POLITECNICO DI TORINO,
KARLSRUHE INSTITUTE OF
TECHNOLOGY

Master’s Degree in Computer Engineering

4]}

Karlsruhe Institute of Technology

Master’s Degree Thesis

Security Analysis Tools for Solidity Smart
Contracts: A Comparison Based on
Real-World Exploits.

Supervisors Candidate
Prof. Valentina GATTESCHI .
Michele MASSETTI
Prof. Bernhard BECKERT

Assistant Jonas SCHIFF

20 December 2022

Summary

A blockchain is essentially a digital ledger of transactions that is duplicated and
distributed across the entire network of computer systems on the blockchain.
Blockchains can implement cryptocurrency systems, because of their ability to
maintain a secure and decentralized record of transactions. This technology guar-
antees fidelity and security of a record of data and generates trust without the
need for a trusted third party.

Ethereum is a blockchain considered a "smart contract platform" because it
was one of the first blockchains allowing their development. Smart contracts are
programs which are self-verifying programs running on top of the blockchain. Those
are public, distributed and immutable, consequently, developers cannot design
security by layers, such as a Firewall or a virtual private network. For these
reason, the detection of any potential weaknesses before the deployment turns into
a challenge. The regulation of this field is not strict, therefore, malicious users have
tried to compute several attacks. To guarantee security, numerous tools have been
created, and a large amount of data about vulnerabilities and detection techniques
is continually being produced.

This thesis is addressed to deepen the field of security in smart contract program-
ming, written in Solidity: the most used and maintained programming language in
this field.

This work presents a collection of attacks and a collection of tools, selected after
a literature research phase. The vulnerable code of smart contracts is explained.
The tools are described based on their documentation and experience during the
installation on running during this thesis. The analysis have as targets smart
contracts involved in real-world exploits that have occurred during the last two
years (since 2020). An outcome of the thesis is a comparison of tools based on
real-world exploits. The comparison involves parameters such as the time of the
installation requirements, the time of execution, the configuration of settings and
the amount of discovered vulnerabilities. Furthermore, the tools are grouped based
on their different characteristics, their typology, and even on their running mode.

II1

Acknowledgements

I would like to express my gratitude to my supervisors Jonas Schiff, Prof. Bernhard
Beckert and Prof. Valentina Gatteschi for the oppurtunity to carry out this thesis
and the support they provided to my.

This thesis represents the end of my master and consequently the end of my
studies.

First of all, I appreciated so much the support of my family who has always
believed in my capabilities and helped me in every difficult moment.

I am so happy that I have shared this path with my friends Filippo, Dario and
Samuele, my computer engineers team, and Silvia, my Sicilian sister, who have
always supported me and shared with me the happy and sad times. Thanks so
much to my floor mates Giuseppe and Domico, for the great years spent in "Casa
Cus".

I had written this thesis during my Erasmus in Karlsruhe, so I would like to
dedicate it to my friends who I met during this amazing experience:

Michela, Anita, Nico, Danny the Primitivo, Orhan the Club Mate, Mareike,
oMaria, Luigi, Zulema, Carlos el Desaparecido, Jorge el Toro, Alvaro el pato, Nacho
la Sepia, Albertino, Nacho, Rou, Tiago, Mario, Vidi, and all the others.

Ich vermisse euch alle

v

Table of Contents

List of Tables

List of Figures

1

Introduction
1.1 Research Goals
1.2 Related Work

Preliminaries

2.1 Blockchain o
2.1.1 Smart Contracts

2.2 Ethereum
2.2.1 Ethereum Smart Contracts: Solidity

2.3 Application Domains L

2.4 Security Analysis

Exploits

3.1 $34 Million stacks NFT Project Aku Dreams Smart Contract
3.1.1 Theexploit
3.1.2 Properties

3.2 Cover Protocol:Infinite Minting Exploit Nets Attacker $4.4M
3.2.1 Theexlpoit
3.2.2 Propertieso

3.3 DeFi platform bZX: $8M hack from one misplaced line of code . . .
3.3.1 Theexploit
3.3.2 Properties

3.4 A flash loan used for amplify a bug: $30M drained from Spartan
protocol
3.4.1 Theexploit
3.4.2 Properties

3.5 Uranium Finance: $1.3M of rewards drawn

VI

VIII

IX

3.5.1 Theexploit 27

3.5.2 Properties 30

3.6 XSURGE on BSC Chain 31
3.6.1 Theexploit 31

3.6.2 Properties 32

3.7 Reentering the Reentrancy Bug: Disclosing BurgerSwap’s Vulnerability 33
3.71 Theexploit 33

3.7.2 Properties 35

3.8 Infinite minting of NFTs: DirtyDogs NFTs 35
3.8.1 Theexploit 35

3.8.2 Properties 37

4 Analysis Tools 39
4.1 Tools with multiple mode running 40
4.1.1 SmarTest 40

4.1.2 Manticore 42

4.2 Tools with Specifications L. 43
4.2.1 Certora Prover 44

422 Celestial 45

4.2.3 Echidna 47

424 Sole-Verifyo 48

4.3 Tools without specification 50
4.3.1 Slither 20

4.3.2 Mythrilo 51

5 Results and Evaluation 53
5.1 Experimental Setup Lo 53
5.2 Individual Outcomes per Tool 54
5.3 General Comparison 62
5.3.1 Installation 62

5.3.2 Outcomes 62

6 Discussion 67
6.1 Threats in real-world exploits 67
6.2 Tools with Specifications 68
6.3 Customized and Non-specific Analyses 70
6.4 Effective Analysis L 70

7 Conclusion 73
7.1 Outlooks 74
Bibliography 75

VII

List of Tables

3.1
4.1

5.1
5.2
5.3
5.4
9.5
5.6
5.7
0.8

5.9

6.1

Exploitso 15
Tools Classification 39
Manticore resultso 55
SmarTest results 56
Celestial results 57
Echidna results 58
Certora results; the time is provided by the sas application 59
SolcVerify results 61
Installation and running mode00 63
Analyses Outcomes per Attack: v: Found vulnerablity, X: Not

found vulnerability, —: Discarded 64
Analyses Outcomes: LoF: List of functions, LoU: List of unproven

tests, W: Warningso L 64
Outcomes based on the typology 68

VIII

List of Figures

2.1 Simplified blockchain (image from [19]).. 6
2.2 Change state overview(image from [20]). 6
2.3 Trasnactions scheme (image from [19]). 7
2.4 Diagram of EVM (image from [20]) 9
2.5 Diagram of EVM runnnig smart contracts (image from [20]) 10
4.1 High-level architecture diagram (Figure from [45]). 42
4.2 Celestial Architecture 000 45
4.3 Echidna architecture (image from [16]). 48
4.4 Slither architecture overview (image from [11]). 51

IX

Chapter 1

Introduction

Blockchain represents one of the most popular trends in finance and computer
science. It is a fully-distributed public ledger and a peer-to-peer platform. Cryp-
tography is the base for securely hosting applications, transferring digital cur-
rency/messages and storing data. Bitcoin can be considered the “father” of this
technology. Nakamoto [1] depicted that in his paper, in the early 2009, it was
effectively launched and the cryptocurrency Bitcoin was introduced. It works as a
decentralised database.

Many blockchain systems have been born with new capabilities, which have
allowed them to fit many different use cases. The first, which allowed developers
to code on top of itself, was Ethereum. Buterin [2] published its whitepaper
in 2014, and in 2015 it was deployed. The revolutionary aspect of Ethereum is
the introduction of Smart Contract. These are programs running on blockchain
systems and allow the developers to interact directly with this new technology. The
development of innovative and prominent applications is a consequence of their
development, such as NFTs marketplaces, music royalty tracking, supply chain
and logistics monitoring, voting mechanism, cross-border payments, decentralised
finance and many others ([3]).

The implementation of financial products enticed many investors during the last
few years. The number of investments has been growing exponentially. According
Best [4], the crypto market’s highest value reached around $3 trillion in 2021.

Considering Bitcoin, the cryptocurrency with the highest market capitalization,
CoinGeko [5] states its value around $38,553.70 and its market capitalization more
than $700 billions.

Interest in such a valuable market has grown even among malicious attackers.
Attacks such as the “Parity Wallet Hack” and the “Decentralized Autonomous
Organization Attack” cost millions of dollars simply because of naive bugs in the
smart contract code. Blockchain and smart contract technologies have multiple
aims, but unfortunately, new applications based on them still contain bugs and

1

Introduction

multiple vulnerabilities, which cause several issues for the end-users. Most of
the use of this technology relates to finance or certifications, therefore integrity,
authentication and authorisation in transactions are mandatory. The research field
behind blockchain technology is growing, as well as the one concerning its security
and accordingly, many analysis tools were developed. These incorporate various
strategies for performing the analyses, concerning the technical aspects of smart
contracts, so these would work differently according to the object of the analysis.

The topic that will be addressed in this thesis work is the comparison of security
analysis tools for smart contracts, based on real-world exploits, so attacks that
have happened during the recent years. It involves the understanding of smart
contracts properties and the usage of different tools, providing insight regarding
their behaviours in different contexts.

This thesis does not involve well-known benchmarks, with already studied
vulnerabilities, but the tests are smart contracts involved in attacks. Our literature
research faced off wide documentation of comparison of tools based on benchmarks
and studied vulenrablities, but this work’s ambition is to verify the effectiveness of
the tools in real cases.

1.1 Research Goals

The main goal of this thesis can be summerized with the following research question:

How do state-of-the-art analysis tools for Ethereum/Solidity perform on real-
world exploits?

This thesis involeves eight security analysis tools, which are chosen based on a
literature research and on the type of analysis, trying to have a range of different
typologies. Their analysis targets are smart contracts, involved in attacks, which
have occurred in the last two years (since 2020). One of the goals is the definition
of the violated properties of those, understanding how they are computed by the
attackers.

Furthermore, the comparison of the tools is based on a range of factors, these
are some of the parameters used for providing a comparison and an evaluation of
the tools.

o the performance;

the completeness of the analysis;

the facility of usage, involving the amount of code to be provided;

the amount of found vulnerabilities;

the report interpretability;

1.2 — Related Work

« the time for the configuration;

The research question deals with different topics, which can be expressed with
the following sub questions:

1. How does a tool perform the analysis?
2. Which properties have been violated in the real-world exploits?
3. Which vulnerabilities are the tools able to detect?

4. In which context a tool perform better?

1.2 Related Work

Nowadays multiple surveys and research work addressing smart contracts analysis
have been published. The ones, we are interested in, deal with the review of
vulnerabilities, description and comparison of tools and definition of new techniques
for scanning those.

The selection of tools was anticipated by research work. We picked those starting
from surveys and papers, regarding comparison of multiple of tools, such as [6],
Angelo and Salzer [7], Tolmach et al. [8], Sayeed et al. [9], Heidelind [10]. These
give a general overview and provide a comparison based on different aspects: type
of installation, running mode or type of analysis. A taxonomy is provided as well.
For having a deeper knowledge of every single tool, we considered their papers and
documentation.

In this thesis, we involved automated tools (Feist et al. [11], Mueller [12]) and
the ones which provide the possibility to run custom analysis. The first ones have as
targets vulnerabilities such as reentrancy, overflow /underflow, and gas exceptions;
but they do not provide functional correctness guarantees. On the other hand, the
second group try to solve these issues by providing more possibilities for modelling
the analyses. We involved tools adopting formal verification (Certora [13], Hajdu
and Jovanovi¢ [14], Dharanikota et al. [15]) and fuzzing (Grieco et al. [16]).

The cited works provide a comparison based on well-known benchmarks, defined
vulnerabilities or just on the specifications. This work provides a comparison
between the considered tools as well, but we tried to move a step forward. Rather
than considering defined vulnerabilities, we consider real-world exploits, which have
happened in the last couple of years.

The considered tools are installed and run on real-world attacks; these are chosen
based on their effectiveness and the damage, in terms of drawn liquidity.

Chapter 2
Preliminaries

The following sections are addressed to provide an introduction to the topics
involved in our work: Ethereum, smart contracts and security techniques. These
are necessary for understanding specific security vulnerabilities and the results
obtained from our experiment. We recommend reading this chapter for those
who are not experts on these topics, otherwise, the reader can directly jump at
chapter 3.

2.1 Blockchain

Blockchain technology is a specific subset of the broader distributed ledger technol-
ogy (DLT) universe that uses a particular data structure consisting of a chain of
hash-linked blocks of data.

DLT has the role of an umbrella term to encompass multi-party systems that
operate in an environment with no central authority, despite parties who may be
unreliable or malicious. A distributed ledger is described, by Sunyaev [17], as a
type of distributed database that assumes the preseence of nodes with malicious
intentions. A distributed ledger comprises its multiple replications in which data
can only be appended or read. The ledger, by definition, store the records of
transactions, which are immutable. A transaction is the smallest unit of a work
process, which is one or more sequences of actions required to produce an outcome
that complies with governing rules ([18]).

Blockchain contains a complete history of all data transfers and transactions
that have ever taken place since it was first created. In other terms, it keeps a
collection of records called blocks. Any updates or validations on the network
reflect in all copies simultaneously. This guarantees the fidelity and security of
data records and generates trust in the system, without the need for a centralized
trusted third party. Blockchain networks rely on consensus algorithms to reach

5)

Preliminaries

agreement among various distributed peers.

[BlockHash <11 =-~|._ [BlockHash < -=-[._ [BlockHash |
‘ PrevBlockHash | [PrevBIockHash ‘]‘PrevBIockHash ‘

—_— ‘Nonce | |T|me ‘ —_— |Nonce ‘ |Time ‘ —_— [Nonce | ‘Time |
‘MerHeRoot | |MerHeRoot ‘ ‘MerHeRoot

Figure 2.1: Simplified blockchain (image from [19]).

The term "blockchain" is formed by "block", which refers to state and data being
stored in consecutive groups, and "chain", which describes how each block contains
a cryptographic reference to its parent.

transaction (t1)

transaction (t2)

|

world state transaction (t3) world state
(1) (t+1)

Figure 2.2: Change state overview(image from [20]).

Blocks are collections of transactions that have the hash of the block before
them in the chain. Because hashes are cryptographically formed from the block
data, this connects blocks. Because any alteration to any historical block would
render all subsequent hashes incorrect and cause everyone using the blockchain to
become aware of it, this prevents fraud. These concepts are shown, in a simplified
version, by Figure 2.1. Each block contains a list of transactions and keeps the
reference to the previous one.

Transactions (Figure 2.3) are cryptographically signed instructions from accounts,
which are entities, having the possibility to get a balance of native token and interact
with the blockchain. Accounts can be user-controlled or deployed as smart contracts.
An account, when it is enrolled in the system, receive a couple of keys: private and
public one. An asymmetric algorithm is implemented. A user is identified by the

6

2.1 — Blockchain

public key and can make a transaction by signing it with the private key.

| txHash

| | lockTime

input

prevOut

|prevTxHash ‘ | index

Iscriptsig

|

prevOut

|prevTxHash | ‘index

‘scriptSig

output

‘value |

’ scriptPubKey |

|va|ue |

| scriptPubKey |

Figure 2.3: Trasnactions scheme (image from [19]).

An account will initiate a transaction to update the state of the network. These
are collected and stored in blocks, which then are broadcasted in the network.
When this happens, a change in the state of the chain is applied (Figure 2.2). This
procedure, firstly the storing of transactions in blocks, and then those are the ones
broadcasted on the net, is due to the fact the state of the blockchain is kept in the
blocks, and not in the transactions.

The entities, the computers, taking part in the network, are called "nodes".
Each of those must agree upon each new block and the chain as a whole. Nodes
guarantee that everyone using the blockchain has access to the same data.

A consensus mechanism ([21]) is required for blockchains to implement this
distributed agreement. It is a process in computer science used to achieve agreement
on a single data value among distributed processes or systems. A consensus
algorithm secures the network and prevents unauthorized users from validating bad
transactions. The mechanism also enables agreement on the network even when no
single node is in charge. Proof of work (PoW) and proof of stake (PoS) are the
two mostly used ones.

Following the survey of Tschorsch and Scheuermann [19], we can depict four
main characteristics of this technology:

 decentralization, due to the absence of third party control;

 persistency, because of the impossibility to delete or modify any transactions
once they are stored in the ledger;

« anonymity, regarding the cryptographic aspects, a user is identified just by
the asymmetric keys, public and private ones;

7

Preliminaries

« auditability, that means that each peer can verify by itself the validity of block
verification.

2.1.1 Smart Contracts

Smart Contract is a concept which is directly associated with blockchain, and
specifically with Ethereum. However, its concept was defined even before the first
blockchain, in the 1994 by Szabo [22]. Its goal is to encode and enforce the entire
logic that governs an interaction between two (or more) mutually distrustful parties.
By design, it is autonomous, so it can be seen like a piece of software, made by
codes. Its strength is the possibility to play the role of a trusted intermediary
between distrusting parties without being an actual party itself. Blockchains are
the first platform that allow the actual realization of Smart Contracts without a
trusted third party.

The main limitation of those deals with their inability to interact with the
"external world", only accounts can alter the state of the system. They have to
be deterministic so that all nodes arrive at the same result for each computation.
Basically, those cannot get information about "real-world" events on their own.
The reason is relying on external information could undermine consensus, because
external calls return different things at different times, they are not deterministic.
For example a smart contract is not allowed to send HTTP requests or interact
with any APIs.

