
Sequential and Parallel Algorithms for Frontier A* with Delayed Duplicate
Detection

Robert Niewiadomski∗ and José Nelson Amaral and Robert C. Holte
Department of Computing Science

University of Alberta
Edmonton, Alberta, T6G 2E8, Canada

Email: {niewiado, amaral, holte }@cs.ualberta.ca

Abstract

We present sequential and parallel algorithms for Fron-
tier A* (FA*) algorithm augmented with a form of De-
layed Duplicate Detection (DDD). The sequential algo-
rithm, FA*-DDD, overcomes the leak-back problem as-
sociated with the combination of FA* and DDD. The
parallel algorithm, PFA*-DDD, is a parallel version of
FA*-DDD that features a novel workload distribution
strategy based on intervals. We outline an implementa-
tion of PFA*-DDD designed to run on a cluster of work-
stations. The implementation computes intervals at run-
time that are tailored to fit the workload at hand. Be-
cause the implementation distributes the workload in a
manner that is both automated and adaptive, it does not
require the user to specify a workload mapping func-
tion, and, more importantly, it is applicable to arbi-
trary problems that may be irregular. We present the
results of an experimental evaluation of the implemen-
tation where it is used to solve instances of the multiple
sequence alignment problem on a cluster of worksta-
tions running on top of a commodity network. Results
demonstrate that the implementation offers improved
capability in addition to improved performance.

Introduction
Best-first search algorithms that record the states they have
visited in order to avoid expanding the same states multiple
times are necessary in problems, such as finding the optimal
alignment of multiple biological sequences, where there are
many paths to each state. These algorithms are inherently
limited by their memory requirements, but two recent ad-
vances have extended their applicability considerably. Fron-
tier Search (Korf 1999) reduces the memory required by sig-
nificantly shortening the list of expanded states. Delayed
Duplicate Detection (DDD) reduces the memory needed per
node, and is expected to improve locality of reference (Korf
2004). DDD also can allow an algorithm to use disk in-
stead of RAM, but we do not exploit this aspect of DDD in
this paper. A technical obstacle, described in (Korf 2004),

∗This research is supported by the Nationals Science and En-
gineering Research Council of Canada through the Collaborative
Research and Development grant, by the Canadian Foundation for
Innovation, and by IBM Corporation.
Copyright © 2006, American Association for Artificial Intelligence
(www.aaai.org). All rights reserved.

has prevented these two important ideas from being com-
bined together with the heuristic best-first search algorithm
A* (Hart, Nilsson, & Raphael 1968). The first contribution
of this paper is to overcome this obstacle and provide a Fron-
tier A* algorithm that uses a form of DDD, FA*-DDD.

This paper’s main contribution is a parallel version,
PFA*-DDD, of the new FA*-DDD algorithm, designed to
run in the aggregate memory available on a cluster of work-
stations. The key difficulty that the parallel algorithm must
overcome is distributing the workload evenly among the
workstations without incurring a large overhead. The basic
idea behind PFA*-DDD’s workload distribution is to par-
tition the current set of open states into n disjoint groups,
where n is the number of workstations in the cluster. All
work involving states in the i-th group is assigned to the i-
th workstation. In particular, each state is represented by an
integer, and the partition of the states is defined by divid-
ing the full integer range (−∞ to ∞) into n intervals. On
each iteration the algorithm dynamically chooses between
two different methods for defining these intervals. The sim-
ple method is to use the same intervals on the current itera-
tion as were used on the previous iteration. Used repeatedly,
this method can lead to imbalanced workload distribution,
but it is a very low-cost method, so is ideal when the num-
ber of states to be processed is relatively small. When there
are a large number of states to be processed on the current it-
eration, a more costly method is used. This method inspects
a sample of the states to be processed and computes inter-
vals that will balance the workload. By judiciously choosing
between these two methods, PFA*-DDD maintains a bal-
anced workload with a minimum of overhead, even when
the number of states to be processed, and the distribution
of the integers that represent them, varies enormously be-
tween iterations. PFA*-DDD copes well with the large net-
work latencies encountered in clusters of workstations. Most
of the inter-workstation data-movement is sequential in na-
ture and can be done with a double-buffered communication
technique that hides network latency.

