value or label are merged to form a bigger cell.

. . .
Elevation

Rivers

. . .
Roads

Administrative
Units

. . .
Soil

Land Use

Clearinghouse server

. . .

Catalogue

Metadata entries

Metadata entries
Metadata entries

User Interface
&

search and query
applications

Data providers’ servers
(data collections or datasets)

User requests

GDI-Components.pdf

vertices

end-nodes

(a) (b) (c)

Linear-Representation.pdf Tessellations.pdf

Figure 2.6: Regular tessellations: (a) triangular cells, (b) square cells, and (c) hexagonal cells.

22

Chapter 2. Geo-information concepts

Square cell tessellations, also known as grids or rasters, are mostly used to represent
geographic fields (elevation, temperature, etc). Grids are suitable for representing
area objects (polygons). In this case, each cell in the grid is labelled according to the
polygon it belongs to. Grids are less suitable to represent geographic objects with
point or line geometry.

Grids greatly facilitate tasks such as geo-referencing, because in a grid of m× n cells
the location that corresponds to a particular cell can be determined rather easily, just
by knowing the cell position (row and column coordinates), and the cell size.

The cell size of a tessellation is an important aspect to consider. Various factors may
influence the choice of the cell size; the most relevant factors are the scale required
for the intended application, the resolution of the elements of interest and the type of
data to be obtained such as satellite imagery. A small cell size yields a representation
close to the geometry of the real objects, but results in a large data set that may be
difficult to manipulate.

4 4
4

4 4

44

4

1 1

1 1

11

3

2

5
5
5
5

1 2

3

4 5

Vector-based
Representation

Raster-based
Representation

Geographic
Elements

Raster-Vector-Representation.pdf

Figure 2.7: Representations of geographic data

23

2.5. Organisation of geographic data

It is always necessary to make a trade-off between the accuracy of the representation of
the elements portrayed in the tessellation and the amount of memory space required
to store and manipulate the data, specially when dealing with large areas. The
processing time for most of the operations on tessellations increases more or less
linearly with the amount of data.

Figure 2.7 shows how the geometry of a group of geographic elements is represented
using both vector-based and raster-based representations. The bottom of the figure
depicts how in the raster-based approach a geographic element is represented by a
series of neighbouring cells that share the same attribute value. For instance, the
cells in the grid that represent the road have been assigned the value 1, the cells that
represent the lake have been assigned the value 4, etc. The figure also shows how
the cell size affects the geometric representation that is associated with the various
elements.

2.5 Organisation of geographic data

The most optimal way to organise large amounts of data, either geographic or of
any other type, so that it can be accessed, managed, retrieved and updated is in
a database. Databases are organised around data models. Data models represent
people’s perception of reality in an abstract way. Data models are used to describe the
architecture of a database. By architecture we mean the data contents, relationships
and constraints, the data structure and the physical storage or data format. Data
models are commonly organised into different abstraction levels according to what
aspect of the database architecture they describe.

2.5.1 Conceptual schema

The conceptual level describes what information is stored in the database. At this
level we define precisely what are the data contents, the relationships among the data,
and the constraints that should hold on this data. This description of the database
is called the conceptual database schema.

In a conceptual schema, we represent a set of real world objects (employees, rivers,
buildings) or concepts (projects, temperature, rainfall) of interest. We identify prop-
erties of interest that further describe the objects and concepts, such as the buildings’s
name and owner. We also describe relationships among objects, for example, an is-
owned-by relationship between a building and an owner.

Conceptual schemas can be expressed using different techniques, the most common
ones being Entity-Relationship (ER) diagrams and class diagrams (UML). In ER
diagrams we use concepts such as entity types, attributes and relationships. Entity
types represent objects or concepts, attributes represent descriptive properties of the
entities, and relationships represent interactions among entities.

24

Chapter 2. Geo-information concepts

In class diagrams [OMG01d] we use concepts such as objects, classes, attributes,
operations and associations. to create conceptual data models. An object represents
an identifiable abstract or concrete thing. A class describes a set of objects that share
the same attributes, operations, methods and relationships. A class is used to group
objects in such a way that their similarities can be emphasised and their differences
ignored. Attributes are named properties of objects that contain values that qualify
the individual objects. Associations represent static relationships that exist among
classes.

2.5.2 Building geographic databases

Figure 2.8 shows a selection of elements from the real world, and a conceptual schema
of those elements constructed using a class diagram, which captures the types of
objects of interest and some of their relationships from the real world. Figure 2.8 also
shows that a logical data model can be built from the conceptual data model using
the relational model technique. The logical model shows a group of tables, where
the rows in the tables represent objects that belong to a certain class. The lines
connecting the tables represent relationships between the objects, such as, who owns
which building or which road gives access to which building.

The process of designing a database to store geographic data is fundamentally the
same as that of any other database. However, one additional issue that we consider
in geospatial databases is the definition of the spatial representation of the objects or
concepts of interest together with their spatial and topological relationships [Zei99,
RSV01]. This means that after we have created the conceptual schema and identified
objects and relationships, we determine whether these objects are represented as

Real world

Building RailwayRoad

Owner

Road
Railway

Class diagram

Relational
model

Owner Transport

Building

Data-models.pdf

Figure 2.8: Conceptual and logical abstraction levels

25

2.6. Describing geographic data

points, lines, polygons or grids. This decision depends, among others, on the nature
of the objects, the significance of their shape, the scale (spatial scale) of the application
(see section 2.4). We also define topological associations such as, for example, groups
of elements, e.g., bus stop, bus station, street and traffic light, which together form a
transportation network.

One last issue in the design of a geographic database is the determination and assign-
ment of the coordinate system that references spatia;;y the contents of the database.
A coordinate system, is used to define locations on earth. Based on a coordinate
system objects can be referenced by their coordinates with respect to an origin point.
Locations of objects are identified by x,y coordinates on a grid, with the origin at the
centre of the grid. One specifies its horizontal position (East–West) and the other
its vertical position (North–South). The two values are called the x-coordinate and
y-coordinate. Using this notation, the coordinates at an origin could be x = 1000000
and y = 1000000.

2.6 Describing geographic data

The value of geographic data is recognised by both government and society, but its
effective use has remained inhibited by poor knowledge of the existence and where-
abouts of data, poorly documented data collections, and data inconsistencies.

Once created, geographic data can be used by multiple users for different purposes,
given that its existence and fitness-for-use are known. If we also consider the dy-
namic nature of this type of data, we conclude that describing the data is therefore
an essential requirement. For a community organised around the concept of data
sharing, data plus its documentation (metadata) is certainly more valuable than just
undocumented data.

Metadata can be used by data providers to monitor and control the status as well as
to advertise their data to potential users. Coordinated metadata development and
advertisement could avoid duplication of effort and waste of resources, by ensuring
that producers are aware of the existence of data collections.

Metadata enables users to locate all available geographic and associated data covering
their particular area of interest, therefore improving the quality of their analysis and
applications. Generating metadata certainly adds to the cost of data collection, but in
the long run the value of the data or the revenues that can be obtained from the data
increase if that data is properly documented and described by means of metadata.

The term metadata and the metadata itself have become widely used over the last
years, but its underlying concepts have been in use since collections of information
started being created and properly organised. Library catalogues represent an estab-
lished sort of metadata that has served for decades as a management and resource
discovery mechanism.

26

Chapter 2. Geo-information concepts

The concept of metadata is now common among people who deal with location related
issues. A map legend is one representation of metadata, containing information about
the publisher of the map, the publication date, the type of map, a description of the
map, spatial references and the map’s scale and accuracy, among other things. Meta-
data can be defined as the set of descriptive information applied to a data collection
that enables its discovery, access and use.

2.6.1 Levels of metadata

Based on how metadata is used, we organise it in three different levels:

• Discovery metadata allows users to find data collections that contain the sort
of geographic data they are interested in. Producers publish or make available
this type of metadata to advertise the contents of their data collections;

• Exploration metadata allows users to perform a deeper study of discovered data
collections, to determine if or which of the data is useful for their purposes. This
type of metadata aims at ensuring that data is used correctly and wisely;

• Exploitation metadata allows users to determine how to obtain and use the
data that they suspect can satisfy their needs. This type of metadata aims at
ensuring that existing data can be accessed.

We are not implying that these levels of metadata are unique, but rather we find them
sufficient as description levels of data collections. The boundaries between these levels
are not sharp or definite and the levels are somehow complementary or overlapping.
Data producers should be aware of these issues and they should look at their overall
needs and requirements, and then determine and specify how their metadata should
be structured, or, in other words, what data to collect as metadata.

Discovery metadata is the minimum amount of information that needs to be provided
to inform anyone interested in the nature and content of a data collection. This means
that discovery metadata should address the issues of “who has what data and from
where.” Who defines the creator and supplier of the data, and possibly intended
audience; what defines a name or title, resolution and description of the data; where
defines the geographical area being covered, based on coordinates, geographical names
or administrative areas. Discovery metadata usually, but not exclusively, enables oth-
ers to discover collections of data that have similar contents and that cover (describe)
either the same, or similar, or partially overlapping geographic areas.

Exploration metadata provides sufficient information to enable users to determine
whether some existing data is useful for their application. This means that exploration
metadata should address the issues of “why, when and how was data collected.” Why
defines the reasons for data collection and its intended uses; when defines the date
that the data represents, when the data set was created and the update sequence, if

27

2.6. Describing geographic data

any; how defines what instruments, procedures and sources were used to generate the
data, and how the data is structured.

Exploration metadata includes the details required to allow the prospective end-users
to know whether the data meets the requirements for their application. Exploration
metadata usually facilitates to establish the quality and usability of data collections
and whether they are up-to-date.

Exploitation metadata provides information to enable users to access, transfer, load,
interpret and use the data in their end applications. This type of metadata also
includes details on contact person, the price of the data and copyright.

2.6.2 Metadata standards

In order to make metadata readable, understandable and usable by users from dif-
ferent disciplines, standards are necessary to provide a common terminology and to
define how to document geographic data. To the best of our knowledge there exist at
the moment three main metadata standards of broad international scope and usage:

• CSDGM, the Content Standard for Digital Geospatial Metadata [FGD98], cre-
ated in the USA by the Federal Geographic Data Committee (FGDC) in 1994.

• ENV, the European Set of Standards for Metadata Generation (Euro-Norme
Voluntaire), created by the Comité Européen de Normalisation (CEN) in 1998.

• ISO-FDIS 19115, the International Standard for Geographic Information - Meta-
data [ISO01c], developed by ISO through the Technical Committee 211 (ISO
TC-211), which is responsible for the Geoinformation/Geomatics area.

Metadata also forms an important part of the OpenGIS Abstract Specification. The
OpenGIS Consortium (OGC) is an international membership organisation engaged
in a cooperative effort to create open computing specifications in the area of geo-
processing. As part of the draft ‘OpenGIS Abstract Specification’ there is a topic
on recording metadata for spatial data, which is developed in cooperation with ISO-
TC 211.

The ISO/FDIS 19115 - Draft International Standard [ISO01c] is now in its third ver-
sion. It is the responsibility of 33 countries and 12 observer organisations to turn this
draft standard into an International Standard. People expect that all the existing
standards will converge through the ISO initiative. Indeed, most of the existing stan-
dards already have a great deal in common and a robust international discussion has
ensured that the ISO standard has accommodated most of the various international
requirements. The ISO standard has equally benefited from the experience of the
various national bodies and their implementations of metadata standards.

28

Chapter 2. Geo-information concepts

2.7 Geo-information services

The role of the GDI is currently changing, from it being a simple data discovery
and retrieval facility to become an integrated system suitable for the provision of
customised information and services. We consider a service as the contribution of
a system or part thereof to its surrounding environment. This contribution can be
defined in terms of data, operations, processes, resources, value-added products or
any combinations of them. For the sake of simplicity we use the term services to
denote geo-information services.

Normally developers address the issue of designing complex services by stringing to-
gether groups of functions in an ad hoc manner. This approach may satisfy a particu-
lar need but doing this separately for different services hampers reusability. Moreover,
lack of descriptions of the solutions obtained makes it hard to aggregate solutions to
execute complex tasks.

Research is therefore focusing on the development of mechanisms to describe, combine
and manage independent collections of services. Here, we introduce a concept that
aims at facilitating the generation of sophisticated value-added services. We call it
the Geo-information Service Infrastructure or GSI for short. The idea of the GSI is
that elementary services can be described, accessed, combined and managed to deliver
complex content. Within the GSI, a common method is used to describe elementary
services and their interfaces, and then these services are made available for users to
create service chains that perform complex geo-processing tasks.

2.7.1 GSI

A Geo-information Service Infrastructure (see Figure 2.9) is a system from which
specialised geo-information products and services can be obtained by exploiting the
artefacts (see section 4.5) of an infrastructure of interconnected nodes that include
data repositories, data brokers, service providers, service brokers and clients. This
service framework builds upon the layer of interoperability of information as defined by
the OpenGIS implementation specifications [OGC99], therefore separating the actual
implementation of services from their definitions and the perception of these services
by the users.

Large geo-processing tasks can be constructed by combining or chaining sets of arte-
facts located along the distributed nodes. Such combinations of artefacts provide
diverse functionality that satisfies particular sets of requirements. Every artefact has
an economic value; these artefacts are assembled to perform operations within the
infrastructure, resulting in a specialised artefact that has a value equal or larger than
the combined value of the artefacts used. This architectural approach can be regarded
as a “value-added system.” By chaining artefacts one can provide a service. A ser-
vice is defined as a behaviour of value to the user, which is accessible or instantiated
through interaction points (see section 5.1.2). This behaviour is exhibited through an

29

2.7. Geo-information services

GSI-configuration-C.pdf

Network (Internet)

GSP-node (m)GSP-node (m)

GSP-node (x)GSP-node (x)
GSP-node (n)GSP-node (n)

GSP - node (y)GSP - node (y)

User (1)User (1) User (2)User (2) User (n)User (n)

Network (Internet)

Clearinghouse
ServerData provider (a)Data provider (a)

data
collection

detailed
metadata

Data provider (n)Data provider (n)

data
collection

detailed
metadata

“metadata”
catalogue

GSP-node (b)GSP-node (b)

GSP-node (a)GSP-node (a)

Figure 2.9: The GSI system concept

appropriate combination of elementary artefacts.

In order to bind multiple artefacts into a chain that accomplishes a large geo-pro-
cessing task, a proper description of the participating artefacts is required. These
descriptions focus on exposing the artefact’s internal behaviour, its intended effect
and its interaction points or points of composition. These descriptions, which are
presented as instances of well-defined models, make it possible to interchange and
reuse artefacts. We call these descriptions system metadata; they are stored and
made accessible through a service repository.

The GSI system enables Geo-Service Providers (GSPs) to make use of functionality
offered by others to supply a wide range of services and possibly to reach larger groups
of users. Figure 2.9 illustrates the interactions that take place as GSP-nodes provide
services to their users.

Users interact with the different GSP-nodes to request their specific services. Fig-
ure 2.9 shows these interactions as dashed-lines. GSP-nodes may make use of arte-
facts available in other GSP-nodes in order to realise a particular service. These
interactions between GSP-nodes are shown in Figure 2.9 as solid lines running from
node to node. All connections mentioned here are established through a network.

30

Chapter 2. Geo-information concepts

At the bottom of Figure 2.9 we can see that additional data collections located at
non-GSP-nodes may still be accessed, if needed, either by users or service providers.
This is achieved by making use of the conventional data discovery functionality, of
the clearinghouse server. These interactions appear in Figure 2.9 as dashed-dot-lines.

2.7.2 GSP-node

Figure 2.10 shows the internal configuration of a GSP-node. The service repository
contains the descriptions of available artefacts, either data definitions, process defini-
tions, or previously assembled service chains.

The geo-processing units are responsible for the execution of the various functions
of the node. These units use geo-data and applications during operation as speci-
fied in the definitions stored in the service repository. The service design unit is in
charge of defining how the different services are realised. The underlying principles
of this architecture are based on OGC technical baseline specifications for OpenGIS
Services [OGC02].

The process of generating service chains within the GSI can be broken down into
three major activities: defining and registering elementary services, assembling a
service chain and delivering the results. Three different roles can be identified from
these activities: service providers, service consumers and end users.

Service providers are responsible for describing and making their elementary services
available for others to use. We denote the entities that provide these elementary ser-
vices as components. Service providers make use of a framework (design methodology)

GSP-node (a)

Service design

apps

data
definitions

geo-data
collection

geo-
processing
definitions geo-processing units

Service
repository

GSP-node (b)GSP-node (b)

GSP-node (y)GSP-node (y)

User (1)User (1)

GSP-node (n)GSP-node (n)

User (n)User (n)

GSI-node.pdf

Figure 2.10: GSI-node internal structure

31

2.7. Geo-information services

that enables the modelling of these components. These models act as descriptors that
specify the function and the interaction point(s) of the components.

Service consumers use available components to design more complex services. Service
consumers make use of the same framework used by the service providers to assemble
individual components into chains. They define these chains by adding control com-
ponents that govern the relations between the elementary components used in the
chain.

These control components help ensuring that the constraints and conditions defined
at the interaction points of the elementary components are satisfied. The resulting
chain is described as a service realisation. The service can be realised by instantiating
the behaviour portrayed in the specification. End users trigger the definition and
execution of service specifications by posting requests to the system.

32

Chapter 3

System’s representation and
architecting

You can tell whether a man is clever by his answers. You can tell
whether a man is wise by his questions.

Naguib Mahfouz

This chapter discusses the concepts that underline system design. The chapter moti-
vates the need for a process to guide the activities involved in developing systems. It
provides an overview of techniques used to manage the complexity of the development
process. The chapter also identifies and analyses the various strategies available to
steer the development process.

The chapter is organised as follows: section 3.1 motivates the need for a development
process; section 3.2 introduces the concepts underlining system design and describes
how techniques such as abstraction can be used to structure the development process;
section 3.3 introduces and analyses the most popular development strategies.

3.1 System architecting

The primary purpose of system architecting is to help designers cope with the com-
plexity of large systems and, more specifically, the complexity of those systems’ devel-
opment process. This is especially important when dealing with systems that support
the core business of organisations, which is often the role of geo-information systems.

Complexity arises when systems can not be grasped in their entirety, mainly because
they are formed by a vast number of parts that have numerous relationships among

33

3.1. System architecting

them. In such cases, designers are forced to split the system into parts, such that
each individual part can be studied and understood independently, and its interactions
with other parts can be considered in isolation. Complexity does not decrease in this
way but it does become manageable.

A system is defined as a collection of independent artefacts that interact and form a
coherent entity that performs a function that is unachievable by any of the artefacts
in isolation. System architecting is defined as the application of a systematic, well-
structured approach to the development, operation and maintenance of a system.

A system development process is the set of activities followed by a team to analyse a
problem and transform a set of customer requirements into a system (see Figure 3.1).
This set of activities helps structuring the actions and thoughts of the development
team by clearly stating what to do in terms of phases and outputs, when to do it,
how to do it and why.

Requirements

Specification

Design

Implementation

Test

Waterfall-Model.pdfDevelopment-Process.pdf

System Development
Process

Customer
requirements System

Requirements text

Analysis PIM

Low-level design PSM

Coding code

Testing code

Deployment

MDA
Process

MDA-Process.pdf

Figure 3.1: A system development process

The process of developing a system resembles very much that of construction of build-
ings or bridges. When constructing a building one does not start piling up bricks, but
rather studies the needs of the client and then outlines a structure that complies to
those needs. Information system construction goes much in the same way. First, the
problem is analysed and the requirements identified and described in a precise way.
Next, a design based on the requirements is made, and this design should conceptually
solve the problem for the user. Next, the construction process starts and the actual
system is realised. Finally the system is tested in a controlled environment to validate
the fulfillment of the requirements. Generally, a system is said to be well-designed if
it provides the expected (or predefined) service, within the limits of its budget and
for a reasonable period of time.

These phases are not necessarily sequential. It is possible, for instance, that dur-
ing the development process the requirements change or that errors are found and,
therefore, backtracking to an earlier phase takes place. Moreover, the phases are not
strictly separated. For example, it is quite possible to start the implementation of
some parts of the system, which have been completely designed, while delaying the
implementation of other parts, which have not been fully designed yet.

The goals of this separation into phases are, first, to provide adequate structuring of
the various aspects addressed during development; and, second, to identify a number
of design milestones that allow to control the progress of the development process,
and the verification of the transition between subsequent phases.

34

Chapter 3. System’s representation and architecting

3.2 Architectural principles

During the design process of a system we may decompose the system into smaller
identifiable parts. There are, in principle, many ways to decompose a system into
parts. Therefore, it is essential to establish, in addition to controlling complexity, the
required design features of a decomposition such that a decomposition method can
be applied correctly and satisfactorily.

The design characteristics we are most interested in are modularity, functionality,
reuse and distribution. These characteristics are specially relevant for systems that
may witness frequent change. A design process organised around these critical aspects
is, in principle, capable of supporting the design of systems that are easy to maintain,
flexible to adapt, while satisfying changing requirements.

3.2.1 Abstraction

The process of designing and developing a system like a vehicle, a database, a map,
a software system or a telematic system involves the generation of descriptions of
the various characteristics of the system under consideration. The object’s descrip-
tive characteristics initially exist only in the minds of the designers and need to be
expressed, therefore, to express their ideas, designers make use of formalised nota-
tion to create a conceptual description of the system. In most situations, however,
the amount of detail required to create a description that concretely and sufficiently
describes a system simply overwhelms the minds of those working on it.

To deal with this problem, designers use a technique that enables them to reduce
and organise the amount of detail required to create a particular description. This
technique makes it possible to generate a series of descriptions of the same system,
each focusing on the representation of a specific aspect () of the object and ignoring
the other aspects. This technique is called abstraction. Abstraction can be defined
as the process of selecting and representing particular aspects of a system or problem
that are relevant at a particular phase of a development process while ignoring those
other details that are also proper to the object but yet irrelevant during that phase
of development. Abstraction is the primary technique for handling complexity.

Making the correct choice of abstraction facilitates the generation of clear representa-
tions of a system, which then enable people to make sense out of what might become a
rather complex implementation. An accurate representation created using the correct
abstraction choice is called a specification.

Figure 3.2 illustrates the concept of abstraction. In this example a description of a
system is presented in the form of a map. The description represents an underground
system. System’s descriptions are always created for a specific purpose. This purpose
should be used to select the choice of abstraction. The purpose of the underground
description is to aid travellers in using the underground. For this reason in the
underground description much of the physical detail has been removed and only the

35

3.2. Architectural principles

Rio Negro

R
io

 B
og

ot
á

Parque
Nacional

Planetario

Centro
Internacional Plaza de

Bolívar

Las
Aguas

avenida
19

Catastro

Universidad
Nacional

Galerías

El campin

Colsubsidio

Cementerio
Central

Hotel
Tequendama

Parkway

Univ. Nal.
Plaza Che

Feria
Exposición

Gobernación

CAD

Teusaquillo

Hospital
Militar

Compensar

IcontecParque
El Salitre

Club de
Empleados

Av. Las Palmas

Lourdes

Universidad
Santo Tomas

Chapinero
Alto

Universidad
Pedagógica

Cementerio
del norte

Universidad
Javeriana

Calle 45

Universidad
Distrital

La Soledad

Quinta
Camacho

7 de agosto

Los Héroes

Unilago

La Porciuncula

World Trade
Cenrter

Usaquen

Escuela
Militar

Bavaria
Guardia

Presidencial

Estación
Sexta

La Hortua

Salitre
Plaza

Acueducto

Terminal
de Transportes

Germania

Biblioteca
Luis A. Arango

Avianca

San
Andresito

Centro
Andino

Puentearanda

Rionegro
20 de Julio

Underground-Specification.pdf

Figure 3.2: Abstract representation of an underground system

logical layout is presented. The logical layout (the relevant aspect in this case) is
defined by the metro lines, the stations and the connections between stations.

When creating a description of a system, one selects those design concepts that best
express the aspects of interest. In the underground description (Figure 3.2), abstract
concepts such as colours and shapes are used to show metro lines and stations, and
straight lines with 45◦ or 90◦ angles are used to show the connections between stations.
We intentionally selected this example of the use of abstraction since it brings together
the two central subjects of this research; geo-information and system design.

Abstraction is a familiar concept in the field of geo-information. Abstraction is the
concept that underlines the techniques for representation of geographic information
in computer systems. Moreover, abstraction has always been used in the field of
geo-information as a tool to control what and how information is portrayed on maps.

3.2.2 A model of a system

Modelling is essential in system design. To be able to express and communicate the
characteristics of a system that are relevant in a design project it is necessary to create
system models (see Figure 3.3). A model is a conceptual (abstract) representation of a
real-world system or part thereof. A model is the result of the designers mental image
of a system. The model of a system considers some characteristics of the system, and
ignores others. Abstraction as defined above can be used to capture the common

36

Chapter 3. System’s representation and architecting

properties of a system, therefore, it is the main technique employed in the creation of
system’s models.

base
dept

height

= 1u
= 1u
= 2u

vol = b x d x h

Real World Mental
Images

Conceptual
Representation

System Thought Model

Figure 3.3: System and model

A model of a system is an abstraction of this system. A model can be created
using different alternative representations. For example, a miniature of a house and
its construction drawings are both models of the house. These representations are
different because they have different purposes, e.g., the miniature is used to give
potential buyers a good impression of how the house will look, while the construction
drawings are used by the constructors to know what must be built.

A model can only be effectively used for communicating the characteristics of the
system being modelled to the people interested in the system, if the model possesses
the following properties [VFPQS99]:

• it is precise enough to avoid confusion on what it means (preciseness);
• it is simple and well-structured to be understood;
• it is clearly related to the system that it models, such that it appeals to the

intuitive understanding of those who have to use it;
• it can be manipulated such that possible behaviour and properties of the system

it models can be explored.

3.2.3 Abstraction levels

Although designers benefit from the use of abstraction when devising a new system,
abstraction only helps to focus on a controllable amount of detail. Yet all the necessary
details to fully express a design have to be considered and subsequently described to
obtain the desired system.

To accommodate all the essential information for a complete design, multiple models
have to be created. This can be done by using different levels of abstraction, each of
them dealing with a different set of characteristics of the system. At each abstraction
level models of the system are created, which consider the system at a predefined level
of detail [BCK03].

37

3.2. Architectural principles

Abstraction 1

A
bs

tra
ct

io
n

R
efinem

ent

less detailed
design

more detailed
design

design step

level (n)

level (m)

level (m+1) Abstraction 2

Abstraction N

Abstraction-Levels (.)pdf

Figure 3.4: Abstraction, refinement and levels of abstraction

If a design is composed of multiple abstraction levels, then, given two abstraction
levels (A and B), we say that A is at a higher level than B if and only if : 1) A
expresses fewer properties than B; and, 2) all the properties of the system that are
expressed in A are preserved in B.

The action of moving from one level of abstraction to the next level is called a design
step. The process of moving from one level of abstraction to another to create a model
that includes a larger amount of detail than the previous one is called refinement.
Refinement is the reverse of abstraction, since it is used to incorporate the detail
abstracted away in previous design steps, providing a more detailed description of the
system. The relationship between abstraction, refinement and levels of abstraction is
shown in Figure 3.4.

3.2.4 Views

In some cases, it is not practical to include all relevant details about a system for
some abstraction level, for instance in a single monolithic design. For example, it
may not be desirable to mix in a single system description information about what
a system does (functionality), with information about how effectively the system
operates (performance).

In such cases, one can use the concept of views. A view is a representation of a system
relative to a set of concerns or points of interest. Instead of expressing everything
about a system in a single model, a view addresses a subset of the concerns on the

38

Chapter 3. System’s representation and architecting

Enterprise

Information

Engineering

Technology

Computational

C
orrespondence for consistency

System

System-Views.pdf

Figure 3.5: RM-ODP viewpoints on a system

whole system. These subsets of concern may be defined according to some develop-
ment objectives, examples include, performance, cost, maintainability and reliability.

A set of concerns or aspects of interest is called a viewpoint. Viewpoints are not lay-
ered, but rather different perspectives of the same system. A view is a representation
of a system according to a viewpoint. Each view is considered a complete repre-
sentation of the system with respect to the associated viewpoint. The collection of
views together provide a consistent and complete representation of the system. This

Table 3.1: RM-ODP Viewpoints and focus of concern

Viewpoint Concern

Enterprise Deals with the system responsibility, the reason for the system
and its use in the environment — purpose and objectives.

Information Deals with the information that is manipulated in the system
and the constraints or rules and relationships that apply to that
information — semantics of processing and information.

Computational Deals with the internal composition of the system and the in-
teractions that take place between components — behaviour,
interactions and constraints.

Engineering Deals with the distribution and configuration of the system and
with the mechanism needed to realise the distribution — dis-
tribution and infrastructure.

Technology Deals with the technology and products required to implement
the system and with the issues of conformance of the system
against its specification — technology, standards, products,
code and conformance test points.

39

3.3. Development strategies

notion of views is similar to the definition of views on the Reference Model for Open
Distributed Processing (RM-ODP) [Put01, ISO96b, ISO98a].

There are different viewpoint approaches in the literature today. For distributed
systems however, the RM-ODP viewpoints are the most popular. According to the
RM-ODP, five viewpoints are necessary and sufficient to describe a distributed sys-
tem (see Figure 3.5): enterprise viewpoint, information viewpoint, computational
viewpoint, engineering viewpoint and technology viewpoint. Each viewpoint is a per-
spective from which one views a system. Table 3.1 summarises the concerns addressed
by these viewpoints.

3.3 Development strategies

3.3.1 Early development models

To facilitate the understanding of modern development strategies, we start by look-
ing at traditional development models. In the early stages of system development,
designers performed development phases sequentially, i.e., a certain phase could only
start after the previous phase had been completed and signed-off. The waterfall
model [Roy70, Roy87] is the best known example of this development strategy (see
Figure 3.6).

Requirements

Specification

Design

Implementation

Test

Waterfall-model.pdfDevelopment-process.pdf

System Development
Process

Customer’s
requirements System

Requirements text

Analysis PIM

Low-level design PSM

Coding code

Testing code

Deployment

MDA
Process

MDA-process.pdf

Figure 3.6: The waterfall model

Such approaches were mainly based on the
assumption that user requirements were
fully understood right from the beginning
and would not change during the whole de-
velopment project. This proved to be unre-
alistic and as a consequence this approach
was inadequate for development projects.
The weaknesses of this approach were, at
that time, mainly attributed to the lack-
ing of feedback between the phases [MJ82].
This led to some extended versions of the
waterfall model, in which iterations be-
tween the phases were introduced.

Since it became clear that it was not pos-
sible to tie down the user requirements at
the early stages of development, designers
created methodologies that iterated continuously through the phases. In this case,
the development process is executed in small increments or iterations or cycles. Ev-
ery iteration goes through all the development phases. Initially, a working version
of the system is delivered with a reduced amount of functionality. As new iterations
are executed additional functionality of the system is considered until the complete

40

Chapter 3. System’s representation and architecting

start

Analysis & design Prototyping

Planning

version #1

version #2

version #3

New
functions

Determine
objectives,

Evaluate
alternatives,

Identify and
resolve risks.

Develop and
Verify next-level

product.

Requirements
validation,

Plan next iteration.

Spiral-model.pdf

(a) Spiral model

Incremental-model.pdf

Detail design

Code / Test

Integration

Implement...

Maintenance

Increment [1] …

Requirements

Preliminary Design

Detail design

Code / Test

Integration

Implement...

Maintenance

Increment [2]

Detail design

Code / Test

Integration

Implement...

Maintenance

Increment [n]

…

…
(b) Incremental model

Figure 3.7: Iterative development methods

functionality of the system is realised. Each full iteration employs all of the phases de-
fined in the waterfall model, therefore the milestones of that method remained valid
and applicable. Examples of this approach are the spiral model (see Figure 3.7a)
[Boe88, BB90], and the incremental model (see Figure 3.7b) [MOL+80].

These iterative strategies were useful for development projects in which the design
problem was not fully understood, and particularly if the requirements were expected
to change during the life cycle of the project [Boe96]. Advantages of these iterative
strategies over the early ones were: they provided some opportunity for incorporat-
ing change; and they delivered a working system with a limited functionality at an
early stage of development, which allows for faster evaluations. This limited working
system allows users to try and test the system leading to possible improvement and
clarification of the requirements.

The most important legacy of these early development methods was the identification
of important milestones in the development process: the requirements specification,
the analysis model, the design model and the implementation. These milestones
were obtained at the end of the various development phases. The phases are called
requirements, analysis, design, implementation and test, and operation, respectively.
These phases are still considered valid today, but the trajectories navigating them
in modern strategies are much more complex. From now on, we concentrate on the
requirements, analysis and design phases because these are the most relevant for our
work.

The objective of the requirements phase is to capture and document the requirements
of the system. These requirements are commonly expressed in business terms that de-
scribe the problem domain. The requirements phase results in an agreement between
the system users and designers concerning the functions, rules and constraints that
are visible from the outside of the system. Requirements do not only include func-
tional aspects of the system but also issues such as cost, reliability and development
time.

41

3.3. Development strategies

The analysis phase focuses on the definition of the functionality of the system. During
this phase, the business requirements obtained in the previous phase are studied to
determine what services should be provided by the system. The result of this phase is a
specification that prescribes what is the functionality of the system. Such functionality
should fulfill the requirements of the users.

The design phase focuses on defining how the functionality of the system is realised.
This phase is usually divided into two related stages. In the first stage, the overall
structure of the system is specified and all the necessary components are identified.
This stage involves the definition of the role of each component and the specification of
the interactions between components. In the second stage, the individual components
are refined to obtain their internal structure in terms of subcomponents and their
interactions. The second stage is applied recursively on the subcomponents until
component specifications suitable for implementation have been produced.

3.3.2 Object-oriented development

With the introduction of object-oriented concepts, new approaches to system develop-
ment were proposed. Designers identified that the ideas of object-oriented program-
ming could be used to strengthen the analysis and design phases of the development
process as well. Although most of the practitioners of object-orientation agree that
analysis and design are the key activities to ensure success in a development project,
there are few others that prefer to write code almost from the start, and work their
way through the project using mainly prototyping as their core activity.

In object-oriented development, models at different levels of detail are created during
the analysis and design phases. In the analysis phase, a model is created that com-
prises a number of logical objects. Each logical object in the model corresponds to
an object in the real world. These real world objects are often called domain objects.
This is because they are only meaningful from the system domain point of view.

In the design phase a definition of the architecture of the system is created. The
design model is a definition of the logical objects in enough detail to enable their
implementation. In this phase new objects are defined. These objects, also called
implementation objects, represent the actual objects to be found in the system im-
plementation as opposed to the logical objects defined before. The design model is a
precise description of how the system functions are realised.

Object-oriented development strategies follow a methodology that defines a series of
steps or development phases, and the trajectory to navigate through those phases.
Some of the best known approaches to object-oriented development can be found in
[JCJ92, TP96, Boo94, RBP+91].

Summarising from the different authors we identify the major tasks to undertake dur-
ing object-oriented development. The steps mentioned bellow are listed sequentially,
but they could partly or totally overlap.

42

Chapter 3. System’s representation and architecting

1. Gather requirements;
2. Describe typical scenarios;
3. Identify candidate domain objects, determine what these objects are, and what

they are responsible for;
4. Establish the relationships between objects;
5. Iterate.

The purpose of steps 1 through 5 is to establish the description of the problem in
terms of domain objects and the basic interactions among them.

6. Refine the definition of relationships;
7. Identify any existing or previously implemented objects and generalise them;
8. Refine the objects to determine their internal structure;
9. Iterate.

The purpose of steps 6 through 9 is to create a complete definition of the objects in
enough detail to allow their implementation or coding. These steps emphasise the
use of controlled iterations to help achieving the required functionality. Iterations
are a natural and intuitive way to obtain complete understanding, interpretation and
implementation of the user requirements.

The most important approaches that came as a result of the incorporation of object-
oriented concepts in system development, were the Objectory process [JCJ92], Object
Modelling Technique or OMT [RBP+91] and the Booch Method [Boo94]. The ideas
put forward by Booch, Jacobson and Rumbaugh grew and evolve into what eventually
became the known as the Unified Process [JBR99].

3.3.3 The Unified Process

The Unified Process [JBR99] is a generic process framework for software development.
According to its developers, the Unified Process is more than a single process, but
it is a framework that can be specialised for a large class of systems and different
application areas. An example of a specialisation of the Unified Process is the Rational
Unified Process (RUP) [Kru99].

The Unified Process is organised around three main principles: functional require-
ments, component-based architecture, and, iterative and incremental development.

First of all, the Unified Process is driven by requirements. The Unified Process de-
fines a systematic and intuitive mechanism for capturing and documenting functional
requirements with a focus on value-added to the user. All other activities within the
development process can only start once the requirements have been captured and
documented.

The Unified Process focuses on architecture. The Unified Process identifies the sys-
tem’s architecture as a primary artefact for conceptualising, constructing, managing

43

3.3. Development strategies

inception elaboration

iterations

phases

Unified-process.pdf

#1
#1

#2
#2 …… …… ……

cycle 1 cycle m+1 cycle n-1 cycle n

Organization along time

O
rganization along content

Development
project

…… …… ……

construction

…… …… …… …… …… ……

transition

……
#n-1

#n-1
#n

#n

cycle m …

requirements

analysis

design

implementation

test

C
or

e
w

or
kf

lo
w

s

– Cycle (small project) –

releases

…

Figure 3.8: The Unified Process life cycle

and evolving the system under development. Aspects of an architecture according to
the Unified Process include the selection of structural elements, the specification of
the behaviours of these elements and their interfaces, and how these elements work
together to progressively compose larger subsystems. Architecture also addresses the
issues of performance, scalability, reuse, and constraints either economical or techno-
logical.

Another fundamental principle of the Unified Process is its iterative and incremental
nature. An iteration is a mini-project that produces a working version of the system.
This version is supposed to offer added or improved functionality over the previous
version, and that is why the result of an iteration is called an increment.

The Unified Process is organised along two dimensions: time and content (see Fig-
ure 3.8). The time dimension represents the dynamic aspects of the development
process as it is enacted. This dimension is expressed in terms of cycles, phases and
iterations. The content dimension represents the static aspect of the development
process or, in other words, the main activities. This dimension is expressed in terms
of core workflows.

Within the Unified Process, the life-cycle of a development project is represented as
a series of cycles. A cycle ends with the release of a working version of the system to
the customers. Each cycle contains four phases: inception, elaboration, construction
and transition (see Figure 3.8). Each phase has a specific purpose and concludes with
a milestone. At the end of each phase decisions are made about how to proceed with
the project.

The purpose of the inception phase is to determine the viability of the proposed

44

Chapter 3. System’s representation and architecting

system. The outcome of this phase is a business case, which contains, a.o, the scope
of the system, success criteria and risk assessment.

The elaboration phase focuses on determining the ability to build the new system
given the constrains faced by the project. This phase results in the determination of
functional requirements and the delivery of an architectural baseline that serves as
the foundation for further system development.

The goal of the construction phase is to build an operational system according to the
decisions made in the previous phases. In the transition phase the working system is
incorporated into the user’s working environment.

The activities executed during development cut across the four phases (see Figure 3.8).
These activities are: requirements, analysis, design, implementation and test. In each
one of these activities a blueprint of the system is produced and documented in a
number related models, which capture different aspects of the system. These models
are the use-case model, the analysis model, the design and deployment models, the
implementation model and the test model.

Although the activities and phases are presented here sequentially, they actually lie
within an iterative process, and therefore, they are revisited again and again through-
out the project life-cycle.

3.3.4 Catalysis

Catalysis [DW99] is a development method that addresses three different aspects of
the system, each organised at an abstraction level: the outside (domain/business
level), the boundary (component specification), and the inside (component internal
design level). Figure 3.9 shows these aspects.

The outside or domain/business level is used to identify the users and their needs,
modelling the environment where the system has to operate. The boundary or com-
ponent specification level describes the behaviour of the system that is visible from
the outside, that is the behaviour of the components that interact with the environ-
ment. The inside or component internal design level describes how system behaviour
is realised in terms of the interactions between components, and it also describes the
internal architecture of the components.