More limitations are introduced based on the blockchain, for example Bitcoin
does not allow an arbitrary behaviour and the size of those is reduced, considering
other systems, as Ethereum, which gives much more freedom of operability.

2.2 Ethereum

Ethereum is a blockchain that was developed by Buterin [2], presented in the
2014. In the Ethereum universe, a single, canonical computer called "Ethereum
Virtual Machine" (EVM) represents the abstraction of the ledger, and everyone
on the Ethereum network agrees on its current state. Every node, or participant
in the network, maintains a copy of this computer’s state. Figure 2.4 illustrates
a schematic representation of the EVM, underlying the common aspects with a
computer, as the stack, memory, the storage, the EVM code (the smart contracts)
and so on.

The blockchain, which is saved and approved by all nodes, keeps track of all
transactions and the current state of the EVM. Once a transaction is confirmed as
genuine and put to the blockchain, cryptographic methods ensure that it cannot
be changed later.

2.2 — Ethereum

Ethereum virtual machine (EVM)

Machine state (volatile)

program
counter (PC)

stack memory

gas
available

World state

(persistent)

Figure 2.4: Diagram of EVM (image from [20])

Its consensus mechanism is defined as "proof of work" (PoW). It provides the
rules for defining the node, which gets the priority for collecting the transaction,
generating a block and broadcast it. Those nodes are called "miners", due to the
mining, which is the process of creating a block of transactions to be added to the
Ethereum blockchain. For this operation of mining the blocks, the peers receive
rewards in native tokens, which are the incentive for pushing the miners to do that.

The nonce for a block must be discovered by miners through a rigorous process
of trial and error under the proof-of-work protocol. A block can only be added
to the chain if its nonce is correctly verified by the other peers. The miners take
part in this sort of race and the one who succeeds to find the nonce, verified by the
other peers, has the right to publish the block and get the rewards.

The rewards are paid in the native token of the Ethereum: ether (ETH).

2.2.1 Ethereum Smart Contracts: Solidity

Foundation [20] describes its technology as a "Smart Contract Platform". Those are
described as programs that run on the Ethereum blockchain. Their EVM-bytecode
and data are stored on the Ethereum blockchain, reachable at a specific address.
Since they are Ethereum account, they have a balance and can be the target of
transactions.

A smart contract can be created by anyone and released across the network.
Technically, deploying a smart contract counts as a transaction, so the deployment
has a cost, called "gas fees". Gas prices for contract deployment, however, are

9

Preliminaries

significantly higher.

Smart contracts represent self-autonomous and self-verifying agents stored in the
blockchain. They are composed of fields and functions ([23]). After their deployment
in the blockchain, they have their unique address which the users/clients can use
to interact with. An "external account" is controlled by public-private keys used by
humans, on the other hand, a "contract account’ is referred to those. Figure 2.5
gives an overview of the process of smart contracts running. The code that is
stored in the blockchain after deployment is a low-level stack-based bytecode (EVM
bytecode) representative of the high-level programming language (e.g. Solidity) in
which the smart contracts are initially written.

Smart contracts’ behaviour is completely predictable and its code can be in-
spected by every node in the network because the bytecode is publicly available
from the blockchain. Foundation [20] explains that EVM executes as a stack
machine, a virtual machine in which the primary interaction is moving short-lived
temporary values to and from a push down stack ([24]). Compiled smart contract
bytecode executes as a number of EVM opcodes, which perform standard stack
operations like XOR, AND, ADD, SUB, etc.

During execution, the EVM maintains a transient memory (as a word-addressed
byte array), which does not persist between transactions. All the changes are
applied to the system when the transaction is published, if it reverts, all the
changes are lost.

ge ca
" EVM code
. more gas

stack |<—| memory

program l
counter (PC) I

operations
gas s k-:L:-:;-,-V
available

Figure 2.5: Diagram of EVM runnnig smart contracts (image from [20])

Foundation [20] states that Solidity is the most used and maintained high level
program language for smart contracts. It is similar to the JavaScript programming

10

2.2 — Ethereum

language which after deploying is compiled into EVM bytecode.
[ts main features can be summarized as follow:

» object-oriented, high-level language for implementing smart contracts;

statically typed (the type of variable is known at compile time);
« curly-bracket language that has been most profoundly influenced by C++;

 the support of inheritance, libraries and complex user-defined types.

A particular type of function in Solidity is the "fallback", which is used even by
attackers for malicious aims. Its characteristics are the following:

1. triggered when a non-existent function is called on the contract or when it
receives a number of native tokens;

2. it is marked as external (not callable by functions of the same contract);
3. it has no name and arguments;

4. the return value is empty;

5. a contract can have just one of it;

6. if not marked payable, it will throw an exception if the contract receives plain
ether without data.

The first property is fundamental in the case of "reentrancy" attacks. It occurs
when the workflow of a smart contract is modified by an external call. Due to the
fallback, the malicious external contract can modify the order of the execution
of the target. An effective example occurs when a contract modifies the variable
after the external call, so the malicious one can call back the same function (like
recursion), but the variables are not updated.

This thesis considers attacks that occurred even in other blockchains since those
are defined as "EVM-compatible'. That means the infrastructure of the systems has
certain parts of the Ethereum network. This approach turned out to be beneficial
for the developers of other blockchains, both in terms of time, knowledge transfer,
and maybe most importantly interoperability. Having a code execution environment
similar to Ethereum’s Virtual Machines, Solidity is the programming language,
consequently, same contracts can run on multiple blockchains.

11

Preliminaries

2.3 Application Domains

Smart contracts technology gave the possibility to implement new financial instru-
ments, based on their decentralised characteristic.

Since the cryptographic aspects of the blockchain, it allows giving uniqueness to
digital data thanks to the NFTs.

Decentralised Finance Multiple investors have been attracted by new possi-
bilities offered by "Decentralised Finance' (DeFi). An article on the European
Central Bank website ([25]) deepens this topic. The main strength of these financial
instruments is the possibility to cut out traditional centralised intermediaries and
rely on automated protocols instead. In this case, the investors are part of a
peer-to-peer network where assets represented in the network can be transferred
automatically, thanks to smart contracts. In most cases, the DeFi applications do
not provide new financial products or services but mimic within the crypto-asset
ecosystem those provided by the traditional financial system.

Since there are not any legal regulations and many investments have been
involved in DeFi, multiple malicious hackers have exploited this lack in their favour.

One of the targets of the attackers is a particular type of decentralised exchange
(DEX) named automated market maker (AMM). Academy [26] presents it as a DEX
based on a mathematical formula. Its peculiarity is how it estimates the asset price:
according to a pricing algorithm. It is considered autonomous and decentralised
because the user does not need to have a counterparty (another trader) on the
other side to make a trade. On the other hand, users directly interact with a smart
contract that “makes” the market.

Since there are no counterparties, the market is generated by providing liquidity
in the smart contract by the users forming liquidity pools (LPs). First of all,
liquidity, clarified by Academy [27], is the measure of how easily you can convert
an asset into cash or another asset. In other words, it depicts how the conversion
of an asset into another one affects the price of the asset. Liquidity is positively
estimated when the asset’s price is not easily affected by the transactions of the
asset and the asset is easily sold and bought.

A liquidity pool can be seen as a big pile of funds that traders can trade against.
In return for providing liquidity to the protocol, LPs earn fees from the trades that
happen in their pool.

NFT Non-fungible tokens (NFTs) are cryptographic assets on a blockchain with
unique identification codes and metadata that distinguish them from each other.
Unlike cryptocurrencies, they cannot be traded or exchanged at equivalency. This
differs from fungible tokens like cryptocurrencies, which are identical to each other
and, therefore, can serve as a medium for commercial transactions.

12

2.4 — Security Analysis

2.4 Security Analysis

Smart contracts are by design public and available by every account. In most cases,
the code is published, otherwise, the bytecode is always available. This aspect
of the blockchain represents a drawback in sort of security because establishing
security by layers scheme is impossible. The developers cannot configure any sort of
VPN (Virtual Private Network), Firewall or IDS (intrusion detection system). The
attackers can directly access and interact with the smart contracts, consequently,
the discovery of vulnerabilities turns into a challenge.

Smart contracts cannot be changed after deployment. For this reason, discovering
security issues is an even more severe challenge, and it is an argument for static
analysis/formal methods that can be done before deployment.

To fulfil this goal, multiple techniques have been adopted.

Fuzzing OWASP [28] gives us an overview of this Black Box software testing
technique. The goal is to find bugs, using random/semi-random data injection in
an automated way.

A fuzzer, which is the program implementing this, injects automatically the data,
generated starting from a seed. The inputs depend on the generators. These can
involve just a seed, or even static fuzzing vectors (known-to-be-dangerous values).
The number of possible solutions is infinite, consequently, fuzzers fix a threshold
of cases. One of the strengths of the systematic/random approach is to find bugs
that would have often been missed by human eyes.

Formal Verification Formal verification has the aim to prove or disprove the
correctness of a system by checking its mathematical model against a certain formal
specification. A specification is a set of properties, which involve the behaviours of
the software. Models and specifications can regard different levels of abstraction
via various types of formalisms.

[29] explains that the absence of design flaws is not possible to prove, but the
formal verification looks for the complete space of possible design behaviours which
can be used to find and eliminate errors.

However, a drawback is that a timely solution is not always guaranteed in certain
situations. It should have full coverage, but in real cases, the tools have a certain
threshold considering time or an amount of computational effort.

Symbolic Execution Baldoni et al. [30] provides a definition of this technique
and its possible variations. Symbolic execution can be considered as a subgroup
of Formal Verification. It is a program analysis technique to test whether certain
properties can be violated by a piece of software.

13

Preliminaries

The strength of symbolic execution is the simultaneous exploration of multiple
paths that a program could take under different inputs. This paves the road to
sound analyses that can yield strong guarantees on the checked property. The key
idea is to allow a program to take on symbolic, rather than concrete, input values.

Symbolic execution is less general than abstract interpretation because it does
not explore all paths through the program. However, symbolic execution can avoid
giving false warnings; any error found by symbolic execution represents a real and
feasible path through the program, and a test case can illustrate that error.

14

Chapter 3

Exploits

Table 3.1: Exploits

Exploits Detail

Aku Funds stuck in the contract

Cover Wrong update of data

BZX Wrong implementation of token
Spartan Bad estimation of rewards in a pool
Uranium Vulnerable deposit withdraw process in a pool
XSURGE Reentrancy in a token

BurgerSwap Reentrancy in an AMM

DirtyDogs Reentrancy in NFTs market

In this part of thesis, we introduce the objectives of the analyses: the real world
exploits.

Table 3.1 illustrates the attacks selected for this work, providing a brief descrip-
tion of those.

This thesis involves real-world exploits over the last two years since 2020. Our
choice is based on the typology of the attack, how it was computed, and the target
of those. Our work involves the security of smart contracts, written in solidity. For
having a wider overview of the topic, we decided not just to provide smart contracts
deployed on the Ethereum chain, but even the ones deployed on other chains,
specifically Avalanche and Binance Smart Chain. Those are still EVM-compatible
blockchains.

The attacks have as target DeFi protocols. These involve the usage of smart
contracts for the implementation of financial products, involving the management

15

Exploits

and distribution of valuable assets. Because of the impossibility of security by
layer, the implementation of a financial system with smart contracts turns into a
challenge.

The selected exploits deal with projects, involving a great number of investments.
The targets of attacks are not just automated market makers (AMM), but they
can involve the implementation of a token or NFTs. Milmo [31] estimates the
value of NFT market around $100 billion. Nowadays, the word NFT is one of the
most researched ones on Google and the other search engine. NF'T’s marketplaces
manage the transaction behind these valuable markets.

The selection of those involves not just the consequent damage of the exploit,
but the target and the vulnerability.

This chapter contains a subsection per each exploits. The general structure of
those involves the following three main points:

1. the explanation of the protocol;
2. the exploit;

3. the security properties of the smart contracts.

The first part gives a general overview of the smart contract, defining its goals and
main characteristics. After that, we present the exploit, illustrating the vulnerable
part of the source code and the adopted strategies by the attackers. In conclusion,
their properties are depicted. These are elaborated per each tool for defining the
specifications. Per each tool, the specifications are written in terms of specifications,
needed for the analysis.

3.1 $34 Million stacks NFT Project Aku Dreams
Smart Contract

Akutars is an Ethereum-based NFT project developed by Aku Dreams. Hassan
[32] reports Akutarts locked up $34 million due to the faulty code of the smart
contract. The launch contained 15,000 NFTs and was based on the Dutch auction.
This strategy involves a descending price auction where an item begins at a set
maximum price. The price is gradually lowered over a fixed time until a bid is
placed that guarantees the bidder to purchase the item at the current price. The
smart contract had the role to keep the bids, paying in ETH, and then refunding
the users who could not succeed in the auction.
An attacker blocked refunds of all the bidders who could not get the NFTs.

16

3.1 — $34 Million stacks NF'T Project Aku Dreams Smart Contract

3.1.1 The exploit

The first part of the exploit involved the function processRefunds Listing 3.1.

This has the aim to refund the bid of the user who took part in the auction and
did not get the NFTs.

The for loop is the vulnerable part of the code. It loops on all over the users to
be refunded, estimating the number of tokens to send. Then, the amount is sent
with the function call, which returns a boolean, based on the correct execution of
the operation.

The require statement represents the vulnerability. If one of the accounts could
not receive the refund, the function would always revert. Since looping all over the
users is a sequential operation, if the transaction just reverted when it reaches an
item, it would never reach all the following items.

Therefore, a malicious user just implemented a smart contract which took part
in the auction and reverted any time it received tokens.

1 function processRefunds() extermnal {
for (uint256 i=_refundProgress; gasUsed < 5000000 && i <

_bidIndex; i++) {

4 bids memory bidData = allBids[i];

5 if (bidData.finalProcess == 0) {

7 if (refund > 0) {
8 (bool sent,) = bidData.bidder.call{value:
refund}("");

9 require(sent, "Failed to refund bidder");
10 }
11 }
12 P
13 _refundProgress++;
14 }
15 refundProgress = _refundProgress;
1

6 }

Listing 3.1: Function for refunding the users.

This project contains another bug, which could not allow the developer team
to withdraw the project funds. The function claimProjectFunds (Listing 3.2) is
callable only by the owner of the contract due to the modifier onlyOwner, refunds
the developers just when all the users are considered refunded.

The statement of require deals with variables which are badly estimated It
compares the variable refundProgress, which takes track of the refund progress,
and totalBids.

17

Exploits

1 function claimProjectFunds () external onlyOwner {
require (refundProgress >= totalBids, "Refunds not yet
processed") ;

N

(bool sent,) = project.call{value: address(this).
balance}("");
5 require (sent, "Failed to withdraw");

6 }

Listing 3.2: Function for claiming the funds for the developers.

The function _bid, called by a user for placing an arbitrary amount of bids,
increases the variable totalBids based on the amount of placed bids.

Listing 3.3 shows this process. The variable refundProgress is increased every
time a user is refunded. Consequently, if a user bought more than one bid, the
number of refunded users would never be greater or equal to the number of placed
bids.

1 function _bid(uint8 amount, uint256 value) intermnal {

3 uint256 myBidIndex = personalBids[msg.sender];

5 if (myBidIndex > 0) {

6 myBids = allBids[myBidIndex];

7 refund = myBids.bidsPlaced * (myBids.price - price)

8 }

10 uint256 _totalBids = totalBids + amount;

12 if (myBidIndex > 0) {

13 allBids [myBidIndex] = myBids;

14 } else {

15 myBids .bidder = msg.sender;

16 personalBids [msg.sender] = bidIndex;

17 allBids [bidIndex] = myBids;

18 bidIndex++; //bidIndex updated just when a new user
computes a bid

19 }

20 totalBids = _totalBids; //totalBids depends on the

amound of bids

Listing 3.3: Function for users’bid

18

3.2 — Cover Protocol:Infinite Minting Exploit Nets Attacker $4.4M

3.1.2 Properties

The smart contract involves 2 main problems: the refunding of the users who
placed the bids and the claim of the developers’ rewards.

The first property deals with the function processRefunds. It reverts every
time because a malicious wallet, which cannot receive any tokens triggering the
require. The property involves the estimation of the refunding users. This can be
expressed as the sum of refunded wallets equal to the counter of loops on the map
containing all the users. This is expressed by the following postcondition:

_refundProgress == __counter_of_loops (3.1)

If the property always succeeds, that means the function reverts every time in
case of an error, without considering an error in sending the transaction.

The other property regards the function claimProjectFunds. Our focus is on
the comparison between the counter of the refunded users and the total amount of
bids. The property is the comparison between the processRefunds and totalBids.
The aim is to check if it feasible that the number of refund users is less than number
of placed bids. The opposite of the boolean statement of the require of the
function. If the property is always realised, that means that there is no feasibility
to execute the function.

The precondition is :

refundProgress < total Bids (3.2)

3.2 Cover Protocol:Infinite Minting Exploit Nets
Attacker $4.4M

In December 2020, an exploit was abused on Cover Protocol’s shield mining contract.
The article shows the attackers stole from the project around $ 4 million. Its bug
had the result to mint more rewards to the miner.

Sawinyh [33] interview gives an overview of the project. It is deployed on
the Ethereum blockchain and is a peer-to-peer coverage marketplace that utilizes
ERC-20 fungible tokens to allow permissionless and non-KYC coverage. It can
be described as a coverage provider. The attack affected the rewards contract,
consequently, the token’s one even. The exploit can be classified under the name
of "infinite mint".