PFA*-DDD differs significantly from the disk-based par-
allel Frontier Breadth-First Search with Delayed Duplicate
Detection (FBFS-DDD) algorithm, described in (Korf &
Schultze 2005). Their parallelization strategy depends on
a user-specified hashing function. Thus the applicability
and efficiency of their method depends on the quality and



availability of hashing functions for each specific problem.
By contrast, PFA*-DDD automatically defines a state par-
tition function and adapts it dynamically as the search pro-
gresses. The user only supplies one parameter value, defin-
ing “sampling intensity”. Moreover the parallelization strat-
egy in (Korf & Schultze 2005) targets a shared-memory sys-
tem and relies on centralized storage whereas PFA*-DDD
targets a distributed-memory system, thereby making it ap-
plicable to a shared-memory system, and is oblivious to
whether or not storage is centralized or distributed.

We examine the performance of our implementation on
a cluster of workstations running on a commodity network
by using it to solve two large instances of the multiple-
sequence alignment problem. This is a problem well-suited
for frontier-search algorithms. Traditional best-first search
algorithms, such as A*, cannot solve large instances of this
problem because of space constraints, and IDA* cannot han-
dle them because of time constraints.

Experimental results demonstrate that our implementa-
tion: (1) attains excellent performance and scalability; (2)
efficiently uses the aggregate memory capacity of a cluster
of workstations to solve problems that could not be solved
using a single workstation. Thus this implementation offers
improved capability in addition to improved performance.

Algorithms
We present a sequential algorithm called Frontier A* with
Delayed Duplicate Detection (FA*-DDD) and a parallel al-
gorithm called Parallel Frontier A* with Delayed Duplicate
Detection (PFA*-DDD). The algorithms combine the Fron-
tier A* (FA*) algorithm (Korf 1999) with a form of Delayed
Duplicate Detection (DDD) (Korf 2004).

Overview
Given a graph G(V, E) that is directed and weighted, a
pair of vertices s, t ∈ V , and a heuristic function h that
is admissible and consistent for t, the algorithms compute
the minimum-cost of a path from s to t. The algorithms
maintain Open, the list of open vertices, ClosedIn, the list
of edges from non-closed vertices to closed vertices, and
ClosedOut, the list of edges from closed vertices to non-
closed vertices. The algorithms begin with Open, ClosedIn,
and ClosedOut being consistent with s being open and there
being no closed vertices. While Open is non-empty the al-
gorithms perform a search step.

The algorithms execute a search step as follows. Check
if t is in Open and the f -value of t is fmin . If so, termi-
nate and return the g-value of t as the minimum-cost of a
path from s to t. Otherwise, expand every vertex in Open
whose f -value is fmin and collect the generated vertices and
their g and f -values. Update Open, ClosedIn, and Closed-
Out to make them consistent with the expanded vertices be-
ing made closed and each distinct non-open and non-closed
generated vertex being made open. To update Open remove
the expanded vertices and add each distinct generated ver-
tex that neither is in the pre-update Open nor is an end-point
of an edge in the pre-update ClosedIn. If a vertex in the
post-update Open has a duplicate, make the g and f -values

of the vertex equal the minimum of these values in all du-
plicates. To update ClosedIn remove edges that start at the
expanded vertices and add edges that end at the expanded
vertices but are not in the pre-update ClosedOut. To update
ClosedOut remove edges that end at the expanded vertices
and add edges that start at the expanded vertices but are not
in the pre-update ClosedIn. If Open is empty at the end of
a search step then terminate and return ∞ as the minimum-
cost of a path from s to t.

In (Korf 2004) Korf suggests that there is no obvious way
to combine FA* with DDD due to the potential of the result-
ing algorithm to suffer from a “leak-back problem” where
a previously expanded vertex is re-expanded. In order for
our algorithms to suffer from a leak-back problem a gener-
ated vertex that is closed or is to be closed would have to
be added to Open during the update of Open. This does not
happen because during the update of Open the use of the pre-
update ClosedIn filters-out generated vertices that are closed
while the use of the pre-update Open filters-out generated
vertices that are to be closed.

