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Abstract. The objective of this paper was the experimental investigation of the accumulated induction effect of a large offshore

wind farm as a whole, i.e. the global blockage effect, in relation to atmospheric stability estimates and wind farm operational

states. We measured the inflow of a 400 MW offshore wind farm in the German North Sea with a scanning long-range Doppler

wind lidar. A methodology to reduce the statistical variability of different lidar scans at comparable measurement conditions

was introduced and an extensive uncertainty assessment of the averaged wind fields was performed to be able to identify5

the global blockage effect which is small compared to e.g. wind turbine wake effects and ambient variations in the inflow.

Our results showed a 4 % decrease in wind speed (accuracy range 2 % to 6 %) at transition piece height (24.6 m) upwind of

the wind farm with the turbines operating at high thrust coefficients above 0.8 in a stably stratified atmosphere, which we

interpreted as global blockage. In contrast, at unstable stratification and similar operating conditions and for situations with

low thrust coefficients (i.e. approx. 0 for not operating turbines and ≤ 0.3 for turbines operating far above rated wind speed)10

we identified no wind speed deficit. We discussed the significance of our measurements, possible sources of error in long-range

scanning lidar campaigns and give recommendations how to measure small flow effects like global blockage with scanning

Doppler lidar. In conclusion, we provide strong evidence for the existence of global blockage in large offshore wind farms in

stable stratification and the turbines operating at a high thrust coefficient by planar lidar wind field measurements. We further

conclude that global blockage is dependant on atmospheric stratification.15

1 Introduction

Wind turbine wakes can cause negative effects at downstream turbines due to decreased wind speeds and increased turbulence

(Porté-Agel et al., 2019). This was intensively studied in the last decades and is considered in all wind farm projects planned

today (Rohrig et al., 2019). Recently, the so-called global blockage effect came into the research focus. It denotes the reduction

of the wind speed in a comparably wide area upstream of large wind farms. The effect is supposed to be caused by an inter-20

action of the wind farm as a whole with the atmospheric boundary layer since it can not be sufficiently described by a simple

superposition of the induction zones of individual turbines in a large wind farm. Global blockage is usually not considered in

the planning of wind energy projects and could therefore lead to a non-negligible bias in the assessment of the wind resource

(Bleeg et al., 2018).
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The knowledge of the wind resource to be expected during the lifetime of a wind energy project is crucial for its successful

financing and economic operation. A large wind farm operator recently attributed a reduction in the predicted unlevered life-

cycle Internal Rate of Return (IRR) among others to underestimated wake effects between distant wind farms and the global

wind farm blockage effect (Ørsted A/S, 2019).

The induction zone of a single wind turbine describes the region in front of the rotor where the wind speed is reduced due30

to the presence of the wind turbine. The standard for onshore power curve measurements of wind turbines recommends to

measure the free wind speed, i.e. the wind speed at the turbine location in absence of the turbine, at least 2.5 rotor diameters D

upstream or lateral to the turbine’s location (IEC, 2017). It is assumed that the influence of a wind turbine’s induction zone

is very low at this distance. The effect of reduced wind speeds in the induction zone of a wind turbine is called wind turbine

blockage effect and it is caused by the thrust of the rotor. Meyer Forsting et al. (2017) give an overview of wind turbine35

blockage and the induction zone.

The accumulated induction zone generated by the wind farm as a whole is called global blockage and leads to a wind speed

deceleration and flow deflections sideways and upward in front of the wind farm. As for solid objects in the flow like mountains

or buildings a wind farm represents an obstacle causing an upstream reverse pressure gradient which results in reduced wind

speeds. Different from solid objects wind farms are porous and actively produce thrust. In case of a wind farm, this reverse40

pressure gradient is referred to as global blockage. Wind farm related factors influencing the extent and the intensity of the

global blockage effect are wind farm size, layout, wind direction, turbine spacing and thrust coefficient (Porté-Agel et al., 2019).

A meteorological parameter that affects the extent and strength of the wind farm induction zone, i.e. the global blockage, is

the height of the atmospheric boundary layer (Porté-Agel et al., 2019) which is related to atmospheric stability (Kitaigorodskii

and Joffre, 1988).45

Knowledge about the global blockage effect mainly results from numerical studies. Meyer Forsting et al. (2016) used RANS

simulations to investigate the effect that wind turbines in a row have on each other’s power production when considering

different inflow directions. They found a combined induction zone of the whole turbine row with changes in the individual

turbine’s power in the range of -1 % to 2 % while the accumulated power remained nearly constant. Wu and Porté-Agel (2017)

performed Large Eddy Simulations (LES) of large finite-size wind farms in neutral stratified boundary layers capped with a50

thermally-stratified free atmosphere (conventionally-neutral atmospheric boundary layer) and discovered a wind farm induction

zone extending about 0.8 km (rotor diameter D=80 m ) upwind and leading to power reductions of 1.3 % and 3 % for different

farm layouts. Using LES, Allaerts and Meyers (2017) determined wind farms to excite gravity waves in stable stratification

which are caused by the upward movement of the top of the boundary-layer due to global wind farm blockage. Those gravity

waves are similar to so called mountain waves induced by hills and mountains.55

Some modelling studies analyzed global blockage from implementations of the accumulated turbine induction in engineering

models. Branlard and Meyer Forsting (2020) introduced a computational inexpensive vortex model to assess wind farm pro-

duction considering accumulated blockage effects. The wind turbine and wind farm blockage effects resolved with their model

compared well with results from actuator disk simulations at moderate thrust coefficients. Bleeg (2020) used a graph neural

network surrogate model to predict wind turbine interaction losses including global blockage. He found a good agreement of60
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the model and the results of RANS simulations. Nygaard et al. (2020) coupled an engineering model for global blockage with

a wind turbine wake model modified to better represent the far wind farm or cluster wake. Their wind farm blockage model

was able to predict the trend in the variation of power in the front row of turbines but underestimated its amplitude. The authors

pinpoint that more research is needed on the further model development and calibration. Branlard et al. (2020) presented a cur-

rent overview of engineering models including global blockage and compare their performance with an actuator disk RANS65

simulation as reference. They find the different models to show varying levels of accuracy with a mean error level below 1 %

in the induction zone.