Catalysis is based on three modelling concepts: type, collaboration and refinement.
Types are used to specify the external behaviour of single objects. Collaborations are
used to specify the behaviour of group of objects. Refinement allows the specification
of behaviour at different levels of detail. Frameworks describe recurring patterns of
these three modelling concepts.

The development of a typical (large) system involves the phases of requirement captur-
ing, system specification, architectural design and component internal design. These
phases are performed in accordance with the abstraction levels. Catalysis does not

45

3.3. Development strategies

Domain/Business

Component
Specification

Component
Internal Design

Identify problem: “outside”

Establish problem domain terminology
Understand business process, roles, collaborations
Build as-is and to-be models

Specify system: “boundary”

Scope and define component responsibility
Define component and/or system interface
Specify desired component operations

Implement the spec: “inside”

Define internal architecture
Define internal components and collaborations
Design the insides of the system and/or component

Catalysis.pdf

Design
Concepts

Application
domain

Design
notation

represents

Design
Methods

manipulate

characterizes

ModelsTools

use

supported by

describe

are used to create

validate, …

Figure 3.9: The levels of description according to Catalysis

prescribe a unique path through its phases of the development, but it proposes mul-
tiple paths through the method, each better suited for projects with certain charac-
teristics.

3.3.5 The Model Driven Architecture

Recently the Object Management Group introduced a new initiative , called the Model
Driven Architecture [OMG01b, OMG01a]. The Model Driven Architecture (MDA) is
an approach to the full life cycle of systems comprised of software, hardware, humans,
and business practices. MDA aims to separate all business or application concerns
from the underlying platform technology [OMG03a, KWB03].

The MDA provides a systematic framework to understand, design, operate, and evolve
all aspects of such systems, using engineering methods and tools [Bro04]. MDA is
based on modelling separately technology-independent and technology-specific aspects
of a system, by describing them in separate models. The most important aspect of the
MDA approach is the explicit identification of Platform-Independent Models (PIMs)
and the flexibility to implement them on different platforms via Platform-Specific
Models (PSMs). A platform can be any technology that supports the execution of
these models, either directly or after translation into code [D’S01].

From the perspective of system development, a significant quality of the MDA ap-
proach is the independence of system specifications (i.e., sets of models) from potential
target implementation platforms. A system specification exists independently of any
implementation platform and has formal or semi-formal transformation rules onto
many possible target platforms [FPSFAA03]. The MDA approach to system (appli-
cation) specification, portability and interoperability is based on the use of formal

46

Chapter 3. System’s representation and architecting

CIM

PSM1 PSM2 PSM3

Code Code Code

PIM

model
Transformation

model
Transformation

Transformation Transformation

MDA.pdf

Figure 3.10: The Model Driven Architecture framework

and semi-formal models.

Three different types of model are considered in MDA (see Figure 3.10): computa-
tion-independent models, platform-independent models and platform-specific mod-
els [OMG03a]. A computation-independent model (CIM) focuses on the system en-
vironment and its requirements. However, there is no concern for the details of the
structure of and processing by the system. A platform-independent model (PIM)
focuses on the system operation, but hides the details necessary for a particular plat-
form. A platform-specific model (PSM) combines the platform-independent model
with the details of the use of a specific platform by a system. Model transformation is
basically seen as a mapping of elements of one model onto elements of another model.

An essential feature of the MDA framework is to make transformations between mod-
els automatic [MB02]. This means that a transformation tool takes a PIM and trans-
forms it into a PSM. A second transformation tool transforms the PSM to code. In
this context, a transformation is seen as the automatic generation of a target model
from a source model, according to a transformation definition. A transformation defi-
nition is a set of transformation rules that together describe how a model in the source
language can be transformed into a model in the target language. A transformation
rule is a description of how one or more constructs in the source language can be
transformed into one or more constructs in the target language.

The MDA defines that first a PIM should be created and then transformed into one
or more PSMs. These transformations should be automatically executed by tools
if a proper transformation definition has been defined. Designers may benefit be-
cause they can focus their efforts on the generation of well-defined, precise, and
consistent PIMs that contain enough information about the system, which can be

47

3.3. Development strategies

automatically converted into PSMs for different platforms. Therefore, everything
they specify in a PIM becomes completely portable. MDA is made up of a suite of
standards that include Unified Modelling Language (UML) [OMG03b]; Meta-Object
Facility (MOF) [OMG02]; XML Meta-Data Interchange (XMI) [OMG03c]; and Com-
mon Warehouse Meta-model (CWM) [OMG01c].

3.3.6 Conclusion

The strategies described in section 3.3 form a comprehensive list that demonstrates
the evolution of system development. We observed that the importance given to
iterations over development phases increased as designers try to find ways to manage
the impact of the (inevitable) changes in requirements during development.

Apart from the importance of iterations, there is also separation of concerns, which
allows one to concentrate on different sets of aspects of the systems at different times
along the design trajectory. There is no consent among the various strategies on the
sets of concerns. There is consent, however, on the notion that this separation allows
the design of systems in a more incremental manner. This notion induces a way of
thinking about the system based on distinct and well-defined objectives.

The most current strategies strongly emphasise the role of models. Earlier on, the role
of a conceptual model was to guide the implementation and possibly support some
future re-engineering activities on the developed system. Nowadays, the role of these
conceptual models has been extended as they are seen as a mechanism to express
system functionality; they can be interchanged and shared to facilitate interoperabil-
ity among heterogeneous systems. Furthermore, model-driven approaches promote
the independence of the application model (system specification) from the implemen-
tation technology and platform. Therefore, an application model can be developed
independently from any implementation model and may have a formal mapping to
many alternative platform infrastructures.

We adhere to these last two principles, namely the separation of concerns and the
model-driven approach, to devise our methodology in support of GSI system design.

48

Chapter 4

Geo-services design methodology
(GSDM)

The significant problems we face cannot be solved
at the same level of thinking we were at when we created them.

Albert Einstein

This chapter introduces the Geo-Services Design Methodology (GSDM) which is tai-
lored to the development of geo-information systems. The chapter starts by describing
the main phases of GSDM. The chapter also describes the role played by design mod-
els in GSDM and motivates the need for a metamodel. Next, the chapter introduces
a metamodel for GSI services, and finally the chapter discusses the main architectural
elements of the methodology.

The structure of the chapter is organised as follows: section 4.1 gives a general in-
troduction of GSDM; section 4.2 illustrates the scope of GSDM in the context of the
development process and discusses the main phases of GSDM; section 4.3 explains the
role played by models in GSDM; section 4.4 introduces a metamodel for GSI service
models; and finally section 4.5 discusses the main architectural elements used in the
description of GSI components.

4.1 Introducing GSDM

The trajectory followed during the construction of a system should start with a con-
ceptual modelling phase, during which models that describe static and behavioural
aspects of the system are produced [Gra01]. Traditionally, in the design of geo-infor-
mation systems these two aspects have not received the same amount of attention,

49

4.2. GSDM overview and scope

since little or no focus has been put on the behavioural aspects of these systems.

Conceptual design should be supported by a development methodology. A develop-
ment methodology provides a set of structured procedures and rules that guide a
designer in the process of designing a system (see Section 1.4).

In this research we have developed a methodology to guide the design of distributed
geo-information services, which we call the Geo-Service Design Methodology or GSDM
for short. GSDM is organised around the concepts for behaviour modelling supported
by ISDL [QFPS02]. Although the methodology can be used to design distributed
systems in general, we concentrate on its application for defining both structural and
behavioural aspects of distributed geo-information systems.

GSDM focuses on the definition of the services provided by GSI systems (see Sec-
tion 2.7). A service is a collection of functions or operations organised in a way that
they exhibit a behaviour of value to a user. The functions used within a service are
provided by independent entities, and these functions are available at different system
nodes. Such services have to be formally defined before they can be properly imple-
mented. The internal structure of the service (i.e., the service realisation) describes
how different components interact to provide the desired service.

4.2 GSDM overview and scope

When we choose to regard some part of the ‘real world’ as a system, then we are
immediately defining that part as one entity, and at the same time, indirectly we
draw a line (the system boundary) between what should, and what should not, be
considered part of the system.

The boundary of the system does not simply separate what is part of the system
and what is not. It also represents the point of contact between the system and the
outside world. It is at the system boundary that interactions take place.

It is not possible, however, to ignore everything that exists outside the system bound-
ary. On the contrary, we must identify the things that are not themselves part of
the system, but affect and/or shape the system’s operation. For example, if we
define a national mapping organisation as a system, then we have to recognise that
such organisation has close relationship with entities like image suppliers or budget
providers like, e.g., the government.

The determination of the system boundary does not only depend on the identification
of the system itself, but also in the determination of that system’s purpose. For
example, if we choose to consider a prison as a system to, say, ‘rehabilitate criminals’,
then the system includes entities such as therapist and social workers, whereas if we
decide to consider a prison as a system just to ‘punish criminals’, then such entities
would not be included within the system.

50

Chapter 4. Geo-services design methodology (GSDM)

Similarly, If one chooses to regard a map, as it is conventionally done, as a system
for, say ‘representation of information’ then one has to deal precisely with a single
scale and strict use of location and orientation (e.g., a topographic map), whereas
if one decides to consider a map as a system for ’communication’, say, a map of an
underground system, then one can use multiple or distorted scales, relative locations
and other types of spatial distortions that facilitate communication with the map
users.

These considerations lead us to the identification of four main areas of interest with
respect to a system: the objective or purpose (the contribution of the system to the
surrounding environment in terms of what it does), the boundary (the interfaces of the
system), the outside (the environment in which the system operates), and the inside
(the system’s internal structure or structures and composition). Our methodology
has been organised according to these levels of concern.

To address these concerns levels, GSDM defines two main system perspectives that
enable the representation of a high-level architecture of a GSI system:

• the external perspective model captures information about the purpose and en-
vironment of the system in service specifications. This includes the service
definition, the boundary level interactions through which the service can be
accessed and the entities that participate in these interactions;

• the internal perspective model captures information about the system’s archi-
tecture. This includes decomposed service specifications that in turn comprise
identification of architectural elements and definition of behaviours. This be-
haviour definitions describe the interactions, between architectural elements,
that are required to realise the system’s services.

The external perspective aims at identifying and explicitly delimiting the scope of the
system under development and helps determining the objectives of the development
process. It is at this stage that the boundary between the system and its environment
is defined. The external perspective involves: the organisation and understanding
of requirements; the specification of system functionality or system responsibilities
(services), which represent the contribution of the system to the environment; and
the definition of interactions that prescribe how external entities may interact with
the system in order to access its services.

The internal perspective aims at describing the internal system structure in terms
of compositions of simpler or more elementary architectural elements. Arrangements
of these architectural elements form the so called decomposed service specifications.
A decomposed service specification identifies a group of architectural elements and
describes how these elements interact to perform a system function (service). Many
different alternative compositions are allowed that implement the same functionality
in a different way.

The internal perspective actually covers two related concerns, namely the set of ar-

51

4.2. GSDM overview and scope

external
perspective model

Our-design-methodology.pdf

domain analysisdomain analysis

architecture designarchitecture design

implementation,
deployment & management

implementation,
deployment & management

repositoryrepository

system
requirements

internal
perspective model

design
methodology

service designservice design

external
perspective model

domain analysisdomain analysis

architecture designarchitecture design

implementation,
deployment & management

implementation,
deployment & management

repositoryrepository

system
requirements

internal
perspective model

design
methodology

service designservice design

external
perspective

internal
perspective

Figure 4.1: Main phases and scope of GSDM

chitectural elements and how they interact to realise system’s services. Therefore,
to obtain the internal perspective model initially one is forced to consider each in-
dividual potential element separately. This separate consideration is essential when
determining the suitability of an element for its participation in a service realisation.

The description of individual architectural elements includes: the mechanisms by
which the element can be accessed or instantiated, which in turn determines how
architectural elements can connect to each other; the internal structure of each archi-
tectural element; and, the behaviour exhibited by the element when applicable.

Once models or specifications of services and architectural elements are created, they
are stored in a repository. Models stored in the repository can be used by designers

52

Chapter 4. Geo-services design methodology (GSDM)

in other arrangements to realise other more complex services. Figure 4.1 shows the
relationships between the perspectives of GSDM and the phases of development, and
how they influence each other.

4.3 The role of models

Our approach to geo-information services design focuses on the use of conceptual
models as an intermediate step in the development process, which sit in between
requirements and the actual implementation (see figure 4.1). The purpose of this
step is to obtain a conceptual description also called abstract specification of every
system part and every system function (internal or external). This is done solely to
enable and facilitate reuse and to enhance flexibility.

The main benefit of these models is to serve as the basis for the specification of com-
plex services. If a model properly describes an architectural element, that is, with the
relevant information at the correct level of detail to enable one to determine what it
does and how to access the function it provides, then this architectural element can
be easily reused. By reuse of architectural elements, we mean the inclusion of pre-
viously designed element in multiple service definitions. We use constraint-oriented
composition to combine multiple architectural elements (see section 5.4.2). This way

architectural
elements

models of
architectural

elements

service models

Models-and-services.pdf

generic

specific

Figure 4.2: Architectural elements, element models and service models

53

4.3. The role of models

model
repository

GSP node (a)

GSP node (b)

GSP node (…)

metamodel

model
exchange

Metamodel-role.pdf

Figure 4.3: Role of the metamodel in the GSI architecture

it is possible to assemble large processing chains by correctly combining models of
(generic) architectural elements to form more specialised specifications (service mod-
els) with the intention of provide more specific or particular services (see Figure 4.2).

Since the models of architectural elements prescribe the behaviour exhibited by in-
dividual elements, a service model can be used to choreograph the realisation of the
service specified in the model. Additionally, once a service model is available it can
itself be reused, as a generic element, in another definition as a part of a yet more
specialised service. Reuse and flexibility is ultimately achieved by developing, sharing
and integrating well-defined models of all composing elements of the system.

For this approach to work, models need not only to be interchanged between partici-
pants, but they also have to be understood by all parties involved. This can only be
achieved if the models are based on the same metamodel. Such metamodel should
therefore provide a rigourous abstract syntax for defining models. Figure 4.3 shows
the role of the metamodel in the GSI architecture. The metamodel enables the im-
plementation of a repository where compliant models of GSI services can be stored.
Hence, the repository becomes the central component in a GSI system. The repos-
itory supports the exchange of models between different service providers, thereby
facilitating the use of these models in combinations to form more complex service
models that address specialised sets of requirements.

A metamodel defines the set of design concepts and their relationships, which one
can use to produce models of some system according to a specific objective. A design
concept, also called modelling concept, is a building block that can be used in the
construction of a model. A design concept represents one or more related properties

54

Chapter 4. Geo-services design methodology (GSDM)

Systemmetamodel (y) metamodel (x)

System models System models

System-metamodels.pdf

Figure 4.4: Metamodels and system models

of a system or system part that are considered relevant in the design of a system. The
complete collection of design concepts should allow one to model all relevant system
properties. Relationships between design concepts define the possible ways in which
a model can be constructed from of these concepts.

Figure 4.4 illustrates the relations between system models and metamodels. In Fig-
ure 4.4 design concepts defined in a metamodel are represented by different geometri-
cal shapes, while a relationship between concepts is represented by a line connecting
two concepts.

Which metamodel should be used depends on the modelling needs of every particular
project. For the purpose of designing GSI systems, we require design concepts suitable
for specifying the system’s functionality and its environment, the system’s internal
structure in terms of its composing parts or subsystems and their relationships, and
the contribution of each part to the system’s overall functionality. This translates
into the following modelling needs:

• to represent the system, its logical or physical parts and any external thing that
interacts with the system, which could be a person, another system, etc., as
single entities capable of exhibiting behaviour;

• to represent the locations where interactions between different entities occur;

• to represent behaviour according to different related abstraction levels;

• to be able to discriminate between the behaviour and the entity that carries the

55

4.4. Metamodel for GSI

behaviour, such that an entity could potentially exhibit multiple behaviours.

• to be able to structure behaviour into units behaviour and their relationships;

• to represent anything that is used or produced in a behaviour.

Additionally, the selection of an appropriate set of design concepts should adhere to
the following quality principles [Sin95]:

• consistency, which requires that concepts should be consistent in their repre-
sentation of the aspects in the real world;

• orthogonality, which requires that distinct concepts should be used to represent
different aspects;

• propriety, which requires that concepts should be proper to the modelling needs;

• generality, which requires that concepts should be of general purpose in a given
domain and the complete set of concepts be sufficient to cover the needs of the
domain.

4.4 Metamodel for GSI

The types of service provided by a GSI system spread along the whole geo-information
value chain. This value chain starts with identification of information sources that are
used in different geo-processing tasks to create value added geo-information products.
These products are subsequently used in various types of analysis with the purpose of
deriving new information that is not directly obtainable from the sources. In most of
the cases diverse combinations of tasks and information sources are required to solve
specific problems and help user communities to make sense of the geographical world
that surrounds them.

The structural organisation of this work is consequently formed by arrangements
of independent functions and data sources organised in such way that large geo-
processing tasks can be accomplished. Any of these arrangements defines a specific
behaviour. This behaviour is accomplished through the creation, manipulation or
transformation of some items or artefacts, and must be carried out by entities within
the system.

According to these criteria and to the modelling needs mentioned in the previous
section, we need a metamodel to be able to build repositories where our models can
be properly, structurally and consistently stored and retrieved. We introduce a meta-
model to be used in the creation of repositories to store our models (see Figure 4.5).
This metamodel is a specialisation of the ISDL metamodel [Qua03]. The metamodel
is organised in a number of classes, where each class addresses a group of related
design concepts.

56

Chapter 4. Geo-services design methodology (GSDM)

Behaviour

MonolithicBehaviour
StructuredBehaviour

Action InteractionContribution

Interaction

FunctionalEntity Service
1..*

1..*

1..*

ActivityUnitCausalityCondition

1..*
causalityrelation

carrier

Attribute

TimeAttributeLocationAttribute

Item

Information Attribute

0..*
2..*

1..*

0..1

InteractionAlternative

1..*

Metamodel.pdfFigure 4.5: A metamodel for GSI services

The abstract class behaviour defines the behaviour concept, which models some type of
system behaviour. A behaviour is a (partial) description of the system that describes
a distinct part of that system functionality.

An instantiation of a behaviour results in a service of value to a user. Multiple be-
haviours may provide the same service. Behaviours are associated with functional
entities. Functional entities are capable of exhibiting the characteristics defined in
a behaviour. A functional entity represents a logical or physical part of the system
capable of executing behaviour in the real world. A functional entity executes be-
haviour by itself or in cooperation with other functional entities. A behaviour can
be carried by more than one functional entity. A functional entity can exhibit more
than one behaviour.

Two sorts of behaviour types are distinguished: structured behaviour, which are com-
positions of one or more related smaller behaviour; and monolithic behaviour, which
are not further decomposed into smaller behaviours.

A monolithic behaviour consists of a group of related activity units that can take the

57

4.4. Metamodel for GSI

form of actions or interaction contributions. An activity unit represents an atomic
piece of work at a given abstraction level.

An action represents an activity that is defined entirely within a single behaviour.
An interaction represents an activity in which two or more declared behaviours par-
ticipate (cooperate). An interaction contribution represents the participation of a
behaviour in some interaction.

At higher levels in the behaviour hierarchy, the participation of one or more monolithic
behaviours in some interaction may be represented by the participation of the struc-
tured behaviour in which these monolithic behaviours are defined as sub-behaviours.
This may be applied recursively to structured behaviours that are defined as sub-
behaviours, such that the participation of a structured behaviour in some interaction
may represent the participation of monolithic and structured sub-behaviours.

Alternative groups of sub-behaviours may participate in an interaction. Therefore,
an interaction is defined as a set of one or more interaction alternatives, where each
alternative represents an optional group of participating sub-behaviours.

A causality condition is associated with each activity unit. This association is called
a causality relation. A causality condition defines the type of relation between two or
more activity units. This relation is used to specify how the occurrence or execution
of activity units depends on the occurrence or non-occurrence of other activity units.

The completion of an activity produces some result that can be manipulated by other
activities. An activity unit can have attributes. These attributes represent the result
that is established by an activity unit.

Three attributes are defined:

• the information attribute, which represents the product (typically some infor-
mation) that has been produced by the activity unit;

• the time attribute, which represents the time moment at which the product is
available;

• the location attribute, which represents the location where the product is avail-
able.

Items are a special class of the information attribute. Items represent the information
that is directly manipulated by an activity unit. The type of manipulation that can
be performed on an item by an activity unit are create, use, change or destroy the
item.

The metamodel described here only allows for the definition of an abstract syntax
for the design concepts used in the creation of GSI models. The semantics of the
concepts is provided by the ISDL modelling language (see Chapters 5). For further
detail on the ISDL metamodel, we refer to [Qua03].

58

Chapter 4. Geo-services design methodology (GSDM)

4.5 Architectural elements

To deal with the issues concerning the internal structure of a service, we have to
identify and characterise the architectural elements within a distributed geo-informa-
tion system. First of all we ignore details of implementation and communication of
these elements in order to focus on the functions they provide and the constraints
that apply to their interactions with one another.

Architectural elements basically encompass the different components of the system,
however, here we refer to a component in a slightly different manner than the way this
term is used by the software engineering community. The term component in software
engineering disciplines refers to a self-contained unit of independent deployment, with
well-defined interfaces that has no persistent state [Szy02]. Usually, a component
provides a particular function or group of related functions. A component is a reusable
unit of composition that can be used to form applications with other components in
the same or other computers in a distributed network. In this thesis, whenever we
refer to this type of component we explicitly say software component.

We refer to a component not only to represent units of software, but in general to
any architectural element of the system that provides a function required in a larger
processing chain. Such processing chain is formally described in a service realisation.
Components in this context can thus be used, for example, to refer to some abstract
representations of data. or to an action or set of actions performed by a human, and
that may yield a necessary result or provide a required function. In order to create
abstract representations of components of geo-information systems, GSDM makes use
of architectural elements. GSDM ignores the details of component implementation to
focus on the roles of components, the constraints upon their interaction with other
components, and their use of data.

process
dimension

control
dimension

data
dimension service realisation

{arrangement of elements}

information service
{product}

design problem
{set of requirements}

Figure 4.6: Modelling dimensions

59

4.5. Architectural elements

We distinguish three different types of architectural elements within a GSI system
(see Figure 4.6):

• data elements;
• processing elements; and
• connecting elements.

The data elements represent the information that is used, manipulated and/or gener-
ated by the system. The process elements represent the geo-processing capabilities of
the GSI system, which can perform transformations on data elements. The connecting
elements are like mediators, they represent the relationships between other elements.
The connecting elements represent the conditions and constraints that define how
the different elements may interact and how they are organised with respect to each
other in a service specification. A similar approach to system elements can be found
in [PW92, Fie00].

To illustrate the differences between these elements we can use metaphorical example.
Consider the games of soccer and handball. The two games are similar in structure,
they use a ball as data element and players as processing elements. The difference
between them lies in how these elements are allowed to interact with each other, which
are the context and rules of the games (the connecting elements). These connecting
elements are defined by game designers based on what they want to achieve with the
interactions.

Separation of concerns is the principle behind this modelling dimensions. For example,
by separating the concerns on the nature and state of data from the data processing
concerns, we simplify the processing elements allowing them to change and evolve
independently. In the same way portability of the data is improved by avoiding
that the data remain encapsulated and hidden within processing elements. However,
the drawback is that we lose the advantages of information hiding and therefore a
mechanism is required for processing elements to identify and understand the data
types.

The origin of the reference system determined by the modelling dimensions in Fig-
ure 4.6 represents the starting point of a development process. The process is activated
by a design problem. Design problems represent the various inputs (requests) to the
GSI system that have to be converted into services. A service has to be specified
before it can be realised. The path taken through the cube shown in Figure 4.6
corresponds to the functional specification of a service that satisfies a specific de-
sign problem using an appropriate arrangement of components. The execution of a
predefined service specification generates the desired service.

60

Chapter 5

Design concepts

If you don’t ask why this? often enough,
somebody will ask why you?

Tom Hirshfield

In this chapter we introduce the design concepts and their combination rules neces-
sary to represent architectures of distributed systems. An architecture consists of a
structure of parts and their functionality (functions). This chapter introduces the
concepts of entity and behaviour, and the other concepts that form our basic design
model for distributed systems. An entity is an abstract concept that can be used to
represent systems and system parts, while a behaviour is an abstract concept that
can be used to represent the functions of these systems and system parts.

This chapter is structured as follows: section 5.1 introduces the design concepts nec-
essary to represent structures of interconnected entities, section 5.2 introduces the
design concepts necessary to represent behaviours, section 5.3 introduces decomposi-
tion as a tool to produce designs at lower levels abstraction, and finally, section 5.4
discusses the structuring of behaviours as compositions of sub-behaviours.

5.1 Entity structures

A system can be modelled as a structure of interacting entities, each one of them
representing a logical or physical part of the system. This section presents the concepts
necessary to represent such structures.

61

5.1. Entity structures

5.1.1 Entities

An entity is an abstract concept that models the identity of some system in the real-
world (either existing or being built). At a certain abstraction level a single entity
may be used to describe, for example, a complete system. At another abstraction
level, though, the same system may be represented as an arrangement of interacting
entities. The entity concept is useful in systems development, because the concept
makes it possible to structure systems as compositions of entities, which facilitates
insight. This system structure can be made of either physical or logical parts or both.

A system has certain properties, which can be represented as characteristics of its
corresponding entity. For example, a car can be modelled as an entity that is made
of a particular material, with a particular form, and with a particular colour. The
material, the form, and the colour are the properties of the car that in this case can
be associated with its corresponding entity.

Geo-information systems have specific characteristics as well. The most important
characteristic of a geo-information system, in the context of this research, is its
functionality. This characteristic can be represented in terms of behaviour (see sec-
tion 5.2). This means that to properly model the way a geo-information system
operates, a behaviour has to be associated to the entity that represents the system.
To distinguish between different entities, each entity has to be uniquely identified
using an entity identifier (entity names).

5.1.2 Interaction points

Users interact with systems through mechanisms that are specially designed to sup-
port these interactions. An interaction point models the mechanisms through which
an entity can interact with its environment. Interaction points serve to delimit an
entity and hence to separate this entity from its environment. An entity without in-
teraction points is meaningless for its environment. Two or more entities must share
an interaction point, to enable their interaction.

Users of geo-information systems interact with these systems through, for example,
user interfaces. We considered an interface as the shared mechanism that support

GI-SystemUser

Int-A

(a) (b)

Entity-and-InteractionPoint.pdf

User

GI-system

Int-BInt-A

Int-B

GI-system

GI-system

Int-BInt-A request register

data
server

geo-processing
server

portrayal
server

service dispatcher

Int-BInt-A

Entity-decomposition.pdf

create
map

ι
τ
λ

: MapUnit [sheet-no = “62A” ; scale = “1:5000” ; type = “landuse”]
: GenerationDate = 22-JAN-03
: Address = www.gsinode.itc.nl/maps

Action-representation.pdf

Figure 5.1: Entities with shared interaction points

62

Chapter 5. Design concepts

the interaction between the system and a user. This mechanism can be modelled
as the interaction point that is common to the geo-information system and to the
user. Analogously to entities, interaction points must also be uniquely identified, for
instance, by means of an interaction point identifier.

Figure 5.1a shows the graphical representation of entities and interaction points. An
entity is represented by a non-overlapping polygon with cut-off corners. An interac-
tion point is represented by an oval that overlaps with the entities that share this
interaction point. The identifiers of entities and interaction points can be placed ei-
ther inside their graphical representations or in text boxes linked to the corresponding
entities or interaction points. Figure 5.1b depicts an alternative representation.

5.2 Behaviour concepts

A system is designed to provide a specific functionality, which makes it useful to its
environment. An entity, as explained in the preceding section, allows to define what
the system is. In order to specify what the system does, we associate the entity with
a behaviour. A behaviour represents the functionality of the system modelled by its
associated entity.

The functionality of a system consists of all the activities performed by the system
and the relationships between these activities. We use behaviour models to represent
the functionality of a system. A behaviour model is created by combining design
concepts that represent activities performed by the system and their relationships. In
this section we introduce the concepts required to specify behaviour.

5.2.1 Actions

An action is an abstract concept that represents a real world activity. The occurrence
of an action represents that its corresponding activity has been successfully performed.
Consequently, an action models the result (product) of an activity.

Examples of activities are filling up a request form, extracting data from a data repos-
itory, deriving the slope of the terrain, measuring the area of a parcel or identifying
a set of land use classes from a satellite image. These examples show the variety of
activities in geo-information production in terms of required expertise or machinery,
complexity, time duration, etc.

Each action is uniquely identified and is the most abstract representation of an ac-
tivity: it models only the result of an activity. As a consequence, an action cannot
be considered as a composition of other actions at the abstraction level at which it is
defined. This is called the atomicity property of actions.

To illustrate this, consider the activity of producing a landuse map. Obviously, this

63

5.2. Behaviour concepts

activity takes time and involves, e.g., visiting the area of interest to collect some
ground truth, acquiring satellite images, classifying the images, etc. However, if only
map production is relevant, then we can model this activity with a single action,
produce landuse map, which models this result. The action occurs at the moment the
map is finished, which is a single, indivisible point of time. An action is therefore an
indivisible unit of activity (atomic) at a certain abstraction level.

The atomicity property of does not imply that actions cannot be decomposed into
sub-actions or actions at a lower abstraction level. Action decomposition is needed
whenever the activity represented by an action has to be defined in more detail (see
section 5.3.2). For example, it is perfectly allowed to decompose the action produce
landuse map into the actions collect ground truth, classify images, etc. In the later
case, however, one is considering the original action at a lower abstraction level.

The atomicity of actions has the following consequences:

• An action either occurs completely, or does not occur at all. In contrast to
activities, actions cannot occur partly;

• If an activity delivers multiple results at multiple points of time and the differ-
ence between these results is relevant, then the activity has to be modelled as
multiple actions.

Activities can yield different forms of results. These results could be a concrete prod-
uct (a map, a land title, a book), information (personal data, a message) or a service
(a geo-referenced image). Furthermore, the result of an activity, once produced, be-
comes available at a particular place and at a specific point in time.

An action has attributes that can be used to represent the most relevant characteristics
of the activity it represents, namely the result produced by the activity, the time
moment when the result becomes available, and the physical or logical location where
the result can be found. Therefore an action has three attributes:

• the information attribute models the result of an activity;

• the location attribute models the physical or logical location at which the result
of the activity is made available;

• the time attribute models the point in time at which the established result
becomes available.

All the mentioned characteristics of activities are modelled in terms of values of the
different action attributes. Action attributes represent the characteristics of an ac-
tivity that are of interest to other activities once this activity has been successfully
completed. An action models what result is established in an activity, when and
where, but not how this result is established. An action abstracts from all mecha-
nisms of the activity that make it possible for the activity to reach its result.

64

Chapter 5. Design concepts

GI-SystemUser

Int-A

(a) (b)

Entity-and-InteractionPoint.pdf

User

GI-system

Int-BInt-A

Int-B

GI-system

GI-system

Int-BInt-A request register

data
server

geo-processing
server

portrayal
server

service dispatcher

Int-BInt-A

Entity-decomposition.pdf

create
map

ι
τ
λ

: MapUnit [sheet-no = “62A” ; scale = “1:5000” ; type = “landuse”]
: GenerationDate = 22-JAN-03
: Address = www.gsinode.itc.nl/maps

Action-representation.pdf

Figure 5.2: Action representation

We graphically represent an action by a circle. The action name is placed either
inside the circle, or in a text-box connected to the circle through a line. Action
attributes are represented in a text-box connected to the action circle. The values of
the information, time, and location attributes are represented by the symbols ι, τ,
and λ, respectively.

Figure 5.2 depicts action create map, which represents the activity of creating a map.
In Figure 5.2, action create map models the generation of the landuse map, No. “62A”
on January 22, 2003, which has been produced at www.gsinode.itc.nl/maps.

Actions are design concepts for defining models that represent the behaviours of
systems. Since a model prescribes the implementation of a system, the mechanism
that implements an action must be reliable, such that behaviours can be properly
implemented. Thus, if the activities specified in a model are to be carried out by,
for example, people or computers, the model should be structured in terms of such
entities. The actual physical assignment may occur at the end.

5.2.2 Interactions

Some activities in real-life are performed by two or more systems in cooperation.
In that case such activities take place at a shared interaction point of the entities
that represent the systems. An interaction is an abstract concept introduced to
model an activity performed by multiple systems in cooperation. The involvement or
participation of an entity in an interaction is called an interaction contribution.

Examples of interactions are transferring a product (e.g., from a seller to a buyer),
logging in to a system (usually a computer system and a user), or posting a letter,
which requires the co-operation between the person posting the letter and the mail
box (or, more abstractly, the postal service).

Interactions have the same attributes as actions. However, when two or more systems
interact, each of them has interaction constraints that define under which conditions
they can participate in the interaction and which are the results that can be es-
tablished by the activity. Therefore, two or more systems can only interact if the
intersection of their constraints on the possible values that can be established in the
interaction attributes does not result in an empty set of values. This means that after
applying all constraints at least one valid information value must be established. This

65

5.2. Behaviour concepts

applies to all three attributes information, time and location. Three basic forms of
value establishment are distinguished:

• value checking, which represents that one behaviour establishes a specific value
x, while other behaviour requires a specific value y. In order to allow the
interaction to happen the following condition must hold: x = y;

• value passing, which represents that one behaviour allows a specific value x to
be established, while other behaviour accepts any value from a set of values Y .
In order to allow the interaction to happen the following condition must hold:
x ∈ Y ;

• value generation, which represents that one behaviour allows any value from a
set of values X to be established, while other behaviour allows any value from
a set of values Y to be established. In order to allow the interaction to happen
the following condition must hold: X ∩ Y ≠ ∅.

Similarly to actions, interactions are also uniquely identified by means of interaction
identifiers. The graphical representation of an interaction stresses the partitioning of
responsibilities between the participating entities. An interaction is represented using
connected circle segments, one circle segment for each participating entities, Each
circle segment represents the interaction contribution of the participating entity.

Figure 5.3 shows an interaction that models a login operation as an activity per-
formed by two systems: the computer system and a human user. The interaction
contribution of an entity is identified by the interaction identifier and (optionally) the
entity identifier, separated by a dot. Interaction identifiers are underlined in order to
distinguish them from action identifiers.

In Figure 5.3, interaction contribution login.user (system user) defines that the user
would login at any time with the password “pjf286” to the address ftp.gsi.sys. interac-
tion contribution login.user (computer system) defines that the system accepts users
to login to the address ftp.gsi.sys, with one of two passwords “pjf286” or “vmd404”,
somewhere between 07:30 and 20:30 hours every day (no constraint on the day has
been defined).

This example illustrates value checking, since both for the user and for the computer
system the same address value must be established for the interaction to happen. The
example illustrates value passing, since the user logs in with the password “pjf286”

login.user

ι
τ
λ

: Password = “pjf404”
: Time | any time
: Address = ftp.gsi.sys

login.system

ι
τ
λ

: Password = “pjf286”,“vmd404”
: Time | 07:30 < τ < 22:30
: Address = ftp.gsi.sys

Interaction-representation.pdf

Figure 5.3: Interaction representation

66

Chapter 5. Design concepts

and the computer system allows two possible passwords for a login operation, one of
which matches the users password. This example also illustrates value generation,
as the user may login at any time and the system allows login operation during the
specific time period 07:30..22:30. Therefore the interaction is only allowed to occur at
an allowed time moment.

5.2.3 Causality relations

In general, the occurrence of an action depends on the satisfaction of a condition.
This condition consists of some statement on the occurrence or non-occurrence of
other actions. For example, the development of a set of aerial photographs depends
on these photographs being taken before. Once the condition ‘the aerial photos have
been taken’ is satisfied, the development photographs action becomes possible, and
may happen at any time. Some actions do not depend on other actions, and are
allowed to occur at any time. These actions are called initial actions.

Causality relations are used to model the relationships between actions (interactions).
A causality relation defines how the occurrence of an action, the so-called target action,
depends on the occurrences or non-occurrences of other actions. A causality relation
models the conditions under which an action becomes enabled. A causality relation
consists of:

• a causality condition, which defines how the occurrence of the result action
depends on the occurrences or non-occurrences of other actions;

• action attribute constraints, which define how the values established in the in-
formation, time and location attributes of an action influence the occurrence
of a related action (a target action) and possibly the values of its information,
time and location attributes; and

• a probability attribute, which defines the likelihood of occurrence of the tar-
get action in case the causality condition and action attribute constraints are
satisfied.

Causality conditions

Consider two actions a and b, which happen at time moments τa and τb respectively.
There exist three possibilities in terms of the temporal ordering of the occurrence of
these two actions: a occurs before b (τa<τb), a occurs at the same time as b (τa=τb)
or a occurs after b (τa>τb). These possibilities do not overlap, therefore we can
define some basic causality conditions for action a as follows (a causality condition is
represented by the symbol ‘γ’):

• γ = b, defines that the occurrence of action b is a condition for the occurrence
of action a, such that the occurrence of b must precede the occurrence of a.

67

5.2. Behaviour concepts

Since action a is only allowed to occur after action b occurs, we say that the
occurrence of action b enables the occurrence of action a (τa>τb). This condition
is called a enabling condition and action b is called a enabling action.

• γ =¬b, defines that the non-occurrence of action b is a condition for the occur-
rence of action a, until a has occurred. Action a is allowed to occur when b does
not occur before a and b does not occur simultaneously with a. Since action a
can only occur if action b has not occur, we say that the occurrence of action b
disables the occurrence of action a (τa<τb). This condition is called a disabling
condition and action b is called a disabling action.

• γ ==b, defines that the occurrence of action b is a condition for the occurrence
of action a, such that the occurrence of b must happen simultaneously with the
occurrence of a (τa=τb). This condition is called a synchronisation condition
and actions a and b are called synchronised actions, since their occurrence have
to be synchronised.

• γ = √, defines that action a does not depend on the occurrence of other actions,
such that action a may occur independently from other actions at any time.
This condition is called start condition since no condition exists, and action a
is called initial action.

Simple behaviour definitions

A behaviour definition consists of one or more actions and their relations. Since we
use causality relations to model the relations between actions, we define a behaviour
in terms of a set of causality relations, one for each action of the behaviour.

The textual representation of causality relation has the following form: γ → a. Where
a is the identifier of the target action, and γ is the causality condition of action a.

The textual notation of a behaviour definition consists of a behaviour identifier, fol-
lowed by the symbol ‘=’, and a set of causality relations delimited by the symbols
‘{’ and ‘}’. For example, the notation B = {√ → d , √ → c} represents a behaviour
definition named B, which contains two independent actions c and d . Some examples
of simple behaviours are explained below, and are depicted in Figure 5.4:

• a follows b: a enabling condition is used to define the sequential ordering of
a and b such that a occurs after b. The textual notation for this behaviour is
B = {√ → b, b → a}. The enabling condition relation is graphically represented
by a solid arrow from b to a (see Figure 5.4i);

• either a or b occur: mutual disabling conditions are use to define a choice
between a and b, such that only one of the actions occurs. This choice defines
that either the occurrence of b disables the occurrence of a, or vice versa. The
textual notation for this behaviour is B = {¬a → b, ¬b → a}. The disabling
condition ¬b of action a is graphically represented by a solid arrow from b to a,
with a vertical bar in between (see Figure 5.4ii);

68

Chapter 5. Design concepts

b a b a

b a b b

ground_truht

image_classificationgeoreferencing

feature_retrieval

a

c

b
(i) a follows b

b a b a

b a b b

ground_truht

image_classificationgeoreferencing

feature_retrieval

a

c

b
(ii) either a or b occur

b a b a

b a b b

ground_truht

image_classificationgeoreferencing

feature_retrieval

a

c

b

(iii) a and b are synchronised

b a b a

b a b b

ground_truht

image_classificationgeoreferencing

feature_retrieval

a

c

b

(iv) independence of a and b

Figure 5.4: Some simple action relations

• a and b are synchronised: a synchronisation condition between a and b defines
that both actions occur at the same time, or both actions do not occur at all.
Synchronisation is a reciprocal condition for actions a and b, since a can only
synchronise with b when b can synchronise with a. The textual notation for
this behaviour is B = {=b → a, =a → b}. The synchronisation condition =b
of action a is graphically represented by a solid double lined from b to a (see
Figure 5.4iii);

• independence of a and b: defines two initial actions a and b, with no depen-
dency defined between them, therefore they may occur independently of each
other at any time. In this case both actions have an associated start condition.
The textual notation for this behaviour is B = {√ → a, √ → b}. The start con-
dition is graphically represented by a solid arrow pointing to the action (see
Figure 5.4iv).