When G is either undirected or bidirected the algorithms
can be simplified by eliminating ClosedOut. The simplifi-
cation is possible because when G is undirected ClosedIn is
equivalent to ClosedOut and when G is bidirected the trans-
pose of ClosedIn is equivalent to ClosedOut.

Records and Record Operations

A record is a 5-tuple (v, g, f, In, Out) where v ∈ V is
the v-value, g ∈ Z is the g-value, f ∈ Z is the f -value,
In ⊆ {(u, v) ∈ E} is In-set , and Out ⊆ {(v, u) ∈ E}
is the Out-set. Given a set of records R we reduce R
by computing a set of records R′ such that R′ contains as
many records as there are distinct v-values of the records
in R and such that for each such v-value u, R′ contains
the record r where: r.v = u; r.f = minr′∈R|r′.v=u r′.f ;
r.g = minr′∈R|r′.v=u r′.g; r.In =

⋃
r′∈R|r′.v=u r′.In; and

r.Out =
⋃

r′∈R|r′.v=u r′.Out. If a set of records is equal to
its reduced version then it is concise. Given a record r we
expand r by computing:
• a record r′ for each u ∈ V where (r.v, u) ∈ E and

(u, r.v) ∈ E and (r.v, u) /∈ r.Out, such that: r′.v = u,
r′.g = r.g + c(r.v, u), r′.f = r.g + c(r.v, u) + h(u),
r′.In = {(r.v, u)}, and r′.Out = {(u, r.v)};

• a record r′ for each u ∈ V where (r.v, u) ∈ E and
(u, r.v) /∈ E and (r.v, u) /∈ r.Out, such that: r′.v = u,
r′.g = r.g + c(r.v, u), r′.f = r.g + c(r.v, u) + h(u),
r′.In = {(r.v, u)}, and r′.Out = ∅;

• a record r′ for each u ∈ V where (r.v, u) /∈ E and
(u, r.v) ∈ E and (u, r.v) /∈ r.In, such that: r′.v = u,
r′.g = ∞, r′.f = ∞, r′.In = ∅, and r′.Out =
{(u, r.v)}.

Records that are computed in the expansion of a record are
generated records. Given two sets of records R and R′, we
reconcile R with R′ by computing a set of records R′′ such
that R′′ is the set of records produced by reducing the union
of the set of the records in R that have not been expanded



and of the set of the records in R′ whose v-value is not the
v-value of any of the records in R that have been expanded.

The Sequential Algorithm
The algorithm computes a concise set of records Xd for in-
creasing values of d. Each Xd encapsulates the information
in Open, ClosedIn, and ClosedOut after d search steps. Let
fmind be the minimum f -value of any record in Xd. Let
X

fmin
d

d be the set of the records in Xd whose f -value is
fmind. For d = 0, Xd = {(s, 0, h(s), ∅, ∅)}. For d ≥ 0, the
algorithm computes Xd+1 as follows. If X

fmin
d

d
contains

a record whose v-value is t then execution terminates and
the g-value of that record is returned as the minimum-cost
of a path from s to t. Otherwise, the algorithm expands the
records in X

fmin
d

d to compute Yd as the set of the records
produced by the expansions. Next, Xd is reconciled with
Yd to compute Xd+1 as the set of records produced by the
reconciliation. If either Xd+1 is empty or fmind is ∞ then
execution terminates and ∞ is returned as minimum-cost of
a path from s to t.

The Parallel Algorithm
The parallel algorithm is a parallel version of the sequential
algorithm that distributes the workload of the sequential al-
gorithm among n workstations. Let vmin, vmax ∈ V such
that vmin < u ≤ vmax for any u ∈ V . An n-interval list
is a list of n + 1 vertices where the first vertex is vmin, the
last vertex is vmax, and each vertex is less-than or equal-to
the vertex following it in the list. During the computation
of Xd, records are assigned to workstations according to an
n-interval list Λd. All records assigned to workstation i have
a v-value u such that Λd[i] < u ≤ Λd[i+1]. Xd,i represents
the records at workstation i at the beginning of iteration d.