These numerical studies agree on the magnitude of the wind speed deficit in the wind farm induction zone to be in a lower

one-digit percentage range. Nevertheless, most numerical studies lack measurement data for validation since experimental

investigations on global blockage have been rarely performed.70

Segalini and Dahlberg (2019) measured the effect of a model wind farm on a row of upstream turbines in different distances

in a laminar wind tunnel. They observed a decrease in wind speed at the turbine row in distances of up to 30 rotor diameters

(D=45 mm) upstream and with a maximum of 2 %.

To our knowledge the only study presenting free field measurements of global blockage was performed by Bleeg et al.

(2018), who analysed wind measurements of meteorological masts upstream and lateral to three different onshore wind farms75

before and after the commercial operation date and for high thrust coefficients of the turbines. Deficits in wind speed upstream

compared to the lateral reference mast of around 2 % and up to more than 6 % appeared typically in front of the farms after the

turbines went into operation. The authors relate this mainly to the global blockage effect.

Open field measurements of global blockage are challenging. Classic anemometry is limited in its possibilities to study the80

induction zone of a wind farm since just a limited number of masts can be placed in front of it due to mainly financial con-

straints. In the last decade, the remote sensing methods Doppler wind lidar (light detection and ranging) has become a common

tool in many fields of wind energy research and applications (Hasager and Sjöholm, 2019). Lidar devices offer the possibility

to scan whole wind fields with ranges of several kilometres. Commercial scanning lidar systems allow to measure the line-of-

sight (LOS) component of the wind vector on several hundred positions along the emitted laser beam and to orientate the beam85

in any direction. Scanning lidars have enabled many new insights in different fields of wind energy research, like wind turbine

wakes (Käsler et al., 2010; Trabucchi et al., 2014), wind farm cluster wakes (Schneemann et al., 2020), resource assessment in

complex terrain (Menke et al., 2020) and minute-scale wind power forecasts (Theuer et al., 2020b).

The current knowledge on global blockage is mainly based on modelling activities or wind tunnel studies. Compared to90

well-known phenomena like wind turbine wakes with significant wind speed deficits in the order of tens of percents of the

inflow wind speed in a well defined downstream region, global blockage is much harder to study especially due to the larger

spatial expansion over typically several square kilometres and the smaller wind speed differences in a single digit percentage

range. Furthermore, the effect of global blockage needs to be separated from other spatial and temporal variations in the wind

field. Averaged field measurements on a small number of scattered points (Bleeg et al., 2018) lack information on superposed95
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flow features like local wind speed variations due to orography, wind farm layout or varying meteorological conditions. Since

it is not possible to distinguish these flow features, this adds uncertainty to the identification of global blockage.

Therefore, accurate field measurements spatially resolving the induction zone of the wind farm are of major importance to

validate the modelling results already achieved. The extent of global blockage in operating wind farms and its dependency on

atmospheric stability and the farm’s operational state is still not fully understood and proof for the effect appearing in operating100

wind farms is still missing.

Compact Doppler lidar systems offer the possibility to scan large parts of the inflow of a wind farm with measurement ranges

up to 10 kilometres. Nevertheless, to obtain wind data for a quantitative analysis all measurement parameters of the lidar device

such as its orientation and tilt due to platform movements need to be carefully selected and accurately controlled. Furthermore,

environmental parameters and conditions like curvature of the earth, knowledge of the current wind profile and atmospheric105

stability for height correction need to be known and accounted for.

The objective of our paper is the experimental assessment of the global blockage effect in a large offshore wind farm

dependent on atmospheric stability estimates and wind farm operational states. In addition to this, we are proposing a method

to examine comparably small flow effects like global blockage with long-range scanning lidar. Our approach includes:110

– analysing horizontal long-range Doppler lidar plan position indicator (PPI) scans upstream of a 400 MW offshore wind

farm,

– deriving atmospheric stability from local meteorological measurements and

– performing a detailed uncertainty assessment and error correction on all measured quantities.

Furthermore, we provide recommendations for measurements of global blockage or similar small flow effects with scanning115

Doppler Lidar.

In this paper we use the terms blockage effect and wind turbine blockage effect for decreased wind speeds in the induction

zone of single turbines while we call the accumulated blockage effect of all turbines within a wind farm or wind farm cluster,

i.e. the reverse upstream pressure gradient of the wind farm, global (wind farm) blockage or global (wind farm) blockage effect.

This paper is structured as follows. In Section 2 we introduce our experimental setup including lidar measurements and120

atmospheric stability estimations. We place special focus on the uncertainty assessment of the lidar data. We present the results

of four different inflow situations varying in atmospheric stability and wind speed in Section 3. In Section 4 we discuss our

findings and give recommendations for lidar measurements of flow effects like global blockage with a magnitude of typical

ambient wind speed fluctuations. We conclude and close the paper in Section 5.
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2 Methods125

In this section we describe the analyzed wind farm (Section 2.1), lidar measurements (Section 2.2), meteorological measure-

ments and atmospheric stability characterization (Section 2.3), lidar data analysis (Section 2.4) and lidar wind speed uncertainty

estimation (Section 2.5).

2.1 Offshore wind farm Global Tech I

At the time of our measurement campaign between August 2018 and January 2020, several offshore wind farms had been130

installed in the German and Dutch North Sea. In the focus of this work is the 400 MW wind farm «Global Tech I» (GT I). It

features 80 turbines of type «Adwen AD 5-116» with a rotor diameter D of 116 m, a hub height of 92 m, a rated power of

5 MW at a rated wind speed of 12.5 ms−1 and a cut-in wind speed of 4 ms−1 (Global Tech I Offshore Wind GmbH, 2021).

Figure 1 (a) gives an overview of the region around GT I while Figure 1 (b) displays its layout. Supervisory Control and Data

Acquisition (SCADA) data of GT I were available to check the turbines status and the power production within regarded lidar135

scan intervals.

The «BorWin 1» cluster consisting of the operating wind farms «Veja Mate» and «BARD Offshore 1» and the wind farm

«Deutsche Bucht» currently under construction is located in a distance of about 24 km in south-west direction (green shapes

in Figure 1 (a)). During our measurements the wind farms «Hohe See» and «Albatros» (open blue shapes in Figure 1 (a) and

turbine coordinates in Figure 1 (b)) were build in the direct south-west vicinity of GT I within approx. 1 to 6 km distance140

upstream with several transition pieces, turbines and two sub-stations installed. Measurements after the first power was fed in

on 15 July 2019 were not considered (EnBW, 2019). Hard targets in the lidar data due to the construction of the two upstream

wind farms «Hohe See» and «Albatros» were filtered from the measurements (cf. Section 2.4) and can lead to a reduced data

availability on the corresponding line of sight direction due to (partial) laser beam coverage.

