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Abstract. Let X andY be separable metrizable spaces, #ndX — Y be a function. We want to recovgrfrom its

values on a small set via a simple algorithm. We show that this is possible if f is Baire class one, and in fact we get a
characterization. This leads us to the study of sets of Baire class one functions and to a characterization of the separability
of the dual space of an arbitrary Banach space.

1 Introduction.

This paper is the continuation of a study by U. B. Darji and M. J. Evans in [DE]. We specify the
term “simple algorithm” used in the abstract. We work in separable metrizable sgaaedY’, and
fis afunction fromX into Y. Recall thatf is Baire class one if the inverse image of each open set is
F,;. Assume that we only know the valuesobn a countable dense setC X. We want to recover,
in a simple way, all the values gf For each point of X, we extract a subsequencel®fvhich tends
to z. Let (s,[z, D]),, be this sequence. We will say thais recoverable with respect to D if, for
eachz in X, the sequencéf (s, [z, D])),, tends tof (z). The functionf is recoverable if there exists
D such thatf is recoverable with respect f0. Therefore, continuous functions are recoverable with
respect to any countable dense sequenck.inNMe will show that results concerning recoverability
depend on the way of extracting the subsequence. We let (z)).

Definition 1 Let X be a topological space. We say that a badig,,) for the topology ofX is a
good basis if for each open subsdf of X and each pointr of U, there exists an integer,; such
that, for eachmn > mg, W,,, C U if z € W,,,.

We show that every separable metrizable space has a good basis, using the embedding into the
compact spacf, 1]“. In the sequel(1V,,,) will be a good basis ok, except where indicated.

Definition 2 Letx € X. Thepath to x based on D is the sequences, [z, D))
defined by induction as follows:

denotedR (z, D),

new'’
solz, D] = xo,

splz, D] if © = s,[z, D],

Sp+1lz, D] ==

} otherwise.

x
\ mln{p / 3mew {z,2p} Wi CX\{s0[z,D],...,sn[2,D] }

Now the definition of a-ecoverable function is complete.



In Section 2, we show the
Theorem 4A functionf is recoverable if and only if is Baire class one.

In Section 3, we study the limits of U. B. Darji and M. J. Evans’s result, using their way of
extracting the subsequence. We give some possible extensions, and we show that we cannot extend it
to any Polish space.

In Section 4, we study the question of the uniformity of sequenge for a set of Baire class
one functions. We considet C B;(X,Y’), equipped with the pointwise convergence topology. We
study the existence of a dense sequegg of X such that each function of is recoverable with
respect tqx,,) (if this happens, we say thatt is uni formly recoverable).

In the first part, we give some necessary conditions for uniform recoverability. We deduce among
other things from this an example of a metrizable compact sgace 5; (2%, 2) which is not uni-
formly recoverable.

In the second part, we study the link between the uniform recoverabiliyarfd the fact that J.
Bourgain’s ordinal rank is bounded ot J. Bourgain wondered whether his rank was bounded on
a separable compact spadevhen X is a metrizable compact space. We show among other things
that, if X and A are Polish spaces, then this rank is bounded (this is a partial answer to J. Bourgain’s
guestion).

In the third part, we give some sufficient conditions for uniform recoverability. We study among
other things the link between uniform recoverability afidsubsets with open vertical sections of a
product of two spaces.

In the fourth part, we give a characterization of the separability of the dual space of an arbitrary
Banach space:

Theorem 30Let E be a Banach space := [Bg-,w*], A := {G[X/G € Bg+},andY :=R. The
following statements are equivalent:

(a) £ is separable.

(b) A is metrizable.

(c) Every singleton ofl is Gj.
(d) A is uniformly recoverable.

In the fifth part, we introduce a notion similar to that of equicontinuity, the notion of¢ari-
Baire class one set of functions. We give several characterizations of it, and we use it to study
similar versions of Ascoli’'s theorems for Baire class one functions. Finally, the study of the link
between the notion of an equi-Baire class one set of functions and uniform recoverability is made.

2 A characterization of Baire class one functions.
As mentionned in Section 1, we show the

Proposition 3 Every separable metrizable space has a good basis.



Proof. Let X be a separable metrizable space. Theembeds into the compact metric spée |,
by ¢. So let, forr integer,n, be an integer andU;);<,, be a covering of0, 1] made of open
subsets 0f0, 1]“ whose diameter is at mo3t”. To get(WV,,), itis enough to enumerate the sequence

(¢_1(U;))'r€w, J<ng* O
Theorem 4 A functionf is recoverable if and only if is Baire class one.

In order to prove this, we first give a lemma. It is essentially identical to U. B. Darji and M. J.
Evans’s proof of the “only if” direction. But we will use it later. So we give the details. Notice that it
does not really depend of the way of extracting the subsequence.

Lemma5 Assume that, foy € w, {z € X / In s,[x, D] = x4} is an open subset oX. If f is
recoverable with respect tb, thenf is Baire class one.

Proof. Let I be a closed subset af. We let, fork integer,Oy := {y € Y / d(y, F) < 27*}. This
defines an open subset Bf containingF. Let us fix an integek. Let (z,,); be the subsequence
of D made of the elements gf(O;) (we may assume that it is infinite and enumerated in a 1-1
way). We let, forj integer,U; := {z € X / In s,[z, D] = x,,}. This setis an open subset ¥fby
hypothesis. Letl; := [, [(U;>; Uj) U {&pos -, 7p,_, }]. This setis a5 subset ofX..

Letz € f~1(Oy) andi be an integer. Then, [z, D] € f~1(Oy) if n is bigger tham, and there
existsj(n) such that, [z, D] =z, ; thusz € Uj,. Either there exista > ng such thatj(n) > i
andz € ;5,; Uj, orxy, . is zp, if nis big enough, withy < 4, andz = ). In both casesy € Hj,.

If z € Hy, either there exists an integgsuch thatr = Tp, andf(z) € Oy, or for each integet,
there existg > i such thatr € U;, and3n s, [z, D] = z,,, and thusf (x) € O.

Thereforef ' (F) € Nyew [ (Ok) € Niew Hr € Niew f~H(Ok) C f~H(F). We deduce that

FHF) = () Hy

kew

is aGs subset ofX . O

Proof of Theorem 4.1n order to show the “only if” direction, let us show that Lemma 5 applies. Set

0 if = sy[x, D],

O(z,D,n) =
W
min{m / {80412, D]}CWin CX\{s0[2,D],...,sn[z,D] }

} otherwise.

Note thatO(x, D,n) # 0 if and only if x # s, [z, D]. In this case)(z, D, n) is an open neighbor-
hood ofz. If n < n’ andO(z, D,n), O(x,D,n’) # 0, spy1|x, D] € O(z, D,n) \ O(x, D,n’), so
O(z, D,n) is distinct fromO(z, D, n’). As (W,,) is a good basis, for each open neighborhdodf
x there exists an integer, such thatO(z, D,n) C V if n > ng, and therefore,, [z, D] € V. So
path tox based oD tends tox.



To show that{z € X / z, € R(x, D)} is an open subset of, we may assume that> 0 and
thatz, # z, if » < ¢. So letty € X andn be a minimal integer such that[to, D] = z,4. Letm
be a minimal integer such théty, z,} C W, C X \ {so[to, D], ..., sn[to, D]}. By definition of the
path,q is minimal such that,, € W,,. Let us show that if: € W,,, thenz, € R(x, D); this will
be enough sinc& € W,,. We notice that if we lep, (z) := min{p € w / z, = s,[z, D]}, then the
sequencep,(z)),, increases, strictly until it may be eventually constant. We hagelV,,,, which is
a subset ofX \ {xo,...,z4—1}. Thus, as the path te based orD tends tor, there exists a minimal
integern’ such thap, ;1 (z) > ¢q. Then we have:, = s,/ 11(z, D] € R(z, D).

Let us show the “if” direction. The proof looks like C. Freiling and R. W. Vallin’s ones in [FV].
The main difference is the choice of the dense sequence, which has to be valid in any separable
metrizable space.

We say thatD approzimates F C X ifforall x € F'\ D, R(z, D) \ F is finite. Let us show
that if (F;) is a sequence of closed subsetskafthen there i) C X which approximates eadh.

Consider a countable dense sequenc& pind also a countable dense sequence of each finite
intersection of the;’s. Put this together, to get a countable dense sequgncef X . This countable
dense set is the sél we are looking for. But we've got to describe how to order the elements of this
sequence.

We will constructD in stages, called;, for each integef. If F'is a finite intersection of thé&;'s
andd is afinite subset oD, we set

AF(G) = U {amingi/gew ey -
mew,€G\F,zeWp, ZX\F

Puton2’ = {oy,..., 04} the lexicographic ordering, and &V := Njeo I for each finite subset
o of w. We set '
Go = A{ai}, Grp1 = G UAT " (Gy)  (fork < 27),

D;i:=(J G\ D
k<21 <t
We order the elements dd; as follows. Leto’(z) := {k < i/z € Fy}. Put the elements ab;
whosec’ is o first (in any order). Then put the elementsiof whoses” is 4: ;. And so on, until
elements ofD; whoseo’ is 0.

Now let us suppose thdf; is not approximated by, with x as a witness anéilminimal. Let
y € R(z, D) \ F; such thaty is put intoD at some stagg¢ > ¢ and satisfyinge € Fj, < y € Fj, for
eachk < i. Letm € w such thate, y € W,,. We havey ¢ F°’(*) andW,, ¢ X \ F'(*) because

z € Fo' @, So we can define := IMiNg /i WP () Theno’ (z) > o7 (y) in the lexicographic

order. We have € AF”j<z>({y}). We conclude that is put beforey and thaty ¢ R(z, D). This is
the contradiction we were looking for.

