Michel Waldschmaidt Interpolation, January 2021

Exercices: hints, solutions, comments

Fourth course

1. Answer the quizz p. 29.

The definition of w* when u is a positive real number and z a complex number is u® =
exp(zlogu) with the real logarithm of w.When w # 1, this is an entire function of z of order 1
and exponential type |logu|. When u is a nonzero complex number which is not real > 0, for
instance a negative real number, the definition of u* depends on the choice of a logarithm of
u, namely a complex number, say logu, such that exp(logu) = u. There are infinitely many of
them, we selects one. Then the exponential type of this function u* = exp(zlogu) is |logul.

Since the Golden ratio ¢ = HT‘E is > 0, the function ¢* is well defined by ¢* = exp(zlog ¢),
it has exponential type log¢ = 0.481...

However since ¢ = —¢~! = —0.618--- < 0, the definition of ¢* depends on a choice of the

logarithm of the negative number ¢. The minimal modulus of such a logarithm is
- 1/2
r= ((log 16))2 + 7T2) —3.178...

when log ¢ = log |q~5| + 4. With such a choice, the type of ¢* = exp(z log (;3) is 7.

2. Show that there exist entire functions of arbitrarily large order giving counterexamples to Bieberbach’s claim
p. 44.

2] For k > 1, set a(z) = $2(z —1)(2 —2) -+ - (2 — 4k + 1). The function f(z) = e2(*) has order 4k
and type m4x(f) = 1/2.

There are 2k even factors and 2k odd factors, hence modulo 2Z[z] the polynomial a(z) is
congruent to z2¥(22¥ — 1). The coefficients of z2"*! are even, hence a'(z) € Z[z]. We deduce that
f(2) = e*®) is a k-point Hurwitz entire function.

For k = 1, this reduces to the example p. 45.

3. Let f be an entire function. Let A > 0. Assume

e

Vv 27r.

(a) Prove that there exists ng > 0 such that, for n > ng and for all z € C in the disc |z| < A, we have
F™ (=)l < L.

(b) Assume that f is transcendental. Deduce that the set

{(n,20) ENXC | |20 < A, f™(20) € 2\ {0}}

limsupe™ "v7|f]r <
T—00

is finite.
(a) By assumption, there exists > 0 such that, for n sufficiently large, we have
en—A
|f|n < (1 - 77)

\V2mn .



We use Cauchy’s inequalities

1F™(20)]
7 <A lrt 2005

(which are valid for all zp € C, n > 0 and r > 0) with r =n — A : for |z| < A, we have

|
O VLI

Hence Stirling’s inequality

n

n! >n"e "V2rn

yields
()] < (1= p)e- At/ (1 - A) .

n

For n sufficiently large, the right hand side is < 1.

(b) We need to assume that f is transcendental : indeed, if f is a polynomial with leading term
apz® where dlag € Z\ {0}, then f(D(z9) = dlag € Z\ {0} for all zy with |z| < A, and hence the
set is infinite.

The condition f(™(zg) € Z\ {0} implies |f(™ (20)| > 1. From (a) we deduce that there exists
ng such that the conditions (n,z0) € N x C, |2| < A and f™(z) € Z\ {0}} imply n < no.
Fix n < ng. The function f is bounded on the disc |z| < A, say |f(z)| < B for |z|] < A. Let
be Z\ {0}, |b| < B. Since f™ is not constant, the function f(™(z) — b is not zero, it has only
finitely many zeroes in the disc |z| < A and therefore the set of zy with |z9] < A such that
F(20) = b is finite.

4. Let (en)n>1 be a sequence of elements in {1, —1}. Check that the function
_ €n on
f(z) = Z ﬁz
n>0

is a transcendental entire functions which satisfies
1

Vor

limsup vre™"|f|r =
r—00
Let € > 0 and let r tend to infinity. Let N be the integer such that
V=3 < p < oN+3,
For |z| = r, we split the sum defining f(z) in three subsums. Set
1 o 1 o~ 1 on
SlZZﬁT s ngw'f' s SB:ZﬁT .

n<N n>N

We claim
er
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'
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1
limsup v/re " f], < —-
msup vVre™|flr < o=

Sy < (1+¢)

This will prove



With ~ = 2V we get equality.

