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Abstract

We give an elementary construction of the compact real form of the Lie algebra
g2.

It is known that every simple complex Lie algebra has a (unique) compact real form,
defined by the property that the Killing form is negative definite. For example, the
compact real form of a1 is just the well-known 3-dimensional vector cross product given
by i× j = k = −j× i and images under the symmetry rotating i, j and k.

However, I have been unable to find in the literature any nice constructions of the compact
real forms of the exceptional Lie algebras. In this note I give an elementary construc-
tion of the compact real form of g2, exhibiting an irreducible subgroup 23·L3(2) of the
automorphism group.

This group acts on the Lie algebra by permuting seven mutually orthogonal Cartan sub-
algebras, and the stabilizer of one of these is a group 23·S4

∼= 42.(2 × S3). The latter
description shows that the induced action on the Cartan subalgebra is the full Weyl
group, W (G2) ∼= 2 × S3, and that the representation of 23·L3(2) on the Lie algebra is
induced from the natural 2-dimensional representation of the Weyl group. (In fact, there
are two such representations, but they are interchanged by the outer automorphism of
23·L3(2), so it does not matter which one we pick.)

To construct this representation, we first take the 7-dimensional representation of 23·L3(2)
generated with respect to a basis {it | t ∈ F7} of a (real) vector space V by the maps
α : t 7→ t + 1, β : t 7→ 2t and the involution γ = (i2,−i2)(i4,−i4)(i3, i5)(i6, i0). It is
clear that these maps preserve the set of lines {t, t + 1, t + 3} of the projective plane of
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order 2, and it is easy to check that the kernel of the action is precisely the group 23

of sign-changes on the complements of the lines. Thus they generate a group of shape
23·L3(2).

Now construct the exterior square of this representation, on the basis

{ut = it+2 ∧ it+6, vt = it+4 ∧ it+5, wt = it+1 ∧ it+3}.

The three generators given above act as follows (where x stands for an arbitrary one of
u, v, w):

α : xt 7→ xt+1

β : ut 7→ v2t 7→ w4t 7→ ut

γ : u1 ↔ v1, x2 ↔ −x2, u4 ↔ −w4,
u3 ↔ v5, v3 ↔ w5, w3 ↔ u5,
u6 ↔ w0, v6 ↔ v0, w6 ↔ u0

There is a submodule spanned by the ut+vt+wt, isomorphic to the original 7-dimensional
module spanned by the it. Factoring this out leaves the 14-dimensional module we require.
We use the same notation, now with the understanding that ut + vt + wt = 0. Write Lt

for the 2-space spanned by ut, vt, and wt, and let L =
⊕

t∈F7
Lt.

Next consider what products on this 14-space are invariant under the group 23·L3(2).
Invariance under the normal 23 implies that the product of a vector in Lr with one in
Ls lies in Lt, where {r, s, t} is a line in the projective plane. Invariance under α means
we only need to consider the products on one line, say the line {1, 2, 4}. Modulo the
sign-changes on the Lt, the stabilizer of this line is a group S4, generated by β, γ, and
γα−1

.

Invariance under γ implies that [u1 + v1, x2] is a scalar multiple of u4 + w4, and that
[u1 − v1, x2] is a scalar multiple of u4 − w4. So we may assume that [u1, v2] = λw4 + µu4

and [v1, v2] = µw4 + λu4, and scale so that λ + µ = 1. Applying the symmetry γβ gives
the values of [u1, w2] and [v1, w2], and the multiplication table can be filled in using the
relations ut + vt + wt = 0:

u2 v2 w2

u1 v4 λw4 + µu4 λu4 + µw4

v1 v4 λu4 + µw4 λw4 + µu4

w1 −2v4 v4 v4

This gives us a 1-parameter family of (non-associative) algebras invariant under 23·L3(2).
The symmetry γβ−1

shows that the multiplication is anti-commutative, and the symmetry
γ shows that the multiplication is zero on L2, and therefore on each Lt.