Now let (Y,) be a basis for the topology &f. Consider the inverse images of thg's by f.
Express each of these sets as a countable union of closed sets. Thib gitésh approximates each
of these closed sets. It is now clear that the/3és what we were looking for. O



3 About the limits of U. B. Darji and M. J. Evans’s method.
Let us recall the original way of extracting the subsequence. Fix a compatible digtancg.

Definition 6 Letz € X. Theroute to x based on D is the sequencés), [z, D]) denoted

R/(x, D), defined by induction as follows:

new’

solx, D] = mo,

sh [z, D] if x=s][x,D],
Spy1lz, D] = herw
CMIn{p / d(w.ap)<d(e,s), [z,0])} OETWISE.
If fis recoverable in the sense of Definition 6, we say thiat first return recoverable. U. B.
Darji and M. J. Evans showed the following:

Theoremf f is first return recoverable, thefiis Baire class one. Conversely,fifis Baire class one
and X is a compact space, thefhis first return recoverable.

Definition 7 We will say that an ultrametric spadeX, d) is discrete if the following condition is
satisfied:V (dy)new C d[X x X] [(Vn €Ew dpy1 <dp) = (im0 dy = 0)].

We can show the following extensions:

Theorem 8 Assume thaf is Baire one. Therf is first return recoverable in the following cases:
(a) X is a metric space countable union of totally bounded subspaces.
(b) X is a discrete ultrametric space.

Corollary 9 Let X be a metrizable separable space. Then there exists a compatible digtamce
X such that for eaclf : X — Y, f is Baire class one if and only if is first return recoverable
relatively tod.

This corollary comes from the fact that we can find a compatible distanéé making X totally
bounded. Now we will show that the notion of a first return recoverable function is a metric notion and
not a topological one. More precisely, we will show that the hypotheXiss‘discrete” in Theorem
8 is useful. In fact, we will give an example of an ultrametric space homeomorphi¢ to which
there exists a closed subset whose characteristic function is not first return recoverable (notice that
w", equipped with its usual metric, is a discrete ultrametric space). So the equivalence befwseen *
Baire class one ” andj*is first return recoverable” depends on the choice of the distance. And the
equivalence in Theorem 4 does not depend on the choice of the good basis, and is true without any
restriction onX. The algorithm given in Definition 2 is given in topological terms only, as the notion
of a Baire class one function. Furthermore, Definition 2 uses only countably many open subsets of
X, namely théV,,,’s.



Lemma 10 Let X be an ultrametric space,c X, z,y € X \ {¢}. Then the open ballB(x, d(z,t)]
and B(y, d(y, t)[ are equal or disjoint.

Proof. Let us show thatl(z,t) = d(y, t) or B(x,d(z,t)[ N B(y,d(y,t)[ = 0. Let
z € B(z,d(z,t)[N B(y,d(y,t)[.

If for exampled(z,t) < d(y,t), letr bein]d(x,t),d(y,t)[. Asz € B(z, ],
B(z,r[ = B(z,r[ C B(z,d(y,t)|.

As z € B(y,d(y,t)[, we can writeB(z, d(y,t) = B(y,d(y,t)[ C X \ {t}. But this contradicts the
fact thatt € B(z,r|.

If B(z,d(x,t)[ N B(y,d(y,t)

[ # (Z) et z be in the intersection. Then we have the sequence of
equalitiesB(x, d(z,t)] = B( yd(x,t

Now we introduce the counterexample. We set
Z = {Q = (qn)HEw €eQ :)- /\V/ nEW gn < gntl and Iirnnﬂoo%z = +OO}-

This space is equipped with

Zx7Z — Ry
d: 27mm(qmin{n6w/%¢qh}’q;'nin{nequ;éqél}) if Q 7§ Q”
(Q,Q")
0 otherwise.

Proposition 11 The spacéZ, d) is an ultrametric space homeomorphiciti and is not discrete.

Proof. We setlV := {f ¢ 28+ /3 Q € Z f = 10, e [a2p.a0p41] )3 this space is equipped with the

ultrametric or2®+ defined byd(f, g) := 2-INf{eeR+/1@#9(®)} if f £ g. Then the function fronZ
into W which associate$,, . (4., .4,-1] 10 @ IS & bijective isometry. Thus, it is enough to show the
desired properties fdi’.

We set

D = {f € 2R+ / 1QeZ dkew f = IUp<k:[q2p7q2p+1] or f = Iup<k[qu,q2p+1}U[q2k,+oo[}’

V. =WUuUD.

ThenW andV are ultrametric, viewed as subspaceg'df. SetD is countable and dense i, so
V andWW are separable.



Let (fp)pew be a Cauchy sequencelfy andm in w. There exists a minimal integé¥ (m) such
that, forp, ¢ > N(m), we haved( f,, f,) < 27™; thatis to sayf,(t) = f,(t) for eacht < m. We let,
if E(t) is the biggest integer less than or equal,to

f {R+ — 2
t = fnEe+n ()
If p > N(m)andt < m, N(E(t) + 1) < N(m) and we have

f@) = fnEn+)t) = fnm) ) = fp(t)-

Thus the sequendg, ). tends tof in 2%+, We will check thatf € V; this will show thatV’ is
complete, thus Polish. A8/ is aGs subset o, W will also be Polish.

CaseldreRy Vt>r f(t)=0.

If p> N(E(r)+1) andt < E(r)+1, f,(t) = f(t); thus, the restriction of to [0, E(r)+1[is the
restriction ofLy, _, 4., 42,41 tO this interval, and we may assume that 1 < E(r) + 1. Therefore,
we havef = 1, jandfeDCV.

p<klq2p,a2p+1
Case23reRy Vi>r f(t)=1.
If p> N(E(r)+1)andt < E(r)+1, thenf,(t) = f(¢); thus, the restriction of to [0, E(r)+1[

is the restriction ofl to this interval, and we may assume that < E(r)+1. Therefore,
we havef = 1| toc(@ndfeDCV,

Up<kla2p,q2p+1]
p<k[q2p,q2p+1]VU]a2k,

Case3VreRy Jt,u>r f(t)=0andf(u) = 1.

Let (7,)new C R4 be a strictly increasing sequence such that, .., r, = +oc andf(r,) =0
for each integen. If t < E(r,) + 1, then we havef (t) = fy(g(r,)+1)(t). Thus, the restriction of
to [0, 7] is the restriction ofl, _, (4,4, tO this interval, and we may assume that, 1 < rn.
The sequencék,, ). is increasing, andim,, ., k, = +oo becausef is not ultimately constant.
For the same reason, lim.oogn, = +00. Thusf = 1y, ¢, [g2p.2p+1) €W S V.

Let f € V andm inw. There exists € Q N0, 1[andq € Q +N]m + 1, +oo[ such that, for each
t €lq —e,q+ €[, we havef(t) = 0, or, for eacht > g — ¢, we havef(¢) = 1. In the first case we set

Ry —2
g f@t) if t¢lg—e/2,q+¢/2],
t —
1 otherwise.
In the second case, we set
R+ — 2
, f(t) if t<q,
g: PN
{O otherwise.



In both cases we have+# g, d(f,g) < 27™ andg € V; this shows thal” is perfect. Moreover,
as D is countable and dense In, W is locally not compact. Finallyy} is a0-dimensional Polish
space, and each of its compact subsets have empty interior; thus it is homeomorphi¢see
Theorem 7.7 page 37 of chapter 1 in [Ke]).

To finish the proof, we sef, := Tjo,1—2-n-1)0y, - o[2p.20+1)- WE havef,, € W andd( f,, fn+1) iS

2-1+27""1 ‘which strictly decreases /2. Thus, spacél’ is not a discrete ultrametric space. [J
Theorem 12 There exists 19 (Z) whose characteristic function is not first return recoverable.

Proof. Let F:={Q € Z /Vn €w n < g, <n+1}, D := (x,) be adense sequencedf Then

F is closed since fixing a finite number of coordinates is a clopen condition. We will show that there
existsz € Z such that the sequen¢&r (s, [z, D])), .., does not tend td(z). Let us assume that

this is not the case.

ncw

e We setny := 0, By := Z. We haveZ \ {zg} = dISJ. B(y;,d(y;, xg)|. Let
(] 1] jEW J J
nj:=min{n € w / x, € B(y;, d(y;,xo0)[}-

For eachr in B(y;, d(y;, zo)| we haveB(y;, d(y;, xo)[ = B(xnj,d(xnj,xg)[ = B(x,d(z,z0)] and
si[z, D] = z,,,. Then we do this construction again. Foe w<“\ {0}, we set

By := B(@n,, d(Tn,, Tn,p, )]
We haveB; \ {z,,} = U?e'id B(ys~j,d(ys—j, Tn,)[- Let
ns—~j :=min{n € w / z, € B(ys—j, d(Ys—j, Tn,)[}-
For eachr in B(ys—j, d(ys—j, zn,)[, we have
B(ys~j: (s, 2n,)[= B(@n.~;, d(@n.~; o, )= Bl@,d(w,z0,)[ € B,

and alsos g1 [z, D] = zp, ;.

e Foreache in Z\ {z, / n € w}, thereiswin w” with z € (., Barm andsy [z, D] =z, for

eachm in w. Moreover, ifz € F, then there existsyg in w such thatrna(m € F for eachm > my.
CaselVsecw< BNF=0or3t>,s B,NF #0andz,, ¢ F.