2.2 Lidar measurements145

We used a scanning long-range Doppler wind lidar of type Leosphere Windcube 200S (Serial no. WLS200S-024) which we

installed on the transition piece (TP, platform to access the turbine) of turbine GT58 in GT I (red filled � in Figure 1 (b)). A

photograph of the lidar on the TP is provided by Schneemann et al. (2020), Figure 1. The height of the lidar’s scanner was

approximately 24.6 m above mean sea level (MSL), 67.0 m below hub height and 9.0 m below lower blade tip height of

the turbine. The measurement campaign started in August 2018 and ended in January 2020. We consider data from a period150

between February 2019 and June 2019. We performed plan position indicator scans (PPI) with an elevation of 0◦, resulting in

a measurement height of 24.6 m MSL plus a correction due to the earth’s curvature (up to 5 m in 8 km distance). Further, a

turbine thrust-dependent tilt of the lidar was observed, resulting in varying measuring heights across range gates and azimuth

angles (cf. Section 2.5). We set the lidar’s pulse length to 400 ns, the acquisition time to 2.0 s, the scanning speed to 1◦ s−1 and

scanned the upstream flow in different azimuth sectors of 150◦ that we aligned manually to the wind direction. Range gates155

were defined between 500 m (approx. 4 D) and 7990 m (approx. 69 D) with a 35 m spacing. After intensive data filtering
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Figure 1. (a) Location of the wind farm GT I (orange) in the North Sea with neighbouring wind farms and clusters shown. Wind farms under

construction are depicted as open shapes (status beginning of 2019). The 24 km upstream «BorWin 1» cluster is marked in green. (b) Layout

of GT I (• with turbine numbers). The position of the lidar on turbine GT58 (red filled �) and the lidar scan region covering the area of the

four different 150◦ scan sectors (red line) are highlighted. The turbine locations (small ×) and the substations (×) of the wind farms «Hohe

See» (southerly blue shape) and «Albatros» (northerly blue shape), which were under construction during our measurements, are marked.

typical ranges around 5500 m were achieved (cf. Section 2.4). One lidar scan took 150 s and resulted in 215 range gates

(also referred to as "measurement points") on each of the 75 beams. The further processing of the lidar scans is described in

Section 2.4. Schneemann et al. (2020) give further information on the measurements and Schneemann et al. (2019) provide

some exemplary lidar scans from this campaign.160

2.3 Atmospheric stability characterization and meteorological measurements

For the analysis of the global blockage effect knowledge about wind speed at one common height across the whole scan

is required. The varying measuring height, as a consequence of the tilt of the lidar device and the Earth’s curvature, thus

necessitate the extrapolation of wind speeds to that common height. To keep extrapolation distances small, we here chose

the height of the transition piece/lidar device. For the extrapolation we use a logarithmic stability corrected wind profile.165

Information regarding stability further allows us to analyse the effect of atmospheric conditions on global blockage.

We used a similar methodology to derive atmospheric stratification as in Theuer et al. (2020b) and Schneemann et al. (2020),

which is described here for completeness. To characterize atmospheric stability (Emeis, 2018) we used local measurements as

well as reanalysis data. On the transition piece of turbine GT58 close to the lidar’s position, we measured air temperature and

humidity (Vaisala HMP155) and air pressure (Vaisala PTB330). Additionally, we used the sea surface temperature (SST) from170
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the OSTIA data set (Good et al., 2020). We utilized a methodology introduced by Rodrigo et al. (2015) to estimate the Bulk

Richardson number

Rib =
g

Tv

0.5zTP (ΘTP−Θ0)

u2li
. (1)

Here, g is the gravitational acceleration, Tv the virtual temperature at sea level and ΘTP and Θ0 the virtual potential temperature

at TP height zTP and sea level respectively. uli describes the wind speed at the lidar position, determined utilising lidar175

measurements up to range gates of 600 m. The height used to calculate Rib is defined as the mean between the two height

levels, i.e. 0.5zTP. After estimating Rib we obtain the dimensionless stability parameter

ζ =


10Rib
1−5Rib

Rib > 0

10Rib Rib ≤ 0
(2)

and finally the Obukhov length

L=
0.5zTP

ζ
. (3)180

We estimated the roughness length z0 using the determined Obukhov length L and the stability corrected logarithmic wind

profile

u=

√
z0 g

αc

1

κ

(
ln

(
z

z0

)
−Ψ

( z
L

))
, (4)

with z = zTP and u= uTP. Here, κ= 0.4 describes the von Kármán-constant and αc = 0.011 the Charnock parameter, often

used in an offshore context (Smith, 1980). The stability correction term185

Ψ =

2ln
(
1+x
2

)
+ ln

(
1+x2

2

)
− 2arctan(x) + π

2 L < 0, where x= (1− γ zL )1/4

−β zL L≥ 0
(5)

was defined following Dyer (1974) with γ = 19.3 and β = 6 (Högström, 1988).

2.4 Lidar data processing

We filtered the lidar scans using a carrier-to-noise (CNR) threshold filter, considering only values with−26dB< CNR< 0dB.

With a Velocity-Azimuth-Display (VAD) algorithm, we calculated a mean wind speed u and wind direction χ individually for190

each scan assuming a homogeneous wind field and neglecting the vertical wind speed component (Werner, 2005). At each

measurement point we projected the line-of-sight (LOS) wind velocities uLOS onto the mean wind direction by means of

uh =
uLOS

cos(ϑ−χ)
, (6)

with horizontal wind speed uh and azimuth angles ϑ. Sectors with azimuth angles almost perpendicular to the wind direction,

i.e.195

75◦ < |ϑ−χ|< 105◦, (7)
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were neglected as they are associated with large errors. Further, outliers with |uh−u|> 2.75 σu, with σu defined as the standard

deviation of horizontal wind speed within each scan, were discarded. For each measurement point we then determined the

measuring height, considering both the curvature of the Earth and a turbine thrust-dependent tilt of the lidar device. Further

details about the alignment of the lidar and the correction function to estimate the measurement height are presented in Rott200

et al. (2020). After assessing the measuring height, wind speed values were extrapolated to the lidar height zTP = 24.6m using

a stability corrected logarithmic wind speed profile described by Equations 4 and 5 (Section 2.3).