5.2.4 Conjunction of causality conditions

Often one needs to represent that multiple basic conditions involving different actions
must all be satisfied to enable the occurrence of other action. Conjunctive causality
conditions can be used to define the conjunction of two or more causality conditions
involving different actions. The and -operator ‘∧’ allows the representation of the
conjunction of two causality conditions. The conjunction of multiple conditions can
be represented by the repeated application of the same and -operator.

The conjunction of two causality conditions γ1 and γ2 of result action a is defined
as follows: γ1 ∧ γ2 → a. This definition indicates that γ1 and γ2 are both necessary
conditions for the occurrence of result action a, Therefore action a is only allowed to
occur when both conditions γ1 and γ2 are satisfied. The use of the and -operator is
illustrated with the following examples:

• a ∧ d ∧ ¬b → c , specifies that action c is allowed to occur after actions a and
d have occur and when action b has not occurred before c nor occurs simulta-
neously with c ;

69

5.2. Behaviour concepts

b a b a

b a b b

collect_groundtruth

image_classificationgeoreferencing

feature_retrieval
c

a

b

cd

τd : T τc : T

τc < τd - 2

Figure 5.5: Conjunction of causality conditions

• a ∧ ¬b ∧ =d → c , specifies that action c is allowed to occur simultaneously with
d after action a has occurred and when action b has not occurred before c nor
occurs simultaneously with c .

Figure 5.5 depicts an example of the conjunction of enabling conditions. In this fig-
ure the symbol ‘�’ is used to graphically represent the conjunction operator. Action
image classification, r for short, models the classification of a satellite image. The ac-
tions ground truth, georeferencing and feature retrieval , c1 , c2 and c3 for short, model
activities that produce inputs required by action r of generate its results. The con-
junction models that the classification of an image can only be finished successfully
after all three other actions have finished. The textual representation of the behaviour
depicted in Figure 5.5 is as follows:

B := { c1 ∧ c2 ∧ c3 → r ,
√ → c1 ,
√ → c2 ,
√ → c3 }

5.2.5 Disjunction of causality conditions

When creating composite causality conditions, often one needs to represent that at
least one simple or conjunctive causality condition must be satisfied for a certain
action to happen. Disjunctive causality conditions define alternatives between two
or more basic or conjunctive causality conditions. The or-operator ‘∨’ allows the
representation of the disjunction of disjunctive causality conditions.

The disjunction of two causality conditions γ1 and γ2 of result action a is defined
as follows: γ1 ∨ γ2 → a. This definition establishes that γ1 and γ2 are alternative
causality conditions for the occurrence of the result action a, such that a is allowed
to occur when at least one of these conditions is satisfied in an execution.

70

Chapter 5. Design concepts

b a b a

b a b b

collect_groundtruth

image_classificationgeoreferencing

feature_retrieval
c

a

b

cd

τd : T τc : T

τc < τd - 2

Figure 5.6: Disjunction of causality conditions

Figure 5.6 depicts behaviour B = {a ∨ b → c , √ → a, √ → b}. In this Figure the
symbol ‘�’ is used to graphically represent the disjunction operator. In Figure 5.6
there are two possibilities: the occurrence of c either depends on the occurrence of a
and is then independent of b, or the occurrence of c depends on the occurrence of b
and is then independent of a.

This definition implicitly states that, according to what has been specified, an oc-
currence of c as a consequence of both the occurrence of a and the occurrence of
b is not allowed. This is because the occurrence of c can not refer to the result of
both occurrences a and b, when assuming that both a and b have occurred before c ,
because c it is only related to either a or b.

The abstract causality condition represented in Figure 5.6 describes, for example,
the allocation of a particular resource, e.g., a stereoplotter. In such case, actions a
and b account for two independent requests to use the stereoplotter, and action c
represents the allocation of the stereoplotter to a particular task. In order to allocate
the stereoplotter only one of the requests is necessary, since the resource can only be
granted to one of them. The possible occurrence of another request is irrelevant to
perform any further action.

Table 5.1 depicts a set of commonly used action relations between actions a, b, c and
d . These relations represent definitions of consistent and comprehensible behaviours
that consist of multiple actions composed as conjunctions and/or disjunctions of ac-
tions relations. The Table also shows the corresponding graphical notation for each
behaviour.

5.2.6 Action attribute constraints

In section 5.2.1 we introduce the concept of the information, time and location at-
tributes, which allow one to model the establishment of information, time and loca-
tion values in action occurrences. In this section we extend this concept with attribute
constraints, which allow to model the dependencies between information, time and lo-
cation values established in different action occurrences. Action attribute constraints
are part of the definition of causality relations.

The possible values that can be established in an attribute of a result action a are
determined by three types of constraints:

71

5.2. Behaviour concepts

• the attribute value domain, which defines the values that are allowed by result
action a itself;

• attribute reference relations, which define how the attribute values of a depend
on the attribute values of the actions in the causality condition of a;

• attribute causality conditions, which define how the occurrence of a depends on
the attribute values of the actions in the causality condition of a.

This extension can be performed analogously to the information, time and location
attributes of actions. Therefore we present attribute constraints in a uniform way for
the three attributes.

Table 5.1: Common action relations

Action relation
Graphical

Representation
Textual

Representation

choice

a

c

b

a

c

b

b

c

a

b

d

a

b a

c

{¬a → b, ¬b → a}
. .

and - join a

c

b

a

c

b

b

c

a

b

c

a

b a

{b ∧ c → a,
√ → b,
√ → c}

. .

or - join

a

c

b

a

c

b

b

c

a

b

c

a

b a

{b ∨ c → a,
√ → b,
√ → c}

. .

and - split

a

c

b

a

c

b

b

c

a

b

c

a

b a

{a → b, a → c}

. .

or - split
(multiple choice)

a

c

b

a

c

b

b

c

a

b

d

a

b a

c

{a ∧ ¬c ∧ ¬d → b,
a ∧ ¬b ∧ ¬d → c ,
a ∧ ¬b ∧ ¬c → d ,

√ → a}

72

Chapter 5. Design concepts

Attribute value domain

An action is used to represent a specific activity, for example, updating maps, mea-
suring control points, classifying images, etc. This implies that an action only allows
a certain range of attribute values to be established. The restriction of the universe
of attribute values to a specific range is called the attribute value domain of a result
action.

a

c

b

a

c

b

b

c

a

b

d

a

b a

c

cd

τd : [08:00 .. 17:00] τc : [09:00 .. 12:00]

cd

ιd : [point,line,polygon] ιc : N

ιd = polygon

cd

τd : [08:00 .. 17:00] τc : [09:00 .. 12:00]

τc = τd + 60min

Figure 5.7: Attribute value domain

Figure 5.7 shows the definition of value domain for the information attribute of actions
c and d . The time attributes are represented in separate text-boxes in the graphical
notation, and are represented between brackets to the right side of the result action
in the textual notation. In Figure 5.7 the symbols τc and τd represent the time val-
ues established in actions c and d , respectively. The range of allowed time attribute
values of actions c and d is depicted between square brackets. The behaviour de-
picted in Figure 5.7 defines that c and d are only allowed to occur during the time
ranges [08:00..17:00] and [09:00..12:00], respectively. The textual representation of this
behaviour in as follows:

B := { d → c (τc : [09:00..12:00]),
√ → d (τd : [08:00..17:00]) }

Location and information values can be dealt with in the same way as the time values
presented in Figure 5.7. For a given action, the set of values that are allowed as a result
of the action is called the information value domain, the set of locations where the
action occurrence make its results available is called the location value domain, and
the set of the time moments when the action can occur is called time value domain.
The definition of attributes value domains is optional, therefore it is only used when
it is relevant at the considered abstraction level, otherwise it can be omitted.

Attribute reference relation

The attribute value established by some action occurrence may depend on the at-
tribute values established in other action occurrences. In this case we say that an
action occurrence refers to the attribute values of other action occurrences.

An attribute value reference from one action occurrence to another implies a depen-
dency (relation) between these action occurrences. Therefore, an action c may refer

73

5.2. Behaviour concepts

a

c

b

a

c

b

b

c

a

b

d

a

b a

c

cd

τd : [08:00 .. 17:00] τc : [09:00 .. 12:00]

cd

ιd : [point,line,polygon] ιc : N

ιd = polygon

cd

τd : [08:00 .. 17:00] τc : [09:00 .. 12:00]

τc = τd + 60min

Figure 5.8: Attribute reference relation

to the attribute value established by another action d, when c depends on d , and c
occurs after d .

Figure 5.8 depicts a behaviour in which action c refers to the time value of action d .
The time value of action c depends on the time value established in action d such that
the value of τc must be greater than the value of τd (which is implicit in the enabling
relation) and less or equal to the value of τd plus 60 minutes. The relation between
τc and τb is called a time reference relation. The conjunction of this time reference
relation with the time value domains of c and d allows action c to occur within an
hour after the occurrence of action d . That means action c can only occur if action d
occurs between 08:00 and 11:00. The occurrence of action d at any other time will not
enable the occurrence of action c , because the reference relation τd < τc ≤ τd + 60min

can not be satisfied. The textual representation of the behaviour in Figure 5.8 is as
follows:

B := { d → c (τc : [09:00..12:00]) [τc ≤τd + 60min],
√ → d (τd : [08:00..17:00]) }

The reference relation τc ≤ τd + 60min is graphically represented within a text-box
linked to the enabling relation between the involved actions, in this case c and d .
In the textual notation, information reference relations are represented as constraints
between square brackets to the right side of the corresponding attribute of the result
action.

Implicit time references

Some causality relations prescribe a specific time relation. For example, an enabling
relation contains an implicit time constraint, which defines that the enabling actions
must occur before the result action. That means, for instance in the relation b → a
there is an implicit time constraint τa > τb prescribed by the enabling relation be-
tween b and a. This time constraint is called an implicit time reference relation.
Implicit time reference relations must be made explicit whenever we have to deter-
mine the complete time attribute constraint of some result action to avoid impossible
behaviours.

74

Chapter 5. Design concepts

b a b a

b a b b

collect_groundtruht

image_classificationgeoreferencing

feature_retrieval
a

c

b

cd

τd : T τc : T

τc < τd - 2

Figure 5.9: Implicit time reference (impossible action)

For example, Figure 5.9 defines the implicit time reference relation τc > τd prescribed
by the enabling relation between actions b and a. The time reference relation τc < τd−2
implies that τc must be smaller than τd. In other words, action c may occur before d
occurs. This creates a conflict with the implicit time constraint τc > τd prescribed by
the enabling relation between d and c , which means that action c will never occur in
this behaviour definition.

The sane consideration have to be taken into account when defining time relations
between synchronised actions, in which the synchronisation relation defines an implicit
time reference relation that imposes that all synchronised actions must occur at the
same time moment.

Attribute causality condition

A causality condition can be extended to define conditions on the attribute values of
the enabling actions. These conditions are called attribute causality conditions, and
must be satisfied in order to allow the occurrence of the result action.

a

c

b

a

c

b

b

c

a

b

d

a

b a

c

cd

τd : [08:00 .. 17:00] τc : [09:00 .. 12:00]

cd

ιd : [point,line,polygon] ιc : N

ιd = polygon

cd

τd : [08:00 .. 17:00] τc : [09:00 .. 12:00]

τd < τc = τd + 60min

Figure 5.10: Attribute causality condition

Figure 5.10 depicts an example of an information causality condition. Action d repre-
sents the extraction of a geometric feature from a data collection, which has geometry
type point, line or polygon. The information value domain of action d is defined as ιd:
[point, line, polygon]. Action c represents the calculation of the area of features. The
information value domain of action d is defined with the symbol ‘N’ which represents
any natural number. The information causality condition ιd = polygon represents that

75

5.3. Decomposition

action c is only allowed to occur when the information value established in d is equal
to polygon. The textual representation of the behaviour in Figure 5.10 is as follows:

B := { d [ιd = polygon] → c (ιc : N),
√ → d (ιd : [point,line,polygon]) }

Attribute causality conditions are represented within a text-box linked to the enabling
relation between the actions in the graphical notation. In the textual notation, infor-
mation causality conditions are represented as constraints between square brackets to
the right side of the corresponding causality condition.

5.3 Decomposition

We have introduced so far a set of comprehensive design concepts suitable to specify
systems at a single level of abstraction. Decomposition is therefore needed to obtain
more detailed system descriptions, i.e., specifications at a lower level of abstraction.
For this purpose we introduce entity decomposition and action decomposition.

5.3.1 Entity decomposition

An entity may consist of other, lower-level, entities or sub-entities. In order to add
internal structure, an entity can be decomposed into two or more sub-entities. These
sub-entities should be interconnected via internal interaction points, to be able to
cooperate. Furthermore, the interaction points of the original entity should be main-
tained.

To be able to represent an entity in this way, we need to know the internal structure
of the system that is represented by the original entity, in terms of the parts that
compose the system. Figure 5.11 depicts a decomposition of the GI-system entity of
Figure 5.1, into five sub-entities, which are interconnected via five internal interaction
points.

GI-SystemUser

Int-A

(a) (b)

Entity-and-InteractionPoint.pdf

User

GI-system

Int-BInt-A

Int-B

GI-system

GI-system

Int-BInt-A request register

data
server

geo-processing
server

portrayal
server

service dispatcher

Int-BInt-A

Entity-decomposition.pdf

create
map

ι
τ
λ

: MapUnit [sheet-no = “62A” ; scale = “1:5000” ; type = “landuse”]
: GenerationDate = 22-JAN-03
: Address = www.gsinode.itc.nl/maps

Action-representation.pdf

Figure 5.11: Entity decomposition (refinement)

76

Chapter 5. Design concepts

The sub-entities of Figure 5.11 represent the sub-systems that define the internal
structure of the GI-system entity. Since the entity structure of the decomposition
adds more detail to the initial representation, this new entity structure is called a
refinement of the GI-system entity. To reflect this the GI-system entity is represented
in Figure 5.11 as a dashed polygon containing the decomposition. The inverse of
decomposition is composition, which allows one to abstract from (parts of) the internal
structure.

5.3.2 Action decomposition

In order to obtain a more detailed model of an activity, this activity has to be decom-
posed into multiple sub-activities and their relations. The relevant characteristics of
these sub-activities can be modelled again by distinct actions at a lower abstraction
level. The concepts necessary to model relations between actions are explained in
detail in section 5.2.3.

login.user

ι
τ
λ

: Password = “pjf404”
: Time | any time
: Address = ftp.gsi.sys

login.system

ι
τ
λ

: Password = “pjf286”,“vmd404”
: Time | 07:30 < τ < 22:30
: Address = ftp.gsi.sys

Interaction-representation.pdf

create_map

take_aerialphoto

measure_controlpoints

extract_features

plot_map

decomposition

composition

Action-decomposition.pdf
Figure 5.12: Action decomposition

Figure 5.12 depicts the modelling of the activity of creating a map, at two different
abstraction levels. At the most abstract level, a single action create map models what
result is established by the entire activity Create map. At a more detailed level, the
activity Create map is decomposed into four related sub-activities, which are modelled
by four distinct actions.

The arrows connecting the actions depicted in Figure 5.12 represent enabling rela-
tions between the actions. For example, action extract features may occur only after
action measure controlpoints has occurred. Intuitively, these models are considered con-
sistent if the result of action plot map, which is the final action of activity Create map,
corresponds to (conforms to) the result of action create map.

An action may also model an integrated interaction, which abstracts from the indi-
vidual interaction contributions of the involved entities. Replacing an action by an
interaction is considered a refinement of the action, since an interaction defines a
specific distribution of the responsibility for performing the interaction over multiple
entities. We call the replacement of an action by an interaction action distribution.
All constraints on the interaction are combined into the corresponding action. Fig-
ure 5.13 depicts the distribution of action measure that is refined into the interaction

77

5.4. Behaviour Structuring
Parameters : [shortest , cheapest , …]

Inputs : start : point
end : point

Results : route : line
backg : image

client entity

service entity

Functional entity Functional entity

Int-A

Int-C

Int-B

client entity

auxiliary entity

service entity

Int-A

Int-B

BB–OptimumRoute

Interaction-attributes.pdf

Interaction-comparison.pdf

measure

measure
measure

measure

refinement

Figure 5.13: Action distribution

measure consisting of three interaction contributions.

5.4 Behaviour Structuring

In this section we discuss the techniques to structure behaviours as compositions
of smaller or simpler sub-behaviours. A structured behaviour is in general easier
to read and understand than an unstructured (monolithic) behaviour. Structuring
large behaviours also enables the identification of sub-behaviours that could happen
multiple times, and in these cases one can create a structured behaviour that defines
a behaviour in terms of a repetition of a (simpler) behaviour (see Figure 5.18). An
important aspect of behaviour structuring is that it allows one to decompose a complex
behaviour into sub-behaviours that can be assigned to different entities.

We distinguish This chapter two techniques to structure behaviours: causality-ori-
ented behaviour structuring and constraint-oriented behaviour structuring. These
techniques can be used separately and in combination.

5.4.1 Causality-oriented structuring

In the structuring of a complex behaviour, one may want to define this behaviour in
terms of sub-behaviours and the relations between these sub-behaviours. Relations
between (sub-)behaviours play the same role in behaviour definitions as relations be-
tween actions, except at a different level of granularity: behaviours can be defined as
compositions of actions, as compositions of sub-behaviours, or a combination of both.
The causality-oriented structuring technique allows the structuring of a complex be-
haviour in terms of less complex sub-behaviours and their relationships. That means
in a causality-oriented structured behaviour, conditions in one behaviour definition
enable or disable actions in another behaviour.

A relation between two or more behaviours can be defined by introducing entry and
exit points. Entry points and exit points are only syntactical constructs that enable
the decomposition of causality relations. This allows for an action and the condition

78

Chapter 5. Design concepts

a

c

b

c

b

a

Causality-Oriented-Decomposition.pdf

B

B1 B2

Figure 5.14: Causality-oriented structuring

for its occurrence to be defined in distinct sub-behaviours. Therefore, entry and exit
points of monolithic behaviours are applied in the following way: an exit point in
some behaviour defines a causality condition that can be used to enable actions in
other behaviours; an entry point in some behaviour allows actions in this behaviour to
be enable by conditions defined in other behaviours. Consequently, entry points and
exit points have to be coupled together to define a causality relation where actions of
a latter behaviour become dependent of actions of a former behaviour.

Figure 5.14 illustrates the decomposition of causality relation b ∧ c → a into the
(pseudo)causality relations b ∧ c → exit and entry → a, which are defined in behaviours
B1 and B2 , respectively. Entry points and exit points are graphically represented by
the symbol ‘B’, pointing inside and outside the corresponding behaviour, respectively.
Causality relation b ∧ c → exit defines that the exit point of B1 represents causality
condition b ∧ c . Causality relation entry → a defines an entry point in the behaviour
B2 , representing a place-holder for the causality condition of a.

The textual representation of the behaviours depicted in Figure 5.14 are as follows:

B := { b ∧ c → a, √ → b, √ → c }

B1 := { b ∧ c → exit, √ → b, √ → c }

B2 := { entry → a }

By combining the exit point of B1 with the entry point of B2 , condition b ∧ c is
assigned as the causality condition of action a. This corresponds to replacing entry in
the causality condition of a by causality condition b ∧ c . The combination of an exit
and an entry point is graphically represented by linking the corresponding exit and
entry symbols with a solid line. The causality-oriented structured causality relation
represents the same condition as the unstructured causality relation.

79

5.4. Behaviour Structuring

a

c

b

c

b

a

Causality-Oriented-Decomposition.pdf

B

B1 B2

c

d

r

a

e

f

c

d

r

a

e

f

1

2

1

2

1

2

1

2

B

B
B1 B3

B2

Entry-and-Exit-Points.pdf (i) Causality-oriented behaviour composition structure

a

c

b

c

b

a

Causality-Oriented-Decomposition.pdf

B

B1 B2

c

d

r

a

e

f

c

d

r

a

e

f

1

2

1

2

1

2

1

2

B

B
B1 B3

B2

Entry-and-Exit-Points.pdf

(ii) Monolithic behaviour structure

Figure 5.15: Multiple entry points and exit points

Multiple entry and exit points

Figure 5.15 illustrates the use of entries and exits to compose behaviours from sub-be-
haviours. Figure 5.15(i) depicts the composition of behaviour B from sub-behaviours
B1 , B2 and B3 . Figure 5.15(ii) depicts the corresponding monolithic definition of B.

The sub-behaviours in Figure 5.15(i) have multiple entries or exits. In order to dis-
tinguish between multiple entries and exits of a single sub-behaviour, the keywords
exit and entry are appended with a unique identifier. In the graphical representation,
this identifier is depicted inside the symbol ‘B’. Here, we have used natural num-
bers as identifiers for entries and exits in a behaviour. The textual representation of
behaviour B as depicted in Figure 5.15(i) is as follows:

B = {B1 .exit1 → B2 .entry1, B1 .exit2 → B2 .entry2,
B2 .exit1 → B3 .entry1, B2 .exit2 → B3 .entry2

where
B1 = { c → d ∧ r , d → exit1, r → exit2 },
B2 = { entry1 ∧ ¬f → e, entry2 ∧ ¬e → f , e → exit1, f → exit2 },
B3 = { entry1 ∨ entry2 → a } }

Parameterised exits and entries

The association of a causality condition with an exit or entry point is called a
(pseudo-)causality relation. However, in contrast to a result action, action attributes

80

Chapter 5. Design concepts

a

c

b

c

b

a

Causality-Oriented-Decomposition.pdf

B

B1 B2

c

d

r

a

e

f

c

d

r

a

e

f

1

2

1

2

1

2

1

2

B

B
B1 B3

B2

Entry-and-Exit-Points.pdf

B1

B2

Parameterised-points.pdf

b

ιb : N

ιc : N

c

v1 = ιb
v2 = ιc

v1, v2 : N

a

ιa : [0..9] | ιa = v1 + v2

Figure 5.16: Parameterised exits and entries

can not be associated with an exit or entry point, since exit points and entry points
do not model activities. Instead, exit and entry points are introduced as syntactic
constructs that allow one to define a result action and (parts of) its causality condition
in different sub-behaviours.

For the situations where actions in one behaviour need to refer to the result values of
actions in another behaviour, we allow that an entry or an exit can be parameterised
with a list of information, time or location variables. These variables should hold all
information passed from the exit point to the entry point. These variables contain
a selection of the information, time and location values of the enabling actions that
can be referred to when the causality condition associated with this entry or exit is
satisfied. A requirement on the combination of an exit and an entry is that both have
the same parameter list, i.e., the same number of variables, having the same type and
specified in the same order. Only the variable names of these parameter lists may
differ.

Consider the example of Figure 5.16. Actions b and c establish information values,
and action a has to refer to the information values of b and c . For this purpose,
the exit point of B1 and the entry point of B2 are extended with a parameter list
consisting of two information variables v1 and v2. The resulting causality relations
obtained with this extension are defined as follows:

B = { √ → B1 .entry1, √ → B1 .entry2, B1 .exit → B2 .entry

where
B1 = { . . . , b (ιb : N) ∧ c (ιc : N) → exit (v1,v2 : N [v1 = ιb, v2 = ιc] },
B2 = { entry (v1,v2 : N) → a (ιa : N) [ιa = v1 + v2] } }

The statement B1 .exit → B2 .entry is allowed, since the parameter lists of B1 .exit and
B2 .entry match. This statement implicitly defines that the parameters of B2 .entry get
the same values as the corresponding parameters of B1 .exit.

81

5.4. Behaviour Structuring

Behaviour recursion

Some behaviours in real life consist of the repeated execution of a sub-behaviour. For
example, the behaviour of a quality control process can be considered as the repetition
of the behaviour revise quality of product, in which an instance of this behaviour is
created each time the product is rejected. Figure 5.17 depicts the behaviour of a
product delivery chain, in which action c models the checking of a product, action r
models the revising and improving of a rejected product, action p models the packing
of the product and action s models the sending of the product.

c0

p0

r 0

s0

c

p

r

s

c1

p1

r 1

s1

c2

p2

r 2

s2

B
D

D

Repetitive-Behaviours.pdf

Figure 5.17: Repetition of a sub-behaviour

The same repetitive behaviours can be modeled using the recursive instantiation of
a behaviour. Figure 5.17 shows the graphical representation of behaviour B, which
models the behaviour of a product delivery chain by the recursive instantiation of
sub-behaviour D, which models the quality check and delivery of a product.

c0

p0

r 0

s0

c

p

r

s

c1

p1

r 1

s1

c2

p2

r 2

s2

B
D

D

Repetitive-Behaviours.pdf

Figure 5.18: Recursive instantiation of sub-behaviour D

The textual notation of the recursive instantiation of sub-behaviour D of behaviour
B is as follows:

B = { √ → D.entry

where
D = { entry → c ,

c → p ∨ r ,
p → s,
r → D.entry } }

82

Chapter 5. Design concepts

c0

p0

r 0

s0

c

p

r

s

c1

p1

r 1

s1

c2

p2

r 2

s2

B
D

D

Repetitive-Behaviours.pdf

a

c

Constraint-Oriented-Decomposition.pdf

B
B1

b

B2

B1

B2

c

b

c

b

a
a

(i)
(ii)

(iii)

a
a

a
a

Figure 5.19: Constraint-oriented decomposition

5.4.2 Constraint-oriented structuring

An action can be defined in distributed form as a composition of interaction contribu-
tions. Following the same reasoning, a behaviour can be defined in distributed form as
a composition of interacting sub-behaviours. The structuring of a behaviour in terms
of a composition of interacting sub-behaviours is called constraint-oriented structur-
ing. The constraint-oriented structuring technique allows one to decompose complex
conditions and constraints on the execution of an action into simpler sub-conditions
and sub-constraints that are assigned to interaction contributions defined in sepa-
rate sub-behaviours. Furthermore, the constraint-oriented structuring technique is
needed to structure a behaviour in sub-behaviours, such that each sub-behaviour can
be assigned to an entity in an entity structure.

Figure 5.19 depicts the decomposition of action a into two interaction contributions
that are assigned to behaviours B1 and B2 . In the case of Figure 5.19(ii) action a
has been distributed such that the interaction contribution a of B1 depends on the
occurrence of b and the interaction contribution a of B2 depends on the occurrence of
c . Since an interaction can only occur when both interaction contributions can occur,
interaction a can only occur after both b and c have occurred. Consequently, the
condition for the occurrence of action a is exactly the same as the condition for the
occurrence of interaction a. Figure 5.19(iii) depicts a different assignment of actions
b and c to sub-behaviours B1 and B2 , namely that actions b and c are both assigned
to B2 .

83

5.4. Behaviour Structuring

84

Chapter 6

The external perspective

A child on a farm sees a plane fly overhead and dreams of a faraway place.
A traveller on the plane sees the farmhouse and dreams of home.

Carl Burns

This chapter introduces the so called ‘external perspective model’, which is used to
define a GSI system’s external behaviour by explicitly identifying the boundary level
interactions in which the system and its environment participate.

The external perspective model is useful to provide a specific description of individual
services from the user’s point of view. It provides insight in the relations between
the system and its environment and it also serves as the basis for developing internal
perspective models in subsequent design phases.

The structure of the chapter is organised as follows: section 6.1 explains basic aspects
of GSI systems and their working environments; section 6.2 describes the trajectory
to obtain a external perspective design; section 6.3 provides the necessary concepts
to create external perspective models; section 6.4 introduces some specific data types
that are needed to handle geographic data; and section 6.5 describes the techniques
to create external perspective models according to our design trajectory and illustrate
it with the simple example of a service definition.

6.1 The GSI system

Figure 6.1 shows a GSI system composed of a set of Geo-Service Providers (GSP).
Each provider focuses on certain needs of one or more user communities. A user com-
munity [OGC03b] is collection of people (a government agency or group of agencies, a

85

6.1. The GSI system

GI-system.pdf

sp-1
GSP - Node

Geo-information market

sp-2
GSP - Node

sp-N
GSP - Node

GSI - system

… user communities …

Design
Concepts

Application
domain

Design
notation

represents

Design
Methods

manipulate

charracterises

ModelsTools

use

supported by

describe

are used to create

validate, …

Figure 6.1: The GSI as a target oriented system

profession, a group of researchers in the same discipline, corporate partners cooperat-
ing in a project, etc.), who share a common digital geographic information language
and common spatial feature definitions, at least part of the time. This implies a
common view of the world as well as common abstractions, feature representations,
and metadata.

Each provider has accordingly different responsibilities towards the community and
therefore its own set of requirements. Service providers may range from just data
producers, collecting foundation data, to specialised information developers that ex-
ploit data to generate tailored products to support different applications (planning,
decision making, military operations, etc.) in the market.

GSI systems are therefore complex systems that encompasses multiple independent
entities. These entities benefit from each other’s functionality and together realise the
services of the system. Services are seen as the result of the combined effect of the
activities within the system on its surrounding environment. This means that one or
more of the system’s entities work in a coordinated manner to provide services.

To make sense of these systems, however, and for someone to properly and system-
atically develop them, it is necessary to select a specific aspect of the system to be
used as the basis for development. Since the overall functionality of GSI systems
varies as explained above, we do not start capturing or gathering the overall system
requirements, but we rather focus on the organisation and interpretation of gathered
requirements (according to a provider) to form services. This is done by means of
external perspective models.

External perspective models (EP models) also called services models, represent sim-
plified views of the system that are used to define a service that complies to a given
set of functional requirements. Each EP model describes only a subset of the overall

86

Chapter 6. The external perspective

functionality of the system, and therefore represents a partial system specification.

6.2 Design trajectory

During the service design phase of the GSDM methodology we concentrate on the
system according to the point of view of the users. We use successive design steps
in a top-down design trajectory to develop external perspective (EP) models. The
developed models are stored in the repository where they can be instantiated, used
as reference for developing detail specifications (internal perspective models) or used
as a building block in more complex service realisations .

We work out this development phase in two major development steps: the service
definition and the extended service definition (see Figure 6.2).

During the service definition development step we create a so called observable be-
haviour of the system. This behaviour describes the system from the point of view of
the user. This is done by creating an entity model that discriminates or makes a clear
distinction between the system and its environment. Such model defines the roles
of the service user entity(ies), the service provider entity, and the interconnection
structured between the identified entities.

In certain cases the generation of a service requires the use of functions that are not
the concern of any GSI provider. Examples include, a.o., bank transactions and postal

service design

repository

external
perspective functional

requirements

external
perspective model

EP-Design-Trajectory.pdf

service definition

extended service
definition

Figure 6.2: Design trajectory at the external perspective level

87

6.3. Design concepts

delivery. The extended service definition development step is used for such cases. The
purpose of this step is to enhance the existing service definition in order to describe
the existence of entities responsible for functions that are not native to the GSI
system. These functions do not form part of the GSI core, and thus these functions
are considered foreign functionality. The entities that provide these functions are
called auxiliary entities.

The extended service definition is therefore a refinement of the service definition in
which the service provider entity is decomposed to show the existence of auxiliary
entities in a service realisation. In those cases where such foreign functions are not
required then extended service definitions are not necessary.

Once the relevant entities have been identified, we proceed to fully specify the shared
boundary between these entities. This specification comprises the interactions in
which the service user entity and the service provider entity participate, the relations
and ordering of these interactions, and the definitions of the items manipulated or
exchanged in these interactions.

6.3 Design concepts

This section introduces a specialisation of some of the architectural concepts intro-
duced in Chapter 5. These concepts are used in the representation of systems accord-
ing to the external perspective level.

6.3.1 Functional entity

We use an entity as an abstract concept to represent (a part of) the system, or (a part
of) the system’s surrounding environment capable of interacting with the system. An
entity does not exist in isolation, but rather it is embedded in an environment that
consist of other entities. Therefore, an entity is important for what it can do for other
entities, for what functionality it can provide to its environment. The entity concept
abstracts from the characteristics of the system or system part that it represents.

Within a service definition we distinguish three different types of entities or entity
roles: the service provider entity, the service user entity, and the auxiliary entity.

From the point of view of the environment the entity that provides certain function-
ality is known as the service provider entity. The environment of the service provider
entity consists of other entities. These environment entities are either client entities
or auxiliary entities. An environment entity that is capable of interacting with the
system and uses its functionality is called a service user entity. Client entities consist
of people or other systems that use the functionality provided by the service entity.

For the particular cases where foreign functions may be required by the system in the

88

Chapter 6. The external perspective

service user entity

service provider entity

Entity-types.pdf

service user entity

auxiliary entity

GSI service entity
(refined service provider entity)

auxiliary entity

bb-OptimumRoute

bb-Traveler

ι : 〈 orig, dest = { city, street, number } 〉
I-init

I-route ι : 〈 route, background 〉

Signature-Explanation-2.pdf

Figure 6.3: Different types of functional entities

realisation of a service (say from other application domains), the service entity may
interact with other environment entities. These entities are called auxiliary entities,
they consist of other systems, e.g., a banking system, a speech recognition system,
etc. Auxiliary entities in principle do no use the main functionality provided by the
service provider entity, but they rather support the service provider entity with the
provision of its functionality [Far02].

For any entity to use the functionality provided by another entity, both entities have
to interact with each other. Therefore entities are equipped with interaction points
indicating the mechanism through which entities can interact. It is only through its
interaction points that the functionality of an entity can be accessed. For two entities
to interact they must form an interaction point relation.

Figure 6.3 depicts the different entity types and their interaction structure. Enti-
ties are shown as non-overlapping rectangles with cut-off corners whereas interaction
points are depicted with ovals that overlap with the entity and are connected by a
line.

6.3.2 Interactions

During the creation of (extended) service definitions we describe how entities coop-
erate to realise a service. This description represents collaboration between these
entities. The definition of collaboration between two entities, say a service user entity
and the service provider entity, has the following implications:

1. The two entities are interconnected in a defined way so that they can exchange
information;

2. The two entities can affect each others functional behaviour in a defined way
through the exchange of information;

89

6.3. Design concepts

These facts are formalised using the notions of interactions and interaction attributes.
For our specific goals we define a partition of the information attribute. The informa-
tion attribute of an interaction models the establishment of these information values.
What information values are established depends on the contribution of each be-
haviour on the interaction. This information values can take three forms: parameters,
inputs or results. Parameters, inputs and results are a specialisation of the informa-
tion attribute (see Section 5.2.1). Parameters, inputs and results basically define a
partition of the possible types of values that can be established in an interaction.

Parameters are used to configure the behaviour that receives information in the in-
teraction. These parameters contain attribute values that are used to evaluate con-
ditions (causality conditions) within the behaviour. For example, if there exists a
behaviour definition to, say, determine an optimum route between two points, and this
definition includes an alternative condition to obtain routes of different nature or
quality (e.g. shortest, quickest, cheapest), then, parameters are used to specify, for
instance, whether to calculate the shortest route or the cheapest route between the
points. Parameters are considered optional information values and for this reason
they are always specified with a default value.

Inputs are used to define the information that is required to enable the instantiation of
a behaviour and that therefore must be provided at an interaction point. Considering
the previously mentioned example, the ‘optimum route’ service requires information
about the starting and ending points of the route to be able to realise any calculation.
This information is required for the interaction to take place. In the absence of
any of these inputs this specific service can not be used. A combination of the set
of parameters and inputs would be required in the case that the ‘optimum route’
behaviour definition could take into consideration, e.g., intermediate points.

Results are used to describe the outcome of a service, which is made available at an
interaction. In the case of the route determination the results could encompass a
raster image showing some background detail (roads, buildings, etc.) and a vector

bb-OptimumRoutebb-User

ι : Parameters [shortest]
Results [start : point ; end : point]

RouteReq.User

ι : Parameters [shortest, cheapest, …]
Inputs [start : point ; end : point]
Results [route : line ; background : image]

RouteReq.Provider

Service-Generality.pdf

Figure 6.4: Special case of the information attribute of an interaction

90

Chapter 6. The external perspective

line showing the route connecting the given points. It could also be just a vector
line indicating the route. Alternative results can be configured by the definition of
parameters.

Figure 6.4 shows an simple representation of the optimum route behaviour definition.
The three types of information values are only specified if applicable; some services,
for example, may not require parameters.

6.4 Spatial data types

During the development of a service definition, we fundamentally create a composi-
tion of architectural elements and we put strong emphasis in the definitions of the
relationships between the elements. We use the concept of interaction to model these
relationships. Each element participating in an interaction imposes constraints that
define under which conditions it can participate in the interaction and which are the
results that can be established as the outcome of the interaction.

In the case of a processing element, for example, these constraints can define the
requirements, in terms of data types, that would allow the service provided by this
element to be used. Therefore interaction constraints depend highly on the use of
data types. Data types are also indispensable for the characterisation of the results
of any given processing operation.

To facilitate the organisation of interaction constraints we have structured the in-
formation attribute in terms of parameters, inputs and results (see section 6.3.2).
However, since these interactions constraints depend on the data types, we introduce
a set of data types specifically tailored for the manipulation of geographic data.

The ISDL metamodel [Qua03] provides two kinds of data types, primitive data types
and defined data types (see Figure 6.5). In addition to the conventional primitive data
types (integer, boolean, string, etc.), we introduce the defined data types geo-object,
theme, composite and collection. We call these spatial data types [RSV01]. Figure 6.5
depicts the data types hierarchy according to the needs of GSDM.

Figure 6.5 shows the relation between DataType with two data types PrimitiveDataType

and DefinedDataType. Primitive data types include a.o., integer, string, boolean (not
shown in Figure 6.5). Other data types, such as spatial data types, are sub-groups of
the DefinedDataType. The type geoFeature, depicted in Figure 6.5, represents the data
types that can be used to define geographic data.

The geographic object type (geoObject) is used to represent single entities in the real
world. A geographic object has an associated set of attributes that provide semantic
description to the object. For example, a geographic object to represent a city may
have attributes such as name, population and foundation date.

A geographic object has also an associated spatial description, which is represented

91

6.4. Spatial data types

PrimitiveDataType DefinedDataType

Time Location geoFeature

Composite

geoObject

Collection

Theme

Metadata

1..*

1..*1..*

0..*

GSDM-Data-Types.pdf

gml:Geometry
+property

+property

0..*

Raster

DataType DataTypeAttribute

- name : string
- value : DataType

Figure 6.5: The data type concept

by its position, size, shape, orientation and reference system. The spatial description
of a geographic object is defined in its gml:Geometry property. The geometry of a
geographic object is defined using the Geographic Markup Language (GML) base
schema [OGC03a] for the representation of feature geometries (see Appendix C for
an overview of the GML feature schema).

When the spatial description of a geographic object is provided based on imagery
(grided data), then the spatial description is defined in the raster property of the
object. This applies, for example, to land use or soil type objects.

The theme type (Theme) is used to represent a group of homogeneous geographic
objects that share the same structure, in terms of the set of attributes and geometry.
A theme can be used to organise a group of cities, all of which exhibit the same
geometry and have consistent values for the associated attributes.

A domain is used to delimit the scope of the theme. A domain, which can be geometric
or thematic, acts as a constraint and specifies which objects are allowed as members
of the theme. For example, objects of a theme have properties that distinguish them
from objects that do not belong to this theme. For instance, one can define a city

theme with the thematic domain “more than 100000 inhabitants”, which means that
only cities that are large enough to satisfy this constraint can become members of
this city theme. The domain can also be geometric, such as a minimum size (area)
or a predefined area of interest, for instance, within a radius of 100 km of point X.