Set M = 2V, so that % <r < M+V2.. Write M = ar with % < a < /2. Stirling’s formula
yields

rM e\ 1

— = — 1+o(r)).

i (5) st o)
The function « — zlogx for £ > 0 has it maximum at x = 1, this maximum is 1. Hence 2% <e
with equality at a = 1. We deduce

,,,M er

— <

M= oy

The upper bound for S5 follows. For S; and S3, use

(14 o(r)).

N v 2 oM
Sl S WT’ and S3 S m’r

and apply Stirling’s formula as above.

5. Let so and s1 be two complex numbers and f an entire function satisfying f(2™) (sg) € Z and f(2™)(s1) € Z for
all sufficiently large n. Assume the exponential type 7(f) satisfies

T(f)<min{1,L}.

lso — s1]
Prove that f is a polynomial.

Prove that the assumption on 7(f) is optimal.

(a) Let f satisfy the assumptions. Using exercise 3 above, we deduce from the assumption
7(f) < 1 that the sets

{n>0 | fC(s0) #0} and {n>0 | f®(s1)#0}

are finite. Define, for n > 0,

Kn(z):(sl—so)Q"An< : )

S1 — So
Hence -
P(z) = Z (f@”)(sﬂf\n(z —S0) — f(2")(so)7\n(z — sl))
n=0

is a polynomial satisfying
P (50) = f@V(s9) and PP™(sy) = f®"(s;) for all n > 0.
The function f(z) = f(z) — P(z) has the same exponential type as f and satisfies
fCM (s0) = f®(s) =0 for all n > 0.

Set R }
f(2) = f(so + z(s1 — 50)),
so that . .
f@M0) = f@V(1) =0 for all n > 0.



The exponential types of f and f are related by

T(f) = [s1 — so|T(f).

From the assumption on the upper bound for 7(f) we deduce 7(f) < 7. From Poritsky’s Theorem
(course 2 p. 29) we deduce that f(z) is a polynomial, hence f also.
(b) The function
_ sh(z —s1)
f(Z B Sh(SO — 51)
has exponential type 1 and satisfies f(sg) = 1, f(s1) = 0 and f” = f, hence f(")(s¢) = 1 and

f@)(s1) =0 for all n > 0.
The function

S1 — So

f(z) = sin <7r Z‘S())

has exponential type | and satisfies f(?™(sq) = f™)(s1) =0 for all n > 0.

T
s1—50]

6. Let sp and s1 be two complex numbers and f an entire function satisfying f(2"+1)(80) € Z and f(2">(51) €7
for all sufficiently large n. Assume the exponential type 7(f) satisfies

(f) <min{1 L}

’ 2‘80 — 81‘
Prove that f is a polynomial.

Prove that the assumption on 7(f) is optimal.

(a) Let f satisfy the assumptions. Using exercise 3 above, we deduce from the assumption
7(f) < 1 that the sets

{n>0| fE" ™ (so) £0} and {n >0 | f@(s1) # 0}

are finite. Define, for n > 0,

Mn(z):(sl—so)%Mn( : )

S1 — S0

Hence

P(z)=> (f<2"><sl>f\7n<z — s0) + O (s0) M), 4 (2 — sn)

n=0

is a polynomial satisfying
PO (50) = f@ D (55) and PP (s1) = f@™)(s1) for all n > 0.
The function f(z) = f(z) — P(z) has the same exponential type as f and satisfies
f@"“)(so) = f(Q")(sl) =0 forall n>0.

Set R 3
f(z) = f(So + z(s1 — So)),

so that ~ .
FeD0) = fE(1) =0 for all n > 0.