Only scans with a data availability of at least 60% were considered for further analysis. Data availability was calculated

individually for each scan, including measurement points up to a range gate of 7000m and not considering critical sectors as

defined in Equation 7.205

Finally, we interpolated all valid scans to a Cartesian grid with a spacing of ∆x= ∆y = 50m to be able to average data of

varying scanning sectors.

For further analysis, the lidar scans were categorised according to their respective mean wind direction χ, 10-minute-mean

wind speed measured by a sonic anemometer at the nacelle of turbine GT58 uGT58 and atmospheric stability characterized by210

L. In each category, consisting of N individual lidar scans i, we performed the following steps: First, the mean wind speed

within the scan i at TP height uTP,i was derived and used to normalise the wind speeds on all grid points, yielding uTP,norm,i.

Second, all normalised scans were averaged to uTP,norm. Hereby, Cartesian grid points with data availability < 80 %, i.e.

Nr < 0.8N , with N the number of all available scans within the category and Nr the number of valid scans at each grid point,

were neglected. Third, normalised and averaged wind speeds uTP,norm were interpolated onto a virtual line in mean wind215

direction upstream of the lidar.

For the blockage analysis we decided to distinguish between two stability classes, i.e. unstable and stable situations, and

three different operational states respectively wind speed ranges. The operational state of the wind farm was estimated using

SCADA power data and the wind speed range based on the wind speed at nacelle height. These states are namely the wind farm220

not operating (below cut-in wind speed, low thrust coefficient of approx. 0), the wind farm operating at rated power (above

rated wind speed, low to moderate thrust coefficient) and the wind farm operating below and up to rated power (below rated

wind speed, high thrust coefficient). In total, the combination of these two categories left us with a number of six possible cases

to be analysed as summarized in Table 1.

Table 1. Summary of possible scenarios to be analysed. Those shown in this work are named, those not shown are marked as X.

unstable (L < 0 m and |L|< 1000 m) stable (L > 0 m and |L|< 1000 m)

not operating X Scenario 2, Figure 5

operating below rated wind speed Scenario 1, Figure 4 Scenario 4, Figure 7

operating above rated wind speed X Scenario 3, Figure 6
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However, for brevity we omitted the combinations unstable, not operating and unstable, operating above rated wind speed.225

With the comparison of the four remaining cases we aimed to cover both scenarios where global blockage is likely to occur

and those where an occurrence is less likely. This "cross-check" allowed us to better interpret the obtained results in terms of

possible wind speed gradients caused by other background phenomena. We start with the analysis of the remaining unstable

scenario and then continue with the stable cases, sorted according to their thrust coefficients. The four scenarios are summa-

rized below.230

Scenario 1: Wind turbines operating below and up to rated power with a high thrust coefficient > 0.8 at the plateau-region of

the thrust-coefficient curve. We chose a wind speed interval of 8ms−1 < u < 11ms−1, unstable atmospheric conditions and a

total power production of the wind farm with at least 50 % of wind farm’s rated power and 80 % of the wind farm’s estimated

power. Here, the wind farm power is estimated by extrapolating uTP to hub height using an average logarithmic profile (see235

Section 2.3, with L=−300m) and transferring the result to the whole wind farm considering wind farm effects. Further, only

situations with high power production at GT58 (PGT58 ≥ 4000kW) were considered to make the experienced tilt of the lidar

device comparable to that of Scenario 4.

Scenario 2: Wind farm not operating with wind speeds below cut-in wind speed, i.e. thrust coefficients of approx. 0. Here240

scans with wind speed uTP from 3ms−1 < u < 4ms−1, during stable atmospheric conditions and a wind farm power produc-

tion < 5 % of the wind farm’s rated power were selected.

Scenario 3: Wind farm operating at rated power with wind speeds uTP above rated wind speed and low thrust coefficients

≤ 0.3. This comprises scans with 16ms−1 < u < 22ms−1, stable atmospheric conditions and a total wind farm power > 80%245

of the rated power. Further, only cases with a blade pitch from SCADA data > 5◦ at GT58 were considered.

Scenario 4: Wind turbines operating below and up to rated power with a high thrust coefficient > 0.8. Same as Scenario 1,

however here we chose scans with stable atmospheric conditions. In this case the estimated wind farm power was determined

using an average logarithmic profile with L= 300m.250

2.5 Uncertainty estimation

For the further analysis and interpretation of the results, several uncertainties introduced in the course of the measurement

campaign and data analysis procedure are important to consider. In this section, we qualitatively summarise the most important

error contributions and subsequently estimate uncertainties using three different methodologies. First, we calculate the total

propagated uncertainty using the uncertainties assigned to the individual components with Gaussian error propagation, second255

we determine the total propagated uncertainty as before but distinguish also between range gate-independent and range gate-

correlated input variables, and third we derive the statistical standard error of the mean.
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Figure 2. Illustration of different sources of uncertainty for wind speed estimates in long-range Doppler lidar measurements on an offshore

platform like the TP of an offshore wind turbine. Aside the general uncertainty in the LOS wind speed measurement the main source of

uncertainty is the varying measurement height due to lidar scanner misalignment (purple) and platform tilts and movements (red) e.g. due

to the turbine’s thrust. Curvature of the earth (blue) and tide (light blue) adds on the height uncertainty. As a consequence of known height

errors measured wind speeds need to be transformed back to the desired height, thus the lack of knowledge of the prevailing wind profile

introduces additional uncertainty (orange).

We summarise sources of errors and uncertainties that need to be considered in offshore lidar measurements of flow effects

with small deviations with respect to the mean flow in Table 2 and visualise them in Figure 2. It becomes clear that several of

the error sources are directly or indirectly linked to the alignment of the lidar: The device’s tilt causes the need for a height260

extrapolation, thus wind profile information is required, introducing additional uncertainties. Considering a measurement sce-

nario with perfect horizontal measurements, the error sources could be significantly reduced. However, as in this set-up an

extrapolation of wind speed um at measuring height zm to lidar height zTP is required we estimated the uncertainty associated

with it in more detail in the following.