As By = Z meetsF which is not empty, there exists 3 € w* such thab < g(n) < f(n + 1),
Barpmy N F # 0 andzy, ., ¢ F' for eachn in w. Itis enough to show the existence ofin
mew Ba[m- Indeed, if we have this, we will have, [z, D] = z,, ., for eachm € w. But the
diameter ofB,,,, will be at most2d(s, [z, D], s;,—1[z, D]), thus will tend t00. As B, s,y meets
F', we will deduce that: € F'. Thus, the sequendd (s, |z, D])), .., Will not tend toIx(z) since

53(n) [x,D] ¢ F.

ASTn (.1 € Bafm+1 © Bafm, the sequence(
[ be its inferior bound.

new

T (i1 s Tnafm ) Jmew 1S Strictly decreasing; let



Case 1.1/ = 0.

In this case, sequen¢e,, W)mew is a Cauchy sequence. Letbe the bijective isometry that we
used at the beginning of the proof of Proposition 12. Wefset= @(xnarm). Then the sequence
(fm)mew is @ Cauchy sequence Wi C V, thus tends tg € V which is complete.

Casel1l.1.13re Ry Vt>1r f(t)=0.

We havef = 1y _, (¢,.02041] @Nd, ifm is big enough, then the restriction gf, to [0, E(r) + 1]
is the restriction off to this same interval, and we hayg, 1 < E(r) + 1. Thus,z,,, starts with
< 40,41, ---, Q2k—1, G5y, > and, ifm is greater thapy > mo, thengy; > 2k + 1. Letng in w be such
that 3(no) > po. ThenB, s, is disjoint from F' because, ify is in F, theny ¢ B, Since

_y2k _2k_1 . . .
A, Ty ng)) = 2 > 2 2 (T 500 Tragsmg) 1)+ 1HUS, this case is not possible.

Casel.1l.23re Ry Vt>r f(t)=1.
This case is similar to case 1.1.1.
Case 1.1.3Vr e Ry Jt,u>r f(t)=0andf(u) =1.

In this case,f € W, thus there exists € Z such that the sequencenam)mew tends toz.
We haver € (1,,c., Barm, Since otherwise we can find an integef such thate ¢ B, for each
m > mg; but, aszy,, . € By, @ iS N By, Which is closed.

Case 1.2/ > 0.
Letr’ € R be such that = 27"".
Case 1.2.1E(r") < r'.

We will show that there exists € (,,c,, Bafm- This will be enough. Ifm is big enough,

d(x ) < 27E0")_ As B,,,, meetsF, lety be in the intersection is of the form

Nam? xna [m—1
(n +1- En)nva

wheree,, €]0, 1[. If m is big enough, them,, = starts with< 1 —eo, ..., E(r') — eg(y—1 >. Then

the term numbef(r’) + 1 of sequence,,, is calledxfo(f[g.

Case1.2.1.13m € w mf{f’g/) = Eg')ﬂ

In this case, a®,, 41 meetsk’, xfﬂp)

shows that ifp is big enough, themf{i’;)“ *x

is of the formE(r’) 4 1 — e g(,+y for eachp > m. This
E(r')+1
Mafp+1

. Thus we are reduced to the following case.



Casel.21.2Vmecw fﬂna(m #Fx

aﬁn+1

The sequenc(amn rm)me is strictly increasing. Indeed, assumetjng o> E(? )+1 Then we

afm ) < d(zn sincezi”) |+ 22 but this is absurd. Thus

a[m+1 a]'m+2’
the sequencemn m )mew is strictly increasing, and lifp_... =, (’r') = r/. But if the pointz starts
with sequence< 1 — e, ..., E(1') — eg()—1,q >, Whereq € Q N]r’, +ool, thenz € ¢, Batm
since

haved(z,, . ,x, Ty

a]’m—‘—l a[m+1’ a]—m+2)

E(T ) B(r')

d(z,zp, . ) =2 Tolm <d(xy, ., Tp ) =2 "rafm-1,

Case 1.2.2E(r") =r'.

alm alm’ alfm—1

This case is similar to case 1.2/1;— 1 plays the role thak'(r’) played in the preceding case.
Case2.3scw<¥ BisNF#QPandVt>~,.s BBNF #0 = z, € F.

Note that, for eachr in Z and eacly in Q 4, there existg) in Z such thatl(Q, z) = 27%. Indeed,
there exists a minimal integersuch thay < z,,, and we take) beginning with< =z, ..., z,-1,q >
if x,,_1 # q; otherwise, we také) beginning with< xg, ..., z,_2, , >.

We may assume, by shiftingif necessary, that,,, € F' ands # (). Thus we have

Tn, = <1—€8,2—E(1),...>,

S

-1

where0 < £ < 1. Let j, be a minimal integer such thato 901 < d(Zn,, Tn ), and

s[]s|—1
sp:= <1-— 58, vy jo — 8?0_1 >.
If ¢t > s, thenz,, begins withsg.
0o _, .
There arepg in w andQnS s IN F such thatd(Qn,~, , Tn,) = 279077 ! ThenQ,, -, is of

the formsg™ < 1+jo—e',2+jo—¢€} ;... >, Where0 < ¢! < &) . There exists an unique integer
no such that

0 _jo—
Qns’\po & BSA’HQ = B(Q’I’LSAPO,2E]O Jo 1[
As Bs~n, meetsF, x,, ., € F. Thus the point, ., is of the form
so <14+ jo —5}0,2417’0 —6}0“,... >,
where0 < &} < €3 . More generally, there exisjs; in w andQ,, g in F such that

Nk—1"Pk
d(Qny .~ e ) = 2507907 . ThenQ,, .~ is of the form

Ng—1"Pk "k—1"Pk

—~ . k+1 . k

where( < ¢! < 5;?0.

10



There exists an unique integeyf, such thathSAnOA‘_‘A is in Bs~ng .. ~np» which is

Ng—1"Pk

k _ 5 . . .
B(Q"S“"(Tv-hnk_ppka28‘70 Jo 1[_ AS Bs~y> . .~n, MeetsF, Ty~ 1SN F'. Thus the point
i ~ : k+1 - k+1 k1 _ _k
Tng~pe 1S of the formsg™ <1+ jo — €™, 2+ jo — €}y, ... >, where0 < ;™ < el

We sety :=< ng,ny,... > andz := s5 (jo + 1 + k + 0k kew, Wheren, € Q 4 are chosen so
thatny := 0 andz ¢ {z,, / n € w}. Thend(z,zn ) = 2550 77°~! decreases to > 0, and the
sequenceéxnsﬁﬂm)mew does nottend ta. Butx € (,,c,, Bs~~[m; thuss,, 5[z, D] = =y -
and the sequende,, [, D)), ., does not tend te. But this is absurd.

y[m

4 Study of the uniformity of the dense sequence.
(A) Necessary conditions for uniform recoverability.

It is natural to wonder whether there exists a dense seqyepgef X such that every Baire class
one function fromX into Y" is first return recoverable with respect(tg,). The answer is no whel
is uncountable. Indeed, if we chooses X \ {z, / p € w}, thenIy,, is not first return recoverable
with respect tqz,). We can wonder whethétr,,) exists for a set of Baire class one functions.

Notation 5;(X,Y) is the set of Baire class one functions frotninto Y, and is equipped with the
pointwise convergence topology.

If AisasubsetoB;(X,Y),thenthe map

. XXA—>Y
¢ {@:,f) ()

has its partial functiong(z, .) (respectively)(., f)) continuous (respectively Baire class one). There-
fore ¢ is Baire class two if4 is a metrizable separable space (see p 378 in [Ku]).

Definition 13 We will say thatA C B1(X,Y) is uniformly recoverable if there exists a dense
sequencéz,) of X such that every function of is recoverable with respect {@:),).

Proposition 14 If A is uniformly recoverable and compact, thdris metrizable.

Proof. Let D := (z,) be a dense sequence &fsuch that every function ofl is recoverable with
respecttaD. Let : A — Y defined by/(f) := (f(zp)),. This map is continuous by definition of
the pointwise convergence topology. It is one-to-one becauge#ify are in A, then there i € w
such thatf(z,) # g(x,). Indeed, if this were not the case, then we would have, for eahX,

f(z) =1lim,_ o f(sp[z, D]) =lim,_ g(sp[z, D]) = g(zx)

(becausg andg are recoverable with respect(te,)). As A is compact/ is a homeomorphism from
A onto a subset of “. Therefore A is metrizable. O

11



Example. There are some separable compact spaces which are not metrizable, and whose points
areGs. For example, “split interval’d := {f : [0,1] — 2/ f is increasing, viewed as a subset of
B1([0,1],2), is one of them (see [T])4 is compact because it is a closed subs&ibf!:

feAdeVr<y f(x)=0o0rf(y) = 1.

A'is separable becausé, ;) / ¢ € [0,1]NQ } U{T},4; / ¢ € [0,1] N Q } is a countable dense sub-
set of A. The family of continuous functions,, : f — f(z) separates points, and for every se-
quence(zy) C[0,1], (¢z,), does not separates points. Thdsis not analytic and not metriz-
able (see Corollary 1 page 77 in Chapter 9 of [Bo2]). Finally, every poit i G; for exam-
ple, {Ii 1} = Mpeweso-n{f €A/ fl@—27") #1}n{f € A/ f(x) # 0}. By Proposition 14,
“split interval” is not uniformly recoverable.

Proposition 15 If A is uniformly recoverable andl” is a O-dimensional space, thenis Baire class
one.