92

Chapter 6. The external perspective

Airport : composite

Roads : theme

Runway : geoObject

Grasslands : theme

Park : geoObject

Highway : geoObject

ExclusionZone: geoobject

Object-Model.pdf

CityInfrastructure : collection

ControlTower : geoObject Hangar : geoObjectArmyBase : geoObject

Buildings : theme

Figure 6.6: The use of spatial data types

Themes can be grouped in collections, and for this purpose the collection type (Col-

lection) has been introduced. A collection can be used to represent a complete data
set, which contains a series themes, e.g., rivers, buildings, roads, etc.

The composite type (Composite) is used for the representation of groups of hetero-
geneous geographic objects, that is, objects with different geometries and semantic
descriptions, but that have a specific relationships with each other. These relation-
ships are application-oriented and are determined by the views of the users on the
data. Figure 6.6 a model created using the newly introduced spatial data types. The
Figure shows an airport as a complex object that is composed of other geographic
objects such as runways (roads), hangers (buildings), exclusion zones (grasslands),
etc. This type of objects can be represented using the composite type. All objects
within a composite keep their individual structure, but together they represent an
specific real world entity of interest in a particular application domain, such as, an
airport.

Whenever necessary, more complex data types can be defined making use of the
abstract class DefinedDataType. The definition of a new data type consists of the data
type name, and zero, one or more attributes (class Attribute), where each attribute
has a name and a value of certain a type.

6.5 Service design

The design trajectory of the external perspective defines that the specification of
GSI services is done in two steps: the service definition and the extended service

93

6.5. Service design

specification. Here we describe the techniques to create these external perspective
models.

6.5.1 Service definition

As specified in the design trajectory, during the service definition phase the first
task is to identify the various entities involved in the service, namely, user entity,
service entity and auxiliary entities if applicable. This separates the system from its
environment and more importantly helps identifying the users of the service.

The TD-service is used as a running example to illustrate the different steps taken
during the service design phase. More detail on the characteristics of the TD-service
is given as it becomes necessary.

Figure 6.7 shows a simple example of a service model. The figure depicts the tax
determination service, TD-service for short. The TD-service deals with: registration
of tax payers for taxation, which takes place when a person acquires taxable land;
the determination of taxes on exploited land; and the delivery of invoices to users on
periodical basis.

For the case of the TD-service, we have identified the so-called Taxation module as
the service provider entity and the so-called Tax-payer as the service user entity (see
Figure 6.7). The service user entity in this case is depicted in Figure 6.7 with a
double line to represent that multiple tax payers may benefit of the functionality
provided by the service provider entity. Figure 6.7 also shows an interaction point
as the mechanism that establishes the interconnection structure between the service
entity and the client entities.

After defining the user and service entities, the next task is to specify the interactions

Interaction-comparison.pdf

bb-User

bb-System

bb-User

bb-System

bb-AuxiliarySystem

GSI system

Taxation module
(service entity)

repository

Tax payers (client entities)

Ep-model.pdf

Int-DInt-A

Int-B

Int-D’Int-A’

Int-CInt-B

Figure 6.7: TD-service definition

94

Chapter 6. The external perspective

in which these entities are involved and the relationships between these interactions.
This is valid for the interactions between the service entity and the user entity(ies),
as well as for the interactions between the service entity and the auxiliary entities.
Therefore we explain this step in section 6.5.2 together with the description of the
extended service definition step.

6.5.2 Extended service definition

There are two purposes for the extended service definition : 1. to identify all auxiliary
entities that support the service entity for the realisation of the service; and 2. to
determine all the interactions between the the service entity and the auxiliary entities.
This step is only necessary if the participation of auxiliary entities is necessary in a
service realisation.

The difference between developing a GSI-service definition and its extended definition
is that in the former case we abstract from the interactions between the system and
the auxiliary entities and in the latter case we do not.

Consider, for example, the sequence of interactions as depicted in Figure 6.8right,
in which the occurrence of interaction Int-A’ is followed by the occurrence of Int-B,
which is followed by the occurrence of Int-C , which is followed by the occurrence of
Int-D’. This would correspond to the extended service definition. However, to specify
the service definition we would only include interactions Int-A and Int-D and the
relationship between their occurrences in which the occurrence of Int-A is followed by
the occurrence of Int-D.

Therefore, the techniques used to define interactions according to both levels are the
same. The only difference resides on the type of entities being considered. Based
on this consideration, we discuss only how to identify and specify interaction pat-
terns independent of whether the interactions are used on a service definition or on a
extended service definition.
Interaction-comparison.pdf

bb-User

bb-System

bb-User

bb-System

bb-AuxiliarySystem

GSI system

Taxation module
(service entity)

repository

Tax payers (client entities)

Ep-model.pdf

Int-DInt-A

Int-B

Int-D’Int-A’

Int-CInt-B

Figure 6.8: Interactions at the service and extended service levels

95

6.5. Service design

In order to specify the interactions of a service, we have to associate a behaviour
block to each identified entity. By the end of the extended service definition phase, all
participant entities should have a behaviour definition associated to them. However,
at this level of development, these behaviour specifications only represent external
behaviour, which fundamentally describe all border level interactions of the service
entity, and the relationships between those interactions. The relationships between
interactions basically capture the order in which interactions can take place and their
information dependencies.

A extended service definition describes both the interactions between the service entity
and its client entities; and the interactions between the service entity and any auxiliary
entities, together with their ordering. This description takes into account the external
functions that may be used by the service entity in order to provide its own service.
Consequently, the service entity and its auxiliary entities are seen as separate entities.

6.5.3 Interaction signatures

Interaction signatures describe patterns of interaction contributions between two or
more behaviour blocks. They also facilitate the visualisation of the events in an
interaction relation. Interaction signatures are depicted as a shorthand notation that
represent interaction relations.

An interaction signature models the relation(s) between two or more behaviour blocks
by making explicit the information passed or exchanged in the interaction, but ignores
the conditions and constraints that govern the interaction. That is they describe how
two or more behaviours are ‘glued together’ in a specific way, and what information
is interchanged.

To explain the use of signatures we use an example definition. Figure 6.9 shows the
interaction relation between two behaviour blocks bb-OptimumRoute and bb-Traveller.
Four interactions have been defined I-init, I-rej, I-acpt and I-route. The information
attribute (ι) for the i-init and the i-route interactions has been specified as well as the
specific constraints.

However what we are interested at this moment is not in how one behaviour block
would constraint the other, but what information would be supply as input to realise
the service, and what the outcome of the service should be. For this purpose a
simplified definition would suffice (see Figure 6.10). With this information one can,
later on, model a service that would be adequate for the given case, or use an exiting
service model(s) that is compatible with the case under consideration.

Figure 6.10 shows the signature for the preceding example. This definition contains
the information exchanged or passed in the identified interactions i-init and i-route, and
the interaction types. The interaction i-init, for instance, has been portrayed as an
acknowledge negotiation. Interaction types are explained later in this section. Inter-
action signatures, which are modelled at the behaviour domain, consists of two basic

96

Chapter 6. The external perspective

bb-OptimumRoute

I-init.OptimumRoute

[EUcity, EUstreet]
city : EUcity;
orig, dest : { str : EUstreet, number : };

Inputs

Parameters 〈 routetype { shortest, quickest, cheapest } 〉
orig ≠ dest; orig ≠ ∅; dest ≠ ∅; #city {1..2 } 〉

〈
ι :

bb-Traveler

I-init.Traveler

orig = { city, street, number };
dest = { city, street, number } 〉

ι : 〈

I-route.OptimumRoute

Results 〈 route : line;
background : image 〉

ι :

I-route.Traveler

Signature-Explanation-1.pdf

I-rej I-acpt

Figure 6.9: Interactions between two behaviour blocks

service user entity

Entity-types.pdf

service user entity

auxiliary entity

GSI service entity
(refined service provider entity)

auxiliary entity

service provider entity

bb-OptimumRoute

bb-Traveler

ι : 〈 orig, dest = { city, street, number } 〉
I-init

I-route ι : 〈 route, background 〉

Signature-Explanation-2.pdf

Figure 6.10: Interaction signature

97

6.5. Service design

elements: the manipulated information, represented as items, and the interaction
type.

Figure 6.10 depicts the concept of items. Since the behaviour of a GSI system is
accomplished through the creation, use or transformation of some information we
introduce the concept of items to explicitly show the information on which behaviour
is performed. An item may represent a set of parameters, some input, a combination
of both or some result.

Items can be coupled to the actions or interactions depicted in a behaviour. The
coupling of items distinguishes four different modes: create, use, consume, change or
destroy (see Figure 6.11). These modes indicate the type of action that is performed
on a coupled item.

Item-Modes.pdf

item

(a) create/provide

item

(b) use

item

(c) consume

item

(d) change

f e s g

item

(e) destroy

m

Figure 6.11: Items coupled to actions

Examples of interactions types between two or more behaviour blocks are listed below,
and are depicted in the sample models shown in Figures 6.12 and 6.13 respectively.
Examples 2 and 3 show both the basic notation and the shorthand notations, the other
examples only show the shorthand notations. The basic notation for the remaining
cases can be intuitively derived using examples 2 and 3.

Example 1: Unacknowledged service, for example, BBent-A passes a message to
BBent-B, BBent-B receives the message and the interaction is completed.

Example 2: Acknowledged service, for example, BBent-A sends a message to BBent-
B, BBent-B receives the message and then sends a notification back to BBent-A,
this notification defines the end of the interaction. This notification does not
trigger iterations on the interaction, it just serves to notify BBent-A on whether
or not the interaction has yield a successful completion.

Example 3: Provision of an item, for example, BBent-A executes some operations
and generates a feature dataset that is provided to BBent-B. BBent-B may use
the dataset for further processing.

Example 4: Request and response, an associated item is delivered as a result of a
specific request, for example, BBent-A makes a request for a feature dataset to
BBent-B including, say, an area of interest, some feature types, and possibly a
scale. BBent-B processes the request and provides the required feature dataset
to BBent-A.

98

Chapter 6. The external perspective

Example 1:

Example 2:

Example 3:

bb–Cbb–A bb–Cbb–A

bb–Cbb–A

(a) (b)

(a) atomic interactions (b) shorthand notation

bb–Cbb–Abb–Cbb–A

int.bb-C ι : [dataset]

int.bb-A ι : [dataset]

.

.

(a) (b)

Interaction-types1.pdf

[dataset]

Example 4:

bb–Cbb–A

.

item

Figure 6.12: Examples of interaction types [1]

Example 5: Cooperative provision of a service, for example, BBent-A sends a mes-
sage to BBent-C in coordination with BBent-B, which provides an item, say, a
dataset that is required by BBent-C for processing.

Example 6: Negotiation, for example, BBent-A and BBent-B send messages to each
other back and forth until they agree upon their corespondent constraints, at
that moment the interaction is completed, e.g., a login operation. The negotia-
tion may also involved items although that is not shown in the figure.

Example 7: Processing requests of an associated item, for example, BBent-A pro-
vides BBent-B with a feature dataset, BBent-B performs some processing on
the provided dataset and then gives the resulting dataset back to BBent-A.

Although most of the examples show two behaviour blocks, any number of behaviours
may participate in a single interaction. Additionally, the behaviours depicted in any
of the previous example list may be of a complex nature, and could be refined if

99

6.5. Service design

bb-C

bb-C

bb-A

bb-A

Interaction-types2.pdf

Example 5:

Example 6:

Example 7:

bb–Cbb–A

item

bb–D

item

item

.

.

Figure 6.13: Examples of interaction types [2]

required. That means that blocks of behaviour may be decomposed into two or more
sub-behaviours with their corresponding interactions.

Due to our design objective of facilitating service chaining, our architectural style
defines an important constraint on the structure of interactions. In cases such as those
depicted in examples 4 and 5, where a processing entity receives an input, either with
or without an associated item, and after some operations delivers an item as a result,
the interaction that handle the input and the output should not be modelled as part
of a single interaction, but as two separate yet associated interactions.

This approach facilitates the sequential chaining of behaviours, specially in those
cases where the behaviour (Brequesting) that triggers the production of a particular
item is not the same behaviour that receives the output generated by the processing
behaviour(Bprocessing), see Figure 6.14.

100

Chapter 6. The external perspective

Brequesting

Bprocessing
Breceiving

BB-A BB-C

entity E1 entity E2

entity domain

behaviour domain

cd
aa

aa

BprocessingBrequesting

item

aa

cc

aa

item

cc

Figure 6.14: Interactions definition for service chaining

6.5.4 Behaviour model

We can now start to identify the set of boundary interactions that fully delimit the TD-
service. We call behaviour model, a diagram that captures the interactions between
and entity and its environment. This diagram is created by assigning behaviours to
entities that participate in a service, and by refining the interconnections between
these entities defined in the initial service definition.

At this level, a complete behaviour model includes the boundary level interactions, and
their signatures, the ordering relations between these interactions, and if necessary,
the items manipulated in the interactions.

For the purpose of refining the initial TD-service model (see Fig 6.7), we present
additional detail on the Tax Determination service case. Each taxable piece of land
(parcel) is associated with a tax payer. The tax payer is not necessarily the owner of
the land, it could be any other person that is currently benefiting from the use of the
land, like a tenant. There are multiple factors used in the determination of the tax
that is assigned to each parcel, the most important one being the area of the parcel.
This area has to be surveyed and the parties involved have to agree on the results of
this survey.

Figure 6.15 shows behaviour model of the TD-service definition introduced earlier.

First of all, the diagram of Figure 6.15 shows that the two main entities of the TD-
service, Tax payer and Taxation module, have been replaced by their associated be-
haviours, BB-TaxPayer and BB-TDservice respectively. Additionally, Figure 6.15
shows that the interaction point of the TD-service has been replaced by the interac-
tions: I-reg, I-svy and I-inv.

The first interaction, I-reg, models the action of a Tax Payer registering into the

101

6.5. Service design

GSI system

Taxation module
(service entity)

repository

Tax payers (client entities)

BB-TD

BB-Taxpayer

I-
sv

y I-inv
I-reg

BB-TDservice

BB-TaxPayer

Taxation module
(service entity)

Tax payer
(client entity)

invoice

I-
sv

y I-inv
I-reg

registration form

Ep-model-A.pdf

Ep-model.pdf

Figure 6.15: refinement of the TD-service definition

tax register. An input item is required for this task, which is modeled by the item
registration form. The arrows in the interaction describe the type of interaction that
is taking place.

The second interaction, I-svy, represents the action of surveying the property that the
tax payer has registered into the system. This time the interaction type shows that
the survey interaction is a negotiation, and only completed when the two participating
entities come to an agreement, in this case, on the area and limits of the parcel under
consideration.

The last interaction, I-inv, models the action of notifying the tax payer on the value
that has been taxed to the property or properties associated with him (the tax payer).
The item invoice models the result of the service. The invoice item is shown replicated
in Figure 6.15 to show that in turn multiple invoices are sent to the tax payer. The
reasons for this are: 1. the tax payer is associated with more than one parcel; or
2. according to the regulations taxes on agricultural land are charged on periodical
basis.

In Figure 6.15 the single interaction shown before the refinement, has not been quali-
fied. That is, there are no arrow heads and dots on the extremes of the line connecting
the interaction points. This shows that the interaction needs refinement.

The same holds for the relationships between interactions inside the TD-service be-
haviour block, which are depicted in the figure as dashed lines. However in the later
case, although the interaction relations need refinement, arrow heads are provided to
show the ordering in which the interactions occur.

For simplicity purposes, not all the details on the interactions of the TD-service have
been added to the service definition depicted in Figure 6.15. Interaction constraints,
and interaction attributes, for example, are not shown.

102

Chapter 7

The internal perspective model

Those who do not know the conditions
of mountains and forests, hazardous defiles, marshes, and swamps

cannot conduct the march of an army.

Sun Tzu

In this chapter we concentrate on a development method to produce ‘internal per-
spective models’. These are models that are closer to available implementation mech-
anisms and refine the more abstract ‘external perspective models’. The chapter pro-
poses a design pattern to guide and constrain the definition of architectural elements.
The chapter shows how to use design concepts to represent elements of a geo-informa-
tion system. The chapter also explains the process of specifying services as individual
functions or as service chains.

The chapter is structured as follows: section 7.1 explains the principles of service
decomposition and the criteria for the definition of architectural elements; section 7.2
introduces the development steps followed to obtain internal perspective models; sec-
tion 7.3 provides guidelines for the assessing the correctness of proposed development
steps. section 7.4 explains techniques to describe services; and section 7.5 shows an
example of the creation of internal perspective models.

7.1 Decomposition goals

The objective of the architectural design phase (see section 4.2) is to decompose a
system into a set of interacting parts, such that the system’s observable behaviour
(external perspective model) is implemented by the composed behaviour of these

103

7.1. Decomposition goals

parts. We use architectural elements, as introduced in section 4.5, to represent system
parts.

System decomposition has to be performed according to certain specific criteria, like
reusability of elements and the correctness of the resulting composition. In order to
make our method concrete, we prescribe the use of a decomposition pattern, referred
to as the mediator pattern. Decomposition steps can be performed recursively, until
a final decomposition is obtained.

7.1.1 Criteria

The main goal of a decomposition step is to define the internal structure of the
required service. This decomposition step should be performed whenever there is
no single concrete element that can provide the required service as defined by the
external perspective. The Figure 7.1 shows a decomposition step of a required service,
which results in a set of related elements. In Figure 7.1 the required service and the
resulting set of elements are represented as behaviour blocks. The lines connecting
the behaviour blocks of the decomposition result in Figure 7.1 denote the interactions
between their corresponding elements.

In the decomposition step depicted in Figure 7.1 we apply available elements, when-
ever possible, or define new elements in such a way that they can be reused in other
development projects. Furthermore, each element should be defined in such a way
that it can be later replaced by another element, for example, with the same func-
tionality but with an improved implementation. Figure 7.1 also shows that there are
multiple alternative decompositions that implement the required service.

In our method we aim at separating the data sharing concerns from processing con-
cerns, by assigning them to different types of architectural elements, namely data and
processing elements respectively. Although this separation is an important criterion
for defining architectural elements, we also realise that processing elements may need
data that is specific to their functionality and should not be detached from them.
In this sense a processing element is self-contained, because it contains all the data
resources it needs to properly operate.

For example, one can design an architectural element that can be used to determine
a route between two given points through a road network. We can specify the x and
y coordinates of the two points as the only input needed. The element uses this input
and a road network from an internal storage to find the route between the points. In
this case, such an element can only be used to determine routes based on the road
network available internally in the element, for instance, the Dutch road network.

Separating data sharing concerns from processing concerns fosters reuse, since it al-
lows processing and data elements to evolve independently. Accordingly, a processing
element should be designed to be independent of any context sensitive data, like data
that changes over multiple instantiations, or data that can be obtained from the en-

104

Chapter 7. The internal perspective model

e1 e2 e3
e1

e5

e6

e4
e1

e7
e4

e6

required service

decomposition
step

Alternative-Service-Realisations.pdf

Figure 7.1: Decomposition step

vironment of the element. This separation may also improve maintainability, since it
potentially simplifies processing elements.

Applying this separation criterion to the route determination element above, we could
design a processing element that determines routes between points, such that this ele-
ment gets as input the points of interest and a corresponding transportation network.
In this case, the element is context-independent and can be used in more situations,
such as when the two points are located in different countries. In addition, because
the function of the element focuses only on the determination of a route, it can even
be used to determine a route along a railroad network, if the railway network is the
kind of transportation network given as input.

Consequently, specially in the case of geo-information processing, it suffices to have
stateless elements, which are architectural elements that can not make use of any
stored data from previous instantiations. This means that all the data needed by the
element to operate properly should be modelled explicitly with its interactions, and,
therefore, this data should be provided in each instantiation. The separation criteria
applies at design level, which means that an implementation may still integrate a
processing element and data element, e.g., for efficiency reasons, if these elements
belong to the same implementation authority.

The environment of an architectural element consists of other architectural elements
and possibly the system’s environment. An architectural element should make its
service accessible to its environment via interactions. We may have large architectural
elements that can provide useful services by themselves, but they still should have
the capability of being combined with other (large) architectural elements in the case
extended or specialised services are needed. This implies that architectural elements
should be defined such that they can be combined with other elements solely on
the basis of the specification of their observable behaviour, namely their external
perspective model.

105

7.1. Decomposition goals

7.1.2 Decomposition pattern

Many alternative approaches can be adopted for the realisation of compositions [HBCS03,
ACD+03]. Although it is possible to build up a composition wholly from already ex-
isting generic services, in our approach we want to centralise the responsibility for
the provision of a service in a single element, and, furthermore, we want to shield the
use of multiple elements from the user. Therefore, we adopt a structured composition
form in which a special element is defined to coordinate the interactions between the
other architectural elements, and to provide an interface to the service user. This
leads us to the mediator pattern, in which a central element plays the role of a me-
diator. Figure 7.2 depicts a decomposition that applies the mediator pattern. The
mediator pattern may be implemented using mediator replicas in order to avoid that
the mediator becomes a single point of failure.

Besides the criteria mentioned above, the adoption of this decomposition pattern
serves three objectives:

1. it allows us to define a set of concrete development steps for the design of GSI
services, which results in a composition of independently-designed elements;

2. it allows the organisation of a set of services into a behaviour definition that
has a single coordinating element, making the service realisation accountable
for the user;

3. it facilitates the use of workflow languages to implement the mediator behaviour,
which choreographs the use of third-party services.

S1S1

E1E1

E2E2 E3E3
E4E4

decomposition
step

Mediator-Pattern1.pdf

mediator-S1mediator-S1

E1E1

E2E2 E3E3
E4E4

decomposition
step

mediator-E2mediator-E2

E2aE2a

E2bE2b E2cE2c

decomposition
step

mediator-E4mediator-E4

E4aE4a E4bE4b

mediator-S1mediator-S1

Mediator-Pattern.pdf

Figure 7.2: Mediated compositions

106

Chapter 7. The internal perspective model

This pattern is also being used in other architectures for service composition, like, for
instance, in compositions of Web Services (see [HBCS03]).

7.1.3 Recursive pattern application

A decomposition step may result in a structure containing architectural elements that
do not have a realisation available. In this case we may decide to apply the medi-
ator pattern again to develop these architectural elements. Therefore, we conclude
that this decomposition pattern can be applied recursively, until all processing and
data elements can be either mapped onto available components or can be created
straightforwardly.

Figure 7.3 shows that the mediator decomposition pattern can be applied recursively
until proper architectural elements are obtained.

The recursive application of the mediator pattern results in a hierarchy of mediators,
each one controlling their corresponding architectural elements and shielding them
from a higher level user.

S1S1

E1E1

E2E2 E3E3
E4E4

decomposition
step

Mediator-Pattern1.pdf

mediator-S1mediator-S1

E1E1

E2E2 E3E3
E4E4

decomposition
step

mediator-E2mediator-E2

E2aE2a

E2bE2b E2cE2c

decomposition
step

mediator-E4mediator-E4

E4aE4a E4bE4b

mediator-S1mediator-S1

Mediator-Pattern.pdf

Figure 7.3: Recursive mediated compositions

107

7.2. Decomposition method

7.2 Decomposition method

In a decomposition step we start with an extended service definition according to the
external perspective, and end up with a set of interconnected elements that define the
internal perspective of the required service.

7.2.1 Overview

We define a method for the development of the internal perspective of a service that
consists of the following steps (see Figure 7.4):

1. Transformation to integrated form: in this step the required service definition is
transformed to the integrated form (see section 5.3.2), by abstracting from the
distribution of responsibility for interactions between the service provider and
the service users;

IP-Design-Trajectory.pdf

architectural designarchitectural design

repositoryrepository

transformation
to integrated form

transformation
to integrated form

external
perspective model

internal
perspective model

introduction
of internal actions

introduction
of internal actions

restructuring
(constraint-oriented style)

restructuring
(constraint-oriented style)

assignment
of sub-behaviours

assignment
of sub-behaviours

validate

validate

validate

Figure 7.4: Decomposition method

108

Chapter 7. The internal perspective model

2. Introduction of internal actions: in this step the behaviour of the service in
integrated form is refined by introducing internal actions;

3. Restructuring: in this step the refined behaviour is restructured according to
the constraint-oriented style (see section 5.4, i.e., such that different constraints
on actions can be separated in sub-behaviours;

4. Assignment of sub-behaviours: in this step sub-behaviours of the restructured
specification are assigned to elements.

Since we want to obtain a decomposition that consists mainly of reusable elements
from a repository, step 2 should be performed hand in hand with the identification of
elements that can be part of the required service. This means that we choose internal
actions that on one hand relate to parts of the total functionality of the required
service, but on the other hand can be supported by available elements.

The final composition of elements that characterise the internal perspective has to
conform with the external perspective, which implies that each step in our decompo-
sition method has to be validated for correctness.

Figure 7.5 illustrates the first step of our decomposition method. We consider in
Figure 7.5 a fictitious required service that can be described as a behaviour consisting
of interaction S followed by interaction F. In this step the interaction contributions
for S and F are combined, so that we obtain a behaviour consisting of actions S and
F, respectively. This step is necessary because we may decide at a later stage to
distribute the interaction responsibilities in a different way than originally done in
the required service.

SS FF

SS FF

aa

bb

cc

F’F’ddS’S’

Decomposition-Method-Step1.pdf

Decomposition-Method-Step2.pdf

transformation
to integrated form

introduction
of internal actions

S

S

F

F

Figure 7.5: Step 1: transformation to integrated form

Figure 7.6 illustrates the second step of our decomposition method. In the example
in Figure 7.6 actions a,b,c and d are inserted in the integrated behaviour, resulting in
a more detailed behaviour definition. The choice for these specific actions has been
dictated by the availability of elements that can perform these actions. For the sake

109

7.2. Decomposition method

of conciseness we assume that our architectural elements perform only one action, but
in practice they have much more complex behaviours.

SS FF

SS FF

aa

bb

cc

F’F’ddS’S’

Decomposition-Method-Step1.pdf

Decomposition-Method-Step2.pdf

transformation
to integrated form

introduction
of internal actions

S

S

F

F

Figure 7.6: Step 2: introduction of internal actions

Figure 7.7 illustrates the third step of our decomposition method. In Figure 7.7 the
responsibilities for performing actions have been split, resulting in a behaviour that
is structured according to the constraint-oriented style.

aa

bb

cc

F’F’ddS’S’

bb-userbb-userbb-userbb-user

bb-Cbb-C

bb-Abb-A

bb-Dbb-D

bb-Bbb-B

i1

i1

i3

i3

i2

i2

i4

i4

bb-mediator

S’S’ F’F’

constraint-oriented
structuring

Decomposition-Method-Step3.pdf

Figure 7.7: Step 3: constraint-oriented restructuring

110

Chapter 7. The internal perspective model

assignment
of sub-behaviours

Decomposition-Method-Step4.pdf

element-Mediator

element-A

int-i1

element-B

bb-Cbb-C

bb-Abb-A

bb-Dbb-D

bb-Bbb-B

i1

i1

i3

i3

i2

i2

i4

i4

bb-mediator

S’ F’

element-C element-D

Int-i3 Int-i4

Int-i2

Figure 7.8: Step 4: assignment of behaviours to elements

In the fourth step of our decomposition method, each sub-behaviour is assigned to
an element or to the service user. In Figure 7.8 we show that behaviours bb-A, bb-B,
bb-C and bb-D are assigned to elements Element-A, Element-B, Element-C and Element-

D respectively, and that behaviour bb-mediator is assigned to the mediator Element-

Mediator. In Figure 7.8 we omit the service users.

7.2.2 Introduction of internal behaviour

The most important step in our decomposition method is the introduction of inter-
nal actions. This step is difficult to automate and is subject to designers choice,
interpretation and creativity. A behaviour may be decomposed in a number of ways,
by adding different alternative internal actions. Specific technical reasons normally
determine the decomposition that is chosen in a refinement step.

111

7.2. Decomposition method

To identify the actions that can be inserted, one analyses the required service and
defines a functional partition of this service. This partition determines the functions
necessary to realise the required service. They should be identified taken into account
the functionality offered by the available elements from the repository. Once these
functions are isolated and represented as actions in the refined behaviour, indirectly
a set of elements is selected for usage. Some of these elements may have already have
an implementation that can be used in the realisation of the required service, but
some others may have to be built.

The choice of internal actions should also be done with the behaviour of the future
mediator in mind, or a mediator behaviour may appear naturally when sub-behaviours
are identified as shown in the example of Figure 7.7. If this is not the case, the
introduction of internal actions step should be revisited such that direct relations
between sub-behaviours that will correspond to data and processing elements are
replaced by indirect relations via the mediator behaviour.

When assigning sub-behaviours to elements (step 4 of our method), the sub-behav-
iours have to match the behaviours of the elements in the repository (external perspec-
tive). This is normally not the case, which implies that the introduction of internal
actions may have to be reconsidered, so that the desired matching of behaviours can
be obtained.

7.2.3 Composition structures

The way in which the required service is internally structured depends on the decision
as to how to move the data or results that are exchange between elements. Since we
use the mediator pattern to structure service definitions, there are two approaches
to define the interactions of a mediator with other architectural elements: 1) Make
each element interact with the mediator, both for the purposes of control and data
exchange; or 2) interact with the mediator for control and directly for data exchange.

bb-mediatorbb-mediator

bb-B bb-B bb-Abb-A

bb-mediatorbb-mediator

bb-B bb-B bb-A bb-A

Composition-Structures.pdf

item item

item

(a) (b)

Figure 7.9: Composition structures

112

Chapter 7. The internal perspective model

Figure 7.9 depicts these two different composition structures. Figure 7.9a shows the
structure for the first case, where all control and data (represented as an item in the
figure) flows are realised through the mediator. Figure 7.9b shows the structure for
the second case, where only the control is coordinated by the mediator but the data
is allowed two be exchanged directly between processing elements.

7.3 Correctness assessment

Correctness assessment is used to validate the refinement of an abstract behaviour
(e.g., an external perspective model) into a number of interrelated fine-grained be-
haviours (e.g., an internal perspective model) that conform to the behaviour provided
by the abstract behaviour. We refer to a behaviour and its corresponding refined
specification as abstract and concrete behaviours respectively. A concrete behaviour
is correct with respect to an abstract behaviour if it preserves all properties of the
abstract behaviour.

In a correctness assessment process, the activity units (actions and interactions) that
are modelled in the abstract behaviour are called abstract activity units (abstract
action and abstract interaction), while the activity units modelled with the corre-
sponding concrete behaviour(s) are called concrete activity units (concrete action and
concrete interaction). Abstract behaviours are exhibited by system parts, which are
called abstract system parts.

Two main requirements have to be observed when refining an abstract behaviour into
a concrete behaviour [Qua98, Sin95, FP94]:

• Preservation of relations. The relations between actions in the abstract be-
haviour should be preserved by the relations between their corresponding ac-
tions in the concrete behaviour.

• Preservation of action values. The values established in actions in the abstract
behaviour should be preserved by the values established in their corresponding
actions in the concrete behaviour.

Figure 7.10 shows the correctness assessment method that we adopt. The left of the
figure depicts an abstract behaviour, represented as an oval, that is refined into a
concrete behaviour, represented as circles. Relations between concrete behaviours are
represented as straight lines. The right of the figure shows an abstracted behaviour
that is obtained from a composition of the concrete behaviour.

To assess the correctness of the refinement of an abstract behaviour into a concrete
behaviour, our method has the following steps [Qua98, FP94]:

1. Identification of reference activity units and inserted activity units in the con-
crete behaviour. Reference activity units are activity units in the concrete be-

113

7.3. Correctness assessment

abstract
behaviour

abstracted
behaviour

concrete behaviour concrete behaviour

refinement
abstraction

equivalence

Refinement-Assessment.pdf

Figure 7.10: Correctness assessment

haviour that correspond to activity units in the abstract behaviour. Inserted
activity units are activity units in the concrete behaviour that do not correspond
to activity units in the abstract behaviour, i.e. they are activity units that have
been inserted during refinement;

2. Abstraction from all of the inserted activity units. This requires for each inserted
activity unit (action) i: a) the replacement of each causality condition in which
i occurs by an equivalent causality condition in which i does not occur; b) the
replacement of each reference relation defined in terms of values established in
i by an equivalent reference relation in which these values do not occur.

3. Replacement of each group of reference activity units by an abstract activity
unit. Each group of reference activity units whose occurrence corresponds to the
occurrence of a single abstract activity units should be replaced by the abstract
activity unit.

4. Comparison of the abstraction of the concrete behaviour to the original abstract
behaviour. The concrete behaviour only conforms to the abstract behaviour
if the abstracted concrete behaviour and the abstract behaviour comply to a
certain correctness relation. This correctness relation can be:

• an equivalence relation which defines that the abstracted concrete be-
haviour should preserve all properties of the abstract behaviour (e.g., for
action values this means that all action values possible for an abstract
action are also possible for the corresponding concrete actions), or

• a partial order relation which defines that the abstracted concrete be-
haviour should preserve a subset of the properties of the abstract behaviour
(e.g., for action values this means that a subset of the action values possi-
ble for an abstract action are also possible for the corresponding concrete
actions).

114

Chapter 7. The internal perspective model

The proposed strategy, especially step 3, assumes that in the behaviour refinement
process each abstract activity unit is replaced by a single concrete reference activity
unit. This means that when we perform the introduction of internal actions in the
decomposition method (see section 7.2.2), all issues related to interface refinement
have been considered before.

This strategy is based on the recognition that the refinement of an abstract behaviour
can result in many alternative concrete behaviours, whereas the abstraction of a con-
crete behaviour is unique. Therefore, the method requires the assessment of confor-
mance by comparing the abstraction of the concrete behaviour to the original abstract
behaviour.

Consider for example, the diagram depicted in Figure 7.11. The model depicts the
abstract behaviour bb-A, which includes four interactions represented by: int1, int2,
int3 and int4. The model states that int1 is followed by int2, and that int2 is followed
by int3 and int4.

We have various possibilities for the refinement of the abstract behaviour bb-A into
two more concrete behaviours, bb-A1 and bb-A2 . We have chosen two alternative
scenarios for the assignment of the interactions from the abstract behaviour to the
more concrete behaviours. In the first scenario the reference interaction corresponding
to int1 is assigned to bb-A1 , while the reference interactions corresponding int2, int3

and int4 are assigned to bb-A2 . In the second scenario, the reference interactions
corresponding to int1 and int4 are assigned to bb-A1 , while the reference interactions
corresponding to int2 and int3 are assigned to bb-A2 .

Figure 7.12 shows the representation of the refinement of the abstract behaviour bb-A

according to the first assignment scenario. Interactions int1’, int2’, int3’ and int4’ are
reference interactions that correspond to int1, int2, int3 and int4. Interaction int5 is an
inserted interaction in the concrete behaviour.

Interaction int1’ has been assigned to the concrete behaviour bb-A1 , while interactions
int2’, int3’ and int4’ have been assigned to the concrete behaviour bb-A2 . According to
the abstract definition, interaction int2 is only allowed to occur after the occurrence
of int1. This relation has to be kept after the assignment of the concrete reference

bb-A bb-A

int1 int2 int3

int4

bb-A

int1 int2 int3

int4

int5

bb-A2 bb-A1

int2’ int3’

int4’

int5

bb-A2 bb-A1

int2’ int3’

int4’

int5

int6

Interaction-Refinement-abs.pdf

int1’

int1’

Figure 7.11: Abstract behaviour

115

7.3. Correctness assessment

bb-A bb-A

int1 int2 int3

int4

bb-A

int1 int2 int3

int4

int5

bb-A2 bb-A1

int2’ int3’

int4’

int5

bb-A2 bb-A1

int2’ int3’

int4’

int5

int6

Interaction-Refinement-abs.pdf

int1’

int1’
Figure 7.12: Refinement of an abstract behaviour into two concrete behaviours

interactions to the concrete behaviours. Therefore, there should be a relationship
between interactions int1’ and int2’, which are now assigned to separate behaviour
blocks. This relationship is accomplished by introducing interaction int5, which defines
a constrained relation between the two concrete behaviours bb-a1 and bb-A2 . As a
result int1’ is followed by int5, which is followed by int2’.

The refinement of the abstract behaviour bb-A according to the second assignment
scenario is shown in Figure 7.13. In this case, interactions int1’ and int4’ have been as-
signed to concrete behaviour bb-A1 , and interactions int2’ and int3’ have been assigned
to concrete behaviour bb-A2 .

In this refinement, interactions int1’ and int2’ as well as int2’ and int4’ have to be
related. This relations are kept by introducing two interactions int5 and int6. These
interactions allow behaviours bb-A1 and bb-A2 to exchange information that was pre-
viously centralised.

For simplicity reasons we have not introduced internal activity units, neither have
we defined sub-behaviours for the concrete components. According to the correctness
assessment steps introduced earlier, to assess whether or not the abstract behaviour
was correctly refined, we have to merge the concrete behaviours, abstracting from

bb-A bb-A

int1 int2 int3

int4

bb-A

int1 int2 int3

int4

int5

bb-A2 bb-A1

int2’ int3’

int4’

int5

bb-A2 bb-A1

int2’ int3’

int4’

int5

int6

Interaction-Refinement-abs.pdf

int1’

int1’

Figure 7.13: Alternative refinement of an abstract behaviour into two concrete behaviours

116

Chapter 7. The internal perspective model
Assignment-Assessment.pdf

bb-A2 bb-A1

int2’ int3’

int4’

int5

int6

int1’

bb-A’

int2’ int3’

int4’

int5

int6

int1’

Figure 7.14: Alternative refinement of an abstract behaviour into two concrete behaviours

inserted interactions, to produce an abstracted behaviour than can be compared with
the original abstract behaviour.

In the case of the second scenario, when we abstract from the inserted interactions that
relate the two concrete behaviours bb-A1 and bb-A2 , we have to remove interaction
int5, and then make the condition for interaction int5, which is int1’, a condition for
interaction int2’. Similarly, we remove interaction int6, and make its condition, which
is int2’, a condition for interaction int4’. The result is then an abstracted behaviour
that can be compared to the abstract behaviour (see Figure 7.14).

7.4 Service descriptions

A GSI service is an accessible piece of functionality that requires an adequate de-
scription to facilitate its discovery. These service descriptions should convey enough
information such that one can find and use required services. Service descriptions
have two main sections, a general section that applies to all services, and a specific
section that depends on the nature of the elements that provide the service.

The general metadata section is explained in detail in appendix A.3. The following
two sections describe the specific issues on service description for data and processing

117

7.4. Service descriptions

elements, respectively.

7.4.1 Data descriptions

Data elements represent sources of data. Examples of data elements include a docu-
ment, an image, a data collection, application specific information (e.g., today’s traffic
data). In GSDM awareness about the nature and characteristics of the data repre-
sented is of primary importance, because data need not only to be discovered but also
combined and transformed. Data may also need to be moved from the location where
it is stored to the location where it is used, normally by, a processing element.

Metadata elements are used to describe geographic data. Metadata elements, also
called referential attributes, provide a meaningful description of the data, which fa-
cilitates its discovery, access and use. Metadata enables one to determine whether
particular geographic data is useful for a particular application. We use metadata to
describe collections (complete datasets), individual geographic objects (geoObjects),
themes, and composites. This metadata describes the semantics of the data and pre-
scribes the form in which this data can be exchange. Figure 6.5 in section 6.4 shows the
relation between geographic features and metadata elements. A geographic feature
can contain a number of metadata elements that convey its descriptive information.