3.2.1 The exlpoit

The developers’ team reported [34] the technical analysis of the exploit the day after.
The core protocol was not affected, but the minting contract and the SCOVER

19

Exploits

token became unusable. Firstly, the attackers created a new balancer liquidity pool
for the target contract. The next step was to deposit tokens in it and execute the
exploit, withdrawing funds from the contract thanks to a miscalculation of the
rewards. The bug relies on the misuse of two keywords in solidity: storage and
memory.

Memory This keyword within Solidity allocates memory for a specific variable.
In this instance, that variable is scoped to a specific function. The memory is
cleared once the function has executed.

Storage On the other hand this keyword within Solidity allows variables to act
as a pointer into the storage of data in mappings or data structures. Storage data
is persistent between function calls and transactions.

The previous has a similar behave to the Random Access Memory (RAM) on a
computing device, the latter stores into the persistent memory.

The vulnerable function is the deposit one.

1 function deposit(address _lpToken, uint256 _amount)
external override {

w N

: Pool memory pool = pools[_lpToken];
4 updatePool (_1pToken) ;

6 Miner storage miner = miners[_lpToken][msg.sender];
7 BonusToken memory bonusToken = bonusTokens[_lpToken];
8 _claimCoverRewards (pool, miner);

9 _claimBonus (bonusToken, miner) ;

10 // variable pool is not updated

11 miner .rewardWriteoff = miner.amount.mul (pool.
accRewardsPerToken) .div(CAL_MULTIPLIER) ;

Listing 3.4: Deposit function.

Listing 3.4 shows the state of the pool is stored in a variable with the keyword
memory. The function update updates the state of the pool. However, the variable
pool, existing within the function, remains identical.

The function estimates the reward per token updating the value of miner.reward Writeoft]
but it uses the wrong value of the parameter of pool.accRewardsPerToken.

Following the vulnerability, anyone can obtain an insane amount of minted tokens
when they execute the claimRewards(address _IpToken) function. This function,
which is used to grab their rewards, ends up calling _claimCoverRewards(Pool
memory pool, Miner memory miner) which references the miner.reward Writeoff.

20

3.3 — DeFi platform bZX: $8M hack from one misplaced line of code

As that variable is much smaller than the actual pool.accRewardsPerToken, the
contract results in minting an abundance of tokens.

3.2.2 Properties

The heart of the problem is the wrong management of the keywords storage and
memory.

The consequence of this error is a miscalculation of the reward of the miner. It
is not estimated considering the correct parameters of the pool.

The property is a postcondition of the function deposit. It compares the variable
miner.rewardWriteoff with its recomputed value with the updated parameters,
right after the execution of the function.

miner.rewardWriteof f == miner.amount.mul(pool.accRewardsPerToken)
div(CAL_MULTIPLIER)
(3.3)

The variable is not computed with the updated value of the pool: the reason
for the exploits.

3.3 DeFi platform bZX: $8M hack from one mis-
placed line of code

bZz Documentation [35] explains how this protocol works. Anyone can use bZx to
create apps that allow lenders, borrowers, and traders to interact with Ethereum
based decentralised finance protocol.

Protocols can be developed by bZx. It is a DeFi platform for tokenized lending
and margin trading. iTokens (margin loans) represent the earn holders’ interest on
borrowed funds allowing margin positions to be composable.

It suffered a couple of attacks in February 2020. The developers explained the
attackers could drain different currencies,219,199.66 LINK, 4,502.70 Ether (ETH),
1,756,351.27 Tether (USDT), 1,412,048.48 USD Coin (USDC) and 667,988.62 Dai
(DAI): a total of $8 million in value.

3.3.1 The exploit

The object of the attack was the contract which implements the logic behind the
protocol. Every ERC20 token has a transferFrom function, which has the aim to
transfer the tokens. Calling this function allowed the attacker to create and transfer
an iToken to hitself: his balance could be artificially increased. The duplicated
tokens were then redeemed for their underlying collateral, with the hackers now

21

Exploits

“owning” a much higher percentage of the pool, so the attacker could withdraw the
tokens.

Listing 3.5 shows the vulnerable function. The attacker called that with the
same address for _from and _to parameters.

The estimation of the balance is wrongly computed. Additional variables are
used for computed those. Firstly, the balance of the sender is computed. The
balance of the receiver is computed as the sent amount and its value stored at
the beginning in the additional variable. Therefore, if the addresses are the same,
the balance increases since it is computed as the sum of the sent amount and its
previous value.

2 function _internalTransferFrom (address _from, address _to,
uint256 _value, uint256 _allowanceAmount)

3 internal

! returns (bool)

6 //The heart of the vulnerability
7 uint256 _balancesFrom = balances|[_from];
8 uint256 _balancesTo = balances[_to];

10 require(_to != address(0), "15");

12 uint256 _balancesFromNew = _balancesFrom
13 .sub(_value, "16");

14 balances[_from] = _balancesFromNew;

16 uint256 _balancesToNew = _balancesTo

17 .add (_value) ;
18 balances[_to] = _balancesToNew;

20 }

Listing 3.5: Vulnerable function in LoanTokenLogicStandard contract.

The developers corrected the bug in few days. It was enough switching some lines
of code, in order to avoid the operations of sum and subtraction operate on the same
balance. The code Listing 3.6 presents some differences. The operations regarding
the receiver’s balance are computed, then those which deal with the sender’s one.

22

0N

3.4 — A flash loan used for amplify a bug: $30M drained from Spartan protocol

function _internalTransferFrom(address _from, address _to,
uint256 _value, uint256 _allowanceAmount)

internal

returns (bool)

require(_to != address(0), "15");

uint256 _balancesFrom = balances[_from];

uint256 _balancesFromNew = _balancesFrom
.sub(_value, "16");

balances[_from] = _balancesFromNew;

uint256 _balancesTo = balances[_tol];

uint256 _balancesToNew = _balancesTo
.add (_value) ;

balances[_to] = _balancesToNew;

return true;

3

Listing 3.6: Corrected bug in LoanTokenLogicStandard contract.

3.3.2 Properties

The function internalTransfer is the one which contains the bug abused by the
attackers.

The preperty is a postcondition. It states the correct estimation of the balances
of the addresses involved in the operation. The balance of the sender should
decrease of the sent amount and the one of the receiver should increase of the sent
amount.

old _wvalue_of(balances| from]) >= balances| from)|

3.4
&&old_value_of (balances| to]) <= balances|_to] (34)

3.4 A flash loan used for amplify a bug: $30M
drained from Spartan protocol

Spartan Protocol is a DeFi protocol for synthetic assets running on BinanceS-
martChain. It inherits many capabilities of UniswapV2 protocol, adapting the
code for new use cases and implementing different strategies. The fee mechanism
is modified to incentivize liquidity providers when liquidity is scarce. Consequently,
users trading larger volumes are charged more fees. Similar to UniswapV2, pairs
WBNB and SPARTA tokens are open for users to add/remove liquidity.

This protocol was the target of an exploit at the end of May 2021. The presence
of a bug inside the code, plus the amplification due to a flash loan, allowed the

23

Exploits

attacker to drain the liquidity.

The articles Hertig [36] and Vecht [37] give a defintion flash loan: A flashloan
is a relatively new type of uncollateralized lending that has become popular across
several decentralised finance (DeF1i) protocols based on the Ethereum network.
When it has been issued, the smart contract certifies that the borrower pays back
the loan before the transaction ends. If this condition is not fulfilled, the transaction
reverts, consequently, the amount of the loan is given back.

The role of the flash loan is to amplify the effectivenss of the attack.

3.4.1 The exploit

The exploit gas as target the bad implemetation of the strategy for the management
of the liquidity in the pool. The mistake of the developers was not to consider the
updated value of underlying assets. Those are stored into the variables baseAmount
and tokenAmount and estimated with iBEP20 (token) .balance0f (pool) and
iBEP20(base) .totalSupply).

The bug in code lies in the calcLiquidityShare function, called in
RemovelLiquidity.

1
2 function calcliquidityShare(uint units, address token,
address pool, address member) public view returns (uint
share){

: // share = amount * part/total

A // address pool = getPool (token) ;

5 uint amount = iBEP20(token).balanceOf (pool);

6 uint totalSupply = iBEP20(pool).totalSupply();

7 return (amount .mul (units)).div(totalSupply);

Listing 3.7: calcLiquidityShare function

It should get the balance of the underlying asset in the pool (Listing 3.7). The
amount that which should be transferred out is calculated based on the total LP
tokens supplied and the number of LP tokens to burn (units). The function does not
consider who transfers assets into the pool. The value of underlying assets can be
manipulated and increased by an exploit. The real values are different from the ones
contained in the variables baseAmount and tokenAmount. The removelLiquidity
function calls calcLiquidityShare one on TOKEN and BASE(Listing 3.8). It
fails to synchronize the balances of the underlying assets and the variables which
store the amount of the assets.

24

3.4 — A flash loan used for amplify a bug: $30M drained from Spartan protocol

// Remove Liquidity for a member
function removeliquidityForMember (address member) public
returns (uint outputBase, uint outputToken) {

uint units = balanceOf (member) ;

outputBase = iUTILS(_DAO() .UTILS()).calcLiquidityShare(
units, BASE, address(this), member);

outputToken = iUTILS(_DAO().UTILS()).calcLiquidityShare
(units, TOKEN, address(this), member) ;

return (outputBase, outputToken) ;

Listing 3.8: Function for Removing Liquidity

As a consequence, the _decrementPoolBalance, updates the wrong value of the
variables storing the assets. It does not get the update-to-date balances of BASE
and TOKEN. Instead, it only decrements the reserved amounts. The attacker
followed these steps for draining the liquidity:

1. Add liquidity and get LP tokens back.

2. Transfer some assets into the Pool contract to amplify the number of underlying

assets of the LP tokens collected in step 1.

3. Remove liquidity and get more assets than what you added in Step 1.

4. Add the assets transferred into the Pool contract as liquidity and remove them

immediately.

function _decrementPoolBalances (uint _baseAmount,
_tokenAmount) intermnal {

o

_baseAmount , baseAmount, baseAmountPooled) ;

_tokenAmount , tokenAmount, tokenAmountPooled) ;

) g

7 //Wrong Estimation of these 2 variables

8 baseAmount = baseAmount.sub(_baseAmount) ;

9 tokenAmount = tokenAmount.sub(_tokenAmount) ;

10 }

uint

3 uint _removedBase = iUTILS(_DAO() .UTILS()).calcShare(
\ uint _removedToken = iUTILS(_DAO().UTILS()).calcShare(

5 baseAmountPooled = baseAmountPooled.sub(_removedBase) ;
6 tokenAmountPooled = tokenAmountPooled.sub(_removedToken

Listing 3.9: Function which updates decrements the assets in the pool.

A solution for this bug is shown in Listing 3.10. It updates the variables of

assets before it is estimating the the amount to drain.

25

Exploits

1 function calclLiquidityShareSynch(uint units, address token,
address pool, address member) public view returns (uint
share){
// synchronize the variable
: iPOOL (pool) .sync () ;
| uint amount = iBEP20(token).balanceOf (pool);
5 uint totalSupply = iBEP20(pool).totalSupply () ;
6 return (amount .mul (units)).div(totalSupply);
7 }

w N

9 function sync() public {
10 baseAmount = iBEP20 (BASE) .balanceOf (address (this));
11 tokenAmount = iBEP20 (TOKEN) .balanceOf (address (this));

Listing 3.10: Possible corrcet calcLiquidityShare.

3.4.2 Properties

The issue correlated to the logic of the program involves the removing liquidity
process. The attacker could amplify the number of tokens to remove.

The function calcLiquidityShare is an internal function which estimates the to-
tal of underlying assets to send to the user. It is called by the removeLiquidityForMember;
it fails to synchronize the balance of the underlying assets into the reserved assets.

The property is a postcondition of the function calcLiquidityShare. It checks
that the underlying assets variables correctly keep track of the current value.

iBEP20(token).balanceO f(pool) == base Amount

3.5
||i BEP20(token).balanceO f(pool) == token Amount (8:5)

3.5 Uranium Finance: $1.3M of rewards drawn

Uranium Finance is a Automated Marker Maker (AMM) running on the BinanceS-
martChain. The article presented by Finance [38], deals wiht the exploit which
occurred on the 8th April 2021. The attacker could grab the contents of the RADS
pool and all of the RADS/sRADS rewards and sell them for $1.3M worth of BUSD
and BNB.

The team of developer could identify the exploiter, because some transaction of
the attacker wallet, could be correleted with a Binance wallet. The criminal got in
touch with the developers. After some negotiation, the exploiter refund the team
of $1M in ETH.

26

3.5 — Uranium Finance: $1.3M of rewards drawn

3.5.1 The exploit

Certik [39] gets more in deep into the technical details involved in this exploit. Its
target was the part of the protocol regarding the rewarding of the user. The list of
transactions involving the malicious wallet shows the attacker could draw a huge
amount of rewards by calling 3 functions multiple times:

1. deposit(_pid, _amount);

2. emergencyWithdraw(_pid);

3. withdraw(_pid, _amount).

Deposit The two most relevant variables to the exploit are
user.amountWithBonus and user.rewardDebt, for the attack purpose, they need
to be greater than 0. Therefor this function is called with with the _amount input
argument larger than “0”.

The user.amountWithBonus increases by adding the _bonusAmount. The
user.rewardDebt is calculated by the end of the function, Listing 3.11.

27

Exploits

validatePool (_pid) {

3 if (_amount > 0) {
pool.1lpToken.safeTransferFrom(address (_user),

address (this), _amount) ;
5 if (address(pool.lpToken) == address(rads)) {
6 uint256 transferTax = _amount.mul (2).div (100) ;
7 _amount = _amount.sub(transferTax);
8 ¥

9 //The bonus increase
10 if (pool.depositFeeBP > 0) {

mul (userBonus (_pid, _user).add(10000)).div(10000) ;

1 function deposit(uint256 _pid, uint256 _amount) external

12 uint256 _bonusAmount = _amount.sub(depositFee).

13 user ..amountWithBonus = user.amountWithBonus.add

(_bonusAmount) ;

15 } else {
16 user .amount = user.amount.add(_amount) ;
17 uint256 _bonusAmount = _amount.mul (userBonus (

_pid, _user).add(10000)).div (10000) ;

14 pool.lpSupply = pool.lpSupply.add(_bonusAmount)

18 user .amountWithBonus = user.amountWithBonus.add

(_bonusAmount) ;

20 }

21 }

22 user .rewardDebt = user.amountWithBonus.mul (pool.
accRadsPerShare) .div(1el2);

23 emit Deposit(_user, _pid, _amount);

24 }

26 // Withdraw LP tokens from MasterUranium.

19 pool.1lpSupply = pool.lpSupply.add(_bonusAmount)

Listing 3.11: Deposit Function

EmergencyWithdraw The next step is the withdrawal of the funds. This
function, Listing 3.12 has the purpose of getting the deposited token back and
setting user.amount and user.rewardDebt equal to 0. The fundamental variable
user.amountWithBonus is still larger than 0. This is fundamental for the realization

of the exploit.
28

3.5 — Uranium Finance: $1.3M of rewards drawn

// Withdraw without caring about rewards. BonusAmount is
not updated
function emergencyWithdraw(uint256 _pid) extermnal {
PoolInfo storage pool = poollInfol[_pid];
UserInfo storage user = userInfo[_pid][msg.sender];
pool.1lpToken.safeTransfer (address (msg.sender), user.
amount) ;

emit EmergencyWithdraw(msg.sender, _pid, user.amount);
user .amount = 0;
user ..rewardDebt = 0;

Listing 3.12: Deposit Function

Withdraw In the last step, the attacker call this function with _amount equal
to 0. The pending variable is estimeted, but the user.rewardDebt is equal to
0. Since both pool.accRadsPerShare and user.amountWithBonus are positve
number, the result is larger than 0 as well. Since the amount is 0, the code cannot
adjust the user.amountWithBonus variable to indicate the user claims the reward.

29

Exploits

1 function withdraw(uint256 _pid, uint256 _amount) extermnal
validatePool (_pid) {

3 uint256 pending = user.amountWithBonus.mul (pool.
accRadsPerShare) .div(lel2) .sub(user.rewardDebt) ;

| if (pending > 0) A

5 if (pool.isSRadsRewards){

6 safeSRadsTransfer (msg.sender, pending);

7 }

8 elseq{

9 safeRadsTransfer (msg.sender, pending);

10 }

11 T

12 if (_amount > 0) {

13 user .amount = user.amount.sub(_amount) ;

14 uint256 _bonusAmount = _amount.mul (userBonus (_pid,
msg.sender) .add (10000)) .div (10000) ;

15 user .amountWithBonus = user.amountWithBonus.sub(

_bonusAmount) ;

16 pool.1lpToken.safeTransfer (address (msg.sender),
_amount) ;

17 pool.1lpSupply = pool.lpSupply.sub(_bonusAmount) ;

18 X

19 user .rewardDebt = user.amountWithBonus.mul (pool.
accRadsPerShare) .div(lel2);

20 emit Withdraw(msg.sender, _pid, _amount);

21 }

Listing 3.13: Deposit Function

The user.amountWithBonus increases every time the attacker starts from the
step 1. This enables the attacker to drains more and more tokens in the process.

3.5.2 Properties

The estimation of users'rewards the vulnerability of the smart contract.