2.5.1 Total propagated uncertainty265

As stated earlier the height extrapolation of lidar data is performed by means of a stability corrected logarithmic wind speed

profile (Equation 4). The wind speed at height of the TP uTP can thus be expressed as

uTP = um
ln( zTP

z0
)−Ψ( zTP

L )

ln( zmz0 )−Ψ( zmL )
. (8)
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Gaussian error propagation yields the total propagated uncertainty

∆uTP =

( ln( zTP

z0
)−ΨTP

ln( zmz0 )−Ψm
∆um

)2

+

(
um(ln( zTP

z0
)−ΨTP + Ψm− ln( zmz0 ))

z0(ln( zmz0 )−Ψm)2
∆z0

)2

+

(
um(ΨTP− ln( zTP

z0
))

zm(ln( zmz0 )−Ψm)2
∆zm

)2

(9)

270

+

(
um

Ψm− ln( zmz0 )
∆ΨTP

)2

+

(
um(ln( zTP

z0
)−ΨTP)

(ln( zmz0 )−Ψm)2
∆Ψm

)2
1/2

,

with the corresponding uncertainty in the stability correction term

∆Ψ =



∣∣∣ 4x2

x3+x2+x+1

∣∣∣∆x L < 0,

where ∆x=

[(
− γ

4L

(
1− γ zL

)−3/4
∆z
)2

+
(
γz
4L2

(
1− γ zL

)−3/4
∆L
)2]1/2

[(
−β 1

L∆z
)2

+
(
β z
L2 ∆L

)2]1/2
L≥ 0

.

(10)

The indices of the correction terms Ψ refer to the height at which it is determined. The uncertainty of the Obukhov length L is275

also determined by means of Gaussian error propagation of Equations 1 to 3, leading to

∆Rib =

[(
−g
T 2
v

0.5zTP (ΘTP−Θ0)

u2li
∆Tv

)2

+

(
−2g

Tv

0.5zTP (ΘTP−Θ0)

u3li
∆uli

)2

+

(
g

Tv

0.5zTP

u2li
∆Θ0

)2

(11)

+

(
g

Tv

0.5zTP

u2li
∆ΘTP

)2
]1/2

, (12)

∆ζ =


∣∣∣ 10
(1−5Rib)

2

∣∣∣∆Rib Rib > 0

10∆Rib Rib ≤ 0,
(13)280

∆L=

∣∣∣∣−0.5zTP

ζ2

∣∣∣∣∆ζ. (14)

The uncertainties ∆Tv , ∆Θ0 und ∆ΘTP are hereby assessed using air and water temperature, humidity and pressure uncer-

tainties. We set ∆Tair = 0.1K, ∆Twater = 0.2K, ∆p= 0.3hPa and ∆H = 1.2%, following typical uncertainties suggested in

the sensors’ user manuals.285

Other uncertainty contributions are set to ∆uli = 0.1ms−1 and ∆z0 = 0.05z0. The wind speed uncertainty at measuring

height ∆um is dependent on the line-of-sight wind speed uncertainty ∆uLOS = 0.1ms−1, the azimuth uncertainty ∆ϑ= 0.05◦

and the wind direction uncertainty ∆χ= 1◦, following error propagation of Equation 6. ∆zm was estimated using the pitch and

roll uncertainty, which were set to ∆β = ∆γ = 0.05◦ following the findings of the method of sea surface levelling demonstrated
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in Rott et al. (2017, 2020). These uncertainties can be understood to comprise both possible elevation pointing uncertainties as290

well as the tilt of the lidar device. All uncertainty terms defined here and thus also the total propagated uncertainty ∆uTP are

understood as the 1.96σ values of the corresponding error distributions, i.e. we expect them to include 95% of all values.

A detailed analysis of the uncertainty associated with wind speed extrapolation to hub height in the framework of an offshore

lidar campaign by Theuer et al. (2020a) has revealed a strong dependency on the Obukhov length L. Large uncertainties need

to be expected especially during very stable atmospheric conditions. Even though the study uses different input parameters,295

this also holds valid for our analysis.

We determined the total propagated uncertainty ∆uTP for each scan and grid point. Values were normalised within each

scan i using uTP,i and averaged across all valid scans, yielding ∆uTP,norm.

2.5.2 Corrected propagated uncertainty

In the uncertainty estimation of the total propagated uncertainty (Section 2.5.1) we defined ∆uTP,norm in a way that assumes300

none of the input uncertainties are correlated across range gates. That means, we also assume it is possible that the signs of

the errors vary between range gates. While this might be true for wind speed errors ∆um and roughness length errors ∆z0, it

does not hold for measurement height errors ∆zm, which are directly related to the tilt of the lidar, and the Obukhov length

error ∆L, which we consider to be constant across the whole measurement domain. Since these assumptions could influence

the interpretation of the results, we decided to determine the uncertainty additionally only considering measurement range305

independent input variables. That means, we set ∆zm = ∆ΨTP = ∆Ψm = 0 to calculate the corrected propagated uncertainty

∆uTP,cor =

( ln( zTP

z0
)−ΨTP

ln( zmz0 )−Ψm
∆um

)2

+

(
um(ln( zTP

z0
)−ΨTP + Ψm− ln( zmz0 ))

z0(ln( zmz0 )−Ψm)2
∆z0

)2
1/2

. (15)

Also ∆uTP,cor is normalised within each scan and subsequently averaged across all valid scans to ∆uTP,cor.