Figure 7.15 shows the metadata schema for describing geographic data, which de-
fines a set of metadata elements. Typically only a subset of the elements showed in
Figure 7.15 is used. This subset of the elements is known as core metadata since it
comprises the minimum metadata elements required to identify a dataset. These ele-
ments are the Identifier and the Creator. Other elements, like the TemporalResolution or
CollectionDate are not considered core elements, and as such they are not compulsory
but they should be provided, whenever possible, in order to increase the potential of

Metadata

SpatialRepresentation

ReferenceSystem

SpatialExtent

SpatialResolution Quality

Distribution Content

Identifier

TemporalResolution CollectionDate

Creator

1..*

0..1

0..*

0..*

0..*
0..*

0..*

0..*

0..*

0..*

1..*

Metadata-Elements.pdf

Figure 7.15: Metadata elements

118

Chapter 7. The internal perspective model

re-usability of the data.

7.4.2 Processing descriptions

Processing services perform actions on data, that is, they use, modify, create or destroy
data resources as they carry out their intended tasks. Processing services represent
distinct, identifiable and independent units of processing.

These units of processing could address a multiplicity of operations of different na-
ture. In order to properly structure these service descriptions, we provide a semantic
classification of services into service groups. We based the classification on the OGC
service taxonomy domains [OGC02, OGC03b]. The classification presented here is
used to facilitate the organisation, discovery and manipulation of processing services
.

We organise our service groups based on the structure of the content that they operate
on (e.g., features, images), the type of contents either consume or produce (e.g., roads,
parcels), the spatial and temporal resolution of these contents (e.g., 6 months, two
years, or 1:2000, 1:500), and other descriptors such as area of validity, contents sources,
quality of service, etc. We identify five different service groups:

1. Retrieval services, which provide access to collections of data or geodata in
repositories and databases, i.e., feature access services, coverage access services,
sensor collection services and archive services;

2. Value-added services, which operate on (geo)data and add value to it. They can
perform large computations and transform, combine, or create new (geo)data,
i.e., coordinate transformation services, geocoder services, gazetteer services,
geoparser services, reverse geocoder services and route determination services;

3. Visualisation services, which enable the rendering and portrayal of information,
e.g., given one or more inputs, they produce cartographically portrayed maps,
perspective views of terrain, annotated images, views of dynamically changing
features in space and time, etc.;

4. Application services, which support managing user interfaces, graphics, multi-
media, and presenting compound documents, i.e., data association and cross-
referencing, imagery exploitation, location-based services;

5. Catalogue services, which are used to classify, register, describe, search, maintain
and access descriptions of services available on the infrastructure.

These descriptions are illustrate the specific functionality provided by a service, and
consequently can be used for searching, finding and possibly selecting suitable services.
The actual service definition of each of these services in terms of the external and
internal perspectives of the service is stored and structured according to the repository
(see section 4.4). The schema for this repository is shown in Appendix B.

119

7.5. Design example

7.5 Design example

Figure 7.16 shows the EP model of the Simple Route service. The model includes
two behaviour blocks identified as bb-Traveller and bb-SimpleRoute. The two behaviour
blocks have a constrained relationship defined by the interactions I-init and I-route.
The model also describes the items exchanged by the two behaviours. This model is
used in this section to illustrate the development of internal perspective models.

The internal perspective of a required service is developed through the successive
refinement steps that aim at the replacement of the abstract behaviour of the required
service by a concrete behaviour specification (see section 7.2).

Figure 7.16 shows a causality relation between the interaction contributions I-init and
I-route of the behaviour bb-SimpleRoute.

We start by transforming the specified interactions to their integrated form, which
means abstracting from the individual interaction contributions of the involved en-

TravelerTraveler

GSI providerGSI provider

EP-SimpleRoute.pdf

bb-SimpleRoutebb-SimpleRoute

bb-Travelerbb-Traveler

ι : 〈 orig, dest = { x, y } 〉
I-init

I-route ι : 〈 sRoute, backgroud 〉

assignment

Service
entity structure

Figure 7.16: Simple route service EP model

120

Chapter 7. The internal perspective model

init route

init’ route’

genAOI featSel pathCalc

Simple-Refinement.pdf

introduction
of internal actions

(a)

(b)

Figure 7.17: Introduction of internal actions to the SimpleRoute behaviour

tities. Figure 7.17a shows the abstract behaviour that models the function of the
service provider in an integrated form. It consists of two actions init and route, with
init being a condition for route. The textual notation of this behaviour is as follows:

SimpleRoute : { √ → init〈orig, dest〉,
init〈...〉 → route〈path, backg | sRoute7→fbound(orig,dest)〉 }

7.5.1 Introduction of internal actions

In order to identify the different data and processing elements necessary to realise
the required service, as defined by the external perspective model, we apply stepwise
refinement to the abstract behaviour to determine internal service actions and their
respective causality relations.

For the purpose of the refinement process we shortly explain the service walkthrough.
Three major steps can be identified for the determination of the route between two
points. First identification the geographical area where the two points (origin and
destination) are located, second obtention of the road network that correspond to
that area, and third, determination of a route between the points.

We this knowledge we can refine the abstract behaviour by introducing three actions,
viz. the internal actions genAOI, featSel, and pathCalc. Figure 7.17b depicts the result-
ing behaviour. Action genAOI models the identification of the area of interest, that is
the geographical zone that contains the origin and destination points. Action featSel

models the extraction of the features of the transportation network to be used in the
calculation. Action pathCalc models the actual determination of the route between
the given points.

121

7.5. Design example

aoi tnet

init route

init’ route’

genAOI featSel pathCalc

Simple-Refinement.pdf

orig,dest

init’ genAOI featSel pathCalc route’

IP-Items.pdf

path,backg

sRoute

Figure 7.18: Item representation of the SimpleRoute behaviour

Actions genAOI, featSel and pathCalc represent a distribution of part of the processing
required to perform the route calculation function. This processing is controlled by
the attribute constraints of action route’. These constraints are the responsibility
of the service provider and therefore should be enforced in the refined behaviour.
Consequently, the refined behaviour in this case could be defined as follows:

SimpleRoute : { √ → init’〈orig, dest〉,
init’〈...〉 → genAOI 〈aoi,[orig,dest] | aoi 7→contains(orig,dest)〉,
genAOI〈...〉 → featSel〈tnet,[orig,dest,aoi]〉,
featSel〈...〉 → pathCalc〈path,backg | path7→fbeg(orig),path7→fend(dest)〉,
pathCalc〈...〉 → route’〈sRoute,[backg] | sRoute7→fnodes(path)〉 }

The causality relation of the abstract behaviour is preserved in the refined behaviour
since the latter defines that init’ is a condition for genAOI, genAOI is a condition for
featSel, featSel is a condition for pathCalc and pathCalc is a condition for route’. The
concatenation of functions should yield the same result. If fbound = fnodes.(fbeg,fend),
then the attribute values of the abstract behaviour are preserved in the refined be-
haviour. This can be validated by substituting references to values of network and calc

by their values or constraints. By applying this rule to the values of route we conclude
that sRoute = fnodes(path) can be substituted by sRoute = fnodes(fbeg(orig),fend(dest)).

The textual notation represents actions in italics followed by a list of attributes and
constraints between diagonal brackets. Variables to contain attribute values estab-
lished by the action are simply separated by commas. Variables of previous actions
that are retained by an action (and thus can be referred to by subsequent actions)
are shown between square brackets. Attribute constraints are separated by a vertical
bar. Functions are shown in plain italics, followed by a list of parameters between
round brackets.

Figure 7.18 shows the graphical representation of the attribute information manipu-
lated in the SimpleRoute service represented in terms of items.

122

Chapter 7. The internal perspective model

EP-ExtRoute.pdf

bb-ExtRoute

ι : 〈 orig,int1,int2,…,dest : { EUcity,EUstreet,number }; mobType(car,bike,foot) 〉

I-init

I-route ι : 〈 sRoute, backg 〉

I-init.OptimumRoute

[EUcity, EUstreet]
city : EUcity;
orig, dest : { str : EUstreet, number : };

Inputs

Parameters 〈 routetype (shortest, quickest, cheapest) 〉
orig ≠ dest; orig ≠ ∅; dest ≠ ∅; #city {1..2 } 〉

〈
ι :

Figure 7.19: Extended route service EP model

7.5.2 Restructuring

Up to now, we have analysed the simple route problem as a single service that accepts
two points and determines a route between these points. However, to increase the
degree of reusability of the service, we can study similar types of services and introduce
into the design additional elements that could handle any extra needed functionality.

To illustrate this we modify the initial version of the route determination service.
Figure 7.16 showed the external perspective of the SimpleRoute service. The model
includes the interaction I-init associated with an item that represents the information
that is needed to initiate the service. In that case the information attribute refers
to two points as the only data required for the service. These points are the origin
and the destination, modeled as orig and dest, which are defined as pairs of x and y
coordinates.

Although, pairs of x and y coordinates is what is required to determine a route, the
geographical awareness of most users (travelers) is normally expressed in terms of
addresses and not coordinates. This represents a limitation to the usability of this
service. Additionally, there could be cases in which intermediate points along the
route might also be of interest for the user.

To address this scenarios we introduce a service with a higher degree of reusability
called the extended route service. Figure 7.19 shows the external perspective model of
the bb-ExtRoute service. This model also defines the interaction I-init, which refers to
the origin and destination points, modeled as orig and dest as well, but in this case the
origin and destination points are defined in terms of addresses, that is a city name,
a street name and a number, and nor x and y coordinates. In addition, interaction
I-init refers to a serie of intermediate points that should be included in the route
determination. Moreover, interaction I-init refers to yet another value, the so-called
mobility type modeled as mobType, which represents a parameter that specifies the
type of transport means to be used in order to go from the origin to the destination.

123

7.5. Design example

bb-ExtRoute

I-init’ I-reject

featSel

lastpnt = false

pathCalc

swap

Join

I-route'

lastpnt = false

Process-View.pdf

check geocode defAOI

Figure 7.20: Extended route service process flow

This new ExtRoute design could be based on the same set of actions defined with the
SimpleRoute service, given that the addresses of the later case are converted into the
x and y coordinates suitable for the former case. Figure 7.20 shows the behaviour
definition of the ExtRoute service as a single function.

This behaviour definition contains a series of actions and causality relations that com-
plement the SimpleRoute service definition presented earlier. Action check for example,
models the verification of whether an AddressPoint value is contained within the cities
that limit the geographical scope of the service. Acceptable addresses should belong
to the subset of European cities as defined by the class EUcity. Action geocode models
the transformation of an AddressPoint value into a RoutePoint value. That is, it converts
a valid address into a pair of x and y coordinates.

The behaviour definition also includes a series of loops, which in this case are in-
troduced as an extension mechanism of the service. For instance, interaction I-init

is followed by action check, which in turn is followed by action geocode. After ac-
tion geocode a choice ‘♦’ appears with an attribute causality condition defined as
lastpnt = false. This condition makes the process iterate until all given AddresPoints

have been checked and converted to coordinates. This basically allows for the check-
ing and geocoding of a list (more that two) of points, which can be used to determine
a route with multiple vertices. This enables the service to accept not only initial and
final points, but also intermediate points.

In addition to the general process flow we also define the different data elements that
form part of the service. Here we can make use of both primitive data types, such
as, integer, char, etc., and defined data types, such as, geoObject, theme, etc. (see
Section 6.4). Figure 7.21 shows a simplified class diagram that represents some of
the data-elements of the ExtRoute service. The diagram includes one aggregated class
Route that represents the result of the service. Each instance of this data element
encloses the set of streets that form a route.

The diagram also defines that a given address point, which complies with the defined

124

Chapter 7. The internal perspective model

EUcity
1..*

StreetNumber
1..*

AddressPoint

Route

starts ends

RoutePoint

Road WalkPath BicyclePath

+type

0..*

EUstreet

Data-Elements-Diagram.pdf

Figure 7.21: Data elements diagram of the extended route determination service

structure of the class AddressPoint, is associated with a route point that is part of the
class (RoutePoint). Furthermore, a route point is part of a route, and it can be either
the origin point, the destination point or an intermediate point of the route.

These associations, however, apart from representing the relations between the data
classes, they represent processing associations between classes as well. That is the
associations are realised through the transformation of data. For example a Routepoint

result from applying a geocoding operation to an Addrespoint.

7.5.3 Assignment of sub-behaviours

From the behaviour definition of the service ExtRoute shown in Figure 7.20 we can
discriminate phases as explained in section 7.2.2. This enables the introduction of
the mediator element, and the assignment of independent services to separate archi-
tectural elements if applicable. In this case, for example, five distinctive independent
phases are recognised as necessary to realise the service: 1) Validation of input points.
2) Transformation of input points. 3) Identification and retrieval of the features, in
this case road features. 4) Determination of the actual route. 5) Graphic representa-
tion of the results.

Figure 7.22 shows the specification of the ExtRoute service with the inclusion of a
mediator. In this case we have called the mediator element Routing. In addition
out of the five recognise phases, only two other independent elements have been
identify, namely, Geocoding and Feature selection. The behaviours of these elements

125

7.5. Design example

I-init I-reject

check

points I-inLst
I-outLst points

defAOI

area I-AofInt

I-featSet features

pathCalc
bb-ABpath

bb-ABpath

bb-Geocoding bb-FeatureSelection

cartRep

I-route

bb-Routing

bb-ExtRoute

ExtRoute-Process-View.pdf

listOK = false

Join

numPnt = 2

Figure 7.22: Restructured specification of the extended route service with a mediator

are represented by the behaviour blocks bb-Routing, bb-Geocoding and bb-FeatureSelection

respectively.

The model depicted in Figure 7.22 presents only a limited number of design elements,
such as action, constraints, etc., in order to keep the diagram simple and understand-
able.

Figure 7.22 illustrates the interaction contributions of the mediator with the other
elements. Behaviour block bb-Routing and behaviour block bb-Geocoding interact on
I-inLst and I-outLst. Their interaction takes place in case the input points are given in
form of address points. This means we have defined the service such that it can handle
requests with input points given as addresses or as pairs of x and y coordinates.

Behaviours bb-Routing and bb-FeatureSelection interact on I-AofInt and I-featSet. These
two behaviours interact in order to retrieve the road network to be used for the route
determination from an external data collection. The definition of which features to
retrieve, that is roads, walk paths or bicycle paths, is defined by the parameter mobtype.

As part of the realisation development step, the remaining phases (validation, route
determination and representation), were assigned to the mediator. Additionally,
within behaviour block bb-Routing a causality relation is added between interaction
contributions I-inLst and I-outLst. This relation allows interaction I-outLst to refer to
the information attributes values established by interaction I-inLst. This relation al-
lows the mediator, bb-Routing, to retain the local constraints and to enforce them on
the resulting service provided by bb-Geocoding. The same holds for the interactions
between bb-Routing and bb-featureSelection.

126

Chapter 7. The internal perspective model

A fourth behavioural element, called bb-ABpath, has been defined in order to handle
the calculation of the various sections of a route in the case where intermediate points
are provided. This last behaviour block however, is not designed as an independent el-
ement, but as an internal sub-behaviour that belongs to behaviour bb-Routing because
it only represents a repetitive task that in this case only concerns the mediator.

The service example portrayed in Figure 7.22 describe the usefulness of separating
elements of a service that are independent from each other. For instance, behaviour
block bb-featureSelection represents any third-party service that retrieves a set of vector
features, road features in this case, from a data collection, and makes it available for
the bb-routing behaviour. This should enable the service to be specialised for different
geographical areas, other than Europe, by just replacing the Feature Selection service
with another service that provides road features of South America, for instance. The
textual specification of the ExtRoute service is as follows:

service element 4bb-ExtRoute
attributes

· · ·
data elements

PointList : array(1..n)RoutePoint
AddressList : array(1..n)AddressPoint
Route : geoObject(line)
· · ·

included processing elements
bb-Geocoding
bb-FeatureSelection

mediator behaviour

bb-Routing : { √ → init〈PointList[0..n]; mobType(car,bike,foot) | orig 6=dest〉,
I-init〈... |PointList7→oftype(AddressPoint)〉 → check〈listOK〉,
defAOI ∨ check〈... | listOK=false〉 → I-reject〈...〉,
check〈...〉 → I-inLst〈...〉,
I-inLst〈...〉 → I-OutLst〈...〉,
I-outLst ∨ check〈... | listOK=true〉 → defAOI 〈...〉,
defAOI〈...〉 → I-AofInt〈...〉,
I-AofInt〈...〉 → bb-ABpath.entry[1]〈...〉,
bb-ABpath.entry[1]〈...〉 → pathCalc〈...〉,
pathCalc〈...〉〈... | lastSect=true〉 → bb-ABpath.exit[1]〈...〉,
bb-ABpath.exit[1]〈...〉 → cartRep〈... | numPnt=2〉,
bb-ABpath.exit[1]〈...〉 → join〈...〉,
join〈...〉 → cartRep〈...〉 }

· · ·
bb-Routing, bb-Geocoding interact on I-inLst, I-outLst
bb-Routing, bb-FeatureSelection interact on I-AofInt, I-featSet

end ;

127

7.5. Design example

128

Chapter 8

Case study: land information service

This chapter presents the case study of the land information service, which we used to
illustrate the use of our design methodology. The chapter is structured as follows: sec-
tion 8.1 introduces of the case, section 8.2 describes informally the behaviour of the
service, section 8.3 presents the external perspective model, and section 8.4 presents
the internal perspective model.

8.1 Overview

The land information service, LI-service for short, is a service centred on the gener-
ation of information about a piece of land. This includes, a.o., the actual use, the
ownership, location and size. The main objective of the service is to determine the
price and taxes of specific areas of land. The LI-service is the responsibility of the
Land Information Agency.

Every taxable piece of land (parcel) is associated with a tax payer, who can be the
owner or the tenant of the land. The tenant is the person that is currently exploiting
the land. There are multiple factors used in the determination of the tax that is
assigned to each parcel, the most important factors being the area of the parcel and
its current use. Taxes are to be charged to the tax payers twice a year.

The taxation regulation states that the tax pertaining to a parcel should be calculated
as a function of three main aspects: 1) land use, 2) productivity and 3) infrastructure.
The land use determines the base tax percentages for a parcel. A parcel may currently
have more than one type of use, or may not be used in its totality for production.
Productivity is a function of type the land use, area, and production conditions (e.g.,
temperature, rainfall, etc.). Infrastructure has to do with the location of the field,
that is distance to urban centres, road network, etc.

Multiple types of raw data are required for the execution of this service, for instance,
timely imagery covering the areas of interest for the taxation period under consid-
eration, geometric features describing parcel boundaries and nearby infrastructure,

129

8.2. Service walkthrough

weather data, etc. In addition to this raw data, specialised processing tasks are
needed to extract from the raw data, the necessary information for the tax calcula-
tion. Examples include, a.o., image processing and geo-referencing.

The Land Information Agency does not count with all the data and processing re-
sources necessary to make the service possible. Furthermore, the Land Information
Agency neither has the expertise required to implement and maintain the complete
service, nor the responsibility for generating and maintaining much of the necessary
data. Nonetheless, the Land Information Agency is responsible for the tax calcu-
lation, and therefore has to identify a mechanism to realise it. This is achieved by
designing a collaborative system to allow the Land Information Agency to make use of
specialised services from other geo-service providers whose expertise are in line with
the particular needs of the LI-service.

In this specific example, certain data (meteorological data for example) does not
have to be produced by the Land Information Agency, but rather obtained from
the responsible provider, even though some processing may be necessary to derive
the values as required for the tax calculation; and, periodic information about land
use requires the exploitation of raw data (satellite images) from which the land use
data for the specific period can be extracted, this data can obtained by means of an
additional service that complies with the particular requirements for this case.

8.2 Service walkthrough

The LI-service is initiated every time the Land Information Agency receives a re-
quest from the government to determine the taxes for a group of taxable parcels.
Four major steps can be identified in the execution of the LI-service. The first step
encompasses the activities that lead to the obtention of the necessary data to start
any processing. These activities focus on: 1) accessing data repositories to obtain,
a.o., 1) the geometric features that correspond to the parcels registered as taxable,
and 2) up-to-date imagery data corresponding to the areas where the set of taxable
parcels are located.

Collected data is then converted into a format that is suitable for the calculation
process. This implies, for example, that uncontrolled imagery has to be converted into
sufficiently geo-referenced imagery, that is with the positional accuracy and quality
needed to be in conformance with the LI-service. This could involve the measurement
of control points and ground points if necessary.

The second major step is to utilise the imagery and any other sources to extract the
information about current use of the land for the areas of interest. Included here
are activities of image classification and change detection to assign to each parcel the
current use or uses of the land. This step finishes when all the information on land
use for the parcels in the area(s) of interest has been obtained.

130

Chapter 8. Case study: land information service

The third step involves the collection of information regarding productivity, such as
temperature and rainfall, and regarding infrastructure such as, proximity to cities,
roads, railways, etc.

In the fourth step, which is the real competence of the Land Information Agency, the
results of previous steps (the geometry of parcels, the types of land uses, the weather
data, the infrastructure data) are used in the actual calculation of the taxes.

8.3 External perspective model

We start the development by creating a service definition from the external per-
spective. According to the external perspective, we use a single functional entity,
LIS (short for Land Information System), to represent the overall system. This entity
plays the role of the service provider entity. This entity is associated with a behaviour,
which in this case we have called LI-Service.

Figure 8.1 depicts the external perspective model of the Land Information Service.
The model was developed based on the description provided in section 8.2. The
behaviour block LI-Service is introduced to capture the interaction contributions of
the system for this particular service. Two interactions are defined, tpList and tForm.

Interaction tpList represents the reception by the Land Information Agency of a tax-
ation request including, a list of tax payers, and the identification numbers of the
taxable parcels associated with each tax payer. The list of tax payers corresponds
to a specific region whose taxes are calculated during the current period. Interaction
tForm represents the delivery of the set of invoices one for each of the tax payers listed
in the initial request. According to this behaviour definition, interaction tpList is fol-
lowed by interaction tForm. The textual representation of the behaviour depicted in
Figure 8.1 is listed below:

LI-service

tpList

tForm

ι : [TaxPayer, Field]
〈 payer : TaxPayer | #payer (1..*),

parcel : Field | #parcel = #payer, parcel ↔ payer 〉

ι : [TaxForm]
〈 invoice : TaxForm | #invoice = #payer 〉

TI-Service-EP.pdf

Figure 8.1: The Land Information Service external perspective

131

8.3. External perspective model

LI-Service : { √→ tpList 〈 ι = payer : TaxPayer |]payer(1..*),
parcel : ParcelNo |]invoice≥]payer 〉;

tpList → tForm 〈 ι = invoice:TaxForm |]invoice=]payer 〉 }

In Figure 8.1, the information attribute of interaction tpList, ιtpList, is depicted as
an item that contains two lists. The list of tax payers, which is represented by the
variable payer of typeTaxPayer , and the list of associated parcels, which is represented
by the variable parcel of type ParcelNo. There is a condition on the number of tax
payers, represented by the constraint]payer(1..∗), which defines that the list of tax
payer should contain at least on member. There is a condition on the list of parcels,
represented by the constraint]parcel≥]payer, which indicates that the number of
parcels should be at least the same as the number of tax payers. There is also a
condition on the list of parcels, represented by the constraint]parcel↔]payer, stating
that each parcel should be associated with a tax payer.

The information attribute of interaction tForm, ιtForm, is represented with an item
that contains a list of invoices. This list is represented by the variable invoice of
typeTaxForm. There is a condition on the number of tax payers, represented by the
constraint]invoice =]payer, which defines that there should be one invoice for each
tax payer.

For each of the interactions defined in the service definition, one or more information
diagrams are developed to capture the information used or established during the
execution of the interaction. For example, Figure 8.2a illustrates the information
diagram developed for the item associated with the interaction tpList. Interaction
tpList requires an input, TaxRequest, that represents the information used. TaxRequest

is composed of a two sets of information, Payer and Parcel. This information represents
the details of the parcels to be taxed and their associated tax payers. Similarly,
Figure 8.2b illustrates the information diagram for interaction tpForm.

TaxRequest

TaxPayer
(payerID)

name : string
address : string

Field
(parcelID)

cadastralNumber : ID
1..*

EP-Information-Model.pdf

Invoice
(payerID)

date : date
tax : real

1..*1..*

TaxCalculation

Field
(parcelID)

cadastralNumber : ID
rainfallCategory : int
temperureCategory : int
productivityTax : real
infrastructureTax : real
landuseTax : real
snapshot : image

1..*

1..*TaxPayer
(payerID)

name : string
address : string

LandUse
(useID)

area : real
usetype : CropType
croptax : string

1..*

1..*

(a) (b)

tpList parcelFeature

imageProcessing

changeDetection

featureExtraction

weatherData featureSelection

taxation tForm

LI-Service-IP-1.pdf

imagery

Figure 8.2: Information diagram for the interactions tpList (a) and tForm (b)

132

Chapter 8. Case study: land information service

8.4 Internal perspective

The internal perspective is developed in three steps. In the first step, we refine the
service definition and identify a number of architectural elements. In the second step
we create a behaviour specification that defines the relations between these architec-
tural elements and the corresponding constraints. In the third step, we specify the
internal behaviour of the architectural elements.

8.4.1 Introduction of internal actions

Our methodology prescribes a decomposition based on functionality in order to iden-
tify the services required to assemble the LI-service. Using the behaviour walkthrough
presented in section 8.2, we identify the following set of required services.

1. A Parcel Feature Service is used to obtain boundaries of parcels. The Cadas-

tralNumbers of the parcels is provided as input to the service and the result is
a theme that contains the polygons that define the shape and location of the
parcels.

2. An Imagery Service uses the coordinates from the geometric extent (limits) of
the parcel’s theme, and the dates of the taxable period to obtain the satellite im-
ages covering the areas where the parcels are located. These images correspond
to the starting and ending dates of the taxable period.

3. An Image Processing Service is used to geo-reference the satellite images
and obtain a mosaic of the area of interest. The input to this service is the set
of satellite images, and the result is the geo-referenced image mosaic.

4. A Change Detection Service compares images to identify the areas within
the parcels that have had a change in the landuse.

5. An Feature Extraction Service is used to define the different types of landuse
within the taxable parcels.

6. A Weather Data Service is used to obtain the information regarding tem-
perature, rainfall, etc. of the area of interest during the taxable period.

7. A Feature Selection Service is used to obtain information about nearby
infrastructure.

8. A Taxation Service is used to determine each parcel’s tax and deliver the
invoices.

Figure 8.3 depicts the general process flow for the LI-Service based on the eight dis-
tinctive independent services identified above. This process flow represents a set of
steps to realise the service. Optimality in this sense this process represents the best

133

8.4. Internal perspective

TaxRequest

TaxPayer
(payerID)

name : string
address : string

Field
(parcelID)

cadastralNumber : ID
1..*

EP-Information-Model.pdf

Invoice
(payerID)

date : date
tax : real

1..*1..*

TaxCalculation

Field
(parcelID)

cadastralNumber : ID
rainfallCategory : int
temperureCategory : int
productivityTax : real
infrastructureTax : real
landuseTax : real
snapshot : image

1..*

1..*TaxPayer
(payerID)

name : string
address : string

LandUse
(useID)

area : real
usetype : CropType
croptax : string

1..*

1..*

(a) (b)

tpList parcelFeature

imageProcessing

changeDetection

featureExtraction

weatherData featureSelection

taxation tForm

LI-Service-IP-1.pdf

imagery

Figure 8.3: General service process

approach to solve the problem given the current status of the system. The objec-
tive here is to identify independent tasks that can be executed separately, if possible
in parallel and which functionality can be obtained from different resources (archi-
tectural elements) within the infrastructure. That is, since services are in principle
independent of each other, they may exist within one organisation or they may be
supplied by an external service provider. They are specified in a way such that they
can be used in a service realisation in spite of their physical location or specific imple-
mentation The identification and definition of these independent services facilitates
the sharing of services and the reuse of functionality.

8.4.2 Restructuring

With the general process flow described we can proceed to the definition of the me-
diator element. For this purpose we discriminate all independent elements and then
we define the relations between these elements and the mediator, such that the LI-
service can be realised. In this case the mediator is called service-handler. This element
is responsible not only for the interface to the client application, and for hiding the
existence of the other elements from the user, but it also plays the connector role to
connect and control the relations between the other elements.

Figure 8.4 shows a behaviour definition including all of the elements identified before
and their corresponding interconnections. At this level of abstraction we depict the
relations between elements as single interactions. These interactions need to be refined
in order to fully specify the relations they represent.

Figure 8.5 shows the refined definition of the interaction between the elements weath-

erData and serviceHandler. The Weather Data Service is an independent service that
provides weather information for specific periods of time. The service requires as
inputs two dates and an area of interest. These inputs are modeled in Figure 8.5
as startDate, endDate, and region respectively. The service also allows the provision of
parameters to specify which type of weather data is being requested. If no parameter

134

Chapter 8. Case study: land information service

LI-service

tpList

tForm

ι : [TaxPayer, Field]
〈 payer : TaxPayer | #payer (1..*),

parcel : Field | #parcel ≥ #payer, parcel ↔ payer 〉

ι : [TaxForm]
〈 invoice : TaxForm | #invoice = #payer 〉

LI-Service-EP.pdf

LI-service

tpList

parcel
feature

service-handler

feature
selection

weather
data

image
processing

change
detection

feature
extraction taxation

tForm

imagery

LI-Service-IP-2.pdf

Figure 8.4: Initial internal perspective design

is provided the Weather Data Service generates only temperature data. The default
option of the parameter, temperature, is shown underlined.

The serviceHandler element interacts with the weatherData element at interactions wdReq

and wdResp. The serviceHandler element asks the weatherData element for the necessary
weather data through the interaction wdReq. The information attribute of interaction
wdReq.serviceHandler consists of three elements, startDate, endDate, and region, and the
list of parameters, e.g., temperature and rainfall. These are used by the Weather Data
Service to retrieve the corresponding weather data. The interaction wdReq is followed
by the interaction wdResp, which delivers the requested data.

WeatherData-Interaction-Diagram.pdf

weatherData

serviceHandler

ι : Parameters 〈 temperature, rainfall 〉
Results 〈 startDate : date;

endDate : date;
region : geoObject 〉

Req.serviceHandler

ι : Parameters 〈 temperature, rainfall, humidity, … 〉
Inputs 〈 startDate : date;

endDate : date;
region : geoObject 〉

Req.weatherData
ι : Results 〈 tempList : list;

rainfallList : list;
humidity : list 〉

Resp.weatherData

ι : Inputs 〈 tempList : list; rainfallList : list 〉

Resp.serviceHandler

Figure 8.5: WeatherData service interaction diagram

135

8.4. Internal perspective

tpList

parcel
feature

service-handler

feature
selection weatherData imagery

genAOI

genAOI-action.pdf

wdReq

wdResp

Figure 8.6: Introduction of the genAOI action

At the start of the LI-service the information corresponding to the area of interest
is not known. The only information known are the identifiers of the parcels to be
taxed. Therefore, before interaction wdReq.serviceHandler can take place it is necessary
to determine this area of interest such that the region element of the information
attribute of wdReq.serviceHandler can be provided.

To determine the area of interest we have to obtain the polygons corresponding to the
parcels being taxed. These polygons are obtained through the Parcel Feature Service.
To define the area of interest we introduce the action genAOI (see Figure 8.6).

The process of refining the interactions to define interaction contributions and insert-
ing actions to carry out any additional task needed to enable the connections between
two elements is repeated for all the other interactions defined for the service. In the
diagram of Figure 8.6, the relationships between interactions are refined through the
insertion of actions. Nevertheless, the ordering in which interactions should be exe-
cuted is preserved. For simplicity reasons we have only shown the refinement of the
interaction between the serviceHandler and the weatherData elements.

8.4.3 Assignment of sub-behaviours

In this example we assume that the services provided by the ImageProcessing element
and the FeatureExtratction element are unavailable. This in order to illustrate the
iterative nature of the methodology. We refined imageProcessing behaviour block by
inserting a number of relevant actions that are executed by the system as a result of
the occurrence of the initial interaction of Image Processing Service, which is called
imageList.

136

Chapter 8. Case study: land information service

tpList

parcel
feature

service-handler

feature
selection weatherData imagery

genAOI

genAOI-action.pdf

wdReq

wdResp

imageProcessing

mosaicimageList

gcpMeasure georefernce

errorCorrection

tiepoints mosaicking

ImageProcessing-Behaviour.pdf

Figure 8.7: Behaviour definition for the imageProcessing element

The Image processing service involves the activities that lead from uncontrolled im-
agery to sufficiently georeferenced imagery. The activities are: errorCorrection for spec-
ifying the correction models for camera motion and lens errors, gcpMeasure for the
observation and measurement of control points and ground points, establishing a
sufficiently rich bundle of equations for adjustment, georeference, which involves the
actual adjustment of the images, tiepoints for the determination of common points
between adjacent images, and mosaicking which comprises the joining of the various
images. The last two actions, tiepoints and mosaicking only take place when there
is more than one image. Figure 8.7 depicts the behaviour definition of the Image
Processing Service.

Figure 8.8 shows the behaviour definition for the Feature Extraction Service. This
behaviour is initiated with the interaction feReq. If the request includes aerial pho-
tographs, the interaction feReq is followed by the action stereoView . Otherwise, the
featureOverlay action is performed. Action stereoView is followed by action featureOver-

lay . Action stereoView represents the the creation of a stereoscopic view of the area
of interest. Action featureOverlay represents the overlaying of vector features (parcel
boundaries for the case of the LI-service) to determine the areas from which infor-
mation should be extracted. Action featureOverlay is followed by actions geometry ,

featureExtraction

FeatureExtraction-Behaviour.pdf

StereoView

featureOveraly

geometry

attributes

metadata

feReq feResp

Figure 8.8: Behaviour definition for the featureExtraction element

137

8.4. Internal perspective

attributes and metadata. These activities represent the discovery of features, the ex-
traction of their geometry and attributes, and the generation of the associated meta-
data according to the extraction specifications. These last three actions are followed
by interaction feResp that represents the end of the process and the delivery of the
extracted information.

Figures 8.7 and 8.8 represent the refinements of the imageProcessing and featureExtrac-

tion behaviours respectively. We generated this refinement in one single step, mainly
because of the relatively simple nature of the services. For the case of a more elab-
orated service this refinement can be generated in a series of consecutive refinement
steps.

138

Chapter 9

Conclusions

This chapter presents the most important conclusions reached throughout our re-
search. The chapter also summarises the main contributions of the work, and outlines
some directions for further research.

9.1 General considerations

Making geo-information services available as flexible distributed applications comple-
mentary to exiting geographic data sharing facilities has lately drawn the attention of
geo-information scientists. Designing this type of systems presents various challenges
due to the complex nature of their requirements and internal structures.

Some of the main concerns around the design of these systems are, a.o.: how to specify
and describe their overall functionality; how to specify and describe the functionality
of these systems internal components; how to facilitate reuse and customisation of
these systems.

In this thesis we show that a model-driven design approach can provide an adequate
way of coping with these issues. We explain how models can be used as a means to
design the system, and to properly describe its functionality to facilitate reuse.

We emphasise that, in order to use models efficiently in the design of geo-information
systems, these models should capture the correct and necessary detail to describe
the system. We achieve this with the use of a structured methodology to guide the
development of these models.

We propose a methodology for the architectural design of geo-information systems
that is organised around system perspectives. These perspectives allow the separation
of different concerns throughout the design process and the stepwise development of
a number of related system specifications.

The methodology comprises a set of design concepts and specialisations thereof, to

139

9.2. Main contributions

be used in the creation of models. We identify a set of architectural elements to rep-
resent the different types of components of geo-information systems. We also defined
an architectural style and a development trajectory that facilitate identification of ar-
chitectural elements, and the definition of services as combinations of these elements.

Our methodology also makes use of models to facilitate the sharing of functionality
among multiple systems and the design of elaborated services by reusing this func-
tionality. This capability resides in the incorporation of a repository that allows to
organise the creation, updating, validation, accessing and sharing of service models
and service instances. This allows the arrangement of elementary services into elabo-
rated combinations for richer functionality capable of providing specialised and more
client specific services.

9.2 Main contributions

The process of designing and creating geo-information systems that support cooper-
ative work among multiple geo-service providers has, up to now, been done without
the support and guidance of an adequate methodology. A drawback of the approaches
used by geo-information designers is that they mainly focus on the informational as-
pects of the system and they have limited mechanisms for expressing or specifying
behaviour. This can be explained by the complexity of the data structures needed to
manipulate geographic data, therefore great emphasis was placed on this aspect.

We have developed a methodology that enables the modelling of both behavioural
and informational aspects of geo-information systems in an integrated way. To derive
the methodology we first identified the specific characteristics and nature of geo-in-
formation systems and studied the needs of distributed geo-information processing.

Based on this study we introduced the concept the Geo-information Service Infras-
tructure (GSI). The GSI concept clearly highlights the characteristics and needs of
modern geo-information processing. The GSI builds on the existing principles for
data sharing of the Geo-information Infrastructure concept. We use the term GSI
to refer to a type of geo-information provision system from which specialised infor-
mation products and services can be obtained by exploiting the artefacts of a set of
collaborating geo-service providers. We also present a supporting architecture for the
deployment of GSI services.

Conventional geo-information systems are commonly bound to the provision of data
as their only service. The exploitable artefacts of a GSI include, in addition to data,
operations, processes, value-added products and resources. These are referred to as
elementary services. Within the GSI a common method is used to describe these
elementary services and their interfaces, such that they can be accessed, combined
and managed to create compound services. These services are defined to handle more
elaborated and specialised geo-processing tasks.

140

Chapter 9. Conclusions

To support the design of these type of system and more specifically of the services
they provide, we have developed GSDM, a methodology to guide theses systems design
process. GSDM proposes the design of GSI services according to different levels of
concern. Concern levels are organised into two system perspectives, the internal
perspective and the internal perspective. Different specifications of the system can be
developed according to a stepwise approach based on these interrelated perspectives.

The external perspective aims at identifying and explicitly delimiting the scope of the
system under development and helps determining the objectives of the development
process. The internal perspective aims at describing the internal system structure
in terms of compositions of simpler or more elementary architectural elements. Ar-
rangements of these architectural elements form so-called service specifications. A
service specification identifies a group of architectural elements and describes how
these elements interact to provide a required service.

GSDM distinguishes three types of architectural elements, viz. data elements, process-
ing elements and connecting elements. The data elements represent the information
that is used, manipulated and/or generated by the system. The process elements
represent the geo-processing capabilities of the system, which can perform transfor-
mations on data elements. The connecting elements or mediators coordinate the
interactions between the other architectural elements, and provide an interface to the
service user.

Our methodology uses the so-called mediator pattern to structure compositions of
architectural elements. This results in the organisation of a set of services into a
behaviour definition that has a single coordinating element. Among other benefits,
this approach makes the service realisation accountable for the user, and facilitates the
use of workflow languages to implement the mediator behaviour, which choreographs
the use of third-party services.

The use of perspectives, stepwise refinement and the mediator pattern allows for
a better control over the design process of a GSI system, such that the designer
can maintain the integrity and conformance of the design itself with respect to the
successive transformations that an abstract design must undergo, until a concrete
design suitable for realisation is obtained.

We introduce general design concepts, based on ISDL, to represent the different ar-
chitectural elements. Based on these concepts, specification techniques and guidelines
are presented. These specification techniques are targeted to the characteristics of the
particular concerns addressed in each perspective. An architectural style to guide the
refinement process is also presented based on the design concepts and specification
techniques.

At the centre of a GSI system lies the repository service. This repository allows to
organise the creation, updating, validation, accessing and sharing of service models
and service instances. We emphasise the use of models as the mechanism to disclose
information about services and to design more elaborated services out of combinations

141

9.3. Further Research

of existing elementary services. For this approach to work, models need not only to be
interchanged between participants, but they also have to be understood by all parties
involved. This is achieved by defining a metamodel on which all service models are
based. We introduce a metamodel that provides a rigourous abstract syntax for
defining models. The metamodel is used here to define a set of design concepts and
their relationships, which one can use to produce models according to the GSI specific
objectives.

The ideas introduced in this thesis provide a reference point for future attempts to
establish geo-information infrastructures at local, regional or national level. Data
producers and geo-service providers count with an approach and a set of guidelines
to help them establish a collaborative infrastructure, which they can use to generate
value-added services. Those who have information infrastructures already in oper-
ation can make use of these ideas to envision the next evolutionary steps for their
infrastructures. Geo-service providers can use the method and concepts presented in
this work to specify and share each others functions and turn them into combined,
distributed, collaborative services.