Proof. Let F be a closed subset &f. We havep(x, f) € F < = € f~'(F). Remember the proof
of Lemma 5. We replace th@,'s by a sequence of clopen subsetgofvhose intersection i§’ (it
exists becaus¥ is a 0-dimensional space). The sequefge); is finite or infinite and enumerates in
a one-to-one way the elements(af,) N f~1(O;). We havelU; := {t € X / ), € R(t, D)} if z,
exists (U; := 0 otherwise), andy, := (;c,[(U;>; Uj) U {@pg, -, 2p,_, }] (in fact, between braces
we have ther,, that exist, forj < i). So thatf~*(F) = (., Hi- The sequencér, ); can be
defined as follows, by induction on integgr

qg=po & flzg) € Opandvi<q f(x;) & O

g=pj+1 © Vi< quF#zgand3Ir<q (r=p;andf(z,) €O andv l€|r, q["w f(z;) ¢ Ok)
We notice that the relationy“= p;” is clopen in f. Then we notice that
S (U Uj) U {xpm "'737:01'—1}
Jjzi

ifand only if (3 >¢ Jgcw g=p; andz, € R(x, D)] or Ir <isuchthaf(vm<r Jgew ¢=pnm)
and(Vm e [r,i[\w Ygew q#pp)and(Im<r Vgew q#pn, Of z=1x4)]. We can deduce from
this that the relationt € (U,~; Uj) U{zpy, ... 7p, ,}"is Gs in (z, f); thus the relation? € Hy"is
too. - O

Corollary 16 (a) There exists a continuous injectioh : 2¢ — B;(2¥,2) such that/[2] is not
uniformly recoverablg¢and in fact such thap ¢ B;(2* x I[2¥],2)).

(b) There existsA C B;(2¥,2), A ~ w*, which is not uniformly recoverable and such thais in
Bl (2“) X A, 2).

Proof. (a) LetS := {s € 2<¥/s = or [s # ( ands(|s| — 1) = 1]} and

29 — 2
I(a) := 8 e lif 3se€ S [s<aandf =s"0v],
0 otherwise.

If a[n =d/[nanda(n) =1—a/(n) =0, thenl(a)(a[n"10¢) =0 =1-I(c/)(a[n"10%). Thus
I is one-to-one.

12



It is continuous because

aclif € Py :={ae2/VYnIm>n a(m)=1},

I{a)(B) =1 < {
ae€ Ng if =570 ands e S.

Moreover, {8 € 2¢ / I(a)(B) = 1} = {0} U U, jam)=1 {a[(n+1)70%} € Dy (X9)(2v), thus
I[2¥] C B1(2¥,2). Let us argue by contradiction. We have

¢ ({0}) = (P x 29) U (| {5707} x V) = F € 35(2% x 2).

seS

The diagonal ofP., is a subset ofy~*({0}), so there exists an integersuch thatA (P..) N F}, is
not meager iM\(P.,). Therefore there exists a sequerda S \ {0} such thatA (N, N Py,) C F,.
ThusA(N;) C F, and(s™0%,s70%) € ¢~1({0}), which is absurd.

(b) Let A := I[P]. As I is a homeomorphism fror2“ onto its range and’,, ~ w*, we have
A~ w”. We haveF := ¢ 1({1}) N (2% x A) = U,cs {s70“} x (Ny N Px). Let us show that
F = ¢ FUA(Py). ThenF = F~ ™\ A(Py) will be Dy (X9)(2¢ x A) € AJ(2¢ x A). As
dTH{0N(2¢ x A) = (2¢ x A)\ ¢~ 1 ({1}), we will havep € By (2% x A, 2). If (s,0%, s, v,) € F
tends to(3, ) € (2 x Px) \ F, we may assume that,, | increases strictly. So for each integer
and forn big enough we havg(p) = s,(p) = a(p). Thusa = S.

If A were uniformly recoverable, we could find a dense sequéhce (x,,) of 2* such that every
function of A is recoverable with respect ta,). Lets € S. ThenI(s™1¥) isin A, and it is the
characteristic function of the following set:

{s[n"0“/n=00r (0<n<l|s| ands(n—1)=1)}U{s"1PT0~ /p c w}.

For n big enough,s,,[s—0%, D] is in this set, thug—0“ € D andP; := 2* \ P, C D. So the
functions of[2“] are all recoverable with respect & But this contradicts the previous point. [

(B) Study of the link between recoverability and ranks on Baire class one functions.

So there exists a metrizable compact set of characteristic functiaﬁg(dt(f) sets which is not
uniformly recoverable. So the boundedness of the complexity of functiodsdafes not insure that
A is uniformly recoverable. Notice that the example of the “split interval” is another proof of this,
in the case where the compact space is not metrizable. Indeed, functions of the “split interval” are
characteristic functions of open or closed subse{8,df| (of the form]a, 1] or [a, 1], with a € [0, 1]).

In [B2], the author introduces a rank which measures the complexity of numeric Baire class one
functions defined on a metrizable compact space. Let us recall this definition, which makes sense for
functions defined on a Polish spa&ewhich is not necessarily compact.

13



e Let A and B be two disjointGs subsets ofX, and R(.A, B) be the set of increasing sequences
(Ga)a<p Of Open subsets oX, with 3 < wy, which satisfy

1. Gay1 \ G, is disjoint fromA or from B if a < 3.
2. Gy =Uqey Go if 0 <y < Bis alimit ordinal.
3.Go = @anng = X.

ThenR(A, B) is not empty, becausé andB can be separated byA) set, which is of the form

Df((Ua>a<£) = U Ua \ (Us<a Up),
a<¢ With parity opposite to that of

where(Uy,)a<¢ is an increasing sequence of open subsefs ahdl < ¢ < w; (see [Ke]). Then we
check tha(Gy)a<e+1 € R(A, B), whereGo11 := U, if a < &.

e We setL(A,B) := min{ < wi /3 (Ga)a<p € R(A,B)}. If f € Bi(X,R)anda < b are real
numbers, we leL(f, a,b) := L({f < a},{f > b}). Finally,

L(f) :==sup{L(f,q1,02) / 1 < 2 € Q }.
In [B2], the author shows that, i C C(X,R) is relatively compact irB; (X, R), then
SUp(L(f,a,b) / f € AV C} < wy

if X is a compact space anddf< b are real numbers. He wonders whether his result remains true
for a separable compact subspatef 51 (X, R).

We can ask the question of the link between uniform recoverability ahd the fact that

Sup{L(f)/f € A} <w.

If De(29)(X) == {De((Up)yee)/(Up)ye € E9(X) increasing and A € De(S9)(X), one has

A € Dey1(20)(X) and L(A, A) < € + 2 by the previous facts. So the rank of the characteris-
tic function of A is at mosté + 2. In the case of the example in Corollary 16 and of the “split
interval”, one has su.(f) / f € A} < 4 < w;. Therefore, the fact that is bounded o4 does

not imply uniform recoverability ofd, does not imply thad is Baire class one, and does not imply
that A is metrizable. But we have the following result. It is a partial answer to J. Bourgain’s question.

Proposition 17 If X is a Polish spaceY C Rand A C B;(X,Y) is a Polish space, then we have
Sup{L(f) / f € A} < wy.

Proof. Leta < b be real numbersd := {(z, f) € X x A/ f(z) < a} and
B:={(z,f) e X x A/ f(z) > b}.

As ¢ is Baire class twoA andB areIIJ(X x A) with horizontal sections ifiIJ(X).
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So there exists a finer Polish topology on A such thatd € TI3(X x [A4,74]) (see [L1]). The
same thing is true foB. Let 7 be a Polish topology od, finer thanr4 andrz (see Lemma 13.3 in
[Ke]). As A andB are disjoint, there existd,;, € AJ(X x [4, 7]) which separates! from B. Let
€ap < w1 be such tha,, € D, ,(X9)(X x [A,7]). For each functiory of A, the setAj;b is a
Dg, ,(29)(X) which separate$f < a} from {f > b}. ThusL({f < a},{f > b}) < &up + 1.
Therefore supL(f) / f € A} <sup{L(f,a,b) /Ja<beQ} < w;. O

Corollary 18 If X is a Polish spacey C R and if A C B1(X,Y) is uniformly recoverable and
compact, then syl (f) / f € A} < wy.

We can wonder whether this result is true for the set of recoverable functions with respect to a
dense sequence &f. We will see that it is not the case.

Proposition 19 Let (z,,) be a dense sequence of a nonempty perfect Polish spaeadY := 2.
Then supL(f) / f is recoverable with respect {@,)} = w;.

Proof. SetD of the elements of the dense sequence is countable, metrizable, nonempty and perfect.
Indeed, ifx, is an isolated point o), then it is also isolated iX', which is absurd. Thu® is
homeomorphic t@ (see 7.12 in [Ke]). Fot < ¢ < wy, there exists a countable metrizable compact
spaceK, andAg € De(29)(K¢) \ De(29)(K¢) (see [LSR]). So we may assume thigt C D (see

7.12in [Ke]). Thus we havels ¢ D¢(39)(X). We will deduce from this the fact that(1a,,,) > &.

To see this, let us show that,if(14) = L(A, A) < &, thenA € Dei1(29)(X). Let (Ga)a<e
beinR(A, A), wheret’ € {¢, ¢+ 1} is odd. We let, forx < ¢,

{U9<a Ug U U@SQ/AOG9+1\G9:® G9+1 if avlis even,
U, :=

Then Dg/ (U )a<er) Separatesd from A. Indeed, ifz ¢ A, leta/ < ¢ be minimal such that

r € G. Thend' is the successor af < ¢, andz € AN Gy \ Ga. SOAN Gayr \ Go = 0,

by condition 1. If« is even, therr € U, \ (Up<oUy) becausdly C Gyq if 0 < &' If ais odd,
thenz € Uyt \ Ua. In both casesy € De/((Ua)a<er). If 2 € Uy \ (Ug<aUp) With a < £ even,
there exist® < « such thatr € Gy and AN Gyiq \ Gy = 0. Letn’ < ¢ be minimal such that

xz € G,. As before, is the successor of < &'. Let us argue by contradiction: we assume that
z € A Thenz € ANGyi1\ Gy # 0,50 AN Gyi1 \ G, = 0. If pis odd, thenw € U, thusy = a.
This contradicts the parity af. If 1 is even, therr € U, 1 andn = a = 0. Sox € Ggq1 \ Gy C A.
This is the contradiction we were looking for.