We examine the uncertainty contributions of ∆zm, ∆ΨTP and ∆Ψm for relevant cases separately in a case distinction in

Section 3.4.310

2.5.3 Standard error of the mean

As an alternative to the total propagated uncertainty we calculated the statistical error, i.e. the standard error of the mean

SEM = 1.96
σuTP,norm√

Nr
(16)

for each grid point, considering all valid scans Nr with the standard deviation of the normalised wind speed at each grid

point σuTP,norm
. We included the factor 1.96 already in the definition of the variable to cover the 95 % confidence interval for315

normally distributed errors. The SEM estimates the deviation of the sample mean from the true mean (McKillup, 2005) and

thus yields information regarding the statistical significance of the results. While the total propagated uncertainty regards the

accuracy of single input variables, the statistical error quantifies the precision of the results from different scans. A higher

number of scans typically reduces measurement noise from the statistical error, i.e. wind speed fluctuations around the mean.
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2.5.4 Uncertainty due to local wind direction deviations320

In addition to the total propagated uncertainty, the corrected propagated uncertainty and the SEM, which focus on the un-

certainty in mean wind direction, we want to introduce another uncertainty in the measured wind fields that arises from the

assumption of a homogeneous wind direction in the whole scanned area. As described in Section 2.4 we estimate the mean

wind direction of a single lidar scan by means of a cosine fit (VAD algorithm) and transfer all measured line of sight wind

speeds of the current scan to absolute horizontal wind speeds using this fixed mean wind direction (Equation 6). Local devia-325

tions from this mean wind direction lead to estimation errors of the horizontal wind. This uncertainty contribution is dependant

on the angular difference between the wind direction and the lidar scanner’s azimuth angle and the degree of the deviation. To

quantify this we define the local uncertainty

uh
utrue

=

uLOS

cos(ϑ−χ)
uLOS

cos(ϑ−χtrue)

=
cos(ϑ−χtrue)

cos(ϑ−χ)
(17)

with the local estimated wind speed uh and the true local wind speed utrue that considers wind direction deviations being330

dependant on the lidar’s azimuth angle ϑ and the local wind direction χtrue = χ+χdiv being the sum of the mean wind

direction χ and the local wind direction deviation χdiv.

Figure 3 visualizes this error for a hypothetical lidar scan with a constant deviation of |χdiv|= 2.0◦ and its sign chosen

corresponding to a flow around the wind farm. While the error vanishes for the lidar looking upwind it leads to reduced wind

speed estimates of more than 4 % at the sides of the scan (ϑ−χ=±50◦) in this example. Since this uncertainty contribution335

is in the same order of magnitude as the expected strength of global blockage at the sides of the scan we focus our analysis on

the upstream direction where the error is neglectable.

3 Results

In the following we present results of the four scenarios introduced in Section 2.4.

3.1 Scenario 1: Wind farm operating below rated wind speed at unstable atmospheric conditions with high thrust340

coefficient

Figure 4 (a) shows N = 53 normalised and averaged lidar scans for unstable atmospheric conditions and within a wind speed

interval of u= [8− 11]ms−1, i.e. for the wind farm operating at a high thrust coefficient. The wind field depicted is relatively

homogeneous across the shown area, with slight variations of wind speed visible as streaks in wind direction. Apart from that,

most values fluctuate closely around the mean wind speed.345

This impression is confirmed by Figure 4 (b), where a virtual cut in mean wind direction upstream of the lidar, indicated

as red line in Figure 4 (a), is depicted. Again, uTP,norm fluctuates around 1, the three error terms (c. f. Equations 9, 15 and

16), visualised as light and dark grey shaded areas and black dotted line respectively, have a similar magnitude. Be aware that

the SEM overlays the corrected propagated uncertainty ∆uTP,cor and makes its shaded area seem darker than depicted in the
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Figure 3. Local deviation in the assessment of the horizontal wind speed uh due to a wind direction deviation |χdiv|, here exemplary set

to 2.0◦ (cf. Equation 17). The lidar (red �) directs its beam (red) in mean wind direction χ, arrows denote the local deviation of the wind

direction χdiv.

legend. The uncertainty contributions of L and zm are relatively low, i.e. ∆uTP,norm is only slightly larger than ∆uTP,cor.350

This can be attributed to the relatively small change of wind speed with height during unstable conditions. Generally slightly

larger values can be observed for the SEM as compared to ∆uTP,cor. For far range gates from approximately −33D onward,

the SEM increases significantly as a consequence of lower data quality and the lower number of values considered here (cf.

Figure 4 (c)). We found no evidence for a decreasing trend in wind speed upstream of the wind farm GT I for Scenario 1.

3.2 Scenario 2: Wind farm not operating at stable atmospheric conditions.355

Figure 5 shows normalised and averaged wind speeds in the inflow region of GT I for stable atmospheric conditions and wind

speeds below cut-in in the same manner as Figure 4. Strong relative variations of uTP,norm from the average wind speed are

visible across the scan. Larger values occur for low azimuth angles, i.e. south of the wind farm. Two wakes, located to both

sides of the wind field-cut, with diminished wind speed are visible. These wakes are likely caused by jack-up barges used to

construct the two neighbouring wind farms. Despite the large wind speed fluctuations within the scan area, no decrease of360

wind speed with decreasing distance to the wind farm can be observed, neither in Figure 5 (a) nor (b). The measurements

show a slight increase in the wind speed of approximately 3% up to approximately −30D and decrease again closer to the

wind farm. One should be aware that due to the low average wind speed ranging from u= 3− 4ms−1 with a mean value of

uTP = 3.48ms−1 the large percental variation in wind speed across the scan is low in absolute values.
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Figure 4. Scenario 1: Analysis of lidar scans during unstable atmospheric conditions and in cases with high thrust coefficient with u= [8−

11]ms−1, χ= [210−220]◦,N = 53, χ= 217◦, uGT58 = 10.11ms−1, PGT58 = 4.77MW, the median Obukhov length Lmed =−430m

and the standard deviation of the wind direction σχ = 2.68◦. Subfigure (a) depicts the normalised wind speed uTP,norm averaged over all

valid scans N . The arrow displays the mean wind direction χ. uTP,norm along the wind field-cut, indicated as red line in (a), is shown in

Subfigure (b). Here, additionally the three estimated uncertainties ∆uTP,cor, SEM and ∆uTP,norm are visualised as grey shaded areas and

black dotted line respectively. Be aware that the SEM here overlays ∆uTP,cor. The distance to the lidar on the x-axis is given in terms of

rotor diameterD. Subfigure (c) displays the number of valid scans at each grid pointNr . The grey horizontal dashed line marks 0.8N . Points

highlighted by red x’s in (b) and (c) correspond to the locations marked in the lidar-cut in (a) and (b).

Especially distinct are the large values of ∆uTP,norm shown in (b). We attribute this to the very stable atmospheric condi-365

tions, which cause large wind speed extrapolation uncertainties (Theuer et al., 2020a) and low wind speeds, which result in

larger relative uncertainties. Be aware of the different y-scale as compared to Figures 4, 6 and 7. The SEM is of similar size as

∆uTP,cor, however, it strongly increases with decreasingNr for increasing distances to the wind farm (Figure 5 (c)), exceeding

∆uTP,cor and finally ∆uTP,norm for distances larger than −40D.