9.3 Further Research

The work discussed in this thesis represents the initial stages on the establishment
of a much needed methodology for the design of distributed geo-information services,
and therefore, it can be continued in a number of ways. We identify a number issues
that require further investigation: the expansion of the methodology scope, the in-
corporation of quality of service criteria, the provision of automated support for the
success of large scale development projects, the study of the relationships between
our methodology and the OGC reference model [OGC03b].

The scope of the methodology presented in this work concentrates on the design of geo-
information systems, at the so called internal and external perspectives. These two
perspectives address the service specification and design phases of the development
process. An additional contribution could be to investigate and develop harmonious
design trajectories and views for the business or enterprise perspective, and for the
deployment and management perspectives.

Another step forward is to identify appropriate design concepts to specify quality of
service. We have proposed a method to enable the design of specialised tasks that are
achieved by combining elementary services that together provide a desired function-
ality. Since there are multiple possible configurations of elements that could comply
to the same requirements, it is still necessary to identify which quality parameters
should be embedded in the designs, such that it is possible to determine the suitability
of different designs against specific project constraints, like time or cost.

In the same way one could further investigate the use workflow management systems
to choreograph the execution of actual service instances. By mapping the designs

142

Chapter 9. Conclusions

obtained with our methodology to an adequate workflow model it would be possible
to optimise the use of resources, and to manage effectively the collaboration between
members of a service infrastructure.

Automated support for the execution of large development projects, such as a fully-
fledge GSI system are another area of interest. Tools to automate validation of and
conformance assessment of specifications are being currently developed. Some other
tools could be developed to manage the service repositories that support a GSI, for
instance, for version control.

An interesting use of automation lies in the transformation of models. We target
our methodology to facilitate the integration of distributed geo-services via the de-
velopment of general models across various phases of the system lifecycle. These
models are system ‘or platform’ independent. The transformation and specialisation
of these models into platform specific would improve the capability of our method-
ology increasing specially the potential of the service repository. In this regard one
can investigate the relationship of our methodology with the Model Driven Architec-
ture [OMG01b] initiative of the Object Management Group (OMG).

Recently, the OpenGIS Consortium (OGC) [Ope04] has released a framework known
as the OGC Reference Model [OGC03b]. The main goal of this framework is to
support the specification and implementation of interoperable solutions and applica-
tions for geospatial services, data, and applications. To a certain extent, the idea
behind our methodology is similar to the OGC Refrence Model. In both cases an
attempt is made to capture system information before the specification of the system
itself, although in our case we partially address issues of the business domain and
we do not address the technology domain at all. Further, both aim at producing
platform-independent specifications that can be later specialised accordingly. Finally,
both rely on the use of models as a mechanism to disclose information on the sys-
tem and to facilitate the chaining of services. Still, additional investigation is needed
to combine the best of both approaches or to define how they can influence each other.

143

Appendix A

Services metadata

You will never be able to discover new oceans
unless you have the courage to lose sight of the shore.

Hannah Whitall Smith

A.1 Service descriptions

A service represents the contribution of a system or part thereof to its surrounding
environment that is of value to the end-user. In our case, this contribution corresponds
to some functionality that is provided by a geo-information system over a network.

These services, which range in size from small low-level services that represent single
units of functionality, to high-level services that fuse lower-level services for process-
ing to provide more elaborated functions to users, encompass a serie of networked
resources.

To facilitate the search and discovery of these services, an adequate description in
the form standardised descriptive metadata has to be associated with them (see sec-
tion 7.4). These service descriptions should be reach enough to convey enough infor-
mation, which clients can use to discover and utilise such services. Such representa-
tions should be both human and machine readable, to not only facilitate discovery
and use but also to ease their integration in elaborated end-user applications.

In our case this metadata encompasses a set of metadata elements based on the Dublin
Core Metadata Initiative (DCMI) [DCM03a].

The Dublin Core metadata standard is a simple yet effective element set for describing
a wide range of networked resources. The Dublin Core metadata element set is a
standard for cross-domain information resource description. The DCMI defines an
information resource to be “anything that has identity”, there are no fundamental
restrictions to the types of resources to which Dublin Core metadata can be assigned.

145

A.2. The metadata elements

A.2 The metadata elements

In this section we introduce and explain the set of metadata elements for the general
description of GSI services. Specific metadata elements, such as those which are only
related to data services for example, are not listed here.

This metadata deals only with descriptive information about a service, the actual
service definitions are store in the repository (see appendix B).

Element Name : Title
Definition : A name given to the resource.
Comment : The element provides a name by which the resource is for-

mally known and could be identified, e.g., “Movement track-
ing, guidance and control”, “Landsat TM datasets of Overi-
jssel, The Netherlands”

Element Name : Creator
Definition : The entity primarily responsible for making the content of

the resource
Comment : This element should be used to indicate the person or organ-

isation that put the service together, e.g., “Alvarez Casallas,
Luisa Liliana”, “Institute for Environmental studies”, “Dutch
Topographic Service”

Element Name : Date
Definition : A date of an event in the lifecycle of the resource.
Comment : Typically this element is associated with the creation or avail-

ability of the resource.

Element Name : Identifier
Definition : An unambiguous reference to the resource within a given con-

text.
Comment : Recommended best practice is to identify the resource by

means of a string or number conforming to a formal identifi-
cation system.

Element Name : Description
Definition : An account of the content of the resource
Comment : Some sort of explanation of what the resource does, or what

it is useful for.

Element Name : Format
Definition : The physical or digital manifestation of the resource
Comment : Typically, Format may include the media-type or dimensions

of the resource. Format may be used to identify the software,
hardware, or other equipment needed to display or operate
the resource. Examples of dimensions include size and dura-
tion, e.g., “image/tiff 12MB”.

146

Chapter A. Services metadata

Element Name : Coverage
Definition : The extent or scope of the content of the resource.
Comment : Typically, Coverage will include spatial location (a place

name or geographic coordinates), temporal period (a period
label, date, or date range) or jurisdiction (such as a named
administrative entity), for example, Thesaurus of Geographic
Names of Colombia [TGNC]). Named places or time periods
should be used in preference to numeric identifiers such as
sets of coordinates or date ranges.

Element Name : Category
Definition : A topic of the content of the resource.
Comment : Subject is expressed as keywords, key phrases or classification

codes that describe a topic of the resource. Recommended
best practice is to select a value from a controlled vocabulary
or formal classification scheme, e.g. “Visualisation service”,

Element Name : Rights
Definition : Information about rights held in and over the resource.
Comment : Rights information often encompasses Intellectual Property

Rights, Copyright, and various other Property Rights. If the
Rights element is absent, no assumptions may be made about
any rights held in or over the resource.

Element Name : Language
Definition : A language of the intellectual content of the resource.
Comment : Recommended best practice is to use RFC3066 which, in con-

junction with ISO639 [ISO03] define two and three primary
language tags with optional subtags. Examples include ”en”
or ”eng” for English, ”akk” for Akkadian”, and ”en-GB” for
English used in the United Kingdom.

A.3 Service metadata schema

Existing approaches to the implementation of service and resource descriptions over
a network include, a.o., the Web Service Description Language (WSDL) [W3C01a],
the Universal Description Discovery and Integration (UDDI) standard service reg-
istry [BCE+02], the Dublin Core Metadata Initiative (DCMI) [DCM03a], the service
representation approach to support agent communication (AIGA) [Nol03, AIG03], the
Semantic Web [BLHL01, DCM03b], the Darpa Agent Markup Language for Services
(DAML-S) [DHM+01, DAM03], the Metadirectory Service (MDS) for Grid comput-
ing [CFFK01]. All of these approaches define different mechanisms to encode infor-
mation about network resources.

We have selected the Resource Description Framework (RDF) [W3C99] for the rep-
resentation of service descriptions, and the eXtensible Markup Language (XML)

147

A.3. Service metadata schema

[W3C01b] for the encoding these descriptions. The Resource Description Frame-
work (RDF) and the eXtensible Markup Language (XML) are both World Wide Web
Consortium (W3C) [W3C03] recommendations for sharing information over the web.

The schema presented below includes the elements that we have defined as metadata.
The schema also includes elements to encode specific information about the service
that are based on the definition of the service repository and its associated metamodel
(see section 4.4). These later elements include, a.o., inputs, parameters, results, their
corresponding data types.

For each GSI service the above information stored in XML and made available across
the network. When a user needs to locate a service providing a particular type of
functionality, it can search the metadata trough traditional means using any XML
enable search engine. The service metadata schema is listed below. To identify how a
particular service provider realise a service, a user can search through the information
provided in XML containing the actual service specification (see Appendix B).

<?xml version="1.0" encoding="UTF-8"?>

<!-- ============================= -->

<!-- GSI Services Metadata -->

<!-- ============================= -->

<!-- International Institute -->

<!-- for Geo-Information Science -->

<!-- and -->

<!-- Earth Observation (ITC) -->

<!-- ============================= -->

<!-- University of Twente (UT) -->

<!-- Centre for Telematics -->

<!-- and Information Technology -->

<!-- ============================= -->

<!-- Enschede, The Netherlands -->

<!-- ============================= -->

<!-- ============jmmg============= -->

<!-- ============================= -->

<rdf:RDF xml:lang="en"

xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"

xmlns:rdfs="http://www.w3.org/TR/1999/PR-rdf-schema-19990303"

xmlns:wdxml="http://www.w3.org/TR/2000/WD-xmlschema-2-20000407"

xmlns:dc="http://purl.org/dc"

xmlns:gsi="http://www.itc.nl/morales/gsi/schemas">

<rdf:Description about="">

<dc:Title>Description for GSI Services definitions</dc:Title>

<dc:Creator>Javier Morales</dc:Creator>

<dc:Date>2002-11-14</dc:Date>

<dc:Format>text/xml</dc:Format>

<dc:Description>Description for GSI Services definitions</dc:Description>

<dc:Subject>Geo-information services</dc:Subject>

</rdf:Description>

<!-- =========================== -->

<!-- General service information -->

<!-- =========================== -->

148

Chapter A. Services metadata

<rdf:Description ID="Service">

<rdf:type resource="rdfs:#Class"/>

<rdfs:subClassOf rdf:resource="rdfs:#Resource"/>

<rdfs:comment>GSI services main abstract class</rdfs:comment>

</rdf:Description>

<rdf:Description ID="name">

<rdf:type resource="rdfs:#Property"/>

<rdfs:domain rdf:resource="#Service"/>

<rdfs:range rdf:resource="wdxml#string"/>

<rdfs:comment>The name of the service</rdfs:comment>

</rdf:Description>

<rdf:Description ID="creator">

<rdf:type resource="rdfs:#Property"/>

<rdfs:domain rdf:resource="#Service"/>

<rdfs:range rdf:resource="wdxml#string"/>

<rdfs:comment>The creator (e.g., company, person) of the service</rdfs:comment>

</rdf:Description>

<rdf:Description ID="version">

<rdf:type resource="rdfs:#Property"/>

<rdfs:domain rdf:resource="#Service"/>

<rdfs:range rdf:resource="wdxml#string"/>

<rdfs:comment>The version of the service</rdfs:comment>

</rdf:Description>

<rdf:Description ID="description">

<rdf:type resource="rdfs:#Property"/>

<rdfs:domain rdf:resource="#Service"/>

<rdfs:range rdf:resource="wdxml#string"/>

<rdfs:comment>A human readable description of the service.</rdfs:comment>

</rdf:Description>

<rdf:Description ID="category">

<rdf:type resource="rdfs:#Property"/>

<rdfs:domain rdf:resource="#Service"/>

<rdfs:range rdf:resource="wdxml#string"/>

<rdfs:comment>A class representing geospatial processing functions.</rdfs:comment>

</rdf:Description>

<rdf:Description ID="documentation">

<rdf:type resource="rdfs:#Property"/>

<rdfs:domain rdf:resource="#Service"/>

<rdfs:range rdf:resource="wdxml#string"/>

<rdfs:comment>A URL to documentation on the service.</rdfs:comment>

</rdf:Description>

<rdf:Description ID="inputDataType">

<rdf:type resource="rdfs:#Property"/>

<rdfs:domain rdf:resource="#DataType"/>

<rdfs:comment>The input data type that the service requires.</rdfs:comment>

</rdf:Description>

<rdf:Description ID="resultDataType">

<rdf:type resource="rdfs:#Property"/>

<rdfs:domain rdf:resource="#DataType"/>

149

A.3. Service metadata schema

<rdfs:comment>The result data type that the service produces.</rdfs:comment>

</rdf:Description>

<rdf:Description ID="numInputs">

<rdf:type resource="rdfs:#Property"/>

<rdfs:domain rdf:resource="#Service"/>

<rdfs:range rdf:resource="wdxml#integer"/>

<rdfs:comment>The number of inputs that the service requires.</rdfs:comment>

</rdf:Description>

<rdf:Description ID="numResults">

<rdf:type resource="rdfs:#Property"/>

<rdfs:domain rdf:resource="#Service"/>

<rdfs:range rdf:resource="wdxml#integer"/>

<rdfs:comment>The number of results produced by the service.</rdfs:comment>

</rdf:Description>

<rdf:Description ID="parameter">

<rdf:type resource="rdfs:#Property"/>

<rdfs:domain rdf:resource="#Service"/>

<rdfs:range rdf:resource="#Parameter"/>

<rdfs:comment>A parameter used by the service.</rdfs:comment>

</rdf:Description>

<rdf:Description ID="numParameters">

<rdf:type resource="rdfs:#Property"/>

<rdfs:domain rdf:resource="#Service"/>

<rdfs:range rdf:resource="wdxml#integer"/>

<rdfs:comment>The number of parameters required by the service.</rdfs:comment>

</rdf:Description>

<rdf:Description ID="dependantUpon">

<rdf:type resource="rdfs:#Property"/>

<rdfs:domain rdf:resource="#Service"/>

<rdfs:comment>Any dependancy that the service needs

prior to processing.</rdfs:comment>

</rdf:Description>

<rdf:Description ID="numItems">

<rdf:type resource="rdfs:#Property"/>

<rdfs:domain rdf:resource="#Service"/>

<rdfs:range rdf:resource="wdxml#integer"/>

<rdfs:comment>The number of items that the service requires.</rdfs:comment>

</rdf:Description>

<rdf:Description ID="item">

<rdf:type resource="rdfs:#Property"/>

<rdfs:domain rdf:resource="#Service"/>

<rdfs:comment>The items manipulated by the service.</rdfs:comment>

</rdf:Description>

<rdf:Description ID="GeoOperation">

<rdf:type resource="rdfs:#Class"/>

<rdfs:subClassOf rdf:resource="#Service"/>

<rdfs:comment>A class representing geo-spatial

processing functions.</rdfs:comment>

</rdf:Description>

150

Chapter A. Services metadata

<!-- ===================== -->

<!-- Data type information -->

<!-- ===================== -->

<rdf:Description ID="DataType">

<rdf:type resource="rdfs:#Class"/>

<rdfs:comment>An abstract class for data</rdfs:comment>

</rdf:Description>

<rdf:Description ID="ImageData">

<rdf:type resource="rdfs:#Class"/>

<rdfs:subClassOf rdf:resource="#DataType"/>

<rdfs:comment>A class representing image data</rdfs:comment>

</rdf:Description>

<rdf:Description ID="geoFeature">

<rdf:type resource="rdfs:#Class"/>

<rdfs:subClassOf rdf:resource="#DataType"/>

<rdfs:comment>A class representing geospatial data</rdfs:comment>

</rdf:Description>

<rdf:Description ID="geoObject">

<rdf:type resource="rdfs:#Class"/>

<rdfs:subClassOf rdf:resource="#GeoFeature"/>

<rdfs:comment>A class representing geographic objects</rdfs:comment>

</rdf:Description>

<rdf:Description ID="Theme">

<rdf:type resource="rdfs:#Class"/>

<rdfs:subClassOf rdf:resource="#GeoFeature"/>

<rdfs:comment>A class representing geographic objects

of the same type</rdfs:comment>

</rdf:Description>

<rdf:Description ID="Composite">

<rdf:type resource="rdfs:#Class"/>

<rdfs:subClassOf rdf:resource="#GeoFeature"/>

<rdfs:comment>A class representing gropus of geographic objects

of any type</rdfs:comment>

</rdf:Description>

<rdf:Description ID="Collection">

<rdf:type resource="rdfs:#Class"/>

<rdfs:subClassOf rdf:resource="#GeoFeature"/>

<rdfs:comment>A class representing groups of geographic themes</rdfs:comment>

</rdf:Description>

<rdf:Description ID="Integer">

<rdf:type resource="rdfs:#Class"/>

<rdfs:subClassOf rdf:resource="#DataType"/>

<rdfs:range rdf:resource="wdxml#integer"/>

<rdfs:comment>The integer value</rdfs:comment>

</rdf:Description>

<rdf:Description ID="Float">

<rdf:type resource="rdfs:#Class"/>

<rdfs:subClassOf rdf:resource="#DataType"/>

<rdfs:range rdf:resource="wdxml#float"/>

151

A.3. Service metadata schema

<rdfs:comment>The float value</rdfs:comment>

</rdf:Description>

<rdf:Description ID="Double">

<rdf:type resource="rdfs:#Class"/>

<rdfs:subClassOf rdf:resource="#DataType"/>

<rdfs:range rdf:resource="wdxml#double"/>

<rdfs:comment>The double value</rdfs:comment>

</rdf:Description>

<rdf:Description ID="Short">

<rdf:type resource="rdfs:#Class"/>

<rdfs:subClassOf rdf:resource="#DataType"/>

<rdfs:range rdf:resource="wdxml#short"/>

<rdfs:comment>The short value</rdfs:comment>

</rdf:Description>

<rdf:Description ID="Long">

<rdf:type resource="rdfs:#Class"/>

<rdfs:subClassOf rdf:resource="#DataType"/>

<rdfs:range rdf:resource="wdxml#long"/>

<rdfs:comment>The long value</rdfs:comment>

</rdf:Description>

<rdf:Description ID="Byte">

<rdf:type resource="rdfs:#Class"/>

<rdfs:subClassOf rdf:resource="#DataType"/>

<rdfs:range rdf:resource="wdxml#byte"/>

<rdfs:comment>The byte value</rdfs:comment>

</rdf:Description>

<rdf:Description ID="Boolean">

<rdf:type resource="rdfs:#Class"/>

<rdfs:subClassOf rdf:resource="#DataType"/>

<rdfs:range rdf:resource="wdxml#boolean"/>

<rdfs:comment>The boolean value</rdfs:comment>

</rdf:Description>

<rdf:Description ID="String">

<rdf:type resource="rdfs:#Class"/>

<rdfs:subClassOf rdf:resource="#DataType"/>

<rdfs:range rdf:resource="wdxml#string"/>

<rdfs:comment>The short value</rdfs:comment>

</rdf:Description>

<!-- ===================== -->

<!-- Parameter information -->

<!-- ===================== -->

<rdf:Description ID="Parameter">

<rdf:type resource="rdfs:#Class"/>

<rdfs:subClassOf rdf:resource="rdfs:#Resource"/>

<rdfs:comment>A class representing input parameter necessary to configure

the service.</rdfs:comment>

</rdf:Description>

</rdf:RDF>

152

Appendix B

Repository schema

In the same way as the with service metadata, we have selected the Resource De-
scription Framework (RDF) and the eX- tensible Markup Language (XML) to encode
service definitions.

Service definitions encompass the behavioural and structural vies of a service as de-
fined in their corresponding internal and external perspective models. The GML (see
Appendix C) is used for the encoding of any spatial features or spatial feature defini-
tions associated with a service. Table B.1 shows the structure of an XML document
that depicts a service definition.

Table B.1: Structure of the GSDM repository documents

Section Description

Metadata Information about the service including: the creator,
date of creation, general description, etc. (see sec-
tion A.3)

Member elements All processing and data elements that form part of the
service, if any.

Behavioural description The behavioural definition, which corresponds to the in-
ternal perspective of the service. This section describes
how the various associated elements and internal oper-
ations (proper to the particular service) are assembled
and cooperate to realise the corresponding service.

The metadata section represents metadata about the GSI service that can be if use for
determining what the service does, who owns the service, when it was created, when
it was last modified, etc. (see section A.3). The metadata section also represents the
inputs and the results obtained from the service.

The architectural elements section represent the necessary processing and data el-
ements that form part of the current service and that are necessary to realise the
service function. This is essentially a listing of the elements required and not the
order in which they are used or associated.

153

The behavioural description represents the behaviour definition corresponding to the
internal perspective model of the service. It includes the exact arrangement of archi-
tectural elements including relationships and constraints. This is considered the best
approach that a service provider can offer to solve a problem.

Figures B.1, B.2 and B.3 depict the graphical representation of the repository schema.
The complete XML repository schema is listed after the figures. The schema conforms
to the metamodel for the GSI repository that was introduced in section 4.4.

154

Chapter B. Repository schema

D:\Jmmg\PhD-Thesis\Schemas\GsiIsdla.xsd 11/21/03 09:12:00

©1998-2003 Altova GmbH http://www.xmlspy.com Page 1Registered to ITC (ITC)

��������	

����

∞1..

������������������

���� ����	
�����������������

������������������	

����

���������������������

����

∞0..
∞1..

���������������

����

��������������������������

����

∞0..

��������
���������

����

∞0..

�������
���������

����

∞0..

���	����������

����

∞0..

����	���������������	����

����

���������������

����

∞1..
∞0..

������	�����

����

�����������

����

���������������

����

������	�

����

���������

����

�����

����

�� �!���

����

"	�� �������������

���� ����������

#���	���������	�����

����

#���

����

$����������	�����

����

�������	�����

����

������

����

∞1..

#���	����������	�������

����

∞1..

��	����	����������	

����

Figure B.1: Repository schema - part I

155

D:\Jmmg\PhD-Thesis\Schemas\GsiIsdla.xsd 11/21/03 02:26:49

©1998-2003 Altova GmbH http://www.xmlspy.com Page 1Registered to ITC (ITC)

Attribute gsi:DataType

∞0..

gsi:DataTypeAttribute

Name

type xs:string

Value

type gsi:anyDataType

DefinedDataType

geoFeature

Composite

∞1..

gsi:geoObject

Theme gsi:geoObject

∞1..

geoObject

∞1..

∞1..

gml:_Geometry

type gml:AbstractGeometryType

gml:LineString

type gml:LineStringType

gml:LinearRing

type gml:LinearRingType

gml:MultiLineString

type gml:MultiLineStringType

gml:MultiPoint

type gml:MultiPointType

gml:MultiPolygon

type gml:MultiPolygonType

gml:Point

type gml:PointType

gml:Polygon

type gml:PolygonType

Raster

type gsi:Image

Metadata

type gsi:MetadataType

PrimitiveDataType

type xs:anyType

InformationAttribute

Item

LocationAttribute

TimeAttribute

Figure B.2: Repository schema - part II

156

Chapter B. Repository schemaD:\Jmmg\PhD-Thesis\Schemas\GsiIsdla.xsd 11/21/03 09:09:52

©1998-2003 Altova GmbH http://www.xmlspy.com Page 1Registered to ITC (ITC)

��������	

����

∞1..

������������������

���� ����	
�����������������

������������������	

����

��	����	����������	

����

∞1..

�������	������

���� ������������������

∞1..

�����������	

����

∞1..

������������������	

����

∞1..

��	����	����������	

����

∞1..

���������������������

����

∞0..
∞1..

���������������

����

��������������������������

����

∞0..

��������
���������

����

∞0..

�������
���������

����

∞0..

���	����������

����

∞0..

����	���������������	����

����

Figure B.3: Repository schema - part III

<?xml version="1.0" encoding="UTF-8"?>

<!-- ============================= -->

<!-- GSI Repository Schema -->

<!-- ============================= -->

<!-- International Institute -->

<!-- for Geo-Information Science -->

<!-- and -->

<!-- Earth Observation (ITC) -->

<!-- ============================= -->

<!-- University of Twente (UT) -->

<!-- Centre for Telematics -->

<!-- and Information Technology -->

<!-- ============================= -->

<!-- Enschede, The Netherlands -->

<!-- ============================= -->

<!-- ============jmmg============= -->

<!-- ============================= -->

<xs:schema

targetNamespace="http://www.itc.nl/morales/gsi/schemas"

xmlns:gsi="http://www.itc.nl/morales/gsi/schemas"

xmlns:xs="http://www.w3.org/2001/XMLSchema"

157

xmlns:gml="http://www.opengis.net/gml"

elementFormDefault="qualified"

attributeFormDefault="unqualified">

<xs:import

namespace="http://www.opengis.net/gml"

schemaLocation="http://www.opengis.net/gml/feature.xsd"/>

<!-- ============= -->

<!-- Main Elements -->

<!-- ============= -->

<xs:element name="Service">

<xs:complexType>

<xs:sequence>

<xs:element ref="gsi:Behaviour" maxOccurs="unbounded"/>

</xs:sequence>

</xs:complexType>

</xs:element>

<xs:group name="ElementGroup">

<xs:sequence>

<xs:choice minOccurs="0" maxOccurs="unbounded">

<xs:element ref="gsi:Behaviour"/>

</xs:choice>

</xs:sequence>

</xs:group>

<xs:element name="Behaviour">

<xs:complexType>

<xs:all maxOccurs="unbounded">

<xs:element ref="gsi:FunctionalEntity"/>

</xs:all>

<xs:attribute name="eID" type="xs:ID"/>

<xs:attribute name="eName" type="xs:string"/>

</xs:complexType>

</xs:element>

<xs:element

name="MonolithicBehaviour"

type="gsi:MonolithicBehaviourType"

substitutionGroup="gsi:Behaviour"/>

<xs:element

name="StructuredBehaviour"

substitutionGroup="gsi:Behaviour">

<xs:complexType>

<xs:sequence maxOccurs="unbounded">

<xs:element ref="gsi:Behaviour" maxOccurs="unbounded"/>

<xs:element ref="gsi:Interaction" maxOccurs="unbounded"/>

<xs:element ref="gsi:CausalityCondition"

minOccurs="0" maxOccurs="unbounded"/>

</xs:sequence>

</xs:complexType>

</xs:element>

<xs:element name="ActivityUnit">

<xs:complexType>

158

Chapter B. Repository schema

<xs:sequence minOccurs="0" maxOccurs="unbounded">

<xs:element ref="gsi:Attribute"/>

</xs:sequence>

<xs:attribute name="eID" type="xs:ID"/>

<xs:attribute name="eName" type="xs:string"/>

</xs:complexType>

</xs:element>

<xs:element name="Action" substitutionGroup="gsi:ActivityUnit"/>

<xs:element name="Interaction" type="gsi:InteractionType"/>

<xs:element name="InteractionContribution" substitutionGroup="gsi:ActivityUnit"/>

<xs:element name="CausalityCondition">

<xs:complexType>

<xs:sequence maxOccurs="unbounded">

<xs:element ref="gsi:AlternativeCausalityCondition"/>

</xs:sequence>

</xs:complexType>

</xs:element>

<xs:element name="BasicCausalityCondition"/>

<xs:element name="StartCondition"

substitutionGroup="gsi:BasicCausalityCondition"/>

<xs:element name="EnablingCondition"

substitutionGroup="gsi:BasicCausalityCondition"/>

<xs:element name="DisablingCondition"

substitutionGroup="gsi:BasicCausalityCondition"/>

<xs:element name="Attribute">

<xs:complexType>

<xs:sequence>

<xs:element ref="gsi:DataType"/>

</xs:sequence>

</xs:complexType>

</xs:element>

<xs:element name="InformationAttribute" substitutionGroup="gsi:Attribute"/>

<xs:element name="LocationAttribute" substitutionGroup="gsi:Attribute"/>

<xs:element name="TimeAttribute" substitutionGroup="gsi:Attribute"/>

<xs:element name="Item" substitutionGroup="gsi:InformationAttribute"/>

<xs:element name="DataType">

<xs:complexType>

<xs:sequence minOccurs="0" maxOccurs="unbounded">

<xs:element ref="gsi:DataTypeAttribute"/>

</xs:sequence>

</xs:complexType>

</xs:element>

<xs:element name="DataTypeAttribute">

<xs:complexType>

<xs:sequence>

<xs:element name="Name" type="xs:string"/>

<xs:element name="Value" type="gsi:anyDataType"/>

</xs:sequence>

159

</xs:complexType>

</xs:element>

<xs:element name="PrimitiveDataType" type="xs:anyType"

substitutionGroup="gsi:DataType"/>

<xs:element name="DefinedDataType" substitutionGroup="gsi:DataType"/>

<xs:element name="FunctionalEntity" type="gsi:FunctionalEntityType"/>

<xs:element name="geoFeature" substitutionGroup="gsi:DefinedDataType"/>

<xs:element name="geoObject" substitutionGroup="gsi:geoFeature">

<xs:complexType>

<xs:choice maxOccurs="unbounded">

<xs:sequence maxOccurs="unbounded">

<xs:element ref="gml:_Geometry"/>

</xs:sequence>

<xs:sequence>

<xs:element name="Raster" type="gsi:Image"/>

</xs:sequence>

<xs:element name="Metadata" type="gsi:MetadataType"/>

</xs:choice>

</xs:complexType>

</xs:element>

<xs:element name="Theme" substitutionGroup="gsi:geoFeature">

<xs:complexType>

<xs:sequence>

<xs:element ref="gsi:geoObject" maxOccurs="unbounded"/>

</xs:sequence>

<xs:attribute name="Semantic" type="xs:string"/>

</xs:complexType>

</xs:element>

<xs:element name="Collection">

<xs:complexType>

<xs:sequence>

<xs:element ref="gsi:Theme" maxOccurs="unbounded"/>

</xs:sequence>

</xs:complexType>

</xs:element>

<xs:element name="Composite" substitutionGroup="gsi:geoFeature">

<xs:complexType>

<xs:all maxOccurs="unbounded">

<xs:element ref="gsi:geoObject"/>

</xs:all>

</xs:complexType>

</xs:element>

<!-- =============== -->

<!-- Primitive Types -->

<!-- =============== -->

<xs:complexType name="ElementContainer">

<xs:choice>

<xs:group ref="gsi:ElementGroup"/>

</xs:choice>

</xs:complexType>

160

Chapter B. Repository schema

<xs:complexType name="MonolithicBehaviourType">

<xs:complexContent>

<xs:extension base="gsi:AbstractElementType">

<xs:sequence>

<xs:element ref="gsi:CausalityCondition" minOccurs="0"/>

<xs:element ref="gsi:ActivityUnit" maxOccurs="unbounded"/>

</xs:sequence>

</xs:extension>

</xs:complexContent>

</xs:complexType>

<xs:complexType name="InteractionType">

<xs:complexContent>

<xs:extension base="gsi:AbstractElementType">

<xs:sequence>

<xs:element ref="gsi:InteractionContribution"

minOccurs="2" maxOccurs="unbounded"/>

</xs:sequence>

</xs:extension>

</xs:complexContent>

</xs:complexType>

<xs:complexType name="anyDataType"/>

<xs:complexType name="Image"/>

<xs:complexType name="FunctionalEntityType">

<xs:complexContent>

<xs:extension base="gsi:AbstractElementType"/>

</xs:complexContent>

</xs:complexType>

<xs:complexType name="MetadataType">

<xs:sequence>

<xs:element name="Identifier" maxOccurs="unbounded"/>

<xs:element name="Creator"/>

<xs:sequence>

<xs:element name="Content" minOccurs="0" maxOccurs="unbounded"/>

<xs:element name="CollectionDate" minOccurs="0" maxOccurs="unbounded"/>

<xs:element name="SpatialExtent" minOccurs="0" maxOccurs="unbounded"/>

<xs:element name="Quality" minOccurs="0" maxOccurs="unbounded"/>

<xs:element name="ReferenceSystem" minOccurs="0" maxOccurs="unbounded"/>

<xs:element name="SpatialResolution" minOccurs="0" maxOccurs="unbounded"/>

<xs:element name="TemporalResolution" minOccurs="0" maxOccurs="unbounded"/>

<xs:element name="SpatialRepresentation" minOccurs="0" maxOccurs="unbounded"/>

<xs:element name="Distribution" minOccurs="0"/>

</xs:sequence>

</xs:sequence>

</xs:complexType>

<xs:complexType name="BehaviourType">

<xs:complexContent>

<xs:extension base="gsi:AbstractElementType"/>

</xs:complexContent>

</xs:complexType>

<xs:element name="AlternativeCausalityCondition">

<xs:complexType>

161

<xs:sequence>

<xs:element ref="gsi:BasicCausalityCondition"

minOccurs="0" maxOccurs="unbounded"/>

<xs:element name="AlternativeDataConstraint">

<xs:complexType>

<xs:attribute name="expression" type="xs:string"/>

<xs:attribute name="result" type="xs:anySimpleType"/>

</xs:complexType>

</xs:element>

</xs:sequence>

</xs:complexType>

</xs:element>

<!-- ============== -->

<!-- Abstract Types -->

<!-- ============== -->

<xs:complexType name="AbstractElementType">

<xs:attribute name="eID" type="xs:ID"/>

<xs:attribute name="eName" type="xs:string"/>

</xs:complexType>

</xs:schema>

162

Appendix C

GML Overview

We adopted GML for the encoding of geographic features, therefore, here we provide
a short description of the most important features of GML. The Geography Markup
Language (GML) is an XML encoding for the transport and storage of geographic
information, including both the spatial and non-spatial properties of geographic fea-
tures. The GML specification [OGC03a] defines the XML Schema syntax, mecha-
nisms, and conventions that:

• Enable the creation and maintenance of linked geographic application schemas
and datasets;

• Support the storage and transport of application schemas and data sets;

• Support the description of geospatial application schemas for specialised do-
mains and information communities;

• Increase the ability of organisations to share geographic application schemas
and the information they describe.

• Provide an open, vendor-neutral framework for the definition of geospatial ap-
plication schemas and objects;

• Allow profiles that support proper subsets of GML framework descriptive capa-
bilities;

GML was developed with a number of explicit design goals, a few of which overlap
the objectives of XML itself:

• provide a means of encoding spatial information for both data transport and
data storage, especially in a wide-area Internet context;

• be sufficiently extensible to support a wide variety of spatial tasks, from por-
trayal to analysis;

163

• establish the foundation for Internet GIS in an incremental and modular fashion;

• allow for the efficient encoding of geo-spatial geometry (e.g. data compression);

• provide easy-to-understand encodings of spatial information and spatial rela-
tionships;

• be able to separate spatial and non-spatial content from data presentation
(graphic or otherwise);

• permit the easy integration of spatial and non-spatial data, especially for cases
in which the non-spatial data is XML-encoded;

• be able to readily link spatial (geometric) elements to other spatial or non-spatial
elements.

• provide a set common geographic modeling objects to enable interoperability of
independently-developed applications.

The encoding of spatial features using GML requires is based on two XML Schemas:
the GML Feature Schema and the GML Geometry Schema; with these two simple
schemas it is possible to encode a wide variety of geospatial information.

The GML Geometry schema includes type definitions for both abstract geometry
elements, concrete (multi) point, line and polygon geometry elements, as well as
complex type definitions for the underlying geometry types. Figures C.1 and C.3
depict the GML Geometry schema.

In the feature schema, the link of a feature with a geometry is modeled as an associa-
tion class called, geometric property. The Feature schema uses the ¡include¿ element
to bring in the definitions and declarations contained in the Geometry schema, and
use them for the definitions of the features’ geometry property. Figure C.2 shows a
representation of the GML Feature schema.

164

Chapter C. GML Overview

AbstractGeometry

Point

GeometryAssociation

4..*

LineString

Box

LinearRing

Coord

1 2..*

2

Polygon

-innerBoundaryls 0..* -outerBoundaryls1

AbstractGeometryCollection

GeometryCollection

AssociationAttributeGroup

MultiPoint

MultiLineString

MultiPolygon

0..1

1..*

GML-Geometry-Schema.pdf

Figure C.1: GML Geometry schema (class representation)

BoundingSpace

AbstractGeometry

PointProperty

LineStringProperty

PolygonProperty

GeometryProperty

MultiPointProperty

MultiLineStringProperty

MultiPolygonProperty

AbstractFeature

FeatureAssociation

AssociationAttributeGroup
0..1

0..1

0..*

AbstractFeatureCollection

-_geometryProperty

-featureMember

AbstractFeatureCollectionBase

*

GML-Feature-Schema.pdf

Figure C.2: GML Feature schema (class representation)

165

D:\Jmmg\PhD-Thesis\Schemas\feature.xsd 11/25/03 01:10:45

©1998-2003 Altova GmbH http://www.xmlspy.com Page 1Registered to ITC (ITC)

geometryProperty

type gml:GeometryPropertyType

gml:GeometryPropertyType

gml:_Geometry

type gml:AbstractGeometryType

gml:LineString

type gml:LineStringType

gml:LineStringType

gml:coord

type gml:CoordType

∞2..

gml:coordinates

type gml:CoordinatesType

gml:LinearRing

type gml:LinearRingType

gml:MultiLineString

type gml:MultiLineStringType

gml:MultiPoint

type gml:MultiPointType

gml:MultiPointType

pointMember

∞1..

gml:MultiPolygon

type gml:MultiPolygonType

gml:MultiPolygonType

polygonMember

∞1..

gml:Polygon

type gml:PolygonType

gml:Point

type gml:PointType

gml:PointType

gml:coord

type gml:CoordType

gml:coordinates

type gml:CoordinatesType

gml:Polygon

type gml:PolygonType

gml:PolygonType

outerBoundaryIs
gml:LinearRing

type gml:LinearRingType

innerBoundaryIs

∞0..

Figure C.3: GML Geometry schema

166

Bibliography

[AC03] Luisa Liliana Alvarez Casallas. Geoinformation Virtual Enterprises De-
sign and Process Management. Master’s thesis, International Institute
for Geo-Information Science and Earth Observation ITC, Enschede, The
Netherlands, March 2003.

[ACD+03] Tony Andrews, Francisco Curbera, Hitesh Dholakia et al. Business Pro-
cess Execution Language: for Web Services (BPEL4WS). BEA Sys-
tems, International Business Machines Corporation, Microsoft Corpora-
tion, SAP AG, Siebel Systems., May 2003. Version 1.1.

[AD97] T. Adams and S. Dworkin. WfMC Workflow Handbook, chapter Workflow
Interoperability Between Businesses, pages 211–221. John Wiley & Sons,
1997.

[Ade01] Martin Ader. WfMC: Workflow handbook 2001, chapter Technologies
for the Virtual Enterprise, pages 19–38. Future Strategies Inc., Florida,
United States of America, 2001.

[AG96] Robert Allen and David Garlan. ‘A case study in architectural modelling:
The aegis system.’ In Proceedings of the Eighth International Workshop
on Software Specification and Design (IWSSD-8), pages 6–15. Paderborn,
Germany, March 1996.

[AHPW97] G. Abeysinghe, P. Henderson, K. Phalp and R. Walters. ‘An audience
centred approach to modelling for business process reengineering.’ In
5th International Conference on ReTechnologies for Information Systems
(ReTIS 97). Klagenfurt, Austria, 1997.

[AIG03] ‘Agent-based Imagery and Geospatial Processing Architecture (AIGA).’
aiga.cs.gmu.edu, accessed on January 2003.

[Ala01] N. Alameh. Scalable and Extensible Infrastructures for Distributing In-
teroperable Geographic Information Services on the Internet. Ph.D. the-
sis, Massachusetts Institute of Technology (MIT), Massachussets, United
States of America, 2001.

167

aiga.cs.gmu.edu

Bibliography

[All97] Robert J. Allen. A Formal Approach to Software Architecture. Ph.D.
thesis, School of Computer Science, Carnegie Mellon University, Pitsburg,
United States of America, May 1997. CMU-CS-97-144.