The malicious sequence of functions involves the call of deposit, emergencyWithdraw
and withdraw. Therefore, the attacker could get back the same amount of de-
posited tokens, but with a higher amount bonus for the reward. The parameter
amountWithBonus of the user struct, which keeps track of the amount and the
bonus, just increases even if the user receives the reward and it is withdrawing.

The property is a post condition of the function withdraw. In the case the user
is getting rewards, so the estimation of the parameter pending is greater than 0,
the value of the parameter that keeps track of the bonus has to decrease.

30

3.6 — XSURGE on BSC Chain

if(pending > 0)

user.amountWithBonus < old_value__of (user.amountWithBonus)

(3.6)

3.6 XSURGE on BSC Chain

The zSurge Assets [40]’s whitepaper provides a presentation of the ecosystem. It is
described as a great DeFi investing idea based on proprietary pricing algorithms
embedded in the Surge Token Variants’ contracts. Surge Token Variants each
have their own Market Maker, allowing them to trade continuously and outlast
both centralised and decentralised exchanges. The strategy is to reward long-term
holding by increasing a holder’s claim of the backing asset. Each Surge Token
utilizes a built-in contract exchange system that renounces the need for a traditional
liquidity pool. Both assets are stored within the contract itself, rather than a
liquidity pool pair of the backing asset to the token using a traditional market
maker method for exchange and price calculation.

3.6.1 The exploit

One of the Surge Token is SurgeBNB, the one which is my focus of analysis.
XSURGE on the BSC Chain was Attacked by Lightning Loans — A Full Analysis
[41] explains in deep how the attack to this contract occurred. The team claimed that
the attacker had stolen $5 million in SurgeBNB through a backdoor vulnerability.
XSURGE stated that a potential security vulnerability in the SurgeBNB contract
was discovered on August 16th.

The attack is mabe by 4 main steps:

1. the attacker borrow 10,000BNB through flash loans.

2. Use all the BNB to buy SURGE. According to the current price, the attacker
can buy 1,896,594,328,449,690 SURGE

3. He calls the "sell" function, for selling the obtained SURGE.

4. The sale function alters the data after the transfer, and the transfer code has a
reentrance vulnerability. When the attack contract acquires BNB, the period
before the SURGE contract’s state changes (Listing 3.14), the attack contract
can use the reentrance vulnerability to purchase SURGE again.

31

Exploits

1 function sell(uint256 tokenAmount) public nonReentrant
returns (bool) {

w N

//The reentrancy

(bool successful,) = payable(seller).call{value:
amountBNB, gas: 40000}("");
5 if (successful) {
6 // subtract full amount from sender

7 _balances[seller] = _balances[seller].sub(
tokenAmount, ’sender does not have this amount to sell’);

8 // if successful, remove tokens from supply

9 _totalSupply = _totalSupply.sub(tokenAmount) ;

10 } else {

11 revert () ;

12 }

13

14 return true;

15 }

Listing 3.14: Sell function of Surge (SURGE) token.

The BNB amount of the contract stays intact, and the total amount of SURGE
tokens totalSupply has not been updated, because the attack contract spends all
of the BNB balance to acquire SURGE each time (still remains the quantity before
the sell). As a result, the price of token falls, allowing the attacker to purchase
additional SURGE.

Repeating three times of Round 2 and Round 3 , the attacker accumulates a
large amount of SURGE through reentry, and then sells all the SURGE to make a
profit.

At the end of this transaction, the attack contract sold 1,864,120,345,279,610,000
SURGE, obtained 10327 BNB, and finally the profitable 297 BNB was sent to the
attacker’s address.

The following are the modifications suggested by the Beosin technical team for
this attack:

« any transfer operation should be place after the state changes to avoid reentry
assaults.

 Instead of using call use transfer or send.

3.6.2 Properties

This exploit represents a typical case of reentrancy.

The attacker’s strategy involves the function sell, which contains the bug, and
then the function purchase. After calling the first one and triggering the reentrancy,
the malicious fallback implemented by the attacker uses the amount of money for

32

3.7 — Reentering the Reentrancy Bug: Disclosing BurgerSwap’s Vulnerability

buying more XSURGE tokens. At the end of the selling process, the total supply
should decrease the amount sold by the user. But since the attacker called the
purchase, the variable is not updated as it was supposed to be. Buying the same
amount of sold tokens, the value would not change.

We define the property as a postcondition,refered to the function sell, which
states the variable _totalSupply is decreased of the amount sold by the user, then
tokenAmount.

__total Supply + amount == old_value__of(_total Supply) (3.7)

The property can be even expressed like a an invariant, stating that the sum of
the single balances cannot exceedes the variable _totalSupply.

sum__of _wint(_balances) <= _totalSupply (3.8)

3.7 Reentering the Reentrancy Bug: Disclosing
BurgerSwap’s Vulnerability

BurgerSwap is an automated Marker Maker service on Binance Smart Chain (BSC).
At time of the disclosure of the vulnerability, there was areound $13K worth of
Ether at immediate risk. The vulnerability was was presentend by Leiba [42].

It is a Binance Smart Chain fork of Uniswap, Automated Marker Maker (AMM)
service operating on Ethereum. Tranding and listing Specialized BEP-20 tokens
among standard swapping options are available on this platform. To mint such
tokens, users can use BurgerSwap’s “bridge” contract on Ethereum.

Brige is a combination of 2 smart contracts deeployed on different chains.
It allows cross-chain transfers of value. Ether deposited into the contract on the
main net will provide a balance denominated in ERC-20 tokens on the sidechain.
While ERC-20 tokens deposited back into the contract on the sidechain can free
up Ether on main net. One example could be locking Ether, which is converted via
the contract to WETH (Wrapped Ether, an ERC-20 token pegged to Ether), and
then the same wallet locking ETH can be credited with bWETH on BSC.

3.7.1 The exploit

The issue deals with the fucntion withdrawFromBSC, Listing 3.15. First of all, it
checks some conditions and then it proceedes to transfer the amount to the mseeage
sender. The order of the actions is:

33

Exploits

1. It verifies executeMap[_paybackId] is false;

2. It checks _signature is a valid signature on _ paybackld, token, msg.sender,
and amount.

3. It calls TransferHelper.safeTransferETH(msg.sender, —amount).
4. Tt sets executeMap|_paybackId] to true.

The issue is the interaction with the sender’s address (step 3) happens before
the internal effect (step 4): reentrancy is feasible.

1
2 function withdrawFromBSC(bytes calldata _signature, bytes32
_paybackId, address _token, uint _amount) external payable
{

3 require (executedMap [_paybackId] == false,
ALREADY_EXECUTED") ;

"NOTHING_TO_WITHDRAW") ;

5 require (_amount > O
== developFee, "INSUFFICIENT_VALUE");

6 require (msg.value

[/

8 bytes32 message = keccak256 (abi.encodePacked (_paybackId
, _token, msg.sender, _amount));
9 require(_verify(message, _signature), "

INVALID _SIGNATURE");

11 if (_token == WETH) {

12 IWETH(WETH) .withdraw (_amount) ;

13 TransferHelper.safeTransferETH(msg.sender, _amount)

14 } else {

15 TransferHelper.safeTransfer (_token, msg.sender,
_amount) ;

16 }

17 totalFee = totalFee.add(developFee);
19 executedMap [_paybackId] = true;

21 emit Withdraw(_paybackId, msg.sender, _token, _amount);

Listing 3.15: BugerSwap Bridge vulnerable function

Folowing the execution of the code, the bug is found in the safeTransferETH func-
tion, contained in TransferHelper library. The expression to.callvalue:value(new
bytes(0)) is actually a call to the sender of the message, which can be an arbitrary
smart contract. The malicious contract can implemnt a fallback function. By the
time it receives the ether, the fallback function is triggered and withdrawFromBSC

34

3.8 — Infinite minting of NF'Ts: DirtyDogs NFTs

is run again, but without updating executeMap [_paybackId]. Since it is not set to
true, the code repeat the same sequence of operation. Repeating this process within
the same transaction, the attacker will drain the vulnerable contract’s WETH
holdings and credit.

3.7.2 Properties

The keyword of this exploit is reentrancy.

The smart contracts adopt an access control strategy at the beginning of the
function, checking the signature of the user. The attacker forked MetaMask, a
crypto-wallet, for allowing a smart contract to access the vulnerable function.
However, it is out of our interest and we focus on the vulnerability in the code.

The vulnerable function is safeTransferETH, resonsable of sending ETH to the
user. This is called by the one which manages the withdrawal of funds from the
contract by the user. The malicous contract, thanks a fallback, can call multiple
times the same function and withdrawing more money than it could.

With the postcondition, we check the balance of WETH (wrapped ETH) before
and after the function, stating the difference should be the parameter amount of
the function.

old_wvalue_of(address(this).balance) == address(this).balance — _amount

(3.9)

3.8 Infinite minting of NFTs: DirtyDogs NFTs

The project DirtyDogs implements a platform for buying and minting its collection
of NFTs. It implements the specific standard ERC721 for managing NFTs.

The smart contract allows the users to buy the NF'Ts, before the official selling
phase, buying a ticket, which would be used for minting those. The protocol should
keep track of the ticket for minting the correct number of NFTs.

3.8.1 The exploit

DirtyDogs NFT contract has a typical example of reentrancy. The attacker exploited
the function claimDogs, shown in Listing 3.16. Firstly, the malicious wallet bought
a ticket for having the right of receiving an NFT, calling the function claimDogs().
It loops on the number of tickets the sender has, and it calls the function safeMint
for creating the NFTs and sending them to the caller.

The bug involves the update of the variable totalClaimed[msgSender ()] at
the end of the loop. It is the one which keeps track of the number of tickets owned
by the caller.

35

Exploits

The malicious smart contract implemented a callback function: the main trigger
for reentrancy attacks. Within the same transaction, it gets the opportunity to
execute the same code multiple times. When the smart contract receives an NF'T,
the fallback function is triggered and the claimDogs function is called again. As
result, the attacker could call again the function for mintining, but without updating
the variable which counts the number of tickets per address. The exploit produced
45 NFTs because the fallback has the risk of reverting, there is a limit of times to
be called.

36

3.8 — Infinite minting of NF'Ts: DirtyDogs NFTs

contract ERC721 is Context, ERC165, IERC721, IERC721Metadata,
IERC721Enumerable {

function _mint(address to, uint256 tokenId) internal
virtual {

| require(to != address(0), "ERC721: mint to the zero
address") ;

5 require (! _exists (tokenId), "ERC721: token already
minted") ;

6 _beforeTokenTransfer (address (0), to, tokenId);

7 _holderTokens [to].add(tokenId) ;

8 _tokenOwners.set (tokenId, to);

9 emit Transfer (address(0), to, tokenId);

15| contract DirtyDogs is ERC721, Ownable {

17 function claimDogs () external {
18 uint256 numbersOfTickets = getUserClaimableTicketCount (
_msgSender ());

20 for(uint256 i = 0; i < numbersOfTickets; i++) {
21 uint256 mintIndex = totalSupply () ;
22 _safeMint (_msgSender (), mintIndex) ;

23 T

25 totalClaimed [_msgSender ()] = numbersO0fTickets.add(
totalClaimed [_msgSender ()1);
26 }

28 function getUserClaimableTicketCount (address user) public
view returns (uint256) {

29 return presaleNumOfUser [user].add(publicNumOfUser [user
]) .sub(totalClaimed [user]) ;

30 }

Listing 3.16: DirtyDogs NFT contract

3.8.2 Properties

The attacker could exploit the smart contract due to a vulnerability in the function
claimDogs, which includes even a bad implementation of the ERC721 standard. It
can be classified as a case of reentrancy.

37

Exploits

The NFTs are not directly sold, but a ticket instead is provided to the users,
who would convert it. The function claimDogs is in charge to verify the tickets
and generate the NFTs. Because of the reentrancy, the attacker produced 45 NFTs
with a single ticket.

The property can be expressed as a postcondition, which states that the amount
of NF'Ts produced should be equal to the number of tickets of the user.

We implemented even a support variable called effClaimed, which is increased
for every minting, and the totalClaimed instead is updated just at the end of the

function. The following post-condition is referred to as the vulnerable function
claimDogs(...).

sum_of _wint(totalClaimed) <= ef fclaimed (3.10)

38

Chapter 4

Analysis Tools

Table 4.1: Tools Classification

with Specifictation without Specifictation with Multiple Running Mode

SolcVerify Mythril Manticore
Celestial Slither SmarTest
Echidna
Certora

This chapter is addressed to present the analysis tools involved in the experiments.
Each one has a dedicated section, which gives a general overview of its architecture,
the implemented methodologies and the limitations. We collected the information
from their presenting paper or the provided GitHub documentation.

Our work deals with the practical aspect of the tools, their installation and their
behaviour in a real-world case, consequently, we decided to stress this practical
aspect for defining their taxonomy. We draw it, classifying the tools based on
their running mode. Table 4.1 depicts our classification, involving three different
subgroups:

 tools without specifictation;
« tools with specifictation;
 tools with multiple running mode.

The first one covers the ones which can be run with the source code (or bytecodes)
of the smart contract without any additional data. They can detect a predefined

39

Analysis Tools

group of vulnerabilities. On the other hand, the second group involves the ones
which require the user provides specifications for running. The specification can
involve a rule to be broken or a property which can be proved or unproved. In our
taxonomy, the meaning of "multiple mode running" implies the tools which can be
run with and without provided specifications.

The choice of these eight analysis tools is based on our literature research, which
encompasses surveys and comparisons of those. Another discriminant aspect of
the choice is the maintenance of the tools. the ones which have not been updated
for more than two years were discarded Open-source tools are considered because
their architecture descriptions and documentation are available.

This thesis involves justt a tool which is not open-source, Certora. The aim is
to have an experience of a maintained tool by a private company and not by the
community, but still adopting the free version and the online documentation.

The objectives of the analyses are smart contracts involved in real-world exploits.
The attackers mostly forced a bug involving the logic of the software itself. For
this reason, we mostly picked tools which could even have custom analysis.

4.1 Tools with multiple mode running

This section has the aim to describe the tools classified as "with multiple modes
running"'. Even other tools have more modes running, but this categorization
involves the tools which could take part in the other two subgroups: with and
without specification.

4.1.1 SmarTest

SmarTest is a safety analayzer for Ethereum smart contracts develeoped by So et al.
[43]. It adopts a symbolic execution technique for effectively detecting vulnerable
transaction sequences. The main challenge of the project involves the tool to find
transaction sequences, revealing the vulnerabilities of the analysed smart contract.
Therefore, bugs are discoved as the cause of the interaction of multiple transac-
tions. The purpose of SmarTest is to automatically deliver vulnerable transaction
sequences, which demostrate the weaknesses of the smart contract. The main idea
is to build a statistical model using known vulnerable transaction sequences and
use it to direct symbolic execution toward more successfully detecting unknown
vulnerabilities. Symbolic execution is guided by statistical language models, so it
can prioritize transacion sequences which are likely to reveal vulenrablities. This
statregy involves firstly to run unguided symbolic execution on existing vulnera-
ble contracts, then to learn a probablity distribution over vulnerable transaction
sequences.

40

4.1 — Tools with multiple mode running

The tool is implemented as an extension of VeriSmart (So et al. [44]). SmarTest
is build on top of that, adding its own functionalities:

« symbolic execution with a language model.
« Symbolic executor for transaction sequences.
o Constraint solving optimization.

The installation of VeriSmart is necessary for running the tool. After that, VeriSmart
can be used in SmarTest mode.

The report Listing 4.1 shows an example of output of SmarTest, which provides
the sequence of funtions for exploiting the found bug. It states in which line the
Vulnerability is, then it provides a list of transacion which could force the it.

1 [5] [IO] 1line 39, (balance[_to] + _value)
disproven, 14.528264s

2 1: Example

3 {}

| {msg.sender: #
x0000000000000000000000000000000000010000 ,
5 msg.value: 0O}

6 2: approve

7 {_spender: #
x0000200000000000000000000000000000000000 ,
8 _value:
4436579292566470190608099619372474732664557379333655
9 5789802397725137091694592}%}

10 {msg.sender: #
x0000000000000000001000000000000000000000 ,
11 msg.value: 0}

12 3: mintToken

13 {_target: #
x0000000000000000001000000000000000000000 ,
14 _amount:
87371285831589357636669861644764241805818792173739087
15 408632338890371299803136%}

16 {msg.sender: #
x0000000000000000000000000000000000010000 ,
7 msg.value: O}

Listing 4.1: SmarTest Example Report.
The tool implements modules for the detection of the following vulnerabilities:
o integer over/underflow,
« assertion violation,

o division-by-zero, ERC20 standard violation,
41

Analysis Tools

o Ether-leaking vulnerability (e.g. unauthorized access to transfer),
« suicidal vulnerability (e.g., unauthorized access to selfdestruct).

In the paper, the authors focus on just those, without considering vulnerabilities
that require analysis of the interaction of multiple contracts to demonstrate the
flaws (e.g., reentrancy).

4.1.2 Manticore

Mossberg et al. [45] describe in their paper an open-source dynamic symbolic
execution framework called Manticore for analyzing binaries and Ethereum smart
contracts.

The definition of dynamic symbolic execution is: Dynamic symbolic execution
mixes concrete and symbolic execution benefiting from the efficiency and decidability
of concrete execution and the need to use concrete values when interacting with
the program environment and from the stronger guarantees of symbolic execution.