For d = 0, X0,0 = {(s, 0, h(s), ∅, ∅)} and X0,i = ∅ for
i 6= 0. Let fmind,i be the minimum f -value of any record
in Xd,i, and let fmind be the global minimum f -value for
any record in Xd,i in any workstations. X fmin

d

d,i is the set of
records the records in Xd,i that have an f -value of fmind.

The algorithm proceeds by expanding the records in all
X

fmin
d

d,i ’s. To ensure proper load balance, before this expan-
sion takes place, the records have to be redistributed among
the workstations. Therefore, in phase 1 all workstations ex-
change the sizes of their local X fmin

d

d,i to obtain the total
number of records to be expanded. Workstation i can then
determine the indexes of the first and last records that it has
to expand. If not all records that are to be expanded by work-
station i are stored in its local memory, remote records are
transferred to workstation i.

In phase 2 workstation i expands the records of each
X

fmin
d

d assigned to it by the partition in phase 1 to compute
Yd,i as the set of the records produced by the expansions.
Yd,i may contain duplicate records, thus once the expansion
is complete, workstation i sorts and reduces Yd,i in place.

If during the expansion workstation i encounters a record
r in X

fmin
d

d whose v-value is t, it raises a termination flag
and records the g-value of r. At the end of phase 2, if any

4 8 27 8 43 8 49 8 70 861 10 82 12 99 1473 1469 1454 1431 1426 1212 10 32 10

4 8 27 8 43 8 49 8 70 8

12 10 32 10 61 10

26 12 82 12

31 14 54 14 69 14 73 14 99 14

Priority queue for X ��� �

Dictionary for X ��� �
4 8 27 8 43 8 49 8 70 861 10 82 12 99 1473 1469 1454 1431 1426 1212 10 32 104 8 27 8 43 8 49 8 70 861 10 82 12 99 1473 1469 1454 1431 1426 1212 10 32 10

4 8 27 8 43 8 49 8 70 8

12 10 32 10 61 10

26 12 82 12

31 14 54 14 69 14 73 14 99 14

4 8 27 8 43 8 49 8 70 8

12 10 32 10 61 10

26 12 82 12

31 14 54 14 69 14 73 14 99 14

Priority queue for X ��� �Priority queue for X ��� �

Dictionary for X ��� �Dictionary for X ��� �

Figure 1: Dictionary and priority queue data structure for
Xd,i. Assume that a record consists of only the vertex
(white) and the f -value (gray).

workstation has raised the termination flag, execution termi-
nates and the g-value of r is returned as the minimum-cost
of a path from s to t.

Next all records in all Xd,i’s must be reconciled with all
records in all Yd,i’s.

Phase 3 chooses between two reconciliation strategies.
With strategy A, the same partition of Xd from the previ-
ous iteration is used and the records of each Yd,i are sent
to their home workstation as determined by that partition.
Strategy B relies on a sampling technique to re-partition the
records in Xd and Yd. To compute the sampling stride all
workstations send the sizes of Xd,i and Yd,i to workstation
0. Once the sampling stride is broadcast, each workstation
sends a list of samples from its Xd,i and Yd,i to worksta-
tion 0. Workstation 0 computes a new interval list Λd and
broadcasts this list to all workstations. The decision between
strategies A and B for reconciliation is based on an estima-
tion of the maximum amount of work by each workstation
for each strategy.

The goal of the reconciliation in phase 4 is to obtain
Xd+1,i in each workstation such that the union of all Xd+1,i

form Xd+1. Xd+1 contains one record for each vertex in
Xd and Yd that was not in X fmin∗

d . If strategy A is used
in phase 4, all records of Xd,i are reconciled locally. The
records in each Yd,i that represent a vertex v such that
Λd[i] < v ≤ Λd[i + 1] are sent to workstation i for rec-
onciliation. If strategy B is used in phase 4, the new interval
list Λd, computed in phase 3, is used to re-partition both the
Yd,i’s and Xd,i’s before reconciliation. At the end of phase
4, the workstations exchange the information to determine
the value of fmin∗

d+1 If fmin∗
d+1 = ∞ the algorithm termi-

nates and ∞ is returned as δ(s, t).
In phase 5 workstation i deletes Xd,i, increments d and

proceeds to phase 1.