[AN01] Jim Arlow and Ila Neustadt. UML and the Unified Process: Practical
Object-Oriented Analysis and Design. Object Technology Series. Addi-
son-Wesley Pub. Co., Reading, Massachusetts, 1st edition, 2001. ISBN
0-201-77060-1.

[ANZ02] ‘The spatial information council (ANZLIC).’ www.anzlic.org.au, ac-
cessed on October 2002. Australia & New Zealand.

[Aro95] Stan Aronoff. Geographic Information Systems: A Management Perspec-
tive. WDL Publications, Ottawa, Canada, 1995. ISBN 0-92184-91-1.

[ARR96] Colin G. Armistead, Philip Rowland and A. P. Rowland. Managing Busi-
ness Processes: BPR and Beyond. John Wiley & Sons Ltd., London,
United Kingdom, October 1996. ISBN 0-471-95490-X.

[BB90] Barry Boehm and Frank Belz. ‘Experiences with the spiral model as a
process model generator.’ In Proceedings of the 5th international software
process workshop on Experience with software process models, pages 43–
45. IEEE Computer Society Press, Kennebunkport, Maine, United States
of America, 1990.

[BB94] O. Biberstein and D. Buchs. ‘An object-oriented specification language
based on hierarchical algebraic Petri nets.’ In Working papers of the in-
ternational Workshop on Information System Correctness and Reusability
IS-CORE’94, edited by R. Wieringa and R. Feenstra, pages 47–62. Ams-
terdam, The Netherlands, 1994.

[BB95] Alex Bakman and Alexander Bakman. How to Deliver Client/Server Ap-
plications That Work. Prentice-Hall International, Great Britain, 1995.
ISBN 0-13-304601-X.

[BBG97] Olivier Biberstein, Didier Buchs and Nicolas Guelfi. ‘Object-oriented nets
with algebraic specifications: The CO-OPN/2 formalism.’ In Advances in
Petri Nets on Object-Orientation, edited by G. Agha and F. De Cindio.
Springer-Verlag, 1997.

[BBS+02] Christoph Brox, Yaser Bishr, Kristian Senkler, Katharina Zens and
Werner Kuhn. ‘Toward a geospatial data infrastructure for Northrhine-
Westphalia.’ Computers, Environment and Urban Systems, Vol. 26(1):19–
37, 2002.

[BCE+02] Tom Bellwood, Luc Clément, David Ehnebuske et al. Universal Descrip-
tion, Discovery and Integration (UDDI). Published specification, Accen-
ture, Ariba, Inc., Commerce One, Inc., Fujitsu Limited, Hewlett-Packard
Company, i2 Technologies, Inc., Intel Corporation, International Business
Machines Corporation, Microsoft Corporation, Oracle Corporation, SAP
AG, Sun Microsystems, Inc., and VeriSign, Inc., July 2002. Version 3.0.

168

www.anzlic.org.au

Bibliography

[BCK03] Len Bass, Paul Clements and Rick Kazman. Software Architecture in
Practice. Addison-Wesley Pub. Co., Reading, Massachusetts, 2nd edition,
April 2003. ISBN 0-321-15495-9.

[Ber96] Alex Berson. Client/Server Architecture. McGraw Hill, New York, United
States of America, 2nd edition, 1996. ISBN 0-07-005664-1.

[BFH03] Fran Berman, Geoffrey Fox and Tony Hey. Grid Computing: Making
the Global Infrastructure a Reality. Wiley Series in Communications &
Distributed Systems. John Wiley & Sons Ltd., West Sussex, England,
April 2003. ISBN 0-470-85319-0.

[BG00] Didier Buchs and Nicolas Guelfi. ‘A formal specification framework for
object-oriented distributed systems.’ IEEE Transactions on Software En-
gineering, Vol. 26(No. 7):635–651, July 2000.

[Bib97] Olivier Biberstein. An Object-Oriented Formalism for the Specification of
Concurrent Systems. Ph.D. thesis, University of Geneva, Genéve, Switzer-
land, July 1997. Ph.D. Thesis, no. 2919.

[Bis97] Yaser Bishr. Semantic Aspects of Interoperable GIS. Ph.D. thesis, Wa-
geningen Agricultural University, Wageningen, The Netherlands, Novem-
ber 1997. ITC Dissertation No. 47.

[BKR99] Y. Bishr, W. Kuhn and M. Radwan. Interoperating Geographic Informa-
tion Systems, chapter Probing the semantic content of information com-
munities – a first step toward semantic interoperability, pages 211–221.
Kluwer Academic Publishers, 1999. ISBN 0792384369.

[BLHL01] Tim Berners-Lee, James Hendler and Ora Lassila. ‘The semantic web.’
Scientific American, May 2001.

[BN96] Peter Bernus and Laszlo Nemes. ‘Modelling and methodologies for en-
terprise integration.’ In Proceedings of the International Federation for
Information Processing (IFIP) Conference on Models and Methodologies
for Enterprise Integration. Chapman & Hall, 1996.

[Boe88] Barry W. Boehm. ‘A spiral model of software development and enhance-
ment.’ In Computer, volume 21, pages 61–72. IEEE Computer Society
Press, 1988.

[Boe96] Barry Boehm. ‘Anchoring the software process.’ IEEE Software,
Vol. 13(No. 4):73–82, July 1996.

[Boo94] Grady Booch. Object-Oriented Analysis and Design with Applications.
Addison-Wesley Pub. Co., 2nd edition, February 1994. ISBN 0-8053-5340-
2.

[Bra94] Michael H. Brackett. Data Sharing: Using A Common Data Architecture.
John Wiley & Sons Ltd., New York, United States of America, March
1994. ISBN 0-471-30993-1.

169

Bibliography

[Bra01] Eric J. Braude. Software Engineering: An Object-Oriented Perspective.
John Wiley & Sons Ltd., New York, United States of America, 2001. ISBN
0-471-32208-3.

[Bro04] Alan Brown. ‘An introduction to Model Driven Architecture part I: MDA
and todays systems.’ The Rational Edge, February 2004.

[BRP97] Yaser Bishr, Mostafa Radwan and J. Pandya. ‘SemWeb - a prototype
for seamless sharing of geoinformation on the World Wide Web in a
client/server architecture.’ In Proceedings of the Joint European Con-
ference and Exhibition on Geographical Information, volume Vol. 1, pages
145–154. Vienna, Austria, April 1997.

[BSC94] Rosalinda Barden, Susan Stepney and David Cooper. Z in Practice.
Prentice-Hall International, Great Britain, 1994. ISBN 0-13-124934-7.

[By91] Rolf A. de By. The Integration of Specification Aspects in Database Design.
Ph.D. thesis, University of Twente, Enschede, The Netherlands, October
1991.

[By01] Rolf A. de By (editor). Principles of Geographic Information Systems. ITC
Educational Textbook Series. International Institute for Geo-Information
Science and Earth Observation ITC, Enschede, The Netherlands, 2001.
ISBN 90-6164-184-5.

[Cai96] Lúıs Caires. ‘A language for the logical specification of processes and
relations.’ In Proceedings of the Algebraic and Logic Programming Inter-
national Conference ALP’96, edited by Michael Hanus, volume 6, pages
150–164. Springer-Verlag, 1996.

[CD00] John Cheesman and John Daniels. UML Components: A Simple Pro-
cess for Specifying Component-Based Software. The Component Software
Series. Addison-Wesley Pub. Co., New Jersey, United States of America,
2000. ISBN 0-201-70851-5.

[CDK01] George Coulouris, Jean Dollimore and Tim Kindberg. Distributed Sys-
tems: Concepts and Design. International Computer Science Series. Ad-
dison-Wesley Pub. Co., Harlow, England, 3rd edition, 2001. ISBN 0201-
61918-0.

[CFFK01] Karl Czajkowskiy, Steven Fitzgeraldz, Ian Fosterx and Carl Kesselman.
‘Grid information services for distributed resource sharing.’ In Proceedings
of the 10th IEEE Symposium on High Performance Distributed Comput-
ing, pages 181–194. IEEE Press, August 2001.

[Cod70] E. F. Codd. ‘A relational model of data for large shared data banks.’ Com-
munications of the ACM, Vol. 13(No. 6):377–387, June 1970. Association
for Computing Machinery, Inc.

170

Bibliography

[CZ96] Edward Chan and Rupert Zhu. ‘Ql/g - a query language for geometric
data bases.’ In Proceedings of the 1st International Conference on GIS
in Urban Regional and Environment Planning, pages 271–286. Samos,
Greece, April 1996.

[DAM03] ‘Darpa Agent Markup Language for Services (DAML-S).’ www.daml.org/
services, accessed on September 2003.

[Dav93] Thomas H. Davenport. Process Innovation: Reengineering Work Through
Information Technology. Harvard Business School Press, Boston, Mas-
sachusetts, 1993. ISBN 0-87584-366-2.

[Dav99] Georgia Davanelou. Simulation of Business Process Scenarios for the
Evaluatin of Cadastral Operations. Master’s thesis, International Institute
for Geo-Information Science and Earth Observation ITC, Enschede, The
Netherlands, February 1999.

[DCM03a] ‘Dublin Core Metadata Initiative.’ dublincore.org, accessed on Septem-
ber 2003.

[DCM03b] ‘The Semantic Web community portal.’ www.semanticweb.org, accessed
on November 2003.

[DDT02] H. M. Deitel, P. J. Deitel B. Duwaldt and L. K. Trees. Web Services:
A Technical Introduction. DeitelTM Developer Series. Prentice-Hall In-
ternational, New Jersey, United States of America, August 2002. ISBN
0-13-046135-0.

[Dem00] Michael N. Demers. Fundamentals od Geographic Information Systems.
John Wiley & Sons Ltd., New York, United States of America, 2nd edition,
2000. ISBN 0-471-31423-4.

[DH00] Scott A. DeLoach and Thomas C. Hartrum. ‘A theory-based representa-
tion for object-oriented domain models.’ IEEE Transactions on Software
Engineering, Vol. 26(No. 6):500–517, June 2000.

[DHM+01] G. Denker, J.R. Hobbs, D. Martin, S. Narayana and R. Waldinger. ‘Ac-
cessing information and services on the daml-enabled web.’ In The Second
International Workshop on the Semantic Web. 2001.

[Dil94] Antoni Diller. Z An introduction to Formal Methods. John Wiley & Sons
Ltd., Chichester, England, 2nd edition, 1994. ISBN 0-471-93973-0.

[DM99] Giovana Di Marzo. Stepwise Refinment of Formal Specifications on Logical
Formulae: From CO-OPN/2 specifications to Java programs. Ph.D. thesis,
Department d’Informatique, Ecole Polytechnique Federale de Lausanne,
Lausanne, Switzerland, January 1999. Ph.D. Thesis, no. 1931.

[Dou01] Nebert D. Douglas. Developing Spatial Data Infrastructures: The SDI
Cookbook. Technical report, Global Spatial Data Infrastructure Organi-
zation, May 2001.

171

www.daml.org/ services
www.daml.org/ services
dublincore.org
www.semanticweb.org

Bibliography

[D’S01] Desmond D’Souza. ‘Model-driven architecture and integration: Opportu-
nities and challenges.’ www.kinetium.com, March 2001.

[Dur92] R. C. J. Dur. Business Reengineering in Information Intensive Organisa-
tions. Ph.D. thesis, Technical University Delft, Delft, The Netherlands,
1992.

[DW99] Desmond Francis D’Souza and Alan Cameron Wills. Objects, Compo-
nents and Frameworks with UML: The Catalysis Approach. The Addison-
Wesley object technology series. Addison-Wesley Pub. Co., Reading, Mas-
sachusetts, 1999. ISBN 0-201-31012-0.

[EJL+99] Henk Eertink, Wil Janssen, Paul Oude Luttighuis, Wouter B. Teeuw and
Chris A. Vissers. ‘A business process design language.’ In World Congress
on Formal Methods (1), pages 76–95. 1999.

[EN00] Ramez Elmasri and Shamkant B. Navathe. Fundamentals of Database
Systems. Addison-Wesley Pub. Co., Reading, Massachusetts, 3rd edition,
2000. ISBN 0-8053-1755-4.

[EP98] Hans-Erik Eriksson and Magnus Penker. UML Toolkit. John Wiley &
Sons Ltd., Toronto, Canada, 1998. ISBN 0-471-19161-2.

[Far02] Cléver Ricardo Guareis de Farias. Architectural Design of Groupware Sys-
tems: a Component-Based Approach. Ph.D. thesis, University of Twente,
Enschede, The Netherlands, May 2002. Ph.D. Thesis, no. 01-38.

[FGD98] Content Standard for Digital Geospatial Metadata (CSDGM). FGDC-
STD-001-1998, Federal Geographic Data Committee (FGDC), Washing-
ton, D.C., June 1998.

[FGD03] ‘National Spatial Data Infrastructure (NSDI).’ www.fgdc.gov, accessed
on February 2003. Federal Geographic Data Committee (FGDC), United
States of America.

[FH93] Peter Feiler and Watts Humphrey. ‘Software process development and
enactment concepts and definitions.’ In Proceedings of the 2nd Interna-
tional Conference on the Software Process, pages 28–40. IEEE Computer
Society Press, Berlin, Germany, February 1993.

[Fie00] Roy Thomas Fielding. Architectural Styles and the Design of Network-
based Software Architectures. Ph.D. thesis, University of California, Irvine,
California, 2000.

[Fis00] Layna Fischer. Excellence in Practice: Innovation and Excellence in
Workflow Process and Knowledge Management, volume III. Future Strate-
gies Inc., Lighthouse Point, Florida, 2000. ISBN 0-9640233-8-5.

[Fis01] —. WfMC: Workflow handbook 2001. Future Strategies Inc., Florida,
United States of America, 2001. ISBN 0-9703509-0-2.

172

www.fgdc.gov

Bibliography

[FP94] Lúıs Ferreira Pires. Architectural Notes: a Framework for Distributed
Systems Development. Ph.D. thesis, University of Twente, Enschede, The
Netherlands, September 1994. Ph.D. Thesis, no. 94-01.

[FPSFAA03] Lúıs Ferreira Pires, Marten van Sinderen, Cléver Ricardo Guareis de
Farias and João Paulo Andrade Almeida. Use of Models and Modelling
Techniques for Service Development. Centre for Telematics and Infor-
mation Technology, University of Twente, Enschede, The Netherlands,
September 2003. Technical report.

[Fra96] L. Franken. Quality of Service Management: A Model-Bases Approach.
Ph.D. thesis, Centre for Telematics and Information Technology, Twente
University, Enschede, The Netherlands, 1996.

[FS00] Martin Fowler and Kendall Scott. UML Distilled: A Brief Guide to the
Standard Object Modelling Language. Object Technology Series. AWpc,
New Jersey, United States of America, 2nd0 edition, 2000. ISBN 0-201-
65783-X.

[FSJ99] Mohamed E. Fayad, Douglas C. Smith and Ralph E. Johnson. Implement-
ing Application Frameworks: Object-Oriented Frameworks at Work. John
Wiley & Sons Ltd., New York, United States of America, 1999. ISBN
0-471-25201-8.

[FWQFP97] H. M. Franken, M. K. de Weger, D. A. C. Quartel and L. Ferreira Ṕıres.
‘On engineering support for business process modelling and redesign.’ In
Modelling Techniques for Business Process Re-engineering and Bench-
marking, edited by Guy Doumeingts and Jim Browne, chapter 10, pages
103–120. Chapman & Hall, London, UK, 1st edition, 1997. ISBN 0-412-
78910-8.

[Gar95] David Garlan. ‘What is style?’ In Proceedings of the Dagstuhl Workshop
on Software Architecture. Saarbruecken, Germany, February 1995.

[GDI02] ‘Geodateninfrastruktur Nordrhein-Westfalen (GDI-NRW).’ gdi-nrw.
uni-muenster.de/index.html, accessed on December 2002.

[GHS95] Dimitrios Georgakopoulos, Mark F. Hornick and Amit P. Sheth. ‘An
overview of workflow management: From process modelling to workflow
automation infrastructure.’ In Distributed and Parallel Databases, vol-
ume 3, pages 119–153. Kluwer Publishers, United States of America, 1995.

[GM00] Richard Groot and John McLaughlin. Geospatial Data Infrastructure:
Concepts, cases and good practice. Oxford University Press, New York,
United States of America, 2000. ISBN 0-19-823381-7.

[Gra01] Ian Graham. Object-Oriented Methods: Principles and Practice. The
Addison-Wesley object technology series. Addison-Wesley Pub. Co., Read-
ing, Massachusetts, 3rd edition, 2001. ISBN 0-201-61913-X.

173

gdi-nrw.uni-muenster.de/ index.html
gdi-nrw.uni-muenster.de/ index.html

Bibliography

[GS93] David Garlan and Mary Shaw. ‘An introduction to software architecture.’
In Advances in Software Engineering and Knowledge Engineering, edited
by V. Ambriola and G. Tortora, pages 1–39. World Scientific Publishing
Company, Singapore, 1993.

[GTM99] James E. Goldman, Rawles Phillip T. and Julie R. Mariga. Client/Server
Information Systems: A Business-Oriented Apporach. John Wiley & Sons
Ltd., New York, United States of America, 1999. ISBN 0-471-29654-6.

[Haw01] Igor Hawryszkiewycz. Introduction to Systems Analysis and Design.
Prentice-Hall International, 5th edition, February 2001. ISBN 1740092805.

[HBCS03] Richard Hull, Michael Benedikt, Vassilis Christophides and Jianwen Su.
‘E-services: A look behind the curtain.’ In Proceedings of the twenty
second ACM SIGMOD-SIGACT-SIGART symposium on principles of
database systems, pages 1–14. ACM Press, San Diego, California, June
2003.

[HC01] Michael Hammer and James A. Champy. Reengineering the Corporation:
A Manifesto for Business Revolution. HarperBusiness, New York, United
States of America, revised edition, June 2001. ISBN 0-06-662112-7.

[Hee94] K. M. van Hee. Information System Engineering: a Formal Approach.
Cambridge University Press, New York, United States of America, 1994.
ISBN 0-521-45514-6.

[HENN97] H. James Harrington, Erik K. C. Esseling, Harm van Nimwegen and Nico
van Nimwegen. Business Process Improvement Workbook: Documenta-
tion, Analysis, Design, and Management of Business Process Improve-
ment. McGraw-Hill Trade, April 1997. ISBN 0-07-026779-0.

[HGS95] Ralf Hartmut Güting and Markus Schneider. ‘Realm-based spatial data
types: The ROSE algebra.’ VLDB Journal, Vol. 4(No. 2):243–286, 1995.

[Hil99] Rich Hilliard. ‘Views and viewpoints in software systems architecture.’ In
First Working IFIP Conference on Software Architecture. San Antonio,
1999.

[HK01] H. Hayami and M. Katsumata. WfMC: Workflow handbook 2001, chap-
ter Interworkflow: A challenge for Business-to-Business Electronic Com-
merce. Future Strategies Inc., Florida, United States of America, 2001.
ISBN 0-9703509-0-2.

[Hoq00] Faisal Hoque. e-Enterprise: Business, Models,Architectues and Compo-
nents. Breakthroughs in Application Development Series. Cambridge Uni-
versity Press, New York, United States of America, 2000. ISBN 0-521-
77487-X.

[ICD02] ‘Infraestructura Colombiana de Datos Espaciales (ICDE).’ codazzi4.
igac.gov.co/icde, accessed on June 2002. Colombia.

174

codazzi4.igac.gov.co/ icde
codazzi4.igac.gov.co/ icde

Bibliography

[IEE00] IEEE Computer Society. IEEE Recommended Practice for Architectural
Description of Software-Intensive Systems. Technical report, The Insti-
tute of Electrical and Electronics Engineers, Inc., September 2000.

[ISO96a] ISO/IEC. 10746-2: Information Technology − Open Distributed Process-
ing − Reference Model: Foundations. Draft International Standard, Inter-
national Organization for Standardization, Genève, Switzerland, Septem-
ber 1996.

[ISO96b] —. 10746-3: Information Technology − Open Distributed Processing −
Reference Model: Architecture. Draft International Standard, Interna-
tional Organization for Standardization, Genève, Switzerland, December
1996.

[ISO98a] —. 10746-1: Information Technology − Open Distributed Processing −
Reference Model: Overview. Draft International Standard, International
Organization for Standardization, Genève, Switzerland, December 1998.

[ISO98b] —. 10746-4: Information Technology − Open Distributed Processing −
Reference Model: Architecture semantics. Draft International Standard,
International Organization for Standardization, Genève, Switzerland, De-
cember 1998.

[ISO01a] ISO/DIS 19110: Geographic information − Feature cataloguing method-
ology. Draft International Standard, ISO/TC 211, Genève, Switzerland,
December 2001.

[ISO01b] ISO/DIS 19119: Geographic information − Services. Draft International
Standard, ISO/TC 211, Genève, Switzerland, December 2001.

[ISO01c] ISO/FDIS 19115: Geographic information − Metadata. Final Draft In-
ternational Standard, ISO/TC 211, Genève, Switzerland, December 2001.

[ISO02] ISO 19101: Geographic information − Reference model. International
Standard, ISO/TC 211, Genève, Switzerland, December 2002.

[ISO03] ‘ISO 639.2 – codes for the representation of names of languages.’ www.loc.
gov/standards/iso639-2/langhome.html, accessed on November 2003.

[JBR99] Ivar Jacobson, Grady Booch and James Rumbaugh. The Unified Software
Development Process. The Addison-Wesley object technology series. Addi-
son-Wesley Pub. Co., Reading, Massachusetts, 1999. ISBN 0-201-57169-2.

[JCJ92] Ivar Jacobson, Magnus Christerson and Patrik Jonsson. Object-Oriented
Software Engineering - A Use Case Driven Approach. Addison-Wesley
Pub. Co., Boston, Massachusetts, June 1992. ISBN 0-201-54435-0.

[JF96] Henk Jonkers and Henry M. Franken. ‘Quantitative modelling and analy-
sis of business processes.’ In Simulation in Industry: Proceedings of the 8th

European Simulation Symposium, volume Vol. I, pages 175–179. Bruzzone
and E.Ker-ckho’s eds., 1996.

175

www.loc.gov/ standards/ iso639-2/ langhome.html
www.loc.gov/ standards/ iso639-2/ langhome.html

Bibliography

[JOS94] Peter Jaescje, Andreas Oberweis and Wolffried Stucky. ‘Deriving com-
plex structured object types for business process modelling.’ In Proceed-
ings of the 13th International Conference on the Entity-Relationship Ap-
proach, edited by P. Loucopoulos, pages 28–45. Springer-Verlag, Manch-
ester, United Kingdom, 1994.

[Kar99] James Samuel Karioki. A Structured Methodology and Implementation
Strategy for Business Process Reengineering in Geo-information Produc-
tion. Master’s thesis, International Institute for Geo-Information Science
and Earth Observation ITC, Enschede, The Netherlands, June 1999.

[Kaw91] Peter Kawalek. Process Modelling Cookbook: Version 1. Technical re-
port, University of Manchester and British Telecommunications, United
Kingdom, September 1991.

[KFM99] J. Kanet, W. Faisst and P. Mertens. ‘Application of information technol-
ogy to a virtual enterprise broker: The case of bill epstein.’ International
Journal of Production Economics, 62:23–32, 1999.

[KG96] David Kinny and Michael Georgeff. ‘Modelling and design of multi-agent
systems.’ In Intelligent Agents III: Proceedings of the Third International
Workshop on Agent Theories, Architectures, and Languages (ATAL-96).
LNAI 1193. Springer-Verlag: Heidelberg, Germany, Budapest, 1996.

[KH96] Haim Kilov and William Harvey. Object-Oriented Behavioral Specifica-
tions. Kluwer Academic Publishers, Boston, United States of America,
1996. ISBN 0-7923-9778-9.

[KK97] Peter Kueng and Peter Kawalek. ‘Goal-based business process models:
creation and evaluation.’ Business Process Management Journal, Vol.
3(No. 1):17–38, 1997.

[Kot99] C. Kottman. Interoperating geographic Information Systems, chapter
The OpenGIS Consurtium and progress Toward Interoperability in GIS.
Kluwer Academic Publishers, 1999.

[KR03] James F. Kurose and Keith W. Ross. Computer Networking: A Top-Down
Apprpach Featuring the Internet. Addison-Wesley Pub. Co., New York,
United States of America, 2nd edition, 2003. ISBN 0-201-97699-4.

[Kru99] Philippe Kruchten. The rational unified process. The Addison-Wesley ob-
ject technology series. Addison-Wesley Pub. Co., Reading, Massachusetts,
1999. ISBN 0-201-60459-0.

[KVZ99] K. Kosanke, F. Vernadat and M. Zelm. ‘CIMOSA: Enterprise engineering
and integration.’ Computers in Industry, Vol. 40(No. 2-3):83–97, 1999.

[KWB03] Anneke Kleppe, Jos Warmer and Wim Bast. MDA Explained: The
Model Driven Architecture Practice and Promise. The Addison-Wesley ob-
ject technology series. Addison-Wesley Pub. Co., Reading, Massachusetts,
April 2003. ISBN 0-321-19442-X.

176

Bibliography

[Laa97] P. Laarakker. IT-2000: Steps to the Future of the Netherlands Cadastre.
Technical report, Cadastre and Public Register Agency, Apeldoorn, The
Netherlands, 1997.

[Lar02] Graig Larman. Applying UML and Patterns: An Introduction to Object-
Oriented Aanalysis and Design and the Unified Process. Prentice-Hall
International, New Jersey, United States of America, 2nd edition, 2002.
ISBN 0-13-092569-1.

[Lew94] Paul Lewis. Information-Systems Development. Pitman Publishing, Lon-
don, England, 1994. ISBN 0-273-03107-4.

[LGMR01] Paul A. Longley, Michael F. Goodchild, David J. Maguire and David W.
Rhind. Geographic Information Systems and Science. John Wiley & Sons
Ltd., West Sussex, England, 2001. ISBN 0-471-89275-0.

[Lig01] David Lightfoot. Formal Specification Using Z. Grassroots. Palgrave Pub-
lishers Ltd., New York, United States of America, 2nd edition, 2001. ISBN
0-333-76327-0.

[LK99] Thomas M. Lillesand and Ralph W. Kiefer. Remote Sensing and Image
Interpretation. John Wiley & Sons Ltd., New York, United States of
America, 4th edition, 1999. ISBN 0-471-25515-7.

[LL02] Kenneth C. Laudon and Jane P. Laudon. Essentials of Management In-
formation Systems. Prentice-Hall International, 5th edition, May 2002.
ISBN 0-13-008734-3.

[Mar00] Chris Marshall. Enterprise Modelling with UML. The Addison-Wesley ob-
ject technology series. Addison-Wesley Pub. Co., Boston, Massachusetts,
2000. ISBN 0-201-43313-3.

[MB02] Stephen J. Mellor and Marc J. Balcer. Executable UML: A Foundation
for Model Driven Architecture. Object Technology Series. Addison-Wesley
Pub. Co., Reading, Massachusetts, May 2002.

[MFPS02] Javier Morales, Lúıs Ferreira Pires and Marten van Sinderen. ‘Model
driven geo-information systems development.’ In Proceedings of the Sixth
International Enterprise Distributed Object Computing Conference EDOC
2002, pages 155–166. IEEE Computer Society, Lausanne, Switzerland,
September 2002.

[MG01] Javier M. Morales G. ‘On the design of geoinformation provision systems.’
In Proceedings of the 5th Global Spatial Data Infrastructure Conference.
Cartagena, Colombia, May 2001.

[MJ82] D. D. McCraken and M. A. Jackson. ‘Life cycle concept considered harm-
ful.’ ACM Software Engineering Notes, Vol. 7(No. 2):28–32, 1982.

177

Bibliography

[MMP+95] Richard J. Mayer, Christopher P. Menzel, Michael K. Painter et al. In-
formation Integration for Concurrent Engineering (IICE): IDEF3 Process
Description Capture Method Report. Technical report, Knowledge Based
Systems, Incorporated, September 1995.

[MOL+80] Harlan D. Mills, D. O’Neill, R. C. Lynger, M. Dyer and R. E. Quinnan.
‘The management of software engineering: Parts i to v.’ IBM Systems
Journal, Vol. 24(No. 2):414–477, 1980.

[Mol98] Martien Molenaar. An Introduction to the Theory of Spatial Object Mod-
elling for GIS. Research Monographs in GIS series. Taylor & Francis,
West Sussex, England, 1998. ISBN 0-7484-0774-X.

[Mor98] Javier Morales. A Workflow Oriented Design of “on-line” Geoinforma-
tion Services. Master’s thesis, International Institute for Geo-Information
Science and Earth Observation ITC, Enschede, The Netherlands, July
1998.

[MR02a] Mark W. Maier and Eberhardt Rechtin. The Art of Systems Architecting.
CRC Press LLC, Florida, United States of America, 2nd edition, 2002.
ISBN 0-8493-0440-7.

[MR02b] Javier Morales and Mostafa Radwan. ‘Extending geoinformation services:
A virtual architecture for spatial data infrastructures.’ In Proceedings of
the Joint International Symposium on GeoSpatial Theory, Processing and
Applications of the ISPRS Commission IV. Ottawa, Canada, July 2002.

[MRS00] Javier Morales, Mostafa Radwan and Rosilah Sani. ‘A methodology for
architectural modelling of spatial information production processes in the
context of business process reengineering.’ In Proceedings of the XIXth

congress of the International Society for Photogrammetry and Remote
Sensing. Amsterdam, the Netherlands, July 2000.

[MW85] Merriam-Webster. Webster’s Ninth New Collegiate Dictionary. Merriam-
Webster Inc., Massachusetts, United States of America, 1985. ISBN 0-
87779-508-8.

[NGD02] ‘National Geospatial Data Framework (NGDF).’ www.ngdf.org.uk, ac-
cessed on November 2002. United Kingdom.

[Nis99] Nimal Nissanke. Introductory Logic and Sets foe Computer Scientists.
Addison-Wesley Pub. Co., Essex, England, 1999. ISBN 0-201-17957-1.

[Nol03] James J. Nolan. An Agent-Based Architecture for Distributed Imagery and
Geospatial Computing. Ph.D. thesis, George Mason University, Fairfax,
Virginia, United States of America, April 2003.

[Oak97] Les A. Oakshott. Business Modelling and Simulation. Pitman Publishing,
August 1997. ISBN 0273612514.

178

www.ngdf.org.uk

Bibliography

[OGC99] The OpenGIS Abstract Specification Overview. Version 4, Open GIS Con-
sortium, Inc., June 1999.

[OGC02] The OpenGIS Abstract Specification Topic 12: OpenGIS Service Archi-
tecture. Version 4.3, Open GIS Consortium, Inc., January 2002. Editor:
George Percivall.

[OGC03a] Geography Markup Language (GML) 3.0. OpenGIS implementation spec-
ification, OpenGIS Consortium, Inc., January 2003. Editors: Simon Cox,
Paul Daisey, Ron Lake, Clemens Portele and Arliss Whiteside.

[OGC03b] OpenGIS Reference Model. Version: 0.1.2, No. OGC 03-040, Open GIS
Consortium Inc., March 2003. Editor: Kurt Buehler.

[OGC03c] OpenGIS Web Services Architecture. Discussion paper, Version: 0.3, No.
OGC 03-025, Open GIS Consortium Inc., January 2003. Editor: Joshua
Lieberman.

[OMG01a] OMG - Architecture Board. Model Driven Architecture: A technical Per-
spective. Draft version 00-17, Object Management Group, January 2001.

[OMG01b] —. Model Driven Architecture (MDA). Technical report, Object Manage-
ment Group, July 2001.

[OMG01c] OMG - Object Management Group. Common Warehouse Metamodel
(CWM) Specification. Technical Report Version 1.0, Object Management
Group, February 2001.

[OMG01d] —. Unified Modeling Language Specification. Technical Report Version
1.4, Object Management Group, September 2001.

[OMG02] —. Meta Object Facility (MOF) Specification. Technical Report Version
1.4, Object Management Group, April 2002.

[OMG03a] OMG - Architecture Board. MDA Guide. Version 1.0.1, Object Manage-
ment Group, January 2003.

[OMG03b] OMG - Object Management Group. Unified Modeling Language Specifi-
cation. Technical Report Version 2.0, Object Management Group, August
2003.

[OMG03c] —. XML Metadata Interchange (XMI) Specification. Technical Report
Version 2.0, Object Management Group, May 2003.

[Ons02] Harlan J. Onsrud. ‘Survey of national and regional spatial data infras-
tructure activities around the globe.’ www.spatial.maine.edu/∼onsrud/
GSDI.htm, accessed on January 2002.

[Ope04] ‘Open GIS consortium.’ www.opengis.org, accessed on February 2004.

179

www.spatial.maine.edu/ ~onsrud/ GSDI.htm
www.spatial.maine.edu/ ~onsrud/ GSDI.htm
www.opengis.org

Bibliography

[OS96] Andreas Oberweis and Peter Sander. ‘Information system behavior spec-
ification by high-level Petri nets.’ ACM Transactions on Information
Systems, Vol. 14(No. 4):380–420, October 1996.

[ÖV99] M. Tamer Özsu and Patrick Valduriez. Principles of Distributed Database
Systems. Prentice-Hall International, New Jersey, United States of Amer-
ica, 2nd edition, 1999. ISBN 0-13-659707-6.

[Per97] Dewayne E. Perry. ‘Directions in process technology – an architectural
perspective.’ In Workshop on Research Directions in Process Technology.
Nancy, France, July 1997.

[Pol00] Rudolf Wolfgang van der Pol. Knowledge-based Query Formulation in
Information Retrieval. Ph.D. thesis, Maastricht University, Maastricht,
the Netherlands, September 2000. Dissertation Series No. 2000-5.

[Pre97] Roger S. Pressman. Software Engineering: A Practitioners Approach.
McGraw-Hill Series on Computer Science. McGraw Hill, New York,
United States of America, 4th edition, 1997. ISBN 0-07-052182-4.

[Put01] Janis R. Putman. Architechting with RM-ODP. Software Architecture
Series. Prentice Hall PTR, New Jersey, United States of America, 2001.
ISBN 0-13-019116-7.

[PW92] Dewayne E. Perry and Alexander L. Wolf. ‘Foundations for the study of
software architecture.’ ACM SIGSOFT Software Engineering Notes, Vol.
17(No. 4):40–52, 1992.

[QFPS02] Dick Quartel, Lúıs Ferreira Pires and Marten van Sinderen. ‘On archi-
tectural support for behaviour refinement in distributed systems design.’
Transactions of the SDPS Journal of Integrated Design and Process Sci-
ence, Vol. 6(No. 1):1–30, March 2002.

[Qua98] Dick Quartel. Action Relations: Basic design concepts for behaviour mod-
elling and refinement. Ph.D. thesis, University of Twente, Enschede, The
Netherlands, February 1998. Ph.D. Thesis, no. 98-18.

[Qua03] —. ‘ISDL meta-model and repository.’ Draft, Enschede, The Netherlands,
July 2003. Arco project No. Arco/WP1/N001/V01.

[RAOM03] M. Mostafa Radwan, Liliana Alvarez, Richard Onchaga and Javier
Morales. ‘Designing an integrated enterprise model to support partner-
ships in the geo-information industry.’ In Proceedings of the 2nd Annual
Asian Conference and Exhibition in the field of GIS, GPS, Aerial Pho-
tography and Remote Sensing (Map Asia 2003). Kual Lumpur, Malasya,
October 2003.

[RAV02] ‘Netwerk voor Geo-informatie (RAVI).’ www.ravi.nl/index.htm, ac-
cessed on December 2002. The Netherlands.

180

www.ravi.nl/ index.htm

Bibliography

[RBP+91] James Rumbaugh, Michael Blaha, William Premerlani, Frederick Eddy
and William Lorenson. Object-Oriented Modelling and Design. Englewood
Cliffs, Prentice-Hall International, New Jersey, United States of America,
1st edition, 1991. ISBN 0-13-629841-9.

[Rey99] Carla Reyneri. ‘Operational building blocks for business process mod-
elling.’ Computers in Industry, Vol. 40(No. 2-3):115–123, 1999.

[RFC03] ‘Tags for the identification of languages, internet rfc 3066.’ www.ietf.
org/rfc/rfc3066.txt, accessed on November 2003.

[Rig93] Darrell K. Rigby. ‘The secret history of process reengineering.’ Planning
Review, March/April 1993.

[RJB98] James Rumbaugh, Ivar Jacobson and Grady Booch. The Unified Mod-
elling Language Reference Manual. Object Technology Series. Addison--
Wesley Pub. Co., Reading, Massachusetts, December 1998. ISBN 0-201-
30998-X.

[ROM01] Mostafa Radwan, Richard Onchaga and Javier Morales. A Structural Ap-
proach to the Management and Optimization of Geoinformation Processes.
Official publication no. 41, European Organization for Experimental Pho-
togrammetric Research (OEEPE), Frankfurt, Germany, 2001.

[Roy70] W. W. Royce. ‘Managing the development of large software systems:
concepts and techniques.’ In Proceedings of the IEEE Western Electronic
Show and Convention (WESCON), pages 1–9. IEEE Computer Society
Press, Los Angeles, California, United States of America, 1970.

[Roy87] —. ‘Managing the development of large software systems: concepts and
techniques.’ In Proceedings of the 9th international conference on Software
Engineering, pages 328–338. IEEE Computer Society Press, Monterey,
California, United States of America, 1987.

[RS97] Luz Angela Rocha Salamanca. Applying concepts of business process re-
design and operations management in a geoinformation production orga-
nization: case study “Instituto Geografico Agustin Codazzi”, Colombia.
Master’s thesis, International Institute for Geo-Information Science and
Earth Observation ITC, Enschede, The Netherlands, June 1997.

[RSV01] Philippe Rigaux, Michel Scholl and Agnés Voisard. Spatial Databases:
with Application to GIS. Morgan Kaufman Publishers, San Francisco,
California, 2001. ISBN 1-55860-588-6.

[San98] Rosilah Sani. Dynamic Modelling in the Reengineering of Geoinformation
Production Processes. Master’s thesis, International Institute for Geo-
Information Science and Earth Observation ITC, Enschede, The Nether-
lands, July 1998.

[Sco02] Kendall Scott. The Unified Process Explained. Addison-Wesley Pub. Co.,
Reading, Massachusetts, 2002. ISBN 0-201-74204-7.

181

www.ietf.org/ rfc/ rfc3066.txt
www.ietf.org/ rfc/ rfc3066.txt

Bibliography

[SH96] Pablo A. Straub and Carlos A. Hurtado. ‘Understanding behavior of
business process models.’ In Coordination Models and Languages, pages
440–443. 1996.

[SHL95] Pablo A. Straub and Carlos Hurtado L. Behavioral Consistency in Busi-
ness Process Models. Technical Report RT-PUC-DCC-95-4, Catholic Uni-
versity of Chile, Computer Science Department, May 1995.

[Sho03] Yasser Shohoud. Real World XML Web Services. The DevelopMentor
Series. Addison-Wesley Pub. Co., Boston, United States of America, 2003.
ISBN 0-201-77425-9.

[Sim94] Oliver Sims. Business Objects: Delivering Cooperative Objects for Client-
Server. The IBM McGraw-Hill Series. McGraw Hill, 1994. ISBN 0-07-
707957-4.

[Sin95] Marten van Sinderen. On the Design of Application Protocols. Ph.D.
thesis, University of Twente, Enschede, The Netherlands, March 1995.
Ph.D. Thesis, no. 95-04.

[SNI02] ‘Centro Nacional de Informação Geográfica (SNIG).’ snig.igeo.pt, ac-
cessed on February 2002. Portugal.

[Szy02] Clemens Szyperski. Component Software: Beyond Object-Oriented Pro-
gramming. Addison-Wesley Pub. Co., Essex, England, 2nd edition, 2002.
ISBN 0-201-74572-0.

[The92] The RAISE Language Group. The RAISE Specification Language. BCS
Practitioner Series. Prentice-Hall International, London, Great Britain,
1992. ISBN 0-13-752833-7.