It remains to check thal, , , is recoverable. If: € D, thens, [z, D] = z for almost all integer
n. ThusT s, (sn[z, D]) tends tol 4., (z). If zisnotinD, thenz ¢ A¢ 41 C Keyq C D. So, from
some pointons, [z, D] ¢ K¢i1, andl,,, (sn[z, D]) is ultimately constant and tendstq, , (z).0]

Remark. We can find in [KL] the study of some other ranks on Baire class one functions. The
rank L is essentially the separation rank defined in this paper. In the case Whisra metrizable
compact space and where the Baire class one functions considered are bounded, Propositions 17, 19
and Corollary 18 remain valid for these other ranks.
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(C) Sufficient conditions for uniform recoverability.

Theorem 20 Assume thaY” is a metric space, and that, equipped with the compact open topology,
is a separable subset & (X, Y"). ThenA is uniformly recoverable.

Proof. Let (I,) be a dense sequence 4ffor the compact open topology. By the lemma showed in
[Ku], page 388, for each integerthere exists a sequen¢k,),, C Bi1(X,Y) which uniformly tends

to /,, functionsh?, having a discrete range. Enumerating the sequétitg, ,, we get(h,,),. Every
function of A is in the closure of this sequence for the compact open topology. For each integer
n, one can get a countable partitiof;), of X into AY sets on whichh,, is constant. Express
each of these sets as a countable union of closed sets. Putting all these closed sets together gives
a countable sequence of closed subsetX ofAs in the proof of Theorem 4, this gives which
approximates each of these closed sets. Novf let A, x € X ande > 0. Consider the compact
subset := R(x, D) U {z} of X. By uniform convergence off, there existsV € w such that, for
eacht in K, we havedy (f(t), hn(t)) < /2. Letp be an integer such thate B). Now K \ B)Y

is finite and we havé (s, [z, D]) = hy(z) for eachn € w, except maybe a finite number of them.

So we have the following inequality, for all but finitely many

dy (f(x), f(sulz, D])) <
dy (f(x), hn(x)) + dy (hy (2), hn (sn[z, DY) + dy (hn (snlz, D), f(snlz, D])) <e

(this last argument is essentially in [DE]). O

The following corollary has been showed in [FV] wh&nh= R and with another way of extracting
the subsequence.

Corollary 21 LetA C B;(X,Y) be countable. Thed is uniformly recoverable.
Proof. Put a compatible distance anh O

Proposition 22 Let (Y),) be a basis for the topology 6f, and

(1) For each integep, ¢ 1(Y,) € (II9(X) x P(A)),.

(2) There exists a finer metrizable separable topologyXgmade of£9(X), and making functions
of A continuous.

(3) A is uniformly recoverable.

Then (1) (2) = (3).

Proof. (1) = (2) We havey!(Y,,) = U, ., F% x Bh, whereF}, is a closed subset of andB}, C A.

If f € A thenf~'(Y,) = ¢~ (Y,)! = U, sepr Fr- Therefore, itis enough to find a finer metrizable
separable topology oX, made of£)(X), and making theéF}'s open. Let(X,,) be a basis for the
topology of X, closed under finite intersections, af@,) be the sequence of finite intersections of
FI's. Then setr of unions of sets of the fornX,, or X,, N G, is a topology, with a countable basis,
made of$2)(X), finer than the initial topology oX (thus Hausdorff), and makes ti#&’s open. It
remains to check that it is regular.
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Soletz € X andF € T)(X,7), withz ¢ F. We haveX \ F = |J, Xy, U Uy Xn,, N Gy,
Either there existg such thatr € X, ; in this case, by regularity of initial topology ok we can
find two disjoint open set¥; and V> with = € Vi and X \ X,,, C V5. But these two open sets
arer-open andF’ C X \ Xn, € Vo. Or there exists such thatr € X, N Gy, ; in this case, by
regularity of initial topology onX, we can find two disjoint open sekg; andW, with x € W; and
X\ X, € Wa. ButthenW; NGy, andWr U (X \ G, ) areT-open and disjointy € W7 N Gy,
andF C (X \ Xpn,) U (X \ Gg,) C Wa U (X \ Gy,).

(2) = (3) Let 7 be the finer topology. Then identity map frakh, equipped with its initial topology,
into X, equipped withr, is Baire class one. Therefore, it is recoverable. Sqdg} be a dense
sequence oK such that, for each € X, s, [z, (z,)] tends taz, in the sense of. Let f € A. As f
is continuous ifX is equipped withr, f(s,[z, (z,)]) tends tof (z) for eachz € X. Thereforef is
recoverable with respect {a;,).

(2) = (1) Let(X,,) be a basis for finer topology (therefore, we have(,, € £9(X)). Let
Ch={feA/XnCo (V) }.
Theng=1(Y,) = U, Xn x Ch € (ITY(X) x P(A)),. O

Remark. If X is a standard Borel space aAds a Polish space, conditions (1) and (2) of Proposition
22 are equivalent to “For each integerp—1(Y,) € (II9(X) x A}(A)),”. Indeed, letP be a Polish
space such thaX is a Borel subset of?, andf € A. As f is continuous ifX is equipped withr,

S (Yp) = U, X, s for eachintegep. LetCl := {f € A/ X, € ¢~ 1(Y,)/}. ThenC} isII}(A),
because is Bairekclass two:

feCl ©VeeP x¢ X, or ¢(z,f) €Y).

Moreover,¢~1(Y,) = ,, X» x Ch. By A{-selection (see 4B5 in [M]), there exists a Borel function
Np: P x A—wsuchthalz, f) € Xy . 7 ¥ Cif,,(x,f) if f(z) €Y. Let

SPh={feA/Jx e X Ny(z,f)=n and ¢(z, f) € Y, }.

ThensSE ¢ 2%(A) and is a subset af’; ; by the separation therem, there exists a Borel suB§etf
Asuch thatSh C Bl C Ch. Thenwe have(Y,) = U,, X» x Bh € (ITIY(X) x A{(4)),.

Proposition 23 If A has a countable basis, then there exists a finer metrizable separable topology on
X making the functions of continuous. Moreover, iX is Polish, we can have this topology Polish.

Proof. Let (A,,) be a basis for the topology of, and X} := {x€ X/A,, C ¢ (V}).}. As
¢ (Vo = {f €A/ f(2) € Y} € I)(A),

we havey (V) = Uy, Xh x Ay and f71(Yy) = 671 (V) = U, e, Xi for eachf e A.
Thus it is enough to find a finer metrizable separable topology anaking X%’s open.
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We use the same method as the one used to prove implicatios (2) of Proposition 22. We
notice that the algebra generated by #¥s is countable (we letG,) be the elements of this algebra).

As ¢ is Baire class twog~—1(Y,) is a X9 set with vertical sections ix{(A). If X and A are
Polish, we deduce from [L1] the existence of a finer Polish topotggyn X such that

¢~ (V) € (BV(X,7p) x Y (A)),-

Let (Bh),, be a basis for,,. Then there exists a finer Polish topologyn X making the Borel sets
Bl's open (see Exercises 15.4 and 13.5 in [Ke]). Then we are done, becuaer than the,'s.C]

Therefore, the problem is to find the finer topology¥3(X). We have seen that it is not
the case in general. If we look at Propositions 15 and 22, we can wonder whether conditions of
Proposition 22 and the fact thdtis Baire class one are equivalent, especially in the case where
Y is O-dimensional. This question leads to the study of Borel subse?s of 2¢. The answer
is no in general. First, because of Corollary 16. It shows that the fact/tlistBaire class one
does not imply uniform recoverability (witld Polish, in fact homeomorphic t©“). Secondly, let
A = {f € Bi(2¥,2) / f isrecoverable with respect ta,,)}, where(z,) := Py is dense ir2.
Then A is uniformly recoverable, but we cannot find a finer metrizable separable topology«,
made of$)(2%) and making the functions of continuous. Otherwise, the characteristic functions
of the compact set&’, := {z} U {s,[z, (z,)] / n € w} would be continuous for, and this would
contradict the Lindeif property, with| J . K.. But A has no countable basis. Otherwise, the set
of charateristic functions of the se&$, (for z € P,,) would also have one; this would contradict the
Lindelof property too (this last setis a subsel9f_p_{f € B1(2¥,2) / f(x) = 1}). This leads us
to assume thatl is a K, and metrizable space, to hope for such an equivalence.

If ¢ is Baire class one, thep(Y,) is aXJ subset ofX x A with vertical sections ir2{(A).
Thus it is natural to ask the

Question. Does everyX) subset ofX x A with vertical sections inSY(A) belong to the class
(I (X) x P(A)),?

If the answer is yes, then the fact thyais Baire class one implies condition (1) in Proposition 22,
and the conditions of this proposition are equivalent to the factdhieBaire class one. The answer
is negative, even if we assume thatand A are metrizable compact spaces:

Proposition 24 There exists @), (XY) subset 0B x 2+ with vertical sections imA{(2+) which is
not (T19(2%) x P(2¥)),.