The adaptable architecture of Manticore enables it to run custom analsysis, and
its API increase the customization of those.

The keyword of this tool is dynamic symbolic execution, which is the implemented
analysis technique. It identifies a collection of path predicates, and constraints
on the program’s input, for paths that the analysis has investigated. These are
employed to produce the inputs necessary for the corresponding paths to be followed.

Figure 4.1 provides an overview of Manticore’s architecture. The primary
components are the Core Engine and Native and Ethereum Execution Modules.
Secondary components include the Satisfiability Modulo Theories (SMT-LIB)
module, Event System, and API.

Manticore CLI Manticore Script
MANTICORE
APl
Core Engine SMT-LIB
ConstraintSet
Nabive Binaries Smart Conbtracts
Event
System)
CPU 0s Expressions
EVM EVM
CPU WORLD
ARM X86 LINUX DECREE Solver 73

Figure 4.1: High-level architecture diagram (Figure from [45]).

42

4.2 — Tools with Specifications

Manticore’s adaptability comes from the Core Engine. It implements a generic
platform-independent symbolic execution engine with few underlying execution
model presumptions. Despite the differences between EVM and no EVM execution,
Ethereum support did not require substantial architectural changes to Manticore,
since the Core Engine is completely decoupled from all execution platform details.

Dealing with Symbolic execution of smart contracts, those get input as network
transactions consisting of a value and a data buffer, containing information about
which function should be executed in a contract, and its arguments. This technique
involves symbolic transactions, where both value and data are symbolic. Symbolic
transactions are applied to all Ready states, which cause the symbolic execution
of one transaction. This allows the tool to explore the state space of a contract.
An infinite number of interconnected contracts can be executed in Manticore’s
emulated environment. It can monitor the condition of not just a single contract
but the entire Ethereum "world," which consists of many interconnected contracts.

The specifications are written in terms of functions. These do not have any
parameters and return a boolean statement. The tool in the report states which
function could not pass the test, which means that the function returned false.
It indicates even the list of transactions for making the function return false, so
"breaking" the specified property.

On the other hand, it can run without specfications. It implements plugins,
which can be enable or disable, for detecting vulnerabilities. It can detect the
following ones:

o integer overflow /underflow,
e reentrancy,

o unused retturend value (which is not a proper vulnerability, but the tool warns
the user of this case),

 suicidal contracts,
o detect delegatecall (the tools warns the user of this case),

e race condition.

4.2 Tools with Specifications

This section deals with the description of tools with specifications, so the ones
which need the source file even additional information. Some of the tools requires
just some modifications of the source code, on the other hand in some cases the
user has to provide an additional file providing the specifications.

43

Analysis Tools

4.2.1 Certora Prover

Certora Prover is a tool for formal verification of Solidity smart contracts. Any
computer programme that may be compiled using EVM can undergo Certora
Prover verifications.

Since the tool is not open source, we draw the information regarding the tool
from the Certora Documentation

It is provided as Software as a Service, a cloud technique, so it is not possible
to install the complete tool. A user can interact with it on its website, providing
the tool as SaaS (service as a Service), otherwise, a command-line interface can be
downloaded, which interacts with the server by remote.

The user for the verification has to provide the Solidity file and the specification
one, which contains the logic formulas for verification conditions. These are
proven by an SMT (satisfiability modulo theories) solver. The solver also provides
a concrete test case demonstrating the violation of the specifications that are
unproved.

A user can state the specifications as invariants otherwise as functions, called
rules. The invariants contain just a boolean formula. On the other hand, the rules
contain the properties to be proved and these are written like functions. Those are
written using the Certora language, which has a similar grammar to Solidity, for
example the types of the variables are the same, but with more functionalities for
writing down the specifications. The specification file allows the call the function
of the target smart contracts- Multiple require definitions can be stated at the
beginning, for expressing a condition to be realised before the running of it. A
requirement is that each rule has to conclude with assert, containing a boolean
condition. The user can specify an enviroment variable, env defining the possible
preconditions.

Listing 4.2 covers an example of the specification of the function transferFrom
of a smart contract which implements a token. The function cares about the transfer
of tokens from one accout to the other one. This rule checks that the balances
of the users are updated correctly. The enviroment of the enviroment specifies
that the msg.value, so the amount of native token sent in the transaction, is 0.

44

16

4.2 — Tools with Specifications

rule transferFromCorrect (address from, address to, uint256
amount) {

env e;
require e.msg.value == 0;
uint256 fromBalanceBefore = balanceOf (from) ;

uint256 toBalanceBefore = balanceOf (to);
uint256 allowanceBefore

allowance (from, e.msg.sender);

require fromBalanceBefore + toBalanceBefore <= max_uint256;

transferFrom(e, from, to, amount);

assert from != to =>
balanceOf (from) == fromBalanceBefore - amount &&
balanceOf (to) == toBalanceBefore + amount &&
allowance (from, e.msg.sender) == allowanceBefore -

amount ;

Listing 4.2: Certora example specifications

4.2.2 Celestial

- N

Celestial Project P

Solidity Contract C1 | | Solidity Contract C,
+ specifications + specifications

Pretty Printe@ % Spec Erasure

- * -
Blockchain F* verifier
Semantics in F* c1l.fst, .., Cn.fst

/

Solidity . EVM
(vanilla) Sohdnyy Deployment

Compiler

Figure 4.2: Celestial Architecture

N ‘v y,

This subsection is addressed to introduce Celestial, an analysis tool for Solidity
Ethereum-based smart contracts developed by the research team of Microsoft India.

Figure 4.2 shows the its architecture.

The developers provide functional requirements for formally verifying their
specifications. The input file is labelled It gives programmers the ability to create

functional requirements for their contracts. The input file is labelled as

45

'.cel",

16

Analysis Tools

it is the solidity file, with the added specification expressed in notes. When the
grammar is checked, the contract and the specifications are translated in F* for
having the verified verdict.

Listing 4.3 shows an example of input file. The invariants are expressed as
boolean condition. At the beginning of a function, the specifications can be
expressed, regarding precondition and postcondition. The keyword modifies,
placed as well at the beginning of the functions, specifies the variable that can
be modified in the function, or tx_reverts, which states the possible condition
that a function can revert. The Solidity implementation of the function is kept.

contract SimpleMarketplace {
// contract fields
invariant balanceAndSellerCredits {
balance >= totalCredits &&
totalCredits == sum_mapping (sellerCredits)
}
//function
function buy (address itemId) public

modifies [sellerCredits , totalCredits |,
itemsToSell |,

log 1]

tx_reverts !(itemId in itemsToSell) || value !=

itemsToSell [itemId].price
|| value + totalCredits > uint_max
post (!(itemId in itemsToSell) && sellerCredits [

seller] == o0ld (sellerCredits) [seller = >
sellerCredits [seller] + value]
&% log == (eItemSold , sender , itemId) :: old (
log))

{ // implementation of the buy function 7

3

Listing 4.3: Celestial example specifications

F* is a fully dependent type system proof helper and programs verification.
The authors state that F* offers SMT-based automation, which is sufficient for
the completely automated verification of real-world smart contracts. Moreover, it
enables the developers to work in a customised state and exception effect mimicking
the blockchain semantics since it supports user-defined effects. Finally, even though
its first-order subset with quantifiers and arithmetic is used by the tool, it permits
expressive higher-order specifications.

The celestial process involves 2 steps: the translation of the specification and
the verification of F* start. The first one involves a python script, on the other
hand, the second one entails the installation of F* engine. The output covers the
response of the verification and a generated solidity file, which represents the smart
contract without the specifications notes.

46

4.2 — Tools with Specifications

Limitations The authors explained their tool implementation focused on the
Solidity constructs used in their case studies, therefore it does not cover some
Solidity cases.

It does not take into account syntactic elements like inheritance, abstract
contracts, tuple types, delegatecall and embedded assembly

Most of these only offer syntactic sugar, which CELESTIAL’s future iterations
should find simple to support. Arrays and structs cannot presently be passed as
parameters to functions in our implementation.

Loops are allowed in the smart contracts, however, the tool does not support
loop invariants. When external contracts are called, reentrant behaviour can result,
in which the external contract contacts the caller back. Reasoning about reentrant
actions is frequently counterintuitive. Celestial forbids these actions, this property
is called "external callback freedom" (ECF). It states that every callback execution
in a contract is equivalent to some activity without reentrancy. So Celestial assumes
that there is no callback during the external call.

4.2.3 Echidna

Echidna is an open-source smart contract fuzzer, developed by Grieco et al. [16],
which makes it easy to automatically generate tests to detect violations in assertions
and custom properties. Rather than relying on a fixed set of pre-defined bug oracles
to detect vulnerabilities during fuzzing campaigns, Echidna supports three types of
testing:

« user-defined properties (for property-based testing);
 assertion checking;
e gas use estimation.

Figure Figure 4.3 depicts the Echidna architecture as a two-step process: pre-
processing and fuzzing. The tool starts with a collection of contracts that have
been supplied, as well as attributes that have been integrated into one of the
contracts. Echidna uses Slither, smart contract static analysis framework presented
in subsection 4.3.1, to build and analyse the contracts to find relevant constants
and functions that directly handle Ether (ETH). The fuzzing effort begins in the
second stage. Using the application binary interface (ABI) given by the contract,
significant constants stated in the contract, and any previously gathered sets of
transactions from the corpus, this iterative procedure creates random transactions.
When a property violation is detected, a counterexample is created to indicate the
smallest and most basic sequence of operations that caused the failure.

The code Listing 4.4 provides an example of invariant in Echdina context. The
Solidity contract contains a vulnerability a the backdoor function. The output of

47

Analysis Tools

Fuzzing campaign Outputs

................................. T T T P PP

bytecode % X

contract : H i L i i

d : contrgct H valuel execu'glon_ and |_counter, | shrinking |- failure
code : abi = | generation monitoring example : report

: SLITHER H :
system additional % value and serialized +| distilled
properties information & corpus collection transactions H corpus

Figure 4.3: Echidna architecture (image from [16]).

the terminal presents the subsequence of functions to call for breaking the rule.

contract Tokenf{

mapping (address => uint) public balances;

function airdrop() public{
balances [msg.sender] = 1000;

}

function consume () public{
require (balances [msg.sender]>0) ;
balances [msg.sender] -= 1;

}
function backdoor () public{
balances [msg.sender] += 1;
}
function echidna_balance_under_1000() public view returns(
bool){
return balances[msg.sender] <= 1000;

}

Listing 4.4: Echidna usage example.

The tool can be even used to test assertions. The aim is equivalent of the
invariant testing methodology, but in this case properties are expressed using the
Solidity annotation of assertion.

4.2.4 Solc-Verify

Hajdu and Jovanovi¢ [14] present Solc-Verify, a source-level verification tool for
Ethereum smart contracts. It takes smart contracts written in Solidity and dis-
charges verification conditions using modular program analysis. It is built on top of
the Solidity compiler, so it reasons at the level of the contract source code. Because
of that, Solc-verify can reason about high-level contract attributes while accurately
modelling low-level language semantics.

Solc-Verify is implemented as an extension to the Solidity compiler. It accepts
a collection of Solidity contracts, including specification annotations, and uses the

48

4.2 — Tools with Specifications

Boogie verifier and SMT solvers to discharge verification conditions.

As Hajdu et al. [46] explain, Solc-verify translates the annotated contracts to
the Boogie Intermediate Verification Language (IVL). The tool relies on the Boogie
verifier to perform modular verification by discharging verification conditions to
SMT solvers. The verification conditions encode the function body while assuming
the preconditions, and then check if postconditions hold. In this process, function
calls are replaced by their specification and loops by their invariants (modularity).
Finally, the results are back-annotated to the Solidity source.

Listing 4.5 present an example of annotation, which states that the contract
will ensure that the sum of individual balances is equal to the total balance in the

bank
I|pragma solidity >=0.7.0;

3| /* %

1| * @notice invariant _ _verifier_ sum_uint (balances) <= address(
this) .balance

*/

6| contract SimpleBank {

7 mapping (address=>uint) balances;

9 function deposit() public payable {
10 balances [msg.sender] += msg.value;

11 }

13 function withdraw(uint256 amount) public {

14 require(balances [msg.sender] > amount);

15 bool ok;

16 (ok,) = msg.sender.call{value: amount}(""); //
Reentrancy attack

17 if (lok) revert();

18 balances [msg.sender] -= amount;

20 }

Listing 4.5: An example Solidity smart contract implementing a simple bank
with SolcVerify annotations.

Hajdu and Jovanovié¢ [47] on GitHub repository, present the specification an-
notations. Those must be included in special documentation comments (/// or
/** */) and must start with the special tag @notice. They must be side-effect
free Solidity expressions (with some verifier-specific extensions) and can refer to
variables within the scope of the annotated element. Functions cannot be called in
the annotations, except for getters. The currently available annotations are listed
below.

« Function pre/postconditions can be attached to functions. Preconditions

49

Analysis Tools

are assumed before executing the function and postconditions are checked
(asserted) in the end. The expression can refer to variables in the scope of the
function. The postcondition can also refer to the return value if it is named.

o Contract level invariants can be attached to contracts. They are included as
both a pre and a postcondition for each public function. The expression can
refer to state variables in the contract (and its balance).

e Loop invariants can be attached to for and while loops. The expression can
refer to variables in the scope of the loop, including the loop counter.

» Modification specifiers can be attached to functions. The target can be a (1)
state variable, including index and member accesses or (2) a balance of an
address in scope. Notes, however, that balance changes due to gas cost or
miner rewards are currently not modelled.

« Event data specification can be attached to events that should be emitted
when certain data changes. Events can declare the state variable(s) they track
for changes, or in other words, the variables for which the event should be
emitted on a change.

4.3 Tools without specification

We introduce the second main category of our taxonomy: tools without Specifica-
tions.

These do not need any specifications and they based their analyses on configured
detectors. They can be considered "plug & play', indeed they work with code (or
even bytecode) of the smart contracts, without the developer should code anything
for letting them run. Most of the tools that we found during the literary research
propose just a warning, depicting the vulnerable lines of code and classifying the
vulnerability following their taxonomy or open-source ones.

4.3.1 Slither

Slither is described by Feist et al. [11] as an open-source static analysis framework.
It uses its own intermediate representation, SlithIR, which was created to simplify
static analysis of Solidity code. Concolic analysis, taint analysis, and control
flow checking are involved for detecting a variety of security vulnerabilities. It
is designed to provide granular information about smart contract code and the
flexibility necessary to support many applications.

It is mainly used for:

50

4.3 — Tools without specification

o Automated vulnerability detection: a large variety of smart contract bugs can
be detected without user inter- vention.

« Automated optimization detection: Slither detects code optimizations that
the compiler misses.

e Code understanding: printers summarize and display contracts’ information
to aid in the study of the codebase.

o Assisted code review: through its API, a user can interact with Slither.

Slither implements more than twenty bug detectors, regarding reetrancy, Unini-
tialized variables, Shadowing and many other. The tool allows the developers to
integrate more detectors, therefore it extends Slither’s capabilities to detect more
advanced bugs.

Slither core

1
. 1
Contract IR code data reentracy shadowing Ca
inherance transfomer dependency :
Optimization Detection
4 1
= Q% Contrrsl EOW reac‘i/w:‘ute external constant '
el 9rap variables functions variables | 1
smart soidty "l . I'm—1 : |'————'\\=c—-—=-rrr-ro--- H
contract compiler Solidity SSA protected e mmmem _PrlnEe_rs _________
expressions transformer functions N - [l
inheritance owner '
I T L T graph accesses | 1
' Information slithIR Code Hiyyegegege gl ey g g g '
! recovery conversion analysis

Third-Party Tools

Figure 4.4: Slither architecture overview (image from [11]).

Slither [48] is written in python 3 and it is published on GitHub. During the
installation, I did not find any particular issues.

4.3.2 Mythril

Mythril is a security analysis tool for Ethereum smart contracts. It was introduced
by Mueller [12].

The tool relies on taint analysis and control flow checking of the EVM bytecode
to prune the search space and look for values that allow exploiting vulnerabilities in
the smart contract. It is targeted at finding common vulnerabilities and is not able
to discover issues in the business logic of an application. SmartContractSecurity.
SWC Registry [49]’s taxonomy of vulnerabilities is used by Mythril to classify them.
Listing 4.6 illustrates an example of the output of Mythril analysis. In the second
line, there is a reference to the vulnerability classified by the SWC Registry with
the ID of 110 (Assert Violation).

51

Analysis Tools

==== Exception State ====

SWC ID: 110

Severity: Medium

Contract: Token

Function name: transferArray(address|[],uint256[])

PC address: 4385

Estimated Gas Usage: 944 - 6585

An assertion violation was triggered.

It is possible to trigger an assertion violation. Note that
Solidity assert() statements should only be used to check
invariants. Review the transaction trace generated for this

issue and either make sure your program logic is correct,
or use require() instead of assert() if your goal is to
constrain user inputs or enforce preconditions. Remember to
validate inputs from both callers (for instance, via
passed arguments) and callees (for instance, via return
values) .

In file: test.sol:309

s| function transferArray(address[] tos, uint256[] values) public

returns (bool) {
for (uint8 i = 0; i < tos.length; i++) {
require (transfer (tos[i], values[i]));

}

return true;

Listing 4.6: Example of the output of Mythril Analysis.

52

Chapter 5
Results and Evaluation

This chapter presents the results of the analyses. It is addressed to show the
obtained data from the tests.