Lemma 1. The multiplication given above satisfies the Jacobi identity if and only if µ = 0
(equivalently, λ = 1).
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Proof. The Jacobi identity [[a, b], c] + [[b, c], a] + [[c, a], b] = 0 holds trivially if the three
vectors a, b, c are respectively in Lr, Ls and Lt where {r, s, t} is a line. Now the symmetries
show that it is necessary and sufficient for the Jacobi identity to hold for the triples
(u1, v1, v2), (u3, u6, v5), and (u3, v6, u5). In the first case we have

[[u1, v1], v2] + [[v1, v2], u1] + [[v2, u1], v1] = 0 + [λu4 + µw4, u1]− [λw4 + µu4, v1]
= 0

since [u4, u1] = [w4, v1] and [w4, u1] = [u4, v1]. So this case of the identity holds whatever
the values of λ and µ. In the second case we have

[[u3, u6], v5] + [[u6, v5], u3] + [[v5, u3], u6] = −[λw4 + µv4, v5]− [v1, u3] + 2[w2, u6]
= −λv0 − λµu0 − µ2w0 − v0 + 2v0

= µ(v0 − λu0 − µw0)

But the expression in brackets is never zero, so µ = 0, λ = 1, and the multiplication table
is determined. We can now verify the third case of the Jacobi identity as follows:

[[u3, v6], u5] + [[v6, u5], u3] + [[u5, u3], v6] = −[u4, u5]− [w1, u3]− [w2, v6]
= −v0 − u0 − w0 = 0

�

Corollary 2. Up to scalar multiplication, there is a unique 14-dimensional Lie algebra
invariant under the given action of 23·L3(2).

As usual, we denote by ad x the linear map y 7→ [x, y] on L, and define the Killing form by
(x, y) := Tr (ad x.ad y). It is obvious that the Killing form is a symmetric bilinear form.

Lemma 3. The Killing form on L is negative definite.

Proof. First observe that if x ∈ L0 then ad x maps Lt into Lπ(t) where π is the permutation
(1, 3)(2, 6)(4, 5). Similarly if y ∈ L1 then ad y effects the permutation (2, 4)(3, 0)(5, 6).
Therefore ad x.ad y maps every Lt into a different Lt, so has trace 0. Hence the Lt are
mutually orthogonal with respect to the Killing form.

Now we can calculate the Killing form on L0 using the following two rows of the multi-
plication table of the algebra:

v1 w1 w2 u2 w3 u3 u4 v4 v5 w5 u6 v6

u0 w3 u3 w6 w6 −v1 −w1 w5 v5 −v4 −u4 −v2 −v2

v0 u3 w3 u6 v6 −w1 −v1 u5 u5 −w4 −w4 −w2 −u2

We find that Tr (ad u0.ad u0) = −16 and Tr (ad u0.ad v0) = 8, so that the Killing form is
negative definite on each Lt. �
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Theorem 4. The Lie algebra L is the compact real form of g2.

Proof. We have shown that the Killing form is non-singular, which implies that the Lie
algebra L is semisimple. It is easy to see that each Lt is a Cartan subalgebra, so that L
has rank 2. The classification of complex semisimple Lie algebras shows immediately that
L is of type G2. Since the Killing form is negative definite, L is the compact real form.

Alternatively, a proof from first principles can be obtained by explicitly diagonalising
ad u0 and ad v0 simultaneously (over C). Their simultaneous eigenspaces are the root
spaces, and one recovers the standard construction of the split real form. �

Since each Lt is a Cartan subalgebra, it contains a natural copy of the G2 root system.
Our spanning vectors have been chosen so that the short roots in Lt are (up to a suitable
scaling factor) ±ut, ±vt and ±wt. The long roots, similarly, are ±(ut − vt), ±(vt − wt)
and ±(wt − ut).

Remark. The multiplication table

u2 v2 w2

u1 v4 w4 u4

v1 v4 u4 w4

w1 −2v4 v4 v4

can be used to define a (non-associative) algebra on a 21-space over any field of charac-
teristic not 2, invariant under the given action of 23·L3(2). The 7-dimensional subspace
spanned by the ut + vt + wt is a subalgebra (indeed, an ideal) isomorphic to the algebra
of pure imaginary octonions. This subalgebra satisfies the Jacobi identity if and only if
the field has characteristic 3. Moreover, its orthogonal complement is closed under mul-
tiplication if and only if the field has characteristic 3. In this case, the multiplication on
the orthogonal complement also satisfies the Jacobi identity, and we recover the fact that
the pure imaginary octonion algebra is a subalgebra (and an ideal) of the Lie algebra of
type g2 in characteristic 3.