Efficiency Issues
Dictionaries and Priority Queues
The reconciliation strategies in the parallel algorithm require
techniques to efficiently find a record representing a given
vertex v in Xd,i; to find a record with a given f -value in
Xd,i; and to eliminate from Xd,i all the records that have
an f -value of fmin . Our solution is to maintain two rep-
resentations of Xd,i: a dictionary indexed by vertex, and a
bucket-based priority queue ordered by f -value, as shown in
Figure 1. The combination of these two data structures has



the following advantages: (1) during expansion, a constant-
time operation finds the records in Xd,i that have a minimum
f -value in the priority queue; (2) because records are sorted
in the dictionary, the computation of sampling points is triv-
ial, and the number of data transfers between workstations
after repartitioning is reduced; (3) when strategy A is used,
a search for existing records that represent the same vertex
in the dictionary requires log(k) time, where k is the num-
ber of records in the dictionary; (4) the elimination of all the
records with f -value equal fmin from the priority queue can
be done in constant time; (5) the traversal of X fmin

d

d,i during
reconciliation is sequential, thus improving data locality.

Interval-Based Sampling
The parallel algorithm relies on an interval-based sampling
technique. The goal of sampling is to produce a list of ver-
tices that can then be used to partition several ordered lists
of vertices. These vertices define the intervals of records
assigned to each workstation after the partition. Optimal in-
tervals would distribute the total number of records in the
Xd,i’s and Yd,i’s evenly. Our implementation approximates
these optimal intervals using the following strategy:
• all workstations send the sizes of Xd,i and Yd,i to work-

station 0.
• using a user-specified sample intensity π, workstation 0

determines the sampling stride to be broadcast to all work-
station. The value of the sampling stride is adjusted to
ensure that the total number of samples computed by all
workstations will be as close as possible to π.

• Each workstation i computes samples from Xd,i and Yd,i

and sends the vertices to workstation 0. These values are
merged into a single sorted list. This list is then divided
into n equal-sized intervals to generate the list of vertices
used to partition all the Xd,i and Yd,i. This list of vertices
is then broadcast.

Data Streaming
Once workstation i receives the list of vertices that defines
the intervals to processed by each workstation it starts send-
ing its records to the appropriate workstations. The commu-
nication is efficiently set-up as a series of data streams be-
tween the workstations. An advantage of the interval-based
partitioning combined with data streaming is that there is no
need for the consumer to request records.

At the receiving end, records arrive from each workstation
in increasing order of their r.v value. Therefore, fetching a
record from each stream and comparing with the records in
X

fmin
d

d,i
and with the records in the dictionary representa-

tion of Xd,i is an efficient way to implement duplicate de-
tection and reconciliation with the expanded vertices in a
parallel environment. A detailed description of the separa-
tion of Xd,i and Yd,i into runs and subruns to enable efficient
data streaming will be published in a future work.

Deciding Between Strategies A and B
The motivation for the two separate partition strategies in
phase 3 is to only use adaptive load balancing when it is

cost-effective. Strategy A is the best choice when the num-
ber of records to be reconciled in a given iteration is small.
Strategy A only updates, as opposed to rebuilding, the dic-
tionary and the priority queue. Thus strategy A implements
binary searches of both the dictionary and the record lists in
the priority queue.

When the number of records to be reconciled is large,
then it is cost-effective to apply strategy B. Strategy B uses
the sampling technique to compute new n-interval list, thus
adaptively re-balancing the workload through data move-
ment. In this case both the priority queue and the dictionary
in each workstation are rebuilt from scratch. Strategy B in-
creases the algorithm’s memory requirement because each
workstation must store the original Xd,i and Yd,iwhile it is
computing the new versions of these based on the new par-
tition. To enable problems that generate many records to be
solved, we delete portions of Xd,i and Yd,i as soon as they
are sent to their destinations.