All shown uncertainty ranges are able to account for the observed variations in wind speed. Taking into account also its370

aforementioned low absolute values, we consider these variations to be insignificant.
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Figure 5. Scenario 2: Analysis of lidar scans during stable atmospheric conditions and in cases with low thrust coefficient (turbines not

operating) with u= [3−4]ms−1, χ= [220−230]◦,N = 56, χ= 225◦, uGT58 = 3.48ms−1, PGT58 = 0.06MW,Lmed = 54m and σχ =

2.84◦. For details on Subfigure (a), (b) and (c) refer to the caption of Figure 4. Be aware that the SEM here overlays ∆uTP,cor.

3.3 Scenario 3: Wind farm operating above rated wind speed at stable atmospheric conditions with low thrust

coefficient

Figure 6 visualises the results of Scenario 3, considering stable atmospheric conditions and the wind farm running far beyond

rated wind speed, i.e. at a low thrust coefficient of ≤ 0.3. No decrease of wind speed close to the wind farm as indication of375

global blockage can be observed with uTP,norm fluctuating around a value of 1. As shown in Figure 6 (b), similarly as for

Scenario 1, the SEM exceeds ∆uTP,cor and increases strongly for far distances due to decreasing Nr (see Figure 6 (c)) and

decreasing data quality for far range gates. The difference between ∆uTP,cor and ∆uTP,norm increases with distance to the

wind farm as a consequence of the increasing measuring altitudes and the shape of the wind profile. Also considering the larger

mean wind speed, the impact of the uncertainties of L and zm is here stronger as compared to the unstable cases in Scenario 1.380

3.4 Scenario 4: Wind farm operating below rated wind speed at stable atmospheric conditions with high thrust

coefficient

In Figure 7 we illustrate the results of Scenario 4, i.e. stable atmospheric conditions and the wind farm operating at a high

thrust coefficient. The normalised and averaged wind field shown in Figure 7 (a) suggests a decrease in wind speed for flow

approaching the wind farm. Contour lines highlight the shape of the decrease and show that it is less distinct at the sides of385
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Figure 6. Scenario 3: Analysis of lidar scans during stable atmospheric conditions and in cases with low thrust coefficient with u= [16−

22]ms−1, χ= [220− 230]◦, N = 80, χ= 223◦, uTP = 19.83ms−1, PGT58 = 4.79MW, Lmed = 460m and σχ = 1.54◦. For details on

Subfigure (a), (b) and (c) refer to the caption of Figure 4. Be aware that the SEM here overlays ∆uTP,cor.

the lidar scan. Observed values of uTP,norm vary between approximately 0.96 and 1.04. The virtual cut on the wind field

given in Figure 7 (b) supports these findings. Starting at a value of about 1.03 at −44 D the normalised and averaged wind

speed slowly decreases until it reaches a value of 0.99 at −5 D. The magnitude of the curve’s slope hereby increases with

decreasing distance to the wind farm. The SEM is narrow compared to ∆uTP,cor and especially ∆uTP,norm. Only for far

distances it strongly increases as a consequence of reduced sample size (see Figure 7 (c)) and data quality. The total propagated390

uncertainty ∆uTP,norm reaches values of up to 3 %. As the analysed scans are attributed to stable atmospheric conditions, the

impact of L and also zm is large.

As defined in Section 2.5, the width of the uncertainty contributions are considered to cover 95 % of all cases. Figure 7 (b)

indicates a significant decrease of wind speed closer to the wind farm when considering the corrected propagated uncertainty

∆uTP,cor. This is not true anymore when including all error contributions, i.e. considering the width of the total propagated395

uncertainty ∆uTP,norm. In Figure 8 we visualise how the decrease of wind speed changes when assuming the largest uncer-

tainties for L and zm to analyse the error contributions of the range gate-correlated variables in more detail. We consider the

same data set in Figure 8 as in Figure 7. Here, we show the two most extreme scenarios with L−∆L,zm + ∆zm (blue, largest

reducing effect on the deficit) and L+ ∆L,zm−∆zm (red, largest enhancing effect on the deficit) respectively. As explained

earlier, we assume ∆L and ∆zm to be correlated across range gates within the same scan and thus consider the corrected400

propagated uncertainty ∆uTP,cor more valuable than the total propagated uncertainty ∆uTP,norm depicted in Figure 7 (b).
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As clearly visible in Figure 7 (b) and Figure 8, misestimations of Obukhov length and measurement height have a significant

impact on the magnitude and shape of the observed wind speed decrease. In the blue graph in Figure 8 the wind speed deficit

is reduced as a consequence of the more stable conditions and larger differences between measuring height and hub height

assumed here. Considering the associated uncertainty, the observed wind speed deficit of approximately 2 % for this case with405

the largest reducing effect tends to be within the range of the corrected propagated uncertainty. When considering errors with

less reducing effect, i.e. errors with the same sign but smaller magnitude, the wind speed deficit increases towards a significant

value. If maximal errors occur in the opposite direction (red curve), the effect would be maximally enhanced to a wind speed

decrease of 6 %. Here, the observed decrease is large compared to the uncertainty intervals and thus clearly significant. Con-

sidering the range gate-correlated error contributions the wind speed deficit of 4 % lies within an uncertainty interval between410

2 % and 6 %.

Although we only show one wind direction sector, we observed similar wind speed deficits for different sectors. Here we

show the most distinct case.

Figure 7. Scenario 4: Analysis of lidar scans during stable atmospheric conditions and in cases with high thrust coefficient with u= [8−

11]ms−1, χ= [250−260]◦, N = 79, χ= 256◦, uGT58 = 9.23ms−1, PGT58 = 4.51MW, Lmed = 307m and σχ = 2.78◦. Contour lines

in the flow field in Subfigure (a) highlight the shape of the wind field upstream GT I. For further details on Subfigure (a), (b) and (c) refer to

the caption of Figure 4.
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Figure 8. Scenario 4: uTP,norm over the distance to the lidar given in terms of rotor diameterD along the wind field-cut, indicated as red line

in Figure 7 (a), with the corrected propagated uncertainty ∆uTP,cor visualised as colored shaded area. For the blue curve L was additionally

reduced by ∆L and zm increased by ∆zm, for the red curve L was increased and zm reduced respectively. These cases represent the two

combinations of ∆L and ∆zm that yield the most extreme results.