Proof. Let E := (Pso % 2¥) U J,eg {s70%} x (N U Ny~o) (we use again notations of the proof
of Corollary 16). Clearly, vertical sections &f are A?(2¥). We set

G:={a€2/YnIm>n a(m)=a(m+1) =1}

This is a densé&/; subset oR“, included inP,.. If o ¢ G, then the horizontal sectiah® is finite.
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Otherwise, it is infinite and countable (it is a subsety}, and it is a sequence which tends to
a. If (s7°0%, 57°v,)n C E tends to(5, o), then there are essentially two cases. Either the length of
sy, Is strictly increasing and = 3. Or we may assume thét,,) is constant andg, o) ¢ E. As
diagonalA(2¥) C FE, we can deduce from this that = £\ A(2¢) € Dy(29)(2¥ x 2¥). Assume
that £ € (I19(2¥) x P(2¥)),. We haveE = (J,, F,, x E,, whereF,, € I1{(2¥) and E,, C 2“.
LetC, := {a € 2¥ / F, C E®}. ThenC,, € II}(2*) andE = |, F,, x C,,. As A(2¥) C E,
2¥ C U, Fn N C,. So there exists an integersuch thatF, N C,, is not meager, and a sequence
s € 2<¥ such thatN, N F,, N C, is a comeager subset af,. In particular, N, C F,,. AsG is
comeager, there exists € G N N, N C,. Let (B,) C E* converging too. From some point
mg on, we haves,, € Ny. S0 (B, ) € F, x C, C E if m > mg. But this is absurd because

(Bmy 04) ¢ E. O
We can specify this result:

Proposition 25 There exists a metrizable compact spac€ B, (2*, 2) which is uniformly recover-
able, but for which we cannot find any finer metrizable separable topology omade ofs9(2+),
making the functions ol continuous.

Proof. We use again the notation of the proof of Proposition 24.«betw — S be a bijective map
such that fors,t € S, s < ¢ impliesy~1(s) < ¢~1(¢). Such a bijection exists. Indeed, we take
Y= (0 o qb[g)_l, wheref : ¢[S| — w is an increasing bijection, and where

2<w

— W
0if s=0,
P s o
qg<°>“...qj§|'j|'j)>“ otherwise.

(where(qy,) is sequence of prime numbers). We tet, := ¢ (n)" 1%, z9,+1 = ¥(n)" 0%, and

— ; <
Ts = Tminpew/s<z,} if s € 2<v,

e Let us show that, it € 2<¢ \ {0}, thenz, € P is equivalenttos € S. If s € S andz, € Py,
then there exists in S such thate; = s~ u™ 0. Thenzy,-1(,) comes strictly before,,,—1 (441,
which comes beforey, —1(s~y)41 = 5. Buts < s71% = @yy-1(4), Which is absurd.

If s ¢ S andz, € Ps, there exista: in S such thatr, = s~ (11 — w)™1¢. Lets’ € S andm
be an integer such that= s ~0™m+!, Thenzyy-1(,)41 COMes strictly before;wfl(sﬂ(w_u)ﬁl),
which comes beforg,. Buts < s70% = s'70% = x9y-1(4)41, Which is absurd.

o \We set
2% —Bi(2¢,2)

2% — 2
0if d3se S =570 and o€ Ny—1,

(8] —

0

1 otherwise.
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Then[ is defined becausgs € 2 / B ¢ I(a)}is{B€2¥ /B¢ I(a)}\ {a} € Do(X0)(2%) if
o € G, and is finite otherwisel is continuous because

ae2¥ if g€ Py,

)@ =16 1{
NgUNg~g if =570 ands € S.

Therefore,A := I[2¥] is an analytic compact space and is metrizable.

As E = (Idy» x )71 (o1 ({1})), 71 ({1}) ¢ (TI0(2*) x P(A)),, by Proposition 24. So there
is no finer metrizable separable topology 1 made of£9(2¥) and making the functions of
continuous, by Proposition 22. Butis uniformly recoverable with respect (o,,).

Indeed, as’; C (z,), it is enough to see thatif € G, then(«) is recoverable with respect to
D := (z,). The only thing to see is that from some integgron, s,,[«, D] € E“. We may assume
thata ¢ D becausér C P.

We take(W,,,) := (N;)sc2<w as a good basis for the topology 2f. So that, ifa ¢ D,

5n+1[a? D] - xmin{pEw/HSGZQ" a,zpeNSQQW\{so[a,D],.,.,sn[a,D}}}
- xmin{pEw/al—(maXJSn\oz/\sq[a,D]|+1)—<$p}'

But as the sequencéx A s, [, D]|)s, is strictly increasing, max,|a A sq[a, D]| = |a A sya, D]|.
Thussp 1|, D] = Za[(jans,[a,D]+1)- BY the previous facts, it is enough to get

Taf(laAsnla,D]|+1) € E“.
Let M, :=|a Asy|a, D]|. If a(M,,) =1, thens,11[a, D] is in P,, C E“. Otherwise,
sntala, D) = a[(My +1)"u™0%,

whereu € S. If u # 0, thens,;1[a, D] is minimal in Nypar, +1)~u € Naf(M,41)s SOSnt1[a, D] is
in P, which is absurd. Thus = () ands,, 1 [a, D] € E“. O

Now we will see some positive results for the very first classes of Borel sets. We know (see [L1])
that if X and A are Polish spaces, then every Borel subset of A with vertical sections irE?(A)
is (A](X) x 39(4)),,.

Proposition 26 If A has a countable basis, then evdil{ (X x A) with vertical sections irkE{(A)

is (TI9(X) x X9(A)),. If moreoverA is O-dimensional, then eve®,(£9)(X x A) with vertical
sections inZ{(4) is (II9(X) x AY(A4)),.
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Proof. Let F' be a closed subset of x A with vertical sections ir={(A4). As in the proof of
Proposition 23F = | J,, X, x A,, where(A,,) is a basis for the topology of. But asF' is closed,
we also have” = (J, X, x A,, € (TIY(X) x $9(A4)),.

If Ais a O-dimensional space, IEt (respectivelyF’) be an open (respectively closed) subset of
X x Asuch thatU N F has vertical sections i&{(A); thenU = |J,, U,,, where

U, € TIN(X) x AY(A).
For eachr € X, we have

UNF)e=UNFp =] (Un)aNFe =] (U F)s.

n

Moreover,(U, N F), = (Uy): N (UNF), isE{(A), soU, N FisTI{ (X x A) with vertical sections
in 39(A). By the previous factd/, N F € (II9(X) x AY(A)), andUNF =J, U, N Ftoo. O

Proposition 27 There exists @»(X9) subset o2“ x 2¢ with sections inA}(2+) which is not in
(T (2%) x X9(2%)),.

Proof. This result is a consequence of Proposition 24. But we can find here a simpler counter-
example. We will use it later. Let : w — P; be a bijective map, and

Bi= (2 x {0°) Ul @\ {6(p)} x Now).

Then E is the union of a closed set and of an open set, so D46X9)(2% x 2¥). If a ¢ Py
(respectively = ¢ (p)), then we haver, = 2¢ (respectively2¥ \ Nor1); SO E has vertical sections
in AY(2¢). If E = U, F x Uy, thenwe havel® = 2 = J,, gy, Fn- By Baire’s theorem, there
existss € 2<¢ and an integen, such that“ € U,,, andN, C F,,,. From some integes, on, we
haveNy»1 C Up,. As Py is dense, there exists> pg such that)(p) € N,. We have

(1(p),0P10%) € (Ng X Nop1) \ E C (Fpy X Upy) \ EC E\ E.
This finishes the proof. d

Now we will show that the example in Corollary 16 is in some way optimal. Recall that the
Wadge hierarchy (the inclusion of classes obtained by continuous pre-images of a Borel subset of
see [LSRY]) is finer than that of Baire. The beginning of this hierarchy is the following:

{0} Dy} Dy(39) b}
) A9 2(1)+ .
{0} I} Dy(59) IT)

The class™ is defined as followsE0™ := {(UNO)U (F\O) /U e 9, F e IIY, O € A%},
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Proposition 28 Let A be a metrizable compact spade,C X x A with vertical (resp., horizontal)
sections iNAY(A) (resp.,X97 (X)). ThenB e (TT9(X) x P(A)),. In particular, if Y = 2 and A is
made of characteristic functions 8% " (X), then conditions of Proposition 22 are satisfied ahi$
Baire class one.

Proof. For f € A, we haveB/ = (Uf nOf)u (F/\ Of). We set
By ={(z,f)eXxA/zecU'Nn0OT}, By:={(z,f)e XxA/zecF/'\0O}
Therefore we havé? = B; U Bs. Let (X,,) be a basis for the topology df. We have

By =JXux{feA/X,cO/nU'}.

Thus B; € (IIY(X) x P(A)),. Inthe same way{(z,f) € X x A /z ¢ O/} =, X, x Ey,,
whereE, := {f € A/ X,,n O/ = 0}. Let us enumeratdA{(A) := {0,, / m € &}, where
£ € w+ 1. We haveB; = Un,m {re X, /OnNE, C B,} x(0,NE,). Itisenough to see that
{z € X,/OmNE, C B,}c(X,,). Let(fg)p be a dense sequenceff. If x € X,,, then

OmNE, CBy&Vpew f ¢ O NE, of x € B
SVpew f1¢0nNE, or x€ Fli\ O,

Therefore,B; € (II9(X) x P(A)), andB too. O

Proposition 29 Assume thaX and A are Polish spaces, that = 2, and thatA4 is made of charac-
teristic functions ofD2(£9)(X). Theng~1({1}) € (IIY(X) x P(4)),.

Proof. As ¢ is Baire class twog—1({1}) is AJ(X x A) with horizontal sections i3 (XY)(X).

So there exists a finer Polish topologyn A and some open subséfg andU; of X x [A, 7] such
that¢=1({1}) = Uy \ Up. The reader should see [L1] and [L2] to check this point (it is showed for
Borel sets with sections iEg in [L1]; we do the same thing here, using the fact, showed in [L2], that
two disjoint £} which can be separated byl (X?) set can be separated bya (X9 N Al) set).