[TP96] Daniel Tkach and Richard Puttick. Object Technology in Application De-
velopment. Addison-Wesley Pub. Co., New York, United States of Amer-
ica, 2nd edition, 1996. ISBN 0-201-49833-2.

[UU01] U.S. Geological Survey and U.S. Department of Interior. The National
Map: Topographic Mapping for the 21st Century. Technical report, Office
of the Associate Director for Geography, U.S. Geological Survey, Reston,
Va., United States of America, November 2001. Cooperative Topographic
Mapping Program.

[Vel98] Daan Velthausz. Cost-Effective Network-Based Multimedia Information
Retrieval. Ph.D. thesis, University of Twente, Enschede, The Netherlands,
November 1998. Telematica Instituut Fundamental Research Series, No.
003.

[VFPQS99] Chris Vissers, Lúıs Ferreira Pires, Dick A. C. Quartel and Marten J.
van Sinderen. The architectural design of distributed systems: Reader for
the Design of Telematic Systems. University of Twente, Enschede, The
Netherlands, January 1999.

182

snig.igeo.pt

Bibliography

[Vli00] Hans van Vliet. Software Engineering: Principles and Practice. John
Wiley & Sons Ltd., West Sussex, England, 2nd edition, 2000. ISBN 0-
471-97508-7.

[W3C99] Resource Description Framework (RDF) Model and Syntax Specification.
W3C recommendation, World Wide Web Consortium, Cambridge, MA,
February 1999. Editors: Ora Lassila and Ralph R. Swick.

[W3C01a] Web Services Description Language (WSDL) 1.1. W3C recommendation,
World Wide Web Consortium, Cambridge, MA, March 2001. Editors:
Erik Christensen, Francisco Curbera, Greg Meredith and Sanjiva Weer-
awarana.

[W3C01b] XML Schema Part 1: Structures. W3c recommendation, World Wide Web
Consortium, Cambridge, MA, May 2001. Editors: Henry S. Thompson,
David Beech, Murray Maloney and Noah Mendelsohn.

[W3C01c] XML Schema Part 2: Datatypes. W3C recommendation, World Wide
Web Consortium, Cambridge, MA, May 2001. Editors: Paul V. Biron
and Ashok Malhotra.

[W3C03] ‘The World Wide Web consortium.’ www.w3.org, accessed on November
2003.

[WD96] Jim Woodcock and Jim Davies. Using Z: Specification, Refinement and
Proof. Prentice-Hall International Series in Computer Science. Prentice-
Hall International, Great Britain, 1996. ISBN 0-13-948472-8.

[Weg98] Marten K. de Weger. Structuring of Business Processes: An architectural
approach to system development and its application to business processes.
Ph.D. thesis, University of Twente, Enschede, The Netherlands, January
1998. Ph.D. Thesis, no. 98-17.

[Wil02] A. Denise Williams (editor). Proceedings of the Sixth International Enter-
prise Distributed Object Computing Conference EDOC 2002. Ecole Poly-
technique Fédeérale de Laussane (EPFL), IEEE Computer Society, Lau-
sanne, Switzerland, September 2002. ISBN 0-7695-1742-0.

[WJK99] Michael Wooldridge, Nicholas R. Jennings and David Kinny. ‘A method-
ology for agent-oriented analysis and design.’ In Proceedings of the 3rd

International Conference on Autonomous Agents (Agents’99), edited by
Oren Etzioni, Jörg P. Müller and Jeffrey M. Bradshaw, pages 69–76. ACM
Press, Seattle, WA, USA, 1999.

[WKRG99] Brian Warboys, Peter Kawelek, Ian Robertson and Robert Greenwood.
Business Information Systems: a Process Approach. Information Systems
Series. McGraw Hill, Great Britain, 1999. ISBN 0-07-709464-6.

[Wor95] Michael F. Worboys. GIS: A Computing Perspective. Taylor & Francis
Ltd., London, United Kingdom, 1995. ISBN 0-7484-0065-6.

183

www.w3.org

Bibliography

[Zei99] Michael Zeiler. Modelling Our World: The ESRI Guide to Geodatabase
Design. Environmental Systems Research Institute, Inc., Redlans, Cali-
fornia, 1999. ISBN 1-879102-62-5.

184

Index

A
abstraction . 35, 37

levels of . 37
action . 58, 63, 112

abstract. .113
atomicity of 64
attribute 58, 64
attribute constraint.67, 71
concrete . 113
decomposotion 77
disabling . 68
distribution 77
enabling . 68
initial . 67, 68
inserted . 114
internal . 112
reference . 113
relation . 67
target . 67

activity . 63
architectural element . 54, 59, 104, 153

connecting element 60, 106
data element 60, 118
processing element 60, 119

attribute
causality condition 75
reference relation.73
value domain.73
value establishment 66

B
behaviour . 63

abstract. .113
concrete . 113
definition . 68
recursion . 82
structuring . 78

causality-oriented 78
constraint-oriented 83

C
Catalysis

development method 45
causality condition 58, 67, 75

conjunction 69
disjunction . 70

causality relation.67, 68
decomposition of 78

class . 25
diagram. .25

collections . 93
composite . 93
composition structures.112
conceptual schema 24
correctness assessment 113, 122

method . 113

D
data sharing . 15
decomposition 76, 104
design

concepts . 9, 61
methodology 9

development process 34
disabling condition 68

E
enabling condition 68
entity. .62

auxiliary . 89
auxiliary entity.88
decomposotion 76
functional . 88
service provider 87
service user 87

185

Index

external perspective 85–102
design trajectory 87
model . 94

F
functionality . 63

G
GDI . 14

components 15
geo-information . 6

Infrastructure see GDI
service

walktrough 121
Service Infrastructure see GSI
services 29, 53, 57, 106, 119
systems . 7

Geo-Services Design Methodology . see
GSDM

geographic data 17
Geographic fields 17
geographic information see

geo-information
geographic object see geoObject
Geographic objects 17
Geography Markup Language see

GML
geoObject . 91
Geospatial Data Infrastructure see

GDI
GML . 163

geometry schema.164
GSDM . 49–60, 118

decomposition
criteria . 104
goals . 104
method . 108
pattern . 106

external perspective 51, 85
internal perspective 51, 103
metamodel . 56
phases . 51

GSI . 29, 56, 85

I
interaction . 58, 65

contribution 65, 66

integrated . 77
point. .62
signatures . 96

internal behaviour 111
internal perspective 103–127

design trajectory 108
ISDL . 10

metamodel . 56
item . 98

M
MDA. 46
mediator. .113, 125
mediator pattern 106

recursive . 107
metadata 15, 26, 117, 153

levels of . 27
standards . 28

metamodel . 54, 91
model . 53

role in GSDM. 53
Model Driven Architecture. .see MDA
modelling dimensions 59
models see system models

P
preservation of relations 113
processing descriptions 119

R
raster-based representations 22
refinement . 38, 115
repository . 56, 112

schema . 153

S
service definition 87, 94, 127, 153

extended.88, 89, 95
inputs. .90
parameteres 90
results . 90

service description 117, 145
services . . see geo-information services
spatial data types.91
system . 8, 34

architecting 33
development process 34

186

Index

incremental model 41
object-oriented.42
spiral model 41
waterfall model 40

models . 36

T
theme . 92

U
Unified Process . 43

V
vector-based representations 20
viewpoints . 39

RM-ODP . 40
views . 38

187

Index

188

Summary

This thesis presents a method for the development of distributed geo-information sys-
tems. The method is organised around the design principles of modularity, reuse and
replaceability. The method enables the modelling of both behavioural and informa-
tional aspects of geo-information systems in an integrated way.

This thesis introduces the concept the Geo-information Service Infrastructure (GSI).
The GSI concept adheres to the characteristics and needs of modern geo-informa-
tion processing. The GSI builds on the existing principles for data sharing of the
Geospatial Data Infrastructure concept. The term GSI is used to refer to a type of
geo-information provision system from which specialised information products and
services can be obtained by exploiting the elementary services (resources, processes
and data) of a set of collaborating geo-service providers. This thesis presents a sup-
porting architecture for the deployment of GSI services.

An important idea underlying a GSI system is that services available in an information
infrastructure should be composable. The method presented in this thesis is used to
describe these elementary services and their interfaces, such that they can be accessed,
combined and managed to create compound required services. These later services
are defined to handle elaborated and specialised geo-processing tasks.

Services are specified according to two perspectives namely the external perspective
and the internal perspective. The external perspective specifies the observable be-
haviour of a service. This specification is used by designers for the development
of the internal perspective and for the assessment of the resulting internal service
specification. A service specification according to the external perspective also pro-
vides potential users with a description of the service functionality and its interfacing
mechanisms.

The internal perspective describes internal structure of a required service in terms
of compositions of simpler or more elementary services. This internal structure is
defined in terms of architectural elements. Three types of architectural elements are
distinguished, viz. data elements, processing elements and connecting elements. The
data elements represent the information that is used, manipulated and/or generated
by the system. The process elements represent the geo-processing capabilities of

189

Summary

the system, which can perform transformations on data elements. The connecting
elements or mediators coordinate the interactions between the other architectural
elements, and provide an interface to the service user. All specifications, according to
both the external and the internal perspectives, are defined using ISDL (Interaction
Systems Design Language) concepts.

At the centre of a GSI system lies the repository service. The repository allows to
organise the creation, updating, validation, accessing and sharing of service models
and service instances. We emphasise the use of models as the mechanism to disclose
information about services and to design more elaborated services out of combinations
of existing elementary services. The repository is defined according to a metamodel
on which all service models are based. The metamodel provides a rigourous abstract
syntax for defining models. The metamodel is used here to define a set of design
concepts and their relationships, which one can use to produce models according to
the GSI specific objectives.

This thesis introduces and motivates the so-called mediator pattern to be used to
structure compositions of architectural elements. This results in the organisation of a
set of services into a behaviour definition that has a single coordinating element. One
of the benefits of this approach is that it makes the service realisation accountable
for the user. Another benefit is that it facilitates the use of workflow languages to
implement the mediator behaviour, which choreographs the use of third-party services.

190

Samenvatting

Dit proefschrift presenteert een methode voor het ontwikkelen van gedistribueerde
geo-informatie systemen. Deze methode is gebaseerd op ontwerpprincipes zoals modu-
lariteit, hergebruik en onderhoudbaarheid. De methode ondersteunt het gecombineerd
modelleren van zowel gedrags- als informatieaspecten van geo-informatie systemen

Dit proefschrift introduceert het begrip ‘Geo-information Service Infrastructure’
(GSI). Het GSI begrip sluit aan op de eigenschappen van en de eisen aan geavan-
ceerde geo-informatie verwerking. GSI steunt op bestaande principes voor ‘data sha-
ring’ zoals toegepast in een traditionele ‘Geospatial Data Infrastructure’. De term
GSI wordt gebruikt om een geo-informatie dienstensysteem aan te duiden waarmee
gespecialiseerde informatieproducten en -diensten verkregen kunnen worden door ele-
mentaire diensten (middelen, processen en data) van een verzameling samenwerkende
geo-dienstenaanbieders te exploiteren. Dit proefschrift presenteert een ondersteunde
architectuur voor het uitrollen van GSI diensten.

Een funderende notie voor een GSI systeem is dat beschikbare diensten van een in-
formatie infrastructuur compositioneel moeten zijn. De methode gepresenteerd in dit
proefschrift is gebruikt om deze elementaire diensten en hun interfaces te beschrijven,
zodat ze toegankelijk zijn, en gecombineerd en beheerd kunnen worden voor het sa-
menstellen van de vereiste diensten. De resulterende diensten kunnen complexere en
gespecialiseerde geo-verwerkingstaken ondersteunen.

Diensten worden gespecificeerd volgens twee gezichtspunten, namelijk het externe
en het interne gezichtspunt. Het externe gezichtspunt definieert het observeerbare
gedrag van een dienst. Deze specificatie wordt gebruikt door ontwerpers als uitgangs-
punt voor het ontwikkelen van het interne gezichtspunt, en voor de evaluatie van de
resulterende dienstspecificatie volgens het interne gezichtspunt. Een dienstspecifica-
tie volgens het externe gezichtspunt voorziet tevens de potentiële gebruikers van de
beschrijving van de functionaliteit en de interface mechanismen van de dienst.

Het interne gezichtspunt beschrijft een interne structuur van de vereiste dienst als een
samenstelling van eenvoudiger en meer elementaire diensten. Deze interne structuur
wordt gedefinieerd in termen van architecturale elementen. Drie soorten architectura-
le elementen worden onderscheiden, namelijk data elementen, verwerkingselementen

191

Samenvatting

en verbindingselementen. Data elementen representeren informatie die gebruikt, ge-
manipuleerd en/of gegenereerd wordt door het systeem. Verwerkingselementen repre-
senteren de geo-verwerkingsmogelijkheden van het systeem, waarmee transformaties
uitgevoerd kunnen worden op data elementen. Verbindingselementen of ‘mediators’
coördineren de interacties tussen de andere architecturale elementen en bieden een
interface aan de dienstgebruiker. Alle specificaties, volgens zowel het externe als
interne gezichtspunt, worden gedefinieerd met gebruik van de specificatietaal ISDL
(‘Interaction Systems Design Language’).

De kern van een GSI systeem wordt gevormd door de ‘repository’ dienst. Deze dienst
ondersteunt het creëren, verversen, valideren, toegankelijk maken en delen van dienst-
modellen en -instanties. Wij benadrukken het gebruik van modellen als mechanismen
om informatie over diensten beschikbaar te stellen en om complexere diensten sa-
men te stellen uit combinaties van bestaande elementaire diensten. De ‘repository’ is
gedefinieerd op basis van een metamodel waarop tevens alle dienstmodellen zijn ge-
baseerd. Dit metamodel biedt een precieze abstracte syntaxis voor het definiëren van
modellen. Het metamodel wordt hier gebruikt om een verzameling ontwerpconcepten
en hun relaties te definiëren, zodat deze gebruikt kunnen worden voor het produceren
van modellen voor GSI-specifieke doeleinden.

Dit proefschrift introduceert en motiveert het zogenaamde ‘mediator’ patroon, dat
gebruikt wordt voor het structureren van composities van architecturale elementen.
Dit resulteert in een structuur waarin een verzameling diensten worden gecoördineerd
door een enkel coördinerend element. Een van de voordelen van deze benadering is dat
de verantwoording aan de gebruiker ten aanzien van de dienstrealisatie wordt gegeven
via een enkel element. Een ander voordeel van deze benadering is dat ‘workflow’ talen
op een natuurlijke manier toegepast kunnen worden voor het implementeren van het
‘mediator’ gedrag dat het gebruik van diensten van derden regisseert.

192

Curriculum Vitae

Javier Marcelino Morales Guarin was born on the 16th January, 1968, in Bogotá,
Colombia. In 1992 he obtained his bachelor’s degree in forestry engineering from
the Distrital University ‘Francisco José de Caldas’ in Bogotá, Colombia. In 1998
he obtained his Master of Science degree in Geo-information Science from the Inter-
national Institute for Geo-Information Science and Earth Observation in Enschede,
the Netherlands. He was part-time lecturer at the faculty of civil engineering of the
University of Santo Tomás in Bogotá. He has worked as a consultant in the areas of
GIS and information technology, and he has also worked for more than 14 years in
the geo-information industry with the national mapping organisation of Colombia in
the areas of data acquisition, geographic information systems, map production and
geo-information infrastructures. He is also member of the Architecture Group of the
Telematics Services and Systems cluster of the faculty of Computer Science at the
University of Twente. His present research interests are in design methods, archi-
tectures for distributed (geo-information) systems and spatial data infrastructures.

193

194

ITC Dissertations

[1] Akinyede, Joseph O., 1990, Highway Cost Modelling and Route Selection
Using a Geotechnical Information System, Delft University of Technology.

[2] Pan, Ping He, 1990, A Spatial Structure Theory in Machine Vision and Ap-
plications to Structural and Textural Analysis of Remotely Sensed Images, Uni-
versity of Twente, 90-9003757-8.

[3] Bocco Verdinelli, Gerardo H. R., 1990, Gully Erosion Analysis Using Re-
mote Sensing and Geographic Information Systems: A Case Study in Central
Mexico, Universiteit van Amsterdam.

[4] Sharif, Massoud, 1991, Composite Sampling Optimization for DTM in the
Context of GIS , Wageningen Agricultural University.

[5] Drummond, Jane E., 1991, Determining and Processing Quality Parameters
in Geographic Information Systems, University of Newcastle.

[6] Groten, Susanne, 1991, Satellite Monitoring of Agro-ecosystems in the Sahel ,
Westfälische Wilhelms-Universität.

[7] Sharifi, Ali, 1991, Development of an Appropriate Resource Information Sys-
tem to Support Agricultural Management at Farm Enterprise Level , Wageningen
Agricultural University, 90-6164-074-1.

[8] van der Zee, Dick, 1991, Recreation Studied from Above: Air Photo Interpre-
tation as Input into Land Evaluation for Recreation, Wageningen Agricultural
University, 90-6164-075-X.

[9] Mannaerts, Chris, 1991, Assessment of the Transferability of Laboratory
Rainfall-runoff and Rainfall—Soil Loss Relationships to Field and Catchment
Scales: A Study in the Cape Verde Islands, University of Ghent, 90-6164-085-7.

[10] Wang, Ze Shen, 1991, An Expert System for Cartographic Symbol Design,
Utrecht University, 90-3930-333-9.

[11] Zhou, Yunxuan, 1991, Application of Radon Transforms to the Processing of
Airborne Geophysical Data, Delft University of Technology, 90-6164-081-4.

195

ITC Dissertations

[12] de Zuviŕıa, Mart́ın, 1992, Mapping Agro-topoclimates by Integrating Topo-
graphic, Meteorological and Land Ecological Data in a Geographic Information
System: A Case Study of the Lom Sak Area, North Central Thailand , Univer-
siteit van Amsterdam, 90-6164-077-6.

[13] van Westen, Cees J., 1993, Application of Geographic Information Systems
to Landslide Hazard Zonation, Delft University of Technology, 90-6164-078-4.

[14] Shi, Wenzhong, 1994, Modelling Positional and Thematic Uncertainties in In-
tegration of Remote Sensing and Geographic Information Systems, Universität
Osnabrück, 90-6164-099-7.

[15] Javelosa, R., 1994, Active Quaternary Environments in the Philippine Mobile
Belt , Utrecht University, 90-6164-086-5.

[16] Lo, King-Chang, 1994, High Quality Automatic DEM, Digital Elevation
Model Generation from Multiple Imagery , University of Twente, 90-9006-526-1.

[17] Wokabi, S. M., 1994, Quantified Land Evaluation for Maize Yield Gap Anal-
ysis at Three Sites on the Eastern Slope of Mt. Kenya, University Ghent, 90-
6164-102-0.

[18] Rodŕıguez Parisca, O. S., 1995, Land Use Conflicts and Planning Strategies
in Urban Fringes: A Case Study of Western Caracas, Venezuela, University of
Ghent.

[19] van der Meer, Freek D., 1995, Imaging Spectrometry & the Ronda Peri-
dotites, Wageningen Agricultural University, 90-5485-385-9.

[20] Kufoniyi, Olajide, 1995, Spatial Coincidence: Automated Database Updating
and Data Consistency in Vector GIS , Wageningen Agricultural University, 90-
6164-105-5.

[21] Zambezi, P., 1995, Geochemistry of the Nkombwa Hill Carbonatite Complex
of Isoka District, North-east Zambia, with Special Emphasis on Economic Min-
erals, Vrije Universiteit Amsterdam.

[22] Woldai, Tsehaie, 1995, The Application of Remote Sensing to the Study of the
Geology and Structure of the Carboniferous in the Calañas Area, Pyrite Belt,
South-west Spain, Open University, United Kingdom.

[23] Verweij, Pita A., 1995, Spatial and Temporal Modelling of Vegetation Pat-
terns: Burning and Grazing in the Páramo of Los Nevados National Park,
Colombia, Universiteit van Amsterdam, 90-6164-109-8.

[24] Pohl, Christine, 1996, Geometric Aspects of Multisensor Image Fusion for
Topographic Map Updating in the Humid Tropics, Universität Hannover, 90-
6164-121-7.

[25] Bin, Jiang, 1996, Fuzzy Overlay Analysis and Visualization in Geographic
Information Systemes, Utrecht University, 90-6266-128-9.

196

ITC Dissertations

[26] Metternicht, Graciela I., 1996, Detecting and Monitoring Land Degrada-
tion Features and Processes in the Cochabamba Valleys, Bolivia. A Synergistic
Approach, University of Ghent, 90-6164-118-7.

[27] Chu Thai Hoanh, 1996, Development of a Computerized Aid to Integrated
Land Use Planning (CAILUP) at Regional Level in Irrigated Areas: A Case
Study for the Quan Lo Phung Hiep region in the Mekong Delta, Vietnam, Wa-
geningen Agricultural University, 90-6164-120-9.

[28] Roshannejad, A., 1996, The Management of Spatio-Temporal Data in a Na-
tional Geographic Information System, University of Twente, 90-9009-284-6.

[29] Terlien, Mark T. J., 1996, Modelling Spatial and Temporal Variations in
Rainfall-triggered Landslides: The Integration of Hydrologic Models, Slope Sta-
bility Models and GIS for the Hazard Zonation of Rainfall-triggered Landslides
with Examples from Manizales, Colombia, Utrecht University, 90-6164-115-2.

[30] Mahavir, J., 1996, Modelling Settlement Patterns for Metropolitan Regions:
Inputs from Remote Sensing , Utrecht University, 90-6164-117-9.

[31] Al-Amir, Sahar, 1996, Modern Spatial Planning Practice as Supported by the
Multi-applicable Tools of Remote Sensing and GIS: The Syrian Case, Utrecht
University, 90-6164-116-0.

[32] Pilouk, M., 1996, Integrated Modelling for 3D GIS , University of Twente,
90-6164-122-5.

[33] Duan, Zengshan, 1996, Optimization Modelling of a River-Aquifer System
with Technical Interventions: A Case Study for the Huangshui River and the
Coastal Aquifer, Shandong, China, Vrije Universiteit Amsterdam, 90-6164-123-
3.

[34] de Man, W. H. E., 1996, Surveys: Informatie als Norm: Een Verkenning
van de Institutionalisering van Dorp-surveys in Thailand en op de Filippijnen,
University of Twente, 90-9009-775-9.

[35] Vekerdy, Zoltan, 1996, GIS-based Hydrological Modelling of Alluvial Regions:
Using the Example of the Kisafld, Hungary , Lorand Eotvos University of Sci-
ences, 90-6164-119-5.

[36] Gomes Pereira, Luisa M., 1996, A Robust and Adaptive Matching Procedure
for Automatic Modelling of Terrain Relief , Delft University of Technology, 90-
407-1385-5.

[37] Fandiño Lozano, M. T., 1996, A Framework of Ecological Evaluation oriented
at the Establishment and Management of Protected Areas: A Case Study of the
Santuario de Iguaque, Colombia, Universiteit van Amsterdam, 90-6164-129-2.

[38] Toxopeus, Bert, 1996, ISM: An Interactive Spatial and Temporal Modelling
System as a Tool in Ecosystem Management: With Two Case Studies: Cibodas
Biosphere Reserve, West Java Indonesia: Amboseli Biosphere Reserve, Kajiado
District, Central Southern Kenya, Universiteit van Amsterdam, 90-6164-126-8.

197

ITC Dissertations

[39] Wang, Yiman, 1997, Satellite SAR Imagery for Topographic Mapping of Tidal
Flat Areas in the Dutch Wadden Sea, Universiteit van Amsterdam, 90-6164-131-
4.

[40] Saldana Lopez, Asun, 1997, Complexity of Soils and Soilscape Patterns on
the Southern Slopes of the Ayllon Range, Central Spain: a GIS Assisted Mod-
elling Approach, Universiteit van Amsterdam, 90-6164-133-0.

[41] Ceccarelli, T., 1997, Towards a Planning Support System for Communal Ar-
eas in the Zambezi Valley, Zimbabwe; A Multi-criteria Evaluation Linking Farm
Household Analysis, Land Evaluation and Geographic Information Systems,
Utrecht University, 90-6164-135-7.

[42] Peng, Wanning, 1997, Automated Generalization in GIS , Wageningen Agri-
cultural University, 90-6164-134-9.

[43] Mendoza Lawas, M. C., 1997, The Resource Users’ Knowledge, the Neglected
Input in Land Resource Management: The Case of the Kankanaey Farmers in
Benguet, Philippines, Utrecht University, 90-6164-137-3.

[44] Bijker, Wietske, 1997, Radar for Rain Forest: A Monitoring System for Land
Cover Change in the Colombian Amazon, Wageningen Agricultural University,
90-6164-139-X.

[45] Farshad, Abbas, 1997, Analysis of Integrated Soil and Water Management
Practices within Different Agricultural Systems under Semi-arid Conditions of
Iran and Evaluation of their Sustainability , University of Ghent, 90-6164-142-X.

[46] Orlic, B., 1997, Predicting Subsurface Conditions for Geotechnical Modelling ,
Delft University of Technology, 90-6164-140-3.

[47] Bishr, Yaser, 1997, Semantic Aspects of Interoperable GIS , Wageningen Agri-
cultural University, 90-6164-141-1.

[48] Zhang, Xiangmin, 1998, Coal fires in Northwest China: Detection, Monitor-
ing and Prediction Using Remote Sensing Data, Delft University of Technology,
90-6164-144-6.

[49] Gens, Rudiger, 1998, Quality Assessment of SAR Interferometric Data, Uni-
versity of Hannover, 90-6164-155-1.

[50] Turkstra, Jan, 1998, Urban Development and Geographical Information: Spa-
tial and Temporal Patterns of Urban Development and Land Values Using In-
tegrated Geo-data, Villaviciencio, Colombia, Utrecht University, 90-6164-147-0.

[51] Cassells, Craig James Steven, 1998, Thermal Modelling of Underground
Coal Fires in Northern China, University of Dundee.

[52] Naseri, M. Y., 1998, Monitoring Soil Salinization, Iran, Ghent University,
90-6164-195-0.

198

ITC Dissertations

[53] Gorte, Ben G. H., 1998, Probabilistic Segmentation of Remotely Sensed Im-
ages, Wageningen Agricultural University, 90-6164-157-8.

[54] Ayenew, Tenalem, 1998, The Hydrological System of the Lake District Basin,
Central Main Ethiopian Rift , Universiteit van Amsterdam, 90-6164-158-6.

[55] Wang, Donggen, 1998, Conjoint Approaches to Developing Activity-Based
Models, Technical University of Eindhoven, 90-6864-551-7.

[56] Bastidas de Calderon, Maŕıa, 1998, Environmental Fragility and Vulnera-
bility of Amazonian Landscapes and Ecosystems in the Middle Orinoco River
Basin, Venezuela, University of Ghent.

[57] Moameni, A., 1999, Soil Quality Changes under Long-term Wheat Cultivation
in the Marvdasht Plain, South-central Iran, University of Ghent.

[58] van Groenigen, J.W., 1999, Constrained Optimisation of Spatial Sampling:
A Geostatistical Approach, Wageningen Agricultural University, 90-6164-156-X.

[59] Cheng, Tao, 1999, A Process-oriented Data Model for Fuzzy Spatial Objects,
Wageningen Agricultural University, 90-6164-164-0.

[60] Wolski, Piotr, 1999, Application of Reservoir Modelling to Hydrotopes Iden-
tified by Remote Sensing , Vrije Universiteit Amsterdam, 90-6164-165-9.

[61] Acharya, B., 1999, Forest Biodiversity Assessment: A Spatial Analysis of Tree
Species Diversity in Nepal , Leiden University, 90-6164-168-3.

[62] Abkar, Ali Akbar, 1999, Likelihood-based Segmentation and Classification of
Remotely Sensed Images, University of Twente, 90-6164-169-1.

[63] Yanuariadi, Tetra, 1999, Sustainable Land Allocation: GIS-based Decision
Support for Industrial Forest Plantation Development in Indonesia, Wageningen
University, 90-5808-082-X.

[64] Abu Bakr, Mohamed, 1999, An Integrated Agro-Economic and Agro-
Ecological Framework for Land Use Planning and Policy Analysis, Wageningen
University, 90-6164-170-5.

[65] Eleveld, Marieke A., 1999, Exploring Coastal Morphodynamics of Ameland
(The Netherlands) with Remote Sensing Monitoring Techniques and Dynamic
Modelling in GIS , Universiteit van Amsterdam, 90-6461-166-7.

[66] Hong, Yang, 1999, Imaging Spectrometry for Hydrocarbon Microseepage, Delft
University of Technology, 90-6164-172-1.

[67] Mainam, Félix, 1999, Modelling Soil Erodibility in the Semiarid Zone of
Cameroon, University of Ghent, 90-6164-179-9.

[68] Bakr, Mahmoud I., 2000, A Stochastic Inverse-Management Approach to
Groundwater Quality , Delft University of Technology, 90-6164-176-4.

199

ITC Dissertations

[69] Zlatanova, Siyka, 2000, 3D GIS for Urban Development , Graz University of
Technology, 90-6164-178-0.

[70] Ottichilo, Wilber K., 2000, Wildlife Dynamics: An Analysis of Change in
the Masai Mara Ecosystem, Wageningen University, 90-5808-197-4.

[71] Kaymakci, Nuri, 2000, Tectono-stratigraphical Evolution of the Cankori Basin
(Central Anatolia, Turkey), Utrecht University, 90-6164-181-0.

[72] Gonzalez, Rhodora, 2000, Platforms and Terraces: Bridging Participation
and GIS in Joint-learning for Watershed Management with the Ifugaos of the
Philippines, Wageningen University, 90-5808-246-6.

[73] Schetselaar, Ernst, 2000, Integrated Analyses of Granite-gneiss Terrain from
Field and Multisource Remotely Sensed Data. A Case Study from the Canadian
Shield , University of Delft, 90-6164-180-2.

[74] Mesgari, M. Saadi, 2000, Topological Cell-Tuple Structure for Three-
Dimensional Spatial Data, University of Twente, 90-3651-511-4.

[75] de Bie, Cees A. J. M., 2000, Comparative Performance Analysis of Agro-
Ecosystems, Wageningen University, 90-5808-253-9.

[76] Khaemba, Wilson M., 2000, Spatial Statistics for Natural Resource Manage-
ment , Wageningen University, 90-5808-280-6.

[77] Shrestha, Dhruba, 2000, Aspects of Erosion and Sedimentation in the
Nepalese Himalaya: Highland-lowland Relations, Ghent University, 90-6164-
189-6.

[78] Asadi Haroni, Hooshang, 2000, The Zarshuran Gold Deposit Model Applied
in a Mineral Exploration GIS in Iran, Delft University of Technology, 90-6164-
185-3.

[79] Raza, Ale, 2001, Object-Oriented Temporal GIS for Urban Applications, Uni-
versity of Twente, 90-3651-540-8.

[80] Farah, Hussein O., 2001, Estimation of Regional Evaporation under Different
Weather Conditions from Satellite and Meteorological Data. A Case Study in
the Naivasha Basin, Kenya, Wageningen University, 90-5808-331-4.

[81] Zheng, Ding, 2001, A Neuro-Fuzzy Approach to Linguistic Knowledge Ac-
quisition and Assessment in Spatial Decision Making , University of Vechta,
90-6164-190-X.

[82] Sahu, B. K., 2001, Aeromagnetics of Continental Areas Flanking the Indian
Ocean; with Implications for Geological Correlation and Gondwana Reassembly ,
University of Capetown, South Africa.

200

ITC Dissertations

[83] Alfestawi, Yahia Ahmed M., 2001, The Structural, Paleogeographical and
Hydrocarbon Systems Analysis of the Ghadamis and Murzuq Basins, West
Libya, with Emphasis on Their Relation to the Intervening Al Qarqaf Arch,
Delft Technical University, 90-6164-198-5.

[84] Liu, Xuehua, 2001, Mapping and Modelling the Habitat of Giant Pandas in
Foping Nature Reserve, China, Wageningen University, 90-5808-496-5.

[85] Oindo, Boniface Oluoch, 2001, Spatial Patterns of Species Diversity in
Kenya, Wageningen University, 90-5808-495-7.

[86] Carranza, Emmanuel John M., 2002, Geologically-constrained Mineral Po-
tential Mapping: Examples from the Philippines, Technical University of Delft,
90-6164-203-5.

[87] Rugege, Denis, 2002, Regional Analysis of Maize-based Land Use Systems for
Early Warning Applications, Wageningen University, 90-5808-584-8.

[88] Liu, Yaolin, 2002, Categorical Database Generalization in GIS , Wageningen
University, 90-5808-648-8.

[89] Ogao, Patrick, 2002, Scientific Visualization, Utrecht University, 90-6164-
206-X.

[90] Abadi, Abdulbaset Musbah, 2002, Tectonics of the Sirt Basin: Inferences
from Tectonic Subsidence Analysis, Stress Inversion and Gravity Modeling ,
Vrije Universiteit Amsterdam, 90-6164-205-1.

[91] Geneletti, Davide, 2002, Ecological Evaluation for Environmental Impact As-
sessment , Vrije Universiteit Amsterdam, 90-6809-337-1.

[92] Sedogo, Laurent D., 2002, Integration of Local Participatory and Regional
Planning for Resources Management Using Remote Sensing and GIS , Wagenin-
gen University, 90-5808-751-4.

[93] Montoya, Ana Lorena, 2002, Urban Disaster Management: A Case Study
of Earthquake Risk Assesment in Cartago, Costa Rica, Utrecht University, 90-
6164-2086.

[94] Mobin-ud Din, Ahmad, 2002, Estimation of Net Groundwater Use in Irri-
gated River Basins Using Geo-information Techniques: A Case Study in Rechna
Doab, Pakistan, Wageningen University, 90-5808-761-1.

[95] Said, Mohammed Yahya, 2003, Multiscale Perspectives of Species Richness
in East Africa, Wageningen University, 90-5808-794-8.

[96] Schmidt, Karen S., 2003, Hyperspectral Remote Sensing of Vegetation Species
Distribution in a Saltmarsh, Wageningen University, 90-5808-830-8.

[97] López Binnqüist, Citlalli, 2003, The Endurance of Mexican Amate Paper:
Exploring Additional dimensions to the Sustainable Development Concept , Uni-
versity of Twente, 90-3651-900-4.

201

ITC Dissertations

[98] Huang, Zhengdong, 2003, Data Integration for Urban Transport Planning ,
Utrecht University, 90-6164-211-6.

[99] Cheng, Jianquan, 2003, Modelling Spatial and Temporal Urban Growth,
Utrecht University, 90-6164-212-4.

[100] Campos dos Santos, José Laurindo, 2003, A Biodiversity Information
System in an Open Data-Metadatabase Architecture, University of Twente,
9061642140.

[101] Hengl, Tomislav, 2003, Pedometric Mapping: Bridging the Gaps Between
Conventional and Pedometric Approaches, Wageningen University.

[102] Barrera Bassols, Narciso, 2003, Symbolism, Knowledge and management of
Soil and Land Resources in Indigenous Communities: Ethnopedology at Global,
Regional and Local Scales, University of Ghent.

[103] Zhan, Qingming, 2003, A Hierarchical Object-based Approach for Urban Land-
use Classification from Remote Sensing Data, Wageningen University, 90-5808-
917-7.

[104] Daag, Arturo Santos, 2003, Modelling the Erosion of the Pyroclastic Flow
Deposits and the Occurrences of Lahars at Mt. Pinatubo, Philipines, Utrecht
University, 90-6164-218-3.

[105] Bacic, Ivan Luiz Zilli, 2003, Demand Driven Land Evaluation: With Case
Studies in Santa Catarina, Brazil , Wageningen University, 90-5808-902-9.

[106] Murwira, Amon, 2003, Scale matters! A New Approach to Quantify Spatial
Heterogeneity for Predicting the Distribution of Wildlife, Wageningen Univer-
sity.

[107] Mazvimavi, Dominic, 2003, Estimation of Flow Characteristics of Ungauged
Catchments: A Case Study in Zimbabwe, Wageningen University, 90-5808-950-
9.

[108] Tang, Xinming, 2004, Spatial Object Modeling in Fuzzy Topological Spaces:
With Applications to Land Cover Change, University of Twente, 90-6164-2205.

[109] Kariuki, Patrick C., 2004, Spectroscopy to measure the swelling potential of
expansive soils, University of Delft, 90-6164-221-3.

202

	Cover
	Title
	Preface
	Acknowledgements
	Table of contents
	List of Figures
	List of Tables
	1 Introduction
	1.1 Motivation
	1.2 Geo-information systems
	1.3 Systems and distributed systems
	1.4 Design methodology
	1.5 Objective
	1.6 Approach
	1.7 Structure of the thesis

	2 Geo-information concepts
	2.1 The geo-information infrastructure concept
	2.2 GDI components
	2.3 Geographic data
	2.4 Representations of geographic data
	2.4.1 Vector-based representations
	2.4.2 Raster-based representations

	2.5 Organisation of geographic data
	2.5.1 Conceptual schema
	2.5.2 Building geographic databases

	2.6 Describing geographic data
	2.6.1 Levels of metadata
	2.6.2 Metadata standards

	2.7 Geo-information services
	2.7.1 GSI
	2.7.2 GSP-node

	3 System's representation and architecting
	3.1 System architecting
	3.2 Architectural principles
	3.2.1 Abstraction
	3.2.2 A model of a system
	3.2.3 Abstraction levels
	3.2.4 Views

	3.3 Development strategies
	3.3.1 Early development models
	3.3.2 Object-oriented development
	3.3.3 The Unified Process
	3.3.4 Catalysis
	3.3.5 The Model Driven Architecture
	3.3.6 Conclusion

	4 Geo-services design methodology (GSDM)
	4.1 Introducing GSDM
	4.2 GSDM overview and scope
	4.3 The role of models
	4.4 Metamodel for GSI
	4.5 Architectural elements

	5 Design concepts
	5.1 Entity structures
	5.1.1 Entities
	5.1.2 Interaction points

	5.2 Behaviour concepts
	5.2.1 Actions
	5.2.2 Interactions
	5.2.3 Causality relations
	5.2.4 Conjunction of causality conditions
	5.2.5 Disjunction of causality conditions
	5.2.6 Action attribute constraints

	5.3 Decomposition
	5.3.1 Entity decomposition
	5.3.2 Action decomposition

	5.4 Behaviour Structuring
	5.4.1 Causality-oriented structuring
	5.4.2 Constraint-oriented structuring

	6 The external perspective
	6.1 The GSI system
	6.2 Design trajectory
	6.3 Design concepts
	6.3.1 Functional entity
	6.3.2 Interactions

	6.4 Spatial data types
	6.5 Service design
	6.5.1 Service definition
	6.5.2 Extended service definition
	6.5.3 Interaction signatures
	6.5.4 Behaviour model

	7 The internal perspective model
	7.1 Decomposition goals
	7.1.1 Criteria
	7.1.2 Decomposition pattern
	7.1.3 Recursive pattern application

	7.2 Decomposition method
	7.2.1 Overview
	7.2.2 Introduction of internal behaviour
	7.2.3 Composition structures

	7.3 Correctness assessment
	7.4 Service descriptions
	7.4.1 Data descriptions
	7.4.2 Processing descriptions

	7.5 Design example
	7.5.1 Introduction of internal actions
	7.5.2 Restructuring
	7.5.3 Assignment of sub-behaviours

	8 Case study: land information service
	8.1 Overview
	8.2 Service walkthrough
	8.3 External perspective model
	8.4 Internal perspective
	8.4.1 Introduction of internal actions
	8.4.2 Restructuring
	8.4.3 Assignment of sub-behaviours

	9 Conclusions
	9.1 General considerations
	9.2 Main contributions
	9.3 Further Research

	Appendices
	A Services metadata
	A.1 Service descriptions
	A.2 The metadata elements
	A.3 Service metadata schema

	B Repository schema
	C GML Overview
	Bibliography
	Index
	Summary
	Samenvatting
	Curriculum Vitae
	ITC Dissertations