4 Discussion

We analyzed averaged long-range Doppler lidar PPI scans at TP height in the inflow of the 400 MW offshore wind farm415

GT I and found wind speed deficits upstream in stably stratified boundary layers with wind turbines operating at high thrust

coefficient in the upper partial load range. In contrast, at unstable stratification and similar operating conditions, no effect

was visible. We identified the comparably small wind speed difference by performing a data correction and by averaging the

normalised lidar scans. We analyzed the effect considering a detailed uncertainty estimation. In this section, we discuss our

findings and relate them to the global blockage effect dependant on atmospheric stability and to the wind farm’s operational420

state as well as possibilities and difficulties for global blockage measurements.

4.1 Global blockage dependant on atmospheric and operational conditions

To distinguish between different wind turbine operational states and atmospheric stabilities we divided our measurement data

into four different scenarios (cf. Section 2.4).

Scenario 1: In unstable conditions with wind speeds from 8ms−1 to 11ms−1 and a high thrust coefficient (Scenario 1,425

Figure 4) we could not identify decreasing wind speeds in front of the wind farm and thus no global blockage effect. This result

is plausible since wind speed fluctuations in unstable flows are much higher due to convection than the assumed magnitude

of global blockage. Convection leads to more mixing in the boundary layer and thus repeals global blockage due to vertical

transport of momentum. Furthermore, in unstable stratification, the boundary layer is typically higher and thus the flow can

pass obstacles like hills (Stull, 1988) or in this case a wind farm more easily. The effect of atmospheric stability could be430

investigated further using high fidelity simulation like LES in future studies.
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Additionally to Scenario 1 we performed the analysis for unstable stratification and the wind speed ranges above rated wind

speed and below cut-in wind speed respectively (cf. Section 2.4). In both cases, we could not identify decreasing wind speeds

in the inflow of the wind farm. As explained earlier we do not show these results here for brevity.

Scenarios 2 and 3: In stable atmospheric stratification and with low wind turbine thrust coefficients due to low wind speeds435

(i.e. not operating turbines, Scenario 2, cf. Figure 5) or due to high wind speeds (i.e. turbines operating with pitched blades

above rated wind speed, Scenario 3, cf. Figure 6) no wind speed reductions upstream of the wind farm were identifiable. When

the turbines are out of operation there should not be any reason for global blockage to appear due to the very low thrust. For

turbines operating above rated wind speed a small global blockage effect might occur. However, it is unlikely that the effect

would be clearly visible in the data as a consequence of high wind speeds and the reduced thrust. Since the turbines operate at440

rated power global blockage, if any, would not have a negative impact on power production in this wind speed range.

Scenario 4: In stable atmospheric conditions with a high wind turbine thrust coefficient (i.e. wind turbines operating in the

partial load range, Scenario 4, cf. Figure 7) we found the wind speed to decrease towards the wind farm by approx. 4 % over a

distance of 25 D = 2.9 km. For larger distances upstream, the wind speed approaches an almost constant value with no further

increase visible. We assume the wind speed at 40 D upstream to be free stream speed but can not be sure whether small wind445

farm induced effects reach even further. The wind speed reduction is significant when considering range gate-uncorrelated

uncertainties. It is considered meaningful for global blockage to be most significant in stable stratification and for higher thrust

coefficients.

Is the observed wind speed deficit global blockage? Despite the intensive uncertainty analysis and error correction we per-

formed in this work (cf. Section 2.5), how certain can we be that our observations are caused by the global blockage effect?450

To consider the effect of the correlated error sources that we excluded from the calculation of the total propagated uncertainty,

namely ∆L and ∆zm, Figure 8 shows the two most extreme cases with the largest reducing effect (blue) and the largest en-

hancing effect (red) of both error values. Assigning these combinations of errors, the extent of the global blockage wind speed

deficit is limited by 2 % to 6 %. In the latter case, the wind speed deficit is clearly significant, while for the first one, it could be

explained by the correlated propagated uncertainty. However, considering more likely error magnitudes in between those two455

most extreme cases, the wind speed deficit would become significant. Thus, we consider the wind speed deficit in front of the

wind farm to be caused by the global blockage effect.

Spatial inhomogenities in the wind field: Different from wind tunnel measurements where all background conditions could

be controlled, free field measurements cover numerous superimposing meteorological effects. In our case especially the back-

ground wind field without the presence of wind farms needs consideration. The small flow effects we observe here are in the460

order of magnitude as typical wind field fluctuations locally (background turbulence) and over distances of some kilometres

(spatial wind field variations). In a single lidar scan it would be not clear whether a wind speed gradient in front of a wind

farm is caused by the global blockage effect or by a spatial variation in the background wind field. Our method using the

average wind field of lots of lidar scans from different days allows us to average different spatial wind speed gradients of the

background flow. In Scenarios 1-3 we found spatial wind speed gradients that are almost zero in average. Scenario 4 shows a465

negative wind speed gradient. We assume this to be caused mainly by global blockage with the background turbulence and the
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spatial variation averaged out.

The effect of measurement height: Our measurements of global blockage were performed at a height of approx. 9 m below

the rotor area while Bleeg et al. (2018) used mainly measurements at hub height and some at 70 % of the hub height. An

extrapolation to hub height instead of lidar height would not have a significant impact on our findings as it would only result in470

an upscaling of the observed effect to a higher altitude. Further, we assume extrapolation uncertainties would increase signifi-

cantly when extrapolating across larger height differences (Theuer et al., 2020a). We do not know the vertical distribution of the

global blockage effect but expect it to be equally distributed between the surface and upper blade tip height. Bleeg et al. (2018)

found only small variations in the analyzed blockage effect comparing mast measurements at hub height and 70 % of the hub

height. CFD results indicate a rather constant global blockage effect up to at least hub height due to the presence of the ground475

(Branlard et al., 2020). In this investigation, we did not study global blockage induced flow deflections upwards, downwards

or sideways which could lead to increased wind speeds above, below or aside the wind farm’s rotor area. The vertical extent

of the global blockage effect in front of a wind farm needs to be assessed in future experimental studies to verify numerical

results.

Influences of cluster wakes: Schneemann et al. (2020) show the