Let (4,) (resp.,(X,)) be a basis for the topology of (resp.,X). LetE, :={f e A/ X, C Ulf}.
There existd" € TIY(X) such that/; = U,, X, x E, =U,,; F" x E,. We set

Frbo= [F x Ep) N6~ ({1}) = [ x En] \ Uy
=U, {z e '/ AN En C ¢ ({1})a} x (AgN En).

This is a closed subset df* x [E,,7[E,], and union of thef™!s is ¢~1({1}). So we have
o7 {1} =Unq {2 € F/ AgN En © 67 ({1})a} x (A4g N Ey) € (II(X) x P(4)),. O

These last two propositions show that the example in Corollary 16 is optimal. In this example,
one hasy~1({0}) ¢ Z3(X x A) U (TIV(X) x P(A)),.
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(D) The case of Banach spaces.

The reader should see [DS] for basic facts about Banach spacesk heta Banach space,
X = [Bg~,w*],Y :=RandA := {G[X /G € Bg~}. If Eis separable, theX is a metrizable
compact space. If moreové? contains no copy of;, Odell and Rosenthal’s theorem gives, for
everyG € E**, a sequencege,) of E such thatf(e,) — G(f) for eachf € E* (see [OR]). Let
i : E — E** be the canonical map, ard, := i(e,). Then(G)) pointwise tends t@-. By definition
of the weak* topology, we havée)[ X € C(X,Y) for eache € E, thusG|[X is the pointwise limit
of a sequence of continuous functions. TherefGreX € B;(X,Y) (see page 386 in [Ku]). We set

[ [Bgs,w*] — [B1(X,Y),p.c]
(I)'{GE I—>G’}X

By definition of weak* topology® is continuous, and its ranges SoA is a compact space because
®’'s domain is a compact space.

If E* is separable, thel' is separable and’ contains no copy of;. Indeed, if¢ was an em-
bedding ofl; into £, then the adjoint map* : E* — [ of ¢ would be onto, by the Hahn-Banach
theorem. Bul, =~ [} would be separable, which is absurd. The domaid &f a metrizable compact
space, thus it is a Polish space. Therefotés an analytic compact space. So it is metrizable (see
Corollary 2 page 77 of Chapter 9 in [Bo2]). In particular, every poinddé Gs. Conversely, ifE*
is not separable, thef0g--} is not aG; subset ofBg--. Indeed, if(xz,) C E*, closed subspace
spanned by{z, / p € w} is notE* (see page 5 in [B1]), and we use the Hahn-Banach theorem. Thus
{0g=+[ X} is not aG;s subset ofA, becauseb is continuous. So the following are equivaleft? is
separabled is metrizable, and every point ¢f is G;.

Assume thatt** is separable. The&™ is separable, and is uniformly recoverable. Indeed,

A CC([Bg+, ||, Y), and the following map is continuous:
o . JET T = [CABE (1] Y ), []-floo]

Therefore[®'[E**], ||.||] is @ separable metrizable space and contdirishen we can apply Theo-
rem 20. But we have a better result:

Theorem 30 Let E be a Banach spaceY := [Bg-,w*|, A:={G[X/G € Bg+~}, andY := R.
The following statements are equivalent:

(a) E* is separable.

(b) A is metrizable.

(c) Every singleton ofl is Gj.
(d) A is uniformly recoverable.

Proof. We have seen that conditions (a), (b) and (c) are equivalent. So let us show tsafdn)We
have seen thaX’ and A are metrizable compact spaces, and that 5, (X,Y’). Thus we can apply
Proposition 22, and it is enough to check that condition (2) is satisfied.
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The finer topology is the norm topology. Let us check that it is mad&$fX). We have
If = foll <e & 3n Vo € By |f(z) — fole)| <e —27".

(d)= (c) LetG € A. Then{G} = An, {9 € RY / |g(x,) — G(x,)| < 279}. Thus{G} is
Im(A). O

So we get a characterization of the separability of the dual space of an arbitrary Banach space.
Notice that the equivalence between metrizability of the the compact space and the fact that each of
its point isGj is not true for an arbitrary compact set of Baire class one functions (because of the
“split interval”).

This example of Banach spaces also shows that the converse of Theorem 20 is false. Indeed,
we setX := [By,,0(l, )], A:={G]X/G € B,__}, andY := R. By Theorem 30A is uniformly
recoverable, sinck is separable. But sinck is compact, compact open topology Aris the uniform
convergence topology. i was separable for compact open topoldgywould be separable, which
is absurd. Indeed, ifG,,) C B, is such that{G,[X / n € w} is a dense subset of for the
uniform convergence topology, we can easily check fhatr,, / ¢ € Q4 and n € w} is dense in
lo. Notice that this gives an example of a metrizable compact space for the pointwise convergence
topology which is not separable for the compact open topology.

Finally, notice that the map is Baire class one il?* is separable. Indeed, it is the composition
of the identity map fromX x A into [X, ||.||] x A (which is Baire class one), and of the map which
associate&:(f) to (f,G) € [X, ||.|]] x A (which is continuous).

(E) The notion of an equi-Baire class one set of functions.

We will give a characterization of Baire class one functions which lightly improves, in the sense
(a)= (b) of Corollary 33 below, the one we can find in [LTZ].

Definition 31 Let X andY be metric spaces, and C Y. ThenA is equi-Baire class one
(EBC1) if, for eacte > 0, there exist$(e) € Bi(X, R ) such that

dx (z,2") < min(3(e)(z), 8(e) () = Vf € A dy(f(z), () < e.

Proposition 32 Let X and Y be metric spaces. Assume th¥tis separable, that all the closed
subsets o are Baire spaces, and that C YX. The following conditions are equivalent:
(1) Ais EBCL1.

(2) For eachs > 0, there exists a sequen¢€®,),, C I19(X), whose union isY, such that for each
f € Aand for each integem, diam(f[G5,]) < e.

(3) There exists a finer metrizable separable topologyomade of$J(.X), makingA equicontin-
uous.

(4) Every nonempty closed subgeof X contains a point: such that{ f|» / f € A} is equicontinu-
ous atz.
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Proof. (1) = (2) We set, fom integer,H,, := {x € X / d(¢)(z) > 27"}. Asd(¢e) is Baire class
one, there existéF"), C I1?(X) such thatH,, = U, Fy'- We construct, fof < wi, open subsetS

of X, and integersy andg; satisfyinglJ, .. Uy # X = 0 # U \ (U, Up) C FCZ&. It is clearly
possible sinceX = (J, , F' and X \ (U, Uy) is a Baire space. A has a countable basis,
there existsy < w; such thalJ,_,, Us = U<, Ue. In particular we havé/, 1 C |J., U, thus
X = Uggry Uf = Uggfy,dlﬂ U§ \ (Un<§ Un) Let (wg)q g X SatiSfyingUﬁ g Uq B(x§7 2—n§—1[. Let
Goe = B(x§,2—”6—1[mU€ \ (U< Uy)- ThenGe , € »9(X) a.ndX is the union of the sequence
(G e)ge<y- If 22" € GF ., then we havelx (z,2) < 27" < min(d(e)(x), d(e)(z")). Thus

dy (f(z), f(a')) <e

for each functionf € A. It remains to write théG;, .)4¢<,'s as countable unions of closed sets. So
that we get the sequenc¢€s, ). .

(2) = (3) Let us take a look at the proof of the implication &) (2) in Proposition 22. There
exists a finer metrizable separable topology¥prmade of$)(X ), and making=?2, "’s open. This is
enough (notice that we do not use the fact that every closed sub&eiscd Baire space to show this
implication).

(3)= (4) Let(X,,) be a basis for the finer topology. A§, € X9(X), F,, := (FNX,)\Int(FNX,,)
is a meageB) subset oft”. ThusF \ (|J,, F,) is a comeages subset ofF. As I is a Baire space,
this G5 subset is nonempty. This gives the paintve were looking for. Indeed, let us fix > 0.
Let n be an integer such that € X,, and sup. 4, diam(f[X,]) < . Thenz € Int(¥' N X,,) and

SUpse 4 diam(fip[Int(F'N X5;,)]) <e.

(4) = (2) Let us fixe > 0. We construct a sequen¢€’;)c.,,, of open subsets ok such that

SupfeA diam(f|X\(Un<§ U,,)[U£ \ <UT]<§ UT])D <e andUg \ (Un<§ Uﬁ) =+ 0 if U77<5 U77 # X. As in
the proof of the implication (1} (2), there existsy < w such thatX = (J.. Ue. It remains to

write the (Us \ (U, <¢ Uy))¢<,'s as countable unions of closed sets to get the sequeéFfge,.

(2) = (1) Forz € X, we setm®(z) := min{m € w / x € G, }, and
d(e) {3: — dx(33>Ur<m5(l’) Gr)

Thené(¢) is Baire classe one sincedf, B > 0, then we have

A<d(e)(@) < B « Im [zr€ G5, andVr <m x ¢ GE and A < dx(z, | ] G5) < B.
r<m
If dx (z,2’) < min(5(e)(z), () (")), then we have’ ¢ U, - (,) G5, and conversely. Therefore,
me(z) = m®(2') andz, 2’ € G () Thusdy (f(z), f(2')) < diam(f[ans(x)])<5, for each func-
tion f € A (notice that we do not use the fact that every closed subsktiefa Baire space to show
these last two implications). O
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Corollary 33 Let X andY be metric spaces. Consider the following statements:

(a) f is Baire class one.

(b)Ve > 036(e) € Bi(X,R%) dx(z,2") <min(d(e)(x),d(e)(2")) = dy(f(x), f(2))) <e.
(1) If Y is separable, then (a) implies (b).

(2) If X is separable and if every closed subseiois a Baire space, then (b) implies (a).