It deals with the individual outcomes per tool, providing details about the
running phase and installation. Eventual problems, during those phases, are
described per each tool.

Then, a general comparison gives a high-level view of the obtained results. This
section aims to define which tool had better behaviour in terms of operability,
speed and correctness of the analysis.

5.1 Experimental Setup

The analysis tools were installed and used on a laptop using Ubuntu 20 as the
operating system. The first step for launching the analysis was the selection of
smart contracts. Their vulnerable sections were considered and the safe parts were
discarded, while preserving the fundamental logic. The changes applied to the
smart contracts have the aim to simplify those and make the analysis faster since
the tools have less amount of code to scan.

The smart contracts were adopted to be tested by all the tools. The aim was to
obtain results from tools having the same targets.

In Solidity the standard for implementing the token is ERC20. Every token
inherits the standard interface IERC20. Their implementations are substituted
with arrays, which store the information of the balance of each user.

All smart contracts are adapted to be compiled with Solidity version 7. Echidna,
Celestial and SmarTest had problems with version 8. The eighth version solves the
problem regarding algebraic issues: transactions automatically revert in case of
any problem during an algebraic operation. In our case, all the smart contracts
implemented the "SafeMath', which provides the same functionality check during

53

Results and Evaluation

algebraic operations.

The constructors can implement different initialization based on the requirements
of the tools. Following, some examples on how smart contracts are adapted for
running the tests.

The auction of the Aku protocol (section 3.1) functionalities are reduced. The
user can only buy bids and call the function for processing the refunds. Moreover,
the owner can call the function claimProjectFunds for claim the funds of the
project.

Bzx exploit (section 3.3) involves a vulnerability in the implementation of the
ERC20 standard token interface. The functions regarding the transfer of tokens
and the estimation of the balance are not changed, but the other functionalities,
such as mint and burn are not considered.

In the Cover protocol exploit(subsection 3.2.1), the base struct of the pool and
its vulnerable function deposit are kept. Other functionalities are discarded.

Spartan Protocol (section 3.4) is written over one smart contract; imports are
avoided. The balances of the underlying assets are not estimated, calling the
function balance0f of their smart contracts. The balances of the users are stored
in an array. The variables tokenAmount and baseAmount have the same roles.

The Uranium exploit (section 3.5) simplified version involves the three main
functions of the attacks deposit, withdraw and emergencyWtihdraw. The struct
of the user, which stores the number of tokens and the rewards, is not modified. In
this case, the rewards are not sent to any user, but an array stores the amount of
the rewards per user.

Considering an example of reentrancy, DirtyDogs smart contract(subsection 3.2.1)
inherits the same version of the ERC777 NF'T standard. It keeps the vulnerability,
but the potentiality of the contract is reduced to the ClaimDogs function. The
constructor initializes the array which stores the number of tickets per user.

5.2 Individual Outcomes per Tool

This section deals with the eventual problems during the installation and running
phase. Moreover, the tools outcomes having as objective a specific attack are
collected. Per each tool, a table has three parameters; the first one is the number
of written lines of code considering the specifications. The part of the code which
were copied from the target smart contracts were discarded during the counting.
The second field deals with the execution time of the tool and the last one specifies
if the vulnerability was effectively detected.

Per each tool with specifications, some examples of specifications are provided.

54

5.2 — Individual Outcomes per Tool

Manticore

The provided guide on Github ([50]) gives a detailed guide for Manticore installation.
Since it is written in python, we used a virtual environment and we counted around
nine libraries for dependences. The installation involved basically one command,
since it was managed by "pip", a python packet manager.

The table Table 5.1 shows the outcomes of the analyses per attack; the symbol
means that in that case we did not use the "Manticore-verifier' running mode,
but the default one, which it does not need a specification file.

"

Table 5.1: Manticore results

Attacks Lines of Code Execution Time (seconds) Found, Not Found

Aku 6 235 Not Found

Cover 5 245 Not Found
BZX 4 228 Found
Spartan 3 239 Found

Uranium 3 250 Not Found
XSURGE - 208 Found
BurgerSwap - 205 Found
DirtyDogs - 203 Found

Its default running mode activates the automatic modules for the detection
of reentrancy. So its mode without specifications was used for attacks involving
external calls. "Manticore-verifier" running mode, the one with specifications, was
adopted for the other exploits.

Listing 5.1 is an exmple of "Manticore-verifier". The objective of the analysis is
Cover Protocol (section 3.2). Since the tool does not allow the any functionality
for taking the old value of a variable for the test, an array of support is introduced
minersRewardEff. It stores the rewards per user estimated at the end of the
function when the pool is updated.

2 function crytic_test_check()public view returns (
bool){

3 return minersReward[msg.sender]==
minersRewardEff [msg.sender];

}

Listing 5.1: Manticore Specifications

55

Results and Evaluation

SmarTest

SmarTest is built on top of VeriSmart tool, so it can be seen like a plug in of these
one. Indeed, we run SmarTest as an option of VeriSmart, as the Github guide
explains ([51]). The tool is built with OCalm, a program language, so we used
for the installation "opam", which is a source-based package manager for it. An
important dependency is Z3, its satisfiability modulo theories (SMT) solver. Solc,
the compiler for solidity, is required.

Since it has no the dector for reentrancy, the table Table 5.2 shows the attacks
involving external call were not scanned. A running time threshold of 320 seconds
was set, because the machine, which ran the test, after that threshold gave bugs or
stopped automatically.

Table 5.2: SmarTest results

Attacks Lines of Code Execution Time (seconds) Found, Not Found

Aku 3 320 Found
Cover 2 310 Not Found

BZX 4 320 Found
Spartan 2 320 Not Found

Uranium 4 320 Found
XSURGE - - Not Found
BurgerSwap - - Not Found
DirtyDogs - - Not Found

The tool can be run with specifications using assert function. In a running
code, if the boolean statement is false, the transaction reverts. The property to
be checked is written down in the assert, as Listing 5.2 shows. The target is
the function removeLiquidityForMember of Spart protocol (section 3.4). The
postcondition is expressed at the end of the function.

1 function removeliquidityForMember () public returns (
uint256 outputBase, uint256 outputToken) {

RN

assert (tokenAmount==balanceToken[address (this)]) ;
4 assert (baseAmount==balanceBase [address (this)]) ;

5
6 }

Listing 5.2: SmarTest Specifications

56

5.2 — Individual Outcomes per Tool

Celestial

Celestial is a tool which encompasses two main steps: the translation of the target
smart contract in F* and then the running of the formal verification engine. This
is the tool that required the most amount of time for installation and usage. It did
not cover reentrancy attacks, so those exploits were discarded; moreover, it did not
cover the keywords "storage" and "memory", so the "Cover Protocol" exploit was
discarded as well. Table 5.3 shows the tool could detect the other four vulnerabilities.
During the running, we used multiple versions of F* and in some cases (as with
the "Uranium" exploit) the conversion was not correct, so we adjusted the F* code
to let it work.

Table 5.3: Celestial results

Attacks Lines of Code Execution Time (seconds) Found, Not Found

Aku 22 4 Found
Cover — — Not Found
BZX 15 3 Found
Spartan 29 5 Found
Uranium 18 5 Found
XSURGE — — Not Found
BurgerSwap - - Not Found
DirtyDogs - - Not Found

Listing 5.3 presents an example of specification file. It is an extract of the
celestial file of the BZX protocol (section 3.3). The content of the function is the
same and the postcondition is expressed at the beginning of the target function.
The specifications are written as modifiers of the function.

2 function transferPrivate(address _from, address _to,
uint _value)

3 public

| post checkTransfer (balances[_from],new(balances)
[_from],balances[_to] ,new(balances)[_tol, _value)

5 {

7 }

Listing 5.3: Celestial Specifications

57

Results and Evaluation

Echidna

Echidna is a fuzzer for smart contracts. The tool did have any problems during the
installation and worked fluently. It allows to write the properties in the form of a
function or as a statement of "assertion". Both solution were applied depending on
the case. Table 5.4 states that the tool could detect all the vulnerabilities, but the
ones involving external calls, since it discards those.

Table 5.4: Echidna results

Attacks Lines of Code Execution Time (seconds) Found, Not Found

Aku 7 22 Found
Cover 5 7 Found
BZX 3 33 Found
Spartan 3 17 Found
Uranium 3 24 Found
XSURGE — — Not Found
BurgerSwap - - Not Found
DirtyDogs - - Not Found

Listing 5.4 shows the specification file of the exploit Uranium (section 3.5).
Since it is a fuzzer, it generates random semi-random inputs and uses real values,
not symbolic ones. For this reason, it needs an initialization. This tool does not
allow using of annotations as "old value of", so the properties are changed to
obtain the same result. The constructor contains real values, fixed arbitrarily. The
function that expresses the specification checks the impossibility of obtaining a
high bonus with that deposited amount. The bonus depends even on the time of
staking; consequently, the value in the faction is too high to be achieved in a few
transactions. The specification is triggered when the reward, the radsbalance, are
higher is higher than 55 and the amount of token, depositAccount, is higher than
the original value of 100.

58

5.2 — Individual Outcomes per Tool

1 constructor () public {

2 ai=0;

radsTot=10000;

A radsbalance[echidna_caller]=0;
userInfo[echidna_caller].amountWithBonus=0;
6 userInfo[echidna_caller].bonus=0;

7 depositAccount [echidna_caller]=100;

9 // staking pool
10 poolInfo=PoolInfo ({

11 lpSupply: O,

12 accRadsPerShare: 0

13 B

14

15 }

16

17

18 function crytic_test_check()public view returns (
bool) {

19 return radsbalance[echidna_caller]<=55 ||
depositAccount [echidna_caller]<100 ;
20 }

Listing 5.4: Echidna Specifications

Certora

Since Certora is not an open source tool, the provided documentation is limited.
Their GitHub ([52]) has a repository dedicated to tutorials for understanding how
to write down the properties. Table 5.5 states that the tool could detect all the
vulnerabilities, but the ones involving external calls, since it discards those.

Table 5.5: Certora results; the time is provided by the sas application

Attacks Lines of Code Execution Time (seconds) Found, Not Found

Aku 52 14 Found
Cover 31 21 Found
BZX 25 18 Found
Spartan 20 25 Found
Uranium 42 27 Found
XSURGE - - Found
BurgerSwap - - Found
DirtyDogs - - Found

59

Results and Evaluation

As an example of a specification file of Certora, Listing 5.5 presents the function
CheckUnderlyingAssets, called rule, which was not proven by the tool during
the analysis of Spart Protocol (section 3.4). As the attack, the output presents
a possible solution the sending of funds to the underlying assets to modify the
estimation of the number of tokens. Certora requires that a variable environment is
declared and passed to the function. The user can set the amount of native tokens
to send and the address of the sender.

1 rule CheckUnderlyingAssets (address account) {
2 env e;
//e.msg_sender =

A //e.msg_value =
removelLiquidityForMember (e) ;

7 assert balanceBaseOfThis() <= getBaseAmount () ;

Listing 5.5: Echidna Specifications

SolcVerify

SolcVerify deals with formal verification for smart contracts. Its annotation language
does not require a great amount of lines of code. For working properly, as Celestial,
all the involved functions require specifications. Installation problems occurred
during the right configuration .NET and the selection of the right version of the
external dependences. Moreover, the tool had issues for finding the correct path
for those in the system.

Table 5.6 shows the tool could detect all the vulnerabilities.

An example of the specifications of SolcVerify is presented by Listing 5.6. The
target is DirtyDogs (section 3.8). Its program language expresses specifications with
annotations, written on top of each function. Each function requires specifications
for the correct tool’s behaviour. The annotation __verifier sum_uint makes the
sum of the elements contained in the specified mapping.

60

5.2 — Individual Outcomes per Tool

Table 5.6: SolcVerify results

Attacks Lines of Code Execution Time (seconds) Found, Not Found
Aku 9 4 Found
Cover 13 5 Found
BZX 17 9 Found
Spartan 25 17 Found
Uranium 23 9 Found
XSURGE 20 10 Found
BurgerSwap 11 10 Found
DirtyDogs 30 14 Found
1 /// @notice invariant totalClaimednum == effclaimed
2 /// @notice invariant _ _verifier_sum_uint (

totalClaimed) <=
3 contract DirtyDogs is ERC721{

effclaimed

uint256 totalClaimednum=0;
uint256 effclaimed=0;
mapping (address=>uint256)totalClaimed;

function claimDogs () public {
uint256 numbers0fTickets = 5 ;

19

///@notice postcondition i==numbers0fTickets

///@notice postcondition __verifier_old_uint
(effclaimed)==effclaimed+numbers0fTickets
for(uint256 i = 0; i < numbersOfTickets; i

++) {
uint256 mintIndex = totalSupply_(Q);
effclaimed++;
_safeMint (msg.sender, mintIndex);
//msg.sender.call{ value: 0 }("");
}
totalClaimednum=totalClaimednum+ (
numbers0fTickets) ;
totalClaimed [msg.sender] = numbersO0fTickets
+(totalClaimed [msg.sender]) ;
}
}

Listing 5.6: SolcVerify Specifications

61

Results and Evaluation

Slither and Mythril

Slither and Mythil did have any problem during the installation phase and run
properly per each attack. They could detect all the reentrancy issues, but none of
the others.

5.3 General Comparison

The first step was the collection of all the data from the analyses with the vulnerable
smart contracts as objective. In this part, we provide a technical comperison of
the tools.

5.3.1 Installation

Table 5.7 collects the info about the installation details per each tool.

The running mode involves the way a tool can be run; a tool is classified as
"multiple running mode", if its grammar effectively changes between different modes.
For example, echidna, it can be run in test mode and in assertion one, in the first
case it requires functions with boolean formulas; in the second case the solidity
keyword "assertion" in the code.

The external dependences encompass the external elements, so we do not count
the amount of libraries of the same language. All the tools require Solc, the solidity
compiler. Most of the tools did not have any problems during the installation
phase. Celestial and SolcVerify installations had issues. The first one needs F* for
running and the selection of its right version is based on the tool and the system
environment; consequently, it turned out like a challenge. On the other hand, the
second one involves the usage of Boogie, an intermediate verification language,
which requires .NET, ([53]), an open source, cross-platform for building many kinds
of applications maintained by Microsoft. The configuration of the correct version of
.NET and the other external dependences were based on the computer environment
and the tool.

Since Certora operates in Service as a Service (SaaS) mode, it can be considered
as the most compatible tool, but the machine requires cannot run offline. SmartTest
could be run in two modes, but it was not necessary, since the running mode without
specifications could not provide any consistent results.

5.3.2 QOutcomes

In this subsection, the outcomes of the tools are compared. Table 5.8 has the name
of tools as rows and the real-world exploits as columns. It shows which tool was

62

5.3 — General Comparison

Table 5.7: Installation and running mode

Tools Running modes Extenral Dependences OS
Manticore 2 2 Linux, OS X
SmartTest 2 3 Linux, OS X, Windows

Celestial 1 3 Linux, OS X
Echidna 2 2 Linux, OS X, Windows
Certora 1 - -

SolcVerify 1 4 Linux, OS X
Mythril 1 2 Linux, OS X
Slither 1 2 Linux, OS X, Windows

able to scan the specified vulnerability involved in the attacks. The caption states
the symbols used for the evaluation:

« V'states that the vulnerability was scanned;
e Xmeans the tool was no able to detect it;

o — stands for "discarded", tha attack was not considered for architectural reason
of the tool.

We can state that the tools with specifications could not detect reentrancy in
most of the cases. SolcVerify is the only one which could provide a result in all cases;
moreover, it was the only tool which could detect correctly all the vulnerabilities
we provided.

Celestial is the tool with more discarded cases. The tools without specification
could not detect any of the attacks, but the ones involving external calls.

The tools without specifications gave warnings in most cases, which could be
used as a hint for scanning the vulnerabilities. Echidna and Certora had similar
behaviour; they could not detect the attacks regarding reentrancy.

Table 5.9 provides high level details about the analyses per tool. "Constructive
output" is referred to the type of output of the tool. We have three types:

1. list of functions: the sequence of operations to execute for forcing the vulnera-
bility is expressed;

2. list of unproven tests: the output provides only the name of the failed test;

3. warnings: the tool displays just warnings.

63

Results and Evaluation

Table 5.8: Analyses Outcomes per Attack: v': Found vulnerablity, X: Not found
vulnerability, — Discarded

Tools Aku Cover BZX Spartan Uranium XSURGE BurgerSwap DirtyDogs

Manticore
SmartTest
Celestial
Echidna
Certora
SolcVerify
Slither
Mythril

BN NN
> X N NN XX
R IENENENENENEN
RN N NN
BN N NN

I

|

|

SolcVerify and Celestial, within the tools allowing custom analyses, are the only
ones which do not provide any additional information. Manticore and Mythril
display, when it is possible, the list of functions, but in the case of reentrancy just
a warnings of possible risk.

Regarding the speed of the tools, Celestial test times are assumed with zero
delay between the generation of the F* code and the running of the F* module.
The time spent for running by command line the two different operations could
be avoided by automating the process. The slowest tools are the ones involving
symbolic execution. Mythtil needs a similar amount of time as Manticore and
SmartTest, even if it does not allow custom analyses. Slither is the fastest one, but
specifications are not provided per test and no additional information is displayed
about the scanned vulnerability.