The exponential types of f and f are related by
T(f) = |s1 — so|T(f)

From the assumption on the upper bound for 7(f) we deduce 7(f) < 7/2. From Whittacker’s
Theorem (course 2 p. 37) we deduce that f(z) is a polynomial, hence f also.
(b) The function
sh(z — s
f) = 22

o Ch(SO — 81)

has exponential type 1 and satisfies f'(so) = 1, f(s1) = 0 and f” = f, hence f"+1(sy) = 1
and f")(s;) = 0 for all n > 0.
_ T.EZS0
f(z) = cos (2 o 30)

The function
has exponential type 5" and satisfies fC ) (s0) = fC)(s1) = 0 for all n > 0.

7. Recall Abel’s polynomials Py(z) =1,
1
P, (z) = —'z(z —n)"" 1 (n2>1).
n!
Let w be the positive real number defined by we®t! = 1. The numerical value is w = 0.278 464 542.. ..

(a) For t € C, |t| < w and z € C, check
et = Z t"e™ P, (2),
n>0
where the series in the right hand side is absolutely and uniformly convergent on any compact of C.
Hint. Let t € R satisfy 0 < t < w and let z € R. For n > 0, define

n—1
Ry (2) = et* — Z tFeFt Py (2).
k=0
Check Rn(0) =0, R, (2) = Rp—1(2 — 1), so that
z z w1 Wy —1
Rn(z) = tet/ Rp—1(w—1)dw = (tet)"/ dwl/ dws - - / Ro(wn — 1)dwp,.
0 0 1 n—1
Deduce n
|Rn(2)] < (tet)nwetl—ﬂ
n!
(see |Gontcharoff 1930} p. 11-12] and [Whittaker, 1933 Chap. III, (8.7)]).
(b) Let f be an entire function of finite exponential type < w. Prove
Fz) =" () Pa(2),
n>0

where the series in the right hand side is absolutely and uniformly convergent on any compact of C.

(c) Prove that there is no nonzero entire function f of exponential type < w satisfying fF) (n) =0 for all n > 0.
Give an example of a nonzero entire function f of finite exponential type satisfying f(")(n) =0 for all n > 0.
(d) Let t € C satisfy |t| < w. Set A = tet. Let f be an entire function of exponential type < w which satisfies

F(2) = M(z—1).

Prove

(a) By analytic continuation it suffices to prove the formula for 0 < t < w and z € R. Fix
such a t. For n > 0 and z € R, define

n—1

R, (z) = e* — Z theF Pr(2).
k=0



We have Ro(z) = e** — 1 and for n > 1
R (2) =te'R,_1(2 — 1)

with R, (0) = 0, so that

wi Wn—1
R, (2) :tet/ R, _1(w—1)dw = (te') / dwl/ dws - - / etn dw,,.
0 1

We deduce, for z € R and n > 0,

|Rn(2)] < (tet)”wetld

(for the details, see (see [Gontcharoff 1930, p. 11-12| and [Whittaker, 1933, Chap. III, (8.7)]).
Stirling’s formula shows that the assumption te!*! < 1 implies R,,(2) — 0 as n — oc.
(b) Let

be an entire function of exponential type 7(f). The Laplace transform of f, viz.

= Z ant™ "1,

n>0

is analytic in the domain |¢| > 7(f). From Cauchy’s residue Theorem, it follows that for » > 7(f)
we have

1

211 [t|]=r

f(z) = e F(t)dt.

We replace e'* by the series in the formula proved in (a) and get, for 7(f) < r < w,

1 1
— t"e™P,(2)F(t)dt = Y P,(2)=— t"e™ P (t)dt.
1= g [, S m@ROa= Y @)y [ et E)
For n > 0 we have
1
7/ t"e tzF
2mi Jyt)=r
hence
2 [t]=r
so that

I
3
i
o
>

(¢) From (b), one deduces that an entire function f of exponential type < w satisfying £ (n) = 0
for all n > 0 is the zero function.

The function sin(7z/2) has type 7/2 and satisfies f(")(n) = 0 for all n > 0. Notice that
w<7m/2=1.570...
(d) The function g(z) = f(z) — f(0)e'* satisfies g(0) = 0 and ¢’(2) = Ag(z — 1), hence g™ (n) = 0
for all n > 0. Since g has an exponential type < w, we deduce from (c) that g = 0.
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