Proof. To show condition (1), the only thing to notice is the following. Let,) C Y satisfying
Y =U, B(yn,e/2[. By condition (a), let(F;"), C TI9(X) satisfying f~'(B(yn,/2[) = U, Fy"
We enumerate the sequendé’),, 4, so that we getG:,),. We haveG:, € II)(X), X = J,, G5,
and diant f[G¢,]) < e for each integem. Then we use the proof of implication (2} (1) in Proposi-
tion 32. O

Remark. Let X be a Polish spac&; C R, andA C Y X be a Polish space. We assume that every
nonempty closed subsét of X contains a point of equicontinuity dff|» / f € A}. Then, by
Proposition 32,4 C B;(X,Y) and by Proposition 17, J. Bourgain’s ordinal rank is boundedion
This result is true in a more general context :

Corollary 34 Let X be a metrizable separable spadé,C R, A C YX anda < b be reals. We
assume that every nonempty closed subs#tX contains a point of equicontinuity ¢ / f € A}.
Then supL(f,a,b) / f € A} < wi. Inparticular, SUgL(f) / f € A} < w;.

Proof. Using equicontinuity, we construct a sequeri€&)...,, of open subsets oKX satisfying
SUPre4 diamf|X\(Un<§Un)[U§ \ (U< Up)l <b—aandUe\ (U, Uy) # 0if U, Uy # X. As
X has a countable basis, there exists w; such thatX = U&Sv Ue. LetGyp := 0, Gos1 := Ue<aUs

if a < v, Gy := UgerGo if 0 < XA < «yis alimit ordinal, andG., 42 := X. Let us check that, if
f € A then(Ga)a<y+2 € RH{f < a},{f > b}) (this will be enough). By the proof of Propo-
sition 32, f is Baire class one. Sff < a} and{f > b} are disjointG; subsets ofX. We have
Go C UecoUe if a < v + 1, so the sequend@r,)a<~+2 iS increasing. lfo < v is the successor
of p, thenGoi1 \ Go = (Ug<aUs) \ (Ue<,pUe) = Ua \ (Ug<aUg). S0Gaq1 \ G is disjoint from
{f <a}orfrom{f > b}. If a <~isalimitordinal, then

Ga+1\ Ga = (Ug<aUe) \ (Ug<aGe) C (Ue<ale) \ (Ug<ale)
becausé/; C Gy if £ < a. Thus we have the same conclusion. Finally,
Grya\ Gypr = X\ (Ug<r Ue) = 0,
and we are done. O

Now, we will study similar versions of Ascoli’s theorems, for Baire class one functions. A similar
version of the first of these three theorems is true:

Proposition 35 If A is EBCL, therd”"is EBCL1.
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Proof. It is very similar to the classical one. We §(?4Ip_c,(€) :=94(g/3). Assume that

dx (x,2') <min(d_p.c.(e)(z), o p.c.(e) (@),

and letg € APC The following set is an open neighborhoodyof
O:={heY®* /dy(h(z),g(z)) <e/3 and dy (h(z'),g(z")) < &/3}
(for the pointwise convergence topology). &emeetsA in f. Then we check that
dy(9(x),g(z")) <e/3+¢/3+¢/3=¢.
This finishes the proof. O

A similar version of the third of Ascoli’'s theorem is true in one sense;

Proposition 36 Assume thal andY are separable metric spaces, and th&tis locally compact.
If A C B(X,Y), equipped with the compact open topology, is relatively compattinthen A is
EBC1 andA(z) is relatively compact for each € X.

Proof. As X is metrizable X is paracompact (see Theorem 4, page 51 of Chapter 9 in [Bo2]). By
Corollary page 71 of Chapter 1 in [Bol], there exists a locally finite open covéiingc,, of X
made of relatively compact sets (we use the fact fhad separable). For € X, we set

Jo={jew/zeV;}

It is a finite subset ofs. Lete(z) € w be minimal such thaB(z, 2-¢®)[C Nje., Vj- Notice that
e € B1(X,w). Indeed, Iet(xg)q be a dense sequenceXf\ V;. We have

3k {Vj>k x ¢ V;} andz eV, andVj <k {Vq z} ¢ B(x,27?[orz ¢ V;}
e(r)=p &

andVl < p3j <k {3¢ 2} € B(x,27![andz € V}}.

o Let us show thatt®"® C Bi(X,Y). Forz € X, we letU, be a relatively compact open neigh-
borhood ofz. As X is a Lindebf space,X = |, Us,,; let K,, := Up<nU7p. Then(K,) is an
increasing sequence of compact subset¥ aind every compact subset &fis a subset of one of the
K,’s. By Corollary page 20 of Chapter 10 in [Bo2],X, equipped with the compact open topology,
is metrizable.

Soletf € a%0 By the previous facts there exists a sequefitg C A which tends tof,
uniformly on each compact subset®f So we have

Vm e w Ipy)n € W Vo € Ky Vn € w dy(f(x), fym(x)) <277
Therefore, ifF € TI{(X), then

FAE) = En\ (U Ep)n{z € Kpn / ¥n € w dy(F, fyp(2)) <27},

p<m

We deduce from this that—! (F) is G5, because it is union of countably ma6y’s, partitionned by
someAJ(X). Sof is Baire class one and®"® C B (X,Y).
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eletfe ZC'O', e > 0 andK be a compact subset &f. We set
U(f.e, ) i={g € A"/ Vo € K dy(f(2),9(x)) < /3}.

ThenU(f,e, K) is an open neighborhood ¢f for the compact open topology, so there exists an
integerp..ic and (£ )iy, . © A° such thatd®® = U, U(f7" = k), becausel™ ™ is
compact. ’

e By Corollary 33, if f EZC'O', then there exist§(f, ) € B1(X,R%.) such thatdy(f(z), f(z')) <e
if dx(z,2") <min(o(f,e)(z),d(f,e)(z’)). We set

X — RY
o(e) : . ) i
©) { = min(2 O, minge g, i<y, 50 2/3) (@)

If dx (z,2') < min(5(e)(z),d(c)(«)) and f € A, thendx (z,2') < 27¢*) anda’ € (N, V;. Let

j € Jy(soj € Jy)andi < Pessy; be such thatf € U(ff/g’vj,s/?),vj). As z,2’ € V; and

dx(z,2) < min(O(f7>Y /3)(x),8(£/>Y e/3)(a")), we havedy (f(x), f(z')) < 3.2/3 = e.

Let us check thai(e) is Baire class one. Iff, B > 0, A < d(¢)(z) < B is equivalent to

dk{Vj>k x¢ V;}andzx €V
e/3,V;

and{e(z) > —In(B)/In(2)or3j <k z € V;and3i < Pes3,v; S(f; ,e/3)(x) < B}

and{e(z) < —In(A)/In(2)andV j <k ¢ V;orVi < Pey3v; 6(ff/3’7j,s/3)(:r) > A},
e The last point comes from the continuity ¢fz, .), for eachz € X; this implies thath'O'(x) is
compact and containd(x). O

Counter-example.A similar version of the second of Ascoli’s theorem is false, in the sense that there
are some metric spacésandY’, X being compact, and a metrizable compact space

AC[Bi1(X,Y),p.c]

which is EBC1 and such that, o, the compact open topology (i.e., the uniform convergence topol-
ogy) and the pointwise convergence topology are different. Indeed, W& set [B;,, o(l1,co)],
A:={G[X/G € B}, andY := R. We have seen that is not separable for the uniform conver-
gence topology. So this topology is different drfrom that of pointwise convergence. Nevertheless,
Ais EBCL1. Indeed, the norm topology makésiniformly equicontinuous, and we just have to apply
Proposition 32. Moreoverd(z) is compact for eackk € X and A is a closed subset oR[X, c.0.]

(we check it in a standard way). A&is metrizable and not separable in this space, it is not relatively
compact. Therefore, the converse of Proposition 36 is false in general.

Corollary 37 Assume thal andY are separable metric spaces and thétis locally compact. If
moreoverA C B;(X,Y), equipped with the compact open topology, is relatively compaktin
then A is uniformly recoverable.

Proof. By Proposition 13 page 66 of Chapter 1 in [Bol] and Theorem 1 page 55 of Chapter 9 in
[Bo2], we can apply Propositions 32 and 36, and use Proposition 22. O
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Remarks. There is another proof of this corollary. Indeed, as in the proof of Propositioi 36,
equipped with the compact open topology, is metrizable A5 C Bi(X,Y). Thus A% is a
metrizable compact space for the compact open topology. Thus it is separable for this topology. Then
we apply Theorem 20.

Let X andY be separable metric spaces. Assume that every closed subXeisoh Baire
space, and thatt C YX. If A is EBC1, thend C B (X,Y) and the conditions of Proposition
22 are satisfied, by Proposition 32. The converse of this is false. To see this, we use the example of
Proposition 27 X :=2%Y :=2etA := Up {Tow\ y(p)y }- BY the proof of (1)= (2) in Proposition
22, there exists a finer metrizable separable topology 2, made ofx9(2«), and making the
{1(p)}'s open, forp € w. ThusT makes the functions of continuous. But assume thdltis a finer
metrizable separable topology 21, made of£)(2+), and makes! equicontinuous. We would have
Py ¢ =9([2¢,7']). So we could findv € P, in the closure of?; for 7. If V is a neighborhood of
o for 7/, we could choose (p) € V N Py. We would have Ty 1y (p)3 (@) — Town fy(p)} (¥ (p))| = 1.

But this contradicts the equicontinuity of. Then we apply Proposition 32. This also shows the
utility of the assumption of relative compactness in Proposition8& @n infinite countable discrete
closed set; so it is not compact,f (2¢, 2) equipped with the compact open topology).
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