Experimental Evaluation
Setup
We implemented PFA*-DDD in ANSI C and used the
MPICH implementation of the MPI-2 communication li-
brary for communication and synchronization. Each work-
station executes two processes, a worker and a server. The
worker executes the PFA*-DDD algorithm. The server facil-
itates access to records residing on its workstation to remote
workers. We implemented lists of records as a blocked-and-
indexed linked lists. This data structure is akin to a B+-tree
with all but the two bottommost levels absent. We used a
trivial n-interval list as Λ0. We used a π of 3n2. Though
not discussed in the text, we established that, in general,
when startegy B is used no workstation reconciles more than
1 + 3n2

π
times the average number of records reconciled by

a workstation. A double-buffered and non-blocking scheme
is used for the streaming of records in phases 2 and 4 as
a means of hiding communication latency. We also imple-
mented the sequential algorithm FA*-DDD in ANSI C in the
same manner as PFA*-DDD but without its parallel aspects,
such as phases 1 and 3, communication and synchronization,
and the server process.

We ran our experiments on two clusters of workstations:
C-AMD and C-IBM. C-AMD has 32 dual-processor work-
stations with 2.4 GHz AMD Opteron 250 processors run and
8 GB of RAM of which 6.8 GB is available to user pro-
cesses. C-IBM consists of 12 dual-processor workstations
with 1.6 GHz IBM PPC970 processors and 4 GB of RAM of
which 3.4 GB is available to user processes. Both C-AMD
and C-IBM run on top of a dedicated Gigabit Ethernet net-
work and a Linux-based operating system.

We performed experiments using the exact multiple se-
quence alignment problem. We adopt the formulation of the
problem from a work on the use of A* on the problem (Mc-
Naughton et al. 2002). We focused our experiments on
two problem instances drawn from the BAliBASE problem
set (Thompson, Plewniak, & Poch 1999), gal4 and 1pama.
gal4 has five sequences with lengths varying from 335 to
395. 1pama has fives sequences with lengths varying from



n
Time Speedup Speedup

(hours) (vs. n = 1) Efficiency
1 13.63
2 6.07 2.2 112%
3 4.12 3.3 110%
4 3.17 4.3 108%
5 2.55 5.3 107%
6 2.14 6.4 106%
7 1.86 7.3 105%
8 1.62 8.4 105%
9 1.45 9.4 104%

10 1.34 10.2 102%
11 1.23 11.1 101%
12 1.15 11.9 99%
13 1.07 12.8 98%
14 1.00 13.7 98%
15 0.95 14.3 95%
16 0.89 15.3 96%
17 0.84 16.2 95%
18 0.80 17.0 94%
19 0.74 18.4 97%
20 0.69 19.8 99%
21 0.66 20.7 99%
22 0.65 21.0 95%
23 0.65 21.0 91%
24 0.65 20.9 87%
25 0.66 20.7 83%
26 0.67 20.4 78%
27 0.68 20.1 74%
28 0.67 20.2 72%
29 0.69 19.9 69%
30 0.70 19.4 65%
31 0.70 19.4 63%
32 0.70 19.5 61%

Table 1: gal4 on C-AMD.

435 to 572. The implictly-defined graphs of both problems
are weighted and directed with edge costs ranging from −17
to 8 and an average in-degree and out-degree of approxi-
mately 31. The graph of gal4 has 6.20× 1012 vertices. The
graph of 1pama has 2.82×1013 vertices. For both problems
the heuristic is computed using two exact 3-way alignments
and four exact 2-way alignments, with the longest sequence
being involved in the both 3-way alignments. These align-
ments require approximately 200 MB for gal4 and approxi-
mately 480 MB for 1pama.

Results and Analysis
For gal4, 3.11 × 108 records are expanded, 1.03 × 1010

records are generated, and the peak memory requirement
was 4.6 GB. For 1pama, 7.95 × 109 records are expanded,
2.57 × 1011 records are generated, and the peak memory
requirement was 55.8 GB. The peak memory requirements
vary depending on the value of n but are very close to these
values. Because of the peak memory requirement we were
unable to obtain execution times for the sequential algorithm
for gal4 on C-IBM, for the sequential algorithm for 1pama
on either cluster, and for the parallel algorithm for 1pama on
C-AMD for values of n less than 16 and on C-IBM for any
value of n.

n
Time Speedup Speedup

(hours) (vs. n = 2) Efficiency
2 12.19
3 7.18 1.7 113%
4 5.42 2.2 112%
5 4.45 2.7 109%
6 3.80 3.2 107%
7 3.26 3.7 107%
8 2.85 4.3 107%
9 2.56 4.8 106%
10 2.32 5.3 105%
11 2.12 5.8 105%
12 1.94 6.3 105%

Table 2: gal4 on C-IBM.

n
Time Speedup Speedup

(hours) (vs. n = 16) Efficiency
16 24.43
17 21.91 1.1 105%
18 20.77 1.2 105%
20 19.27 1.3 101%
24 15.86 1.5 103%
32 11.92 2.0 102%

Table 3: 1pama on C-AMD.