Table 5.9: Analyses Outcomes: LoF: List of functions, LoU: List of unproven
tests, W: Warnings

Tools Constructive output Avg lines of code for test Avg time (in seconds)
Manticore LoF, W 4 239,5
SmartTest LoF, W 2,5 318

Celestial LoU 21 4
Echidna LoF 4 20,5
Certora LoF 34 21

SolcVerify LoU 18,5 10
Mythril LoF, W - 221
Slither W% - 3,5

Within the tools with specifications, another parameter for comparison is the
number of lines of code required for defining the specifications. The ones which

64

5.3 — General Comparison

required the least number of lines were the ones which allowed those definitions by
using "assertion" or functions returning a boolean statement: SmartTest, Echidna
and Manticore. Howeve, this approach does not have consistent results. Echidna
worked better using the other mode.

Echidna and Manticore have similar results since they adopt the same grammar
for expressing the specifications. Those are written in the form of a function which
returns a boolean value.

Certora had the most amount of lines. A reason for that is its elasticity for
defining specifications in terms of functions. SolcVerify, with the formal verification
tools, had the best behaviour in this case, because of its annotation language.
Considering the specification files entirely, Celestial had the longer ones, because
the specifications are written in the code.

65

66

Chapter 6

Discussion

The aim of this chapter is to interpret and explain the obtained results. It provides
insights on the found threats, having an high level overview. Same approach about
the tools, which are grouped based on their typology, for focusing their approach
and understaning their behaviour based on the exploits.

6.1 Threats in real-world exploits

The approach for the choice of the attacks covers their effectiveness in terms of
created damage. It is estimated based on the stolen amount of money and the
possibility to recover the lack of security. The targets of those are liquidity pools,
automated market makers or NFTs markets. Crypto investments are driven by the
community, therefore, new solutions would drive the markets. Consequently, the
attackers adapt their target based on that.

A class of attacks involves external calls, particularly reentrancy issues. One
of the most cited attacks of this type is the DAO attack that happened in 2016.
Since that, developers should verify problems regarding external calls, but still,
nowadays those are still feasible.

The other exploit deal with problems regarding the sending of possible com-
pensation to users. "Uranium', "Spartan" and "Cover" exploits are based on the
manipulation of the estimation of rewards. The attackers could increase the rewards
for withdrawing a greater amount of liquidity from the pool. Those attacks had
different methodologies but the same aim.

The NFTs markets, involved in "Aku" and "DirtyDogs" exploits, were attacked
in different ways. In the first case, the attack can be classified as denial of service,
since the contract was stuck and could not refund the other participants of the bid.
On the other hand, in the second case, the adopted strategy for distributing NFTs
with tickets was forced for minting multiple of those. A bad implementation of

67

Discussion

libraries brought to have that vulnerability.

It comes clear as the threats had different origins based on the contracts.
Reentrancy is still feasible, even if it is a well-known risk.

The first step in the prevention of attacks is the understanding of the logic
of the target contracts. Possible attacks can involve the distribution of possible
rewards or the process of minting tokens or NFTs with the usage of additional data
structures.

6.2 Tools with Specifications

The tools with specifications allow the users to customize the analysis. In this
section, those are grouped based on their typology.
The considered tools cover the following security approach:

1. fuzzing;
2. symbolic execution;
3. formal verification.

Table 6.1 depicts the outcomes of the analysis, grouping the tools based on
their typologies. The first column is the typology of the tool; the second one is the
percentage of detected attacks by the tools of that category. The last column has
the same role as the previous one, but the considered attacks for estimating the
percentage are the ones not involving malicious external calls.

Table 6.1: Outcomes based on the typology

Typology Time (sec) All attacks No reentrancy
Fuzzing 20,60 63% 100%

Formal Verification 11,67 70% 93%

Symbolic Execution 272,31 44% 31%

Formal verification is a very powerful security approach, intending to prove or
unproven the given specification. This perfectly fits with our research goals. We
involved three different tools, in implementing this approach, for our purpose.

Certora is the only one, within them, which provides a complete list of functions
for breaking the rules, rather than just a list of unproven tests. On the other
hand, SolcVerify could detect vulnerabilities involving external call functions,

68

6.2 — Tools with Specifications

indeed reentrancy. A powerful aspect of this tool is its possibility to express loop
invariants, the other ones do not allow it. Considering the grammar for expressing
the specifications, SolcVerify is the one which needs the least amount of lines of
code, indeed it involves a notification language.

Certora is the only tool which is not open-source, for our purpose we adopted
its free version. Its specification language is described by its developers’ group as
"rule-based". It differs from the other two tools in this aspect, because the rules
are written in a similar way to a function in solidity, consequently, it is more user
friendly, and defines more specific cases. The rule is composed of some function
calls and it concludes with an assertion or more, which contains the bool statement
of the properties. The user is allowed to test a specific case, using "require" and
the possibility to set up a proper environment. A powerful aspect is the possibility
to express the assert of the rule in terms of boolean statements and quantifiers as
well.

Celestial and SolcVerify needed specifications for all the functions for working
properly.

Echidna is the fuzzer and it had similar results to the formal verification tools.
It had a bit worse performance in terms of speed and amount of detection. If the
exploits with external calls are discarded, this tool could detect all of those. It
provides the list of functions for forcing the exploit. Since it is based on random
inputs, different runnings provided different function inputs.

Symbolic execution is the approach which required the most amount of time.
Manticore had a better approach than SmartTest because it allow the detection
of malicious external calls. Symbolic execution tools try to explore all possible
solutions, consequently, they would not have any upper limit of time for exploring
all possible cases. In some cases, a timeout is fixed by the tools themselves.

In terms of effectiveness and speed, formal verification had the best results. A
strength of the fuzzer and the symbolic execution tools is their outcomes, which
display even how the attack is computed. It could help the developer for fixing the
bug.

Considering the exploits without malicious external calls, the percentage of
detections changes, as shown by Table 6.1.

Echdina could detect all the vulnerabilities in this case. Symbolic execution
effectiveness decreased, on the other hand, formal verification increased. Those
results depict that in the case of smart contracts involving external calls, symbolic
execution could provide effective analysis. The other two approaches are more
effective in the case of custom analysis based on specifications, so the detection of
exploits involves breaking certain rules.

69

Discussion

6.3 Customized and Non-specific Analyses

The attackers exploited a specific bug or lack of security in the logic of programs.
For scanning those, the involved tools adopted different typologies, allowing custom
analysis.

The specifications allowed the user to express the requirements of the program.
The accuracy of the analysis depends on the definition of the specifications. Their
correctness is fundamental for the effectiveness of the results. The definition of
those represents a challenge, moreover, each tool has different rules and language for
expressing those. The tools without specification implement automatic detectors.
Their presentation papers, or documentation, specify which known vulnerabilities
can detect. These detect a specified set of vulnerabilities. The users should consider
this aspect during the analysis.

Tools of this group, as our results demonstrate, do not have the capability
of scanning vulnerabilities involving the logic of the programs. However, those
obtained consistent results regarding the reentrancy cases. An example is Slither,
which for every comparison of block time stamps gives a warning. However,
developers intentionally consider this case and develop it considering the risks.

On the other hand, the ones with specifications mostly discarded the malicious
external calls. SolcVerify was the only tool which could provide the possibility of
reentrancy detection. Echidna, as Certora, developers teams specified the tools
detect external calls, but only if the code of the attack is provided as well. However,
this approach might be effective for checking a possible attack, so the developers
themselves act as malicious actors.

Manticore could bridge this gap by adopting two different running modes, so
the user, knowing the limitation of each way of analysis, can combine those for
obtaining a valuable result.

The strengths of this group of tools without specifications involve their speed,
Slither was the fastest tool, installation and plug-and-play approach. Those just
require the solidity file of the smart contracts. A user can use those for checking
possible reentrancy risks and as the first step of the analysis.

6.4 Effective Analysis

In our work, we took into consideration the selected tools individually.

We run those per time focusing on the results of each one, and providing a
comparison between those.

During an audit or a security report, a tester runs multiple of those for discovering
vulnerabilities and bugs. A better way to fulfil this goal is using a combination of
those. The tools without specification have, in our experience, an easier installation

70

6.4 — Effective Analysis

and usage, due to a reduced amount of external dependencies and writing down
specifications is not required. Those can detect well know vulnerabilities and cover
a predefined set of those.

Some of the tools with specifications we dealt with had some limitations regarding
the external calls: just SolcVerify covered this set of vulnerabilities. For covering
this limitation, a combination of tools would be a solution.

We should consider a tool without specification, Slither, and one with, Echidna.
This combination has an effective result in terms of the speed of the analyses and
amount of vulnerabilities covered. Slither has the role of detecting basic issues and
reentrancy, on the other hand, Echidna can be used for the detection of a vulnerable
implementation of the logic of the program. Since the grammar of this is similar
to Manticore, an efficient solution would be to implement the same specification
using it, which implements a different logic for scanning.

Formal verification resulted powerful for scanning possible problems, but Sol-
cVerify and Celestial require to write down the specification for all the contracts
for obtaining a consistent result. Certora has the strength of having implemented
libraries which are mostly used in real-world cases (such as OpenZeppelin ones). A
facilitating aspect of this tool is the possibility to write down the specifications on
just the properties we want to check and the possibility to code those in terms of
function. It allows for the definition of specific preconditions, adding conditions
to the environment. A strength of this tool is the possibility of using it as SaaS,
consequently, the computational effort is demanded from another computer and
the installation phase is avoided.

SolcVerify is the tool which obtained the best results in terms of discovering
vulnerabilities.

A possible effective combination can include Echidna and Certora for covering
the part of bugs in the logic and possible attacks, plus Slither for verifying the
absence of possible reentrancy.

In terms of the effectiveness of discovering vulnerabilities, SolcVerify had the
best behaviour, but it had issues during the installation phase and writing down
the specification per each function increases depending on the size of the smart
contract. Another drawback is its output, which provides just the list of proven or
unproven tests. If the specifications are not written correctly, or the tool cannot
handle the computation, it states that the tests are not proven, without stating
that a problem occurred. Consequently, the developer cannot understand if the tool
gave a negative result because of a bad implementation or because of the test. On
the other hand, Echidna and Certora specify the list of functions for breaking the
specifications. Consequently, the outcomes state what is exactly the vulnerability
and how to attack it. If the developer provides the attacker contract as well, the
tools can even state if the attack is effective. The presented combination is based
even on the facility during the writing of the specifications and installation.

71

72

Chapter 7

Conclusion

The security of smart contracts is a field which has been growing, as the popularity
of blockchains and decentralised applications (web3, NFTs...) has been getting
more spread.

This work presents the behaviour of analysis tools in a real-world context,
providing insights into the process of definition of properties, usage of the tools
and finding vulnerabilities. It is addressed to present a possible approach in real
situations.

Finally, a comparison of the selected tools is produced. It deals with multiple
aspects of those, starting with the installation and the user experience, involving
the performance and effectiveness of the analysis.

The aim is to study the aspects of those in a situation as similar as possible to
realty. The last chapters deal with their behaviour, understanding which approach
is more effective. Moreover, this work covers even the process of definition of the
properties.

This thesis provides the description of each tool, dealing with its performance,
stating which typology of them had the best results. The involved attacks are
presented, stating the properties per each of them.

Security of smart contracts is fundamental for granting the correct behaviour
of a decentralised application, but a limitation is a possibility of multiple threats
involving the infrastructure of the system itself. Possible attacks on the blockchain
are not covered by this field. The network itself could be vulnerable and a user
could risk getting the private key of the wallet stolen.

In this field, the definition of the specifications is fundamental. The focus of this
thesis was on the vulnerable parts, for understanding which vulnerabilities were
exploited by the attackers. Dealing with the reviewed attacks, the way those were
computed is known. The difficulties dealt with the definition of the properties and
the correct usage of the tools. Reviewing a smart contract involves the additional
task of trying to define all the possible vulnerabilities and writing those in form of

73

Conclusion

specifications, for effective results from the tools providing custom analysis.

7.1 Outlooks

Further work can use the same tools, but analyse new attacks for evaluating the
effectiveness of those tools in new real worlds cases.

New researches can adopt the same approach, involving new attacks and new
tools.

It can provide the starting point for a code review, supporting developers and
security analysts for the choice of tools for their experiments and tests, based on a
given selection criteria.

74

Bibliography

Satoshi Nakamoto. Bitcoin: A Peer-to-Peer Electronic Cash System. 2008.
URL: https://bitcoin.org/bitcoin.pdf (cit. on p. 1).

Vitalik Buterin. Ethereum: A Next-Generation Smart Contract and De-
centralized Application Platform. 2014. URL: https : // ethereum . org/
669c9e2e2027310b6b3cdcebel1c52962/Ethereum Whitepaper - _Buterin_
2014 .pdf (cit. on pp. 1, 8).

Consensys. Blockchain Use Cases and Applications by Industry. 2021. URL:
https://www.coingecko.com/ (cit. on p. 1).

Raynor de Best. Querall cryptocurrency market capitalization per week from
July 2010 to September 2022. 2022. URL: https://www.coingecko . com/
(cit. on p. 1).

CoinGeko. CoinGeko Web Site. 2022. URL: https://www.coingecko.com/
(cit. on p. 1).

Xiangyan Tang, Ke Zhou, Jieren Cheng, Hui Li, and Yuming Yuan. «The
Vulnerabilities in Smart Contracts: A Survey». In: Advances in Artificial
Intelligence and Security. Ed. by Xingming Sun, Xiaorui Zhang, Zhihua Xia,
and Elisa Bertino. Cham: Springer International Publishing, 2021, pp. 177—
190. 1sBN: 978-3-030-78621-2 (cit. on p. 3).

Monika di Angelo and Gernot Salzer. «A Survey of Tools for Analyzing
Ethereum Smart Contracts». In: 2019 IEEFE International Conference on
Decentralized Applications and Infrastructures (DAPPCON). 2019, pp. 69-78.
DOI: 10.1109/DAPPCON.2019.00018 (cit. on p. 3).

Palina Tolmach, Yi Li, Shang-Wei Lin, Yang Liu, and Zengxiang Li. A
Survey of Smart Contract Formal Specification and Verification. 2020. DOT:
10.48550/ARXIV.2008.02712. URL: https://arxiv.org/abs/2008.02712
(cit. on p. 3).

Sarwar Sayeed, Hector Marco-Gisbert, and Tom Caira. «Smart Contract:

Attacks and Protections». In: IEEE Access 8 (2020), pp. 24416-24427. DOT:
10.1109/ACCESS.2020.2970495 (cit. on p. 3).

75

https://bitcoin.org/bitcoin.pdf
https://ethereum.org/669c9e2e2027310b6b3cdce6e1c52962/Ethereum_Whitepaper_-_Buterin_2014.pdf
https://ethereum.org/669c9e2e2027310b6b3cdce6e1c52962/Ethereum_Whitepaper_-_Buterin_2014.pdf
https://ethereum.org/669c9e2e2027310b6b3cdce6e1c52962/Ethereum_Whitepaper_-_Buterin_2014.pdf
https://www.coingecko.com/
https://www.coingecko.com/
https://www.coingecko.com/
https://doi.org/10.1109/DAPPCON.2019.00018
https://doi.org/10.48550/ARXIV.2008.02712
https://arxiv.org/abs/2008.02712
https://doi.org/10.1109/ACCESS.2020.2970495

BIBLIOGRAPHY

[12]

[15]

[16]

[17]

[18]

Rameder Heidelind. «Systematic Review of Ethereum Smart Contract Secu-
rity Vulnerabilities, Analysis Methods and Tools». PhD thesis. Technische
Universitat Wien, 2021, p. 155 (cit. on p. 3).

Josselin Feist, Gustavo Grieco, and Alex Groce. «Slither: A Static Analysis
Framework for Smart Contracts». In: 2019 IEEE/ACM 2nd International
Workshop on Emerging Trends in Software Engineering for Blockchain (WET-
SEB). IEEE, May 2019. pO1: 10.1109/wetseb.2019.00008. URL: https:
//doi.org/10.1109%2Fwetseb.2019.00008 (cit. on pp. 3, 50, 51).

Bernhard Mueller. «Smashing ethereum smart contracts for fun and real
profit». In: Amsterdam, Netherlands: In 9th Annual HITB Security Conference
(HITBSecConf), 2018. URL: https://github . com/muellerberndt /sma
shing - smart - contracts /blob/master /smashing - smart - contracts -
lof1.pdf (cit. on pp. 3, 51).

Certora. Certora Documentation. 2022. URL: https://docs.certora.com/
en/latest/index.html (cit. on pp. 3, 44).

A kos Hajdu and Dejan Jovanovié. «solc-verify: A Modular Verifier for Solidity
Smart Contracts». In: Lecture Notes in Computer Science. Springer Interna-
tional Publishing, 2020, pp. 161-179. por: 10.1007/978-3-030-41600-3_11.
URL: https://doi.org/10.1007%2F978-3-030-41600-3_11 (Cit. on pp. 3,
48).

Samvid Dharanikota, Suvam Mukherjee, Chandrika Bhardwaj, Aseem Rastogi,
and Akash Lal. Celestial: A Smart Contracts Verification Framework. Tech.
rep. MSR-TR-2020-43. Microsoft, Dec. 2020. URL: https://www.microsoft.
com/en-us/research/publication/celestial -a-smart-contracts-
verification-framework/ (cit. on p. 3).

Gustavo Grieco, Will Song, Artur Cygan, Josselin Feist, and Alex Groce.
«Echidna: Effective, Usable, and Fast Fuzzing for Smart Contracts». In:
Proceedings of the 29th ACM SIGSOF'T International Symposium on Software
Testing and Analysis. ISSTA 2020. Virtual Event, USA: Association for
Computing Machinery, 2020, pp. 557-560. 1SBN: 9781450380089. DOI: 10.
1145 /3395363 . 3404366. URL: https://doi.org/10.1145/3395363 .
3404366 (cit. on pp. 3, 47, 48).

Ali Sunyaev. «Distributed Ledger Technology». In: Internet Computing:
Principles of Distributed Systems and Emerging Internet-Based Technologies.
Cham: Springer International Publishing, 2020, pp. 265-299. 1SBN: 978-3-030-
34957-8. DOI: 10.1007/978-3-030-34957-8_9. URL: https://doi.org/10.
1007/978-3-030-34957-8_9 (cit. on p. 5).

ISO 22739:2020. Blockchain and distributed ledger technologies — Vocabulary.
2010. URL: https://www.iso.org/standard/73771.html (cit. on p. 5).

76

https://doi.org/10.1109/wetseb.2019.00008
https://doi.org/10.1109%2Fwetseb.2019.00008
https://doi.org/10.1109%2Fwetseb.2019.00008
https://github.com/muellerberndt/smashing-smart-contracts/blob/master/smashing-smart-contracts-1of1.pdf
https://github.com/muellerberndt/smashing-smart-contracts/blob/master/smashing-smart-contracts-1of1.pdf
https://github.com/muellerberndt/smashing-smart-contracts/blob/master/smashing-smart-contracts-1of1.pdf
https://docs.certora.com/en/latest/index.html
https://docs.certora.com/en/latest/index.html
https://doi.org/10.1007/978-3-030-41600-3_11
https://doi.org/10.1007%2F978-3-030-41600-3_11
https://www.microsoft.com/en-us/research/publication/celestial-a-smart-contracts-verification-framework/
https://www.microsoft.com/en-us/research/publication/celestial-a-smart-contracts-verification-framework/
https://www.microsoft.com/en-us/research/publication/celestial-a-smart-contracts-verification-framework/
https://doi.org/10.1145/3395363.3404366
https://doi.org/10.1145/3395363.3404366
https://doi.org/10.1145/3395363.3404366
https://doi.org/10.1145/3395363.3404366
https://doi.org/10.1007/978-3-030-34957-8_9
https://doi.org/10.1007/978-3-030-34957-8_9
https://doi.org/10.1007/978-3-030-34957-8_9
https://www.iso.org/standard/73771.html

BIBLIOGRAPHY

[19]

[24]

[25]

2]

[27]

[28]

[29]

Florian Tschorsch and Bjorn Scheuermann. «Bitcoin and Beyond: A Technical
Survey on Decentralized Digital Currencies». In: IEEE Communications
Surveys and Tutorials 18.3 (2016), pp. 2084-2123. DOI: 10.1109/COMST.2016.
2535718 (cit. on pp. 6, 7).

Ethereum Foundation. Ethereum development documentation. 2022. URL:
https://ethereum.org/en/developers/docs/ (cit. on pp. 6, 9, 10).

Rahul Awati. Consensus Algorithm. 2022. URL: https://www.techtarget.
com/whatis/definition/consensus-algorithm (cit. on p. 7).

Nick Szabo. Smart Contracts. 1994. URL: https://www.fon.hum.uva.nl/
rob/Courses/InformationInSpeech/CDROM/Literature/LO0Twinterschoo
12006/szabo.best .vwh.net/smart.contracts.html (cit. on p. 8).

Massimo Bartoletti, Salvatore Carta, Tiziana Cimoli, and Roberto Saia.
«Dissecting Ponzi schemes on Ethereum: identification, analysis, and impact».
In: CoRR abs/1703.03779 (2017). arXiv: 1703.03779. URL: http://arxiv.
org/abs/1703.03779 (cit. on p. 10).

Wikipedia. Stack machine — Wikipedia, The Free Encyclopedia. http://
en . wikipedia . org/w/index . php 7 title=Stack % 20machine & oldid =
1107632072. [Online; accessed 29-September-2022]. 2022 (cit. on p. 10).

Alexandra Born. Decentralised finance: a new unregulated non-bank system?
URL: https://www.ecb.europa.eu/pub/financial-stability/macropru
dential-bulletin/focus/2022/html/ecb.mpbu202207_focusl.en.html
(cit. on p. 12).

Binance Academy. What Is an Automated Market Maker (AMM)? 2020. URL:
https://academy.binance.com/en/articles/what-is-an-automated-
market-maker-amm (cit. on p. 12).

Binance Academy. Liquidity Explained. https://academy.binance.com. 2022.
URL: https://academy.binance.com/en/articles/liquidity-explaine
d (cit. on p. 12).

OWASP. Fuzzing. URL: https://owasp.org/www-community/Fuzzing (cit.
on p. 13).

Erik Seligman, Tom Schubert, and M V Achutha Kiran Kumar. «Chapter
2 - Basic formal verification algorithmsy. In: Formal Verification. Ed. by
Erik Seligman, Tom Schubert, and M V Achutha Kiran Kumar. Boston:
Morgan Kaufmann, 2015, pp. 23-47. 1SBN: 978-0-12-800727-3. DOI: https:
//doi.org/10.1016/B978-0-12-800727-3.00002-2. URL: https://
www . sciencedirect.com/science/article/pii/B9780128007273000022
(cit. on p. 13).

77

https://doi.org/10.1109/COMST.2016.2535718
https://doi.org/10.1109/COMST.2016.2535718
https://ethereum.org/en/developers/docs/
https://www.techtarget.com/whatis/definition/consensus-algorithm
https://www.techtarget.com/whatis/definition/consensus-algorithm
https://www.fon.hum.uva.nl/rob/Courses/InformationInSpeech/CDROM/Literature/LOTwinterschool2006/szabo.best.vwh.net/smart.contracts.html
https://www.fon.hum.uva.nl/rob/Courses/InformationInSpeech/CDROM/Literature/LOTwinterschool2006/szabo.best.vwh.net/smart.contracts.html
https://www.fon.hum.uva.nl/rob/Courses/InformationInSpeech/CDROM/Literature/LOTwinterschool2006/szabo.best.vwh.net/smart.contracts.html
https://arxiv.org/abs/1703.03779
http://arxiv.org/abs/1703.03779
http://arxiv.org/abs/1703.03779
http://en.wikipedia.org/w/index.php?title=Stack%20machine&oldid=1107632072
http://en.wikipedia.org/w/index.php?title=Stack%20machine&oldid=1107632072
http://en.wikipedia.org/w/index.php?title=Stack%20machine&oldid=1107632072
https://www.ecb.europa.eu/pub/financial-stability/macroprudential-bulletin/focus/2022/html/ecb.mpbu202207_focus1.en.html
https://www.ecb.europa.eu/pub/financial-stability/macroprudential-bulletin/focus/2022/html/ecb.mpbu202207_focus1.en.html
https://academy.binance.com/en/articles/what-is-an-automated-market-maker-amm
https://academy.binance.com/en/articles/what-is-an-automated-market-maker-amm
https://academy.binance.com/en/articles/liquidity-explained
https://academy.binance.com/en/articles/liquidity-explained
https://owasp.org/www-community/Fuzzing
https://doi.org/https://doi.org/10.1016/B978-0-12-800727-3.00002-2
https://doi.org/https://doi.org/10.1016/B978-0-12-800727-3.00002-2
https://www.sciencedirect.com/science/article/pii/B9780128007273000022
https://www.sciencedirect.com/science/article/pii/B9780128007273000022

BIBLIOGRAPHY

[39]

[40]

[41]

[42]

Roberto Baldoni, Emilio Coppa, Daniele Cono D’Elia, Camil Demetrescu,
and Irene Finocchi. «A Survey of Symbolic Execution Techniquesy. In: ACM
Comput. Surv. 51.3 (2018) (cit. on p. 13).

Dan Milmo. NF'Ts market hits 22billions dollars as craze turns digital images
into assets. The Guardian online. 2021. URL: https://www.theguardian.
com/technology/2021/dec/16/nfts-market-hits-22bn-as-craze-
turns-digital-images-into-assets?CMP=Share_i0SApp_Other (cit. on
p. 16).

Saeed Hassan. NF'T Project Aku Dreams Loses $3/ Million To Smart Contract

Flaw. 2022. URL: https://bitcoinist.com/nft-project-aku-dreams-
loses-34-million-to-smart-contract-flaw/ (cit. on p. 16).

Nick Sawinyh. Cover Protocol - Decentralized Insurance Marketplace. 2021.
URL: https://defiprime.com/cover-protocol (cit. on p. 19).

Cover Protocol. 12/28 Post-Mortem. 2020. URL: https://coverprotocol.
medium.com/12-28-post-mortem-34c5£9£718d4 (cit. on p. 19).

bZz Documentation. https://docs.bzx.network/. Accessed: 2022-04-20.
2020 (cit. on p. 21).

Alyssa Hertig. What Is a Flash Loan? 2022. URL: https://www.coindesk.
com/learn/2021/02/17/what-is-a-flash-loan/ (cit. on p. 24).

Dennis Van der Vecht. Understanding Flash Loans In DeFi. 2022. URL: https:
//10clouds.com/blog/defi/understanding-flash-loans-in-defi/ (cit.
on p. 24).

Uranium Finance. Uranium : post-mortem, v2, compensations. 2021. URL:
https://uraniumfinance.medium.com/uranium-post-mortem-v2-compe
nsations-aac4b0706d7d (cit. on p. 26).

Certik. Uranium Finance Fxploit Analysis. 2021. URL: https://medium. com/
shentu-foundation/uranium-finance-exploit-analysis-d135055d6a6
a (cit. on p. 27).

xSurge Assets. https://xsurge.net/surge-assets. Accessed: 2022-04-15.
2021 (cit. on p. 31).

XSURGE on the BSC Chain was Attacked by Lightning Loans — A Full
Analysis. https://beosin.medium. com/a-sweet-blow-£fb0a5e08657d.
Accessed: 2022-04-15. 2021 (cit. on p. 31).

Oded Leiba. Reentering the Reentrancy Bug: Disclosing BurgerSwap’s Vul-
nerability. 2020. URL: https://zengo . com/burgerswap-vulnerability/
(cit. on p. 33).

78

https://www.theguardian.com/technology/2021/dec/16/nfts-market-hits-22bn-as-craze-turns-digital-images-into-assets?CMP=Share_iOSApp_Other
https://www.theguardian.com/technology/2021/dec/16/nfts-market-hits-22bn-as-craze-turns-digital-images-into-assets?CMP=Share_iOSApp_Other
https://www.theguardian.com/technology/2021/dec/16/nfts-market-hits-22bn-as-craze-turns-digital-images-into-assets?CMP=Share_iOSApp_Other
https://bitcoinist.com/nft-project-aku-dreams-loses-34-million-to-smart-contract-flaw/
https://bitcoinist.com/nft-project-aku-dreams-loses-34-million-to-smart-contract-flaw/
https://defiprime.com/cover-protocol
https://coverprotocol.medium.com/12-28-post-mortem-34c5f9f718d4
https://coverprotocol.medium.com/12-28-post-mortem-34c5f9f718d4
 https://docs.bzx.network/
https://www.coindesk.com/learn/2021/02/17/what-is-a-flash-loan/
https://www.coindesk.com/learn/2021/02/17/what-is-a-flash-loan/
https://10clouds.com/blog/defi/understanding-flash-loans-in-defi/
https://10clouds.com/blog/defi/understanding-flash-loans-in-defi/
https://uraniumfinance.medium.com/uranium-post-mortem-v2-compensations-aac4b0706d7d
https://uraniumfinance.medium.com/uranium-post-mortem-v2-compensations-aac4b0706d7d
https://medium.com/shentu-foundation/uranium-finance-exploit-analysis-d135055d6a6a
https://medium.com/shentu-foundation/uranium-finance-exploit-analysis-d135055d6a6a
https://medium.com/shentu-foundation/uranium-finance-exploit-analysis-d135055d6a6a
 https://xsurge.net/surge-assets
 https://beosin.medium.com/a-sweet-blow-fb0a5e08657d
https://zengo.com/burgerswap-vulnerability/

BIBLIOGRAPHY

[43]

[44]

[45]

[51]

[52]

[53]

Sunbeom So, Seongjoon Hong, and Hakjoo Oh. «SmarTest: Effectively Hunting
Vulnerable Transaction Sequences in Smart Contracts through Language
Model-Guided Symbolic Execution». In: 30th USENIX Security Symposium
(USENIX Security 21). USENIX Association, Aug. 2021, pp. 1361-1378.
ISBN: 978-1-939133-24-3. URL: https://www.usenix . org/conference/
usenixsecurity21/presentation/so (cit. on p. 40).

Sunbeom So, Myungho Lee, Jisu Park, Heejo Lee, and Hakjoo Oh. VeriSmart:
A Highly Precise Safety Verifier for Ethereum Smart Contracts. 2019. DOTI:
10.48550/ARXIV.1908.11227. URL: https://arxiv.org/abs/1908.11227
(cit. on p. 41).

Mark Mossberg, Felipe Manzano, Eric Hennenfent, Alex Groce, Gustavo
Grieco, Josselin Feist, Trent Brunson, and Artem Dinaburg. Manticore: A
User-Friendly Symbolic Execution Framework for Binaries and Smart Con-
tracts. 2019. DOI: 10.48550/ARXIV.1907.03890. URL: https://arxiv.org/
abs/1907.03890 (cit. on p. 42).

Akos Hajdu, Dejan Jovanovié¢, and Gabriela Ciocarlie. Formal Specification
and Verification of Solidity Contracts with Fvents. May 2020 (cit. on p. 49).

A kos Hajdu and Dejan Jovanovié. SolcVerify. https://github.com/SRI-
CSL/solidity /blob/0.7/SOLC-VERIFY-README.md. 2021 (cit. on p. 49).

Slither. https://github.com/crytic/slither. 2019 (cit. on p. 51).

SmartContractSecurity. SWC' Registry. https://swcregistry.io/. Accessed:
2022-04-15. 2020 (cit. on p. 51).

Mark Mossberg, Felipe Manzano, Eric Hennenfent, Alex Groce, Gustavo
Greico, Josselin Feist, Trent Brunson, and Artem Dinaburg. Manticore: A
User-Friendly Symbolic Execution Framework for Binaries and Smart Con-
tracts. Nov. 2019. poI: 10.1109/ASE.2019.00133. URL: https://github.
com/trailofbits/manticore (cit. on p. 55).

Sunbeom So, Myungho Lee, Jisu Park, Heejo Lee, and Hakjoo Oh. VeriSmart
GitHub. 2021. URL: https://github.com/kupl/VeriSmart-public (cit. on
p. 56).

Certora. Certora Tutorials. 2022. URL: https://github. com/Certora/
Tutorials (cit. on p. 59).

Microft. DotNet Documentation. 2020. URL: https://docs.microsoft.com/
en-us/dotnet/core/introduction (cit. on p. 62).

79

https://www.usenix.org/conference/usenixsecurity21/presentation/so
https://www.usenix.org/conference/usenixsecurity21/presentation/so
https://doi.org/10.48550/ARXIV.1908.11227
https://arxiv.org/abs/1908.11227
https://doi.org/10.48550/ARXIV.1907.03890
https://arxiv.org/abs/1907.03890
https://arxiv.org/abs/1907.03890
https://github.com/crytic/slither
 https://swcregistry.io/
https://doi.org/10.1109/ASE.2019.00133
https://github.com/trailofbits/manticore
https://github.com/trailofbits/manticore
https://github.com/kupl/VeriSmart-public
https://github.com/Certora/Tutorials
https://github.com/Certora/Tutorials
https://docs.microsoft.com/en-us/dotnet/core/introduction
https://docs.microsoft.com/en-us/dotnet/core/introduction

	List of Tables
	List of Figures
	Introduction
	Research Goals
	Related Work

	Preliminaries
	Blockchain
	Smart Contracts

	Ethereum
	Ethereum Smart Contracts: Solidity

	Application Domains
	Security Analysis

	Exploits
	$34 Million stacks NFT Project Aku Dreams Smart Contract
	The exploit
	Properties

	Cover Protocol:Infinite Minting Exploit Nets Attacker $4.4M
	The exlpoit
	Properties

	DeFi platform bZX: $8M hack from one misplaced line of code
	The exploit
	Properties

	A flash loan used for amplify a bug: $30M drained from Spartan protocol
	The exploit
	Properties

	Uranium Finance: $1.3M of rewards drawn
	The exploit
	Properties

	XSURGE on BSC Chain
	The exploit
	Properties

	Reentering the Reentrancy Bug: Disclosing BurgerSwap's Vulnerability
	The exploit
	Properties

	Infinite minting of NFTs: DirtyDogs NFTs
	The exploit
	Properties

	Analysis Tools
	Tools with multiple mode running
	SmarTest
	Manticore

	Tools with Specifications
	Certora Prover
	Celestial
	Echidna
	Solc-Verify

	Tools without specification
	Slither
	Mythril

	Results and Evaluation
	Experimental Setup
	Individual Outcomes per Tool
	General Comparison
	Installation
	Outcomes

	Discussion
	Threats in real-world exploits
	Tools with Specifications
	Customized and Non-specific Analyses
	Effective Analysis

	Conclusion
	Outlooks

	Bibliography