Table 1 reports execution time, speedup, and speedup
efficiency for gal4 on C-AMD. Table 2 reports execution
time, speedup, and speedup efficiency for gal4 on C-IBM.
Speedup efficiency compares the speedup obtained by in-
creasing from n0 to n1 processors to the ratio n1

n0

. A speedup
efficiency of 100% means the speedup is exactly n1

n0

, a
greater efficiency indicates super-linear speedup. In the case
of C-IBM results, speedup and speedup efficiency are mea-
sured using the results for PFA*-DDD for n = 2 as a base-
line (n0 = 2). On C-AMD speedup efficiency is above lin-
ear until n reaches 11, and then becomes sublinear. On C-
IBM, speedup efficiency is above linear for all the values of
n we used (n ≤ 12). The decrease in speedup efficiency on
C-AMD is the result of the workload being spread too thin,
as n increases, to mitigate the increasing overhead of syn-
chronization and communication initiation. Table 3 reports
execution time, speedup, and speedup efficiency for 1pama
on C-AMD. Speedup and speedup efficiency are measured
using the results for PFA*-DDD for n = 16 as a baseline.
Speedup efficiency starts at above linear and stays above lin-
ear regardless of the number of workstations that are used.

Phases 2 and 4 accounted for the majority of the execution
time in both problems. The amount of execution time spent
in phases 2 and 4, which gradually dropping as n increases,
are approximately as follows: in gal4 the amount 98% for
n = 2 and 65% for n = 32; in 1pama 84% for n = 16
and 67% for n = 32. We assessed workload distribution us-
ing the Relative Deviation From the Average (RDFA) met-
ric. RDFA is the ratio of the maximum amount of work per-
formed by any workstation over the average amount of work
performed by a workstation. Thus, the lower the RDFA the
better, with 1 being the minimum value, in which case all
workstations performed an equal amount of work, and n be-



ing the maximum value, in which case a single workstation
performed all the work. For both problems, phase 2 RDFA
was nearly always 1. For both problems, phase 4 RDFA
ranged from 1.9 to n when strategy A was used and from
1.0 and 1.2 when strategy B was used. Even though strat-
egy A was used almost 3 times as frequently as strategy B,
the amount of execution-time spent in phase 4 when strat-
egy A was used is negligible compared to the amount of
execution-time spent in phase 4 when strategy B was used.

Related Work

The Frontier A* (FA*) algorithm is due to Korf (Korf 1999)
and is an extension of the A* algorithm (Hart, Nilsson, &
Raphael 1968). FA* has been shown to be as time efficient
as A* while being more space efficient than A* (Korf et al.
2005). The Delayed Duplicate Detection technique is also
due to Korf (Korf 2003).

The space-efficiency advantage of FA* over A* stems
from it not storing closed vertices. Because of this practice,
however, FA* computes only the minimum-cost of a path
from s to t. Fortunately, FA* can be extended to also com-
pute a minimum-cost path from s to t without sacrificing its
space efficiency advantage over A* while rendering its time
efficiency to be only marginally worse than that of A*. The
extension computes one or more vertices on a minimum-
cost path from s to t and constructs a minimum-cost path
from s to t using a divide-and-conquer strategy (Korf &
Zhang 2000). Both FA*-DDD and PFA*-DDD can be mod-
ified to compute one or more vertices on a minimum-cost
path. However, the parallelization of the divide-and-conquer
strategy that uses the modified instance of PFA*-DDD is
non-trivial. After the initial call to the modified instance of
PFA*-DDD, up to two calls can be executed in parallel, with
the number of additional calls that can be executed in paral-
lel potentially growing by two with each subsequent call.
The issue at hand is whether to allocate all processors to
each call and execute them sequentially or to allocate the
processors among the calls and execute them in parallel. In
addition, if the former approach is to be taken, then the issue
of how to allocate the processors among the calls also arises.

Existing parallel formulations of A* often assume that the
graph is a tree (Dutt & Mahapatra 1994; Kumar, Ramesh, &
Rao 1988; Kumar et al. 1994). When the graph is a tree,
there is no need to keep a closed list or to check if a gen-
erated vertex is in the open or closed list. Moreover, in a
tree there is no need to perform reconciliation, which results
in negligible communication. In instances where the graph
is not a tree the use of a static hashing function is typically
recommended as a means of distributing the reconciliation
workload, an approach that is limited.

Our sampling-based workload distribution method is akin
to that of the parallel sorting algorithm Parallel Soring by
Regular Sampling (PSRS) (Shi & Schaeffer 1992). We ex-
tend the use of sampling in PSRS by handling arbitrarily
sized lists of keys as well as by computing the sampling in-
terval at runtime based on a sampling intensity.

Conclusion
In this paper we presented the Frontier A* with Delayed
Duplicate Detection (FA*-DDD) and Parallel Frontier A*
with Delayed Duplicate Detection (PFA*-DDD) algorithms.
FA*-DDD is a version of the Frontier A* (FA*) algorithm
augmented with a form of Delayed Duplicate Detection
(DDD). FA*-DDD overcomes the leak-back problem asso-
ciated with combining FA* with DDD. The novel workload
distribution in PFA*-DDD is based on intervals. Experi-
mental results on the multiple sequence alignment problem
demonstrate that the implementation offers improved capa-
bility as well as improved performance.

References
Dutt, S., and Mahapatra, N. R. 1994. Scalable load balanc-
ing strategies for parallel a* algorithms. Journal of Parallel
and Distributed Computing 22(3):488–505.
Hart, P.; Nilsson, N.; and Raphael, B. 1968. A for-
mal basis for the heuristic determination of minimum cost
paths. IEEE Transactions of Systems Science and Cyber-
netics SSC-4(2):100–107.
Korf, R. E., and Schultze, P. 2005. Large-scale parallel
breadth-first search. In Proceedings of the National Con-
ference on Artificial Intelligence (AAAI-05), 1380–1385.
Korf, R. E., and Zhang, W. 2000. Divide-and-conquer
frontier search applied to optimal sequence alignment. In
Proceedings of the National Conference on Artificial Intel-
ligence (AAAI-2000), 910–916.
Korf, R. E.; Zhang, W.; Thayer, I.; and Hohwald, H. 2005.
Frontier search. Journal of the ACM 52(5):715–748.
Korf, R. E. 1999. A Divide and Conquer Bidirectional
Search: First Results. In International Joint Conference on
Artificial Intelligence (IJCAI), 1184–1189.
Korf, R. E. 2003. Delayed duplicate detection: Extended
abstract. In Proceedings of the Eighteenth International
Joint Conference on Artificial Intelligence, 1539–1541.
Korf, R. E. 2004. Best-first frontier search with delayed
duplicate detection. In Proceedings of the National Con-
ference on Artificial Intelligence (AAAI-04), 650–657.
Kumar, V.; Grama, A.; Gupta, A.; and Karypis, G. 1994.
Introduction to parallel computing: design and analysis of
algorithms. Benjamin-Cummings Publishing Co., Inc.
Kumar, V.; Ramesh, K.; and Rao, V. N. 1988. Parallel best-
first search of state-space graphs: A summary of results. In
National Conference on Artificial Intelligence, 122–127.
McNaughton, M.; Lu, P.; Schaeffer, J.; and Szafron, D.
2002. Memory-efficient A* heuristics for multiple se-
quence alignment. In National Conference on Artificial
Intelligence (AAAI-02), 737–743.
Shi, H., and Schaeffer, J. 1992. Parallel Sorting by Regular
Sampling. Journal of Parallel and Distibuted Computing
14(4):361–372.
Thompson, J. D.; Plewniak, F.; and Poch, O. 1999. BAl-
iBASE: a benchmark alignment database for the evaluation
of multiple alignment programs. Bioinformatics 15(1):87–
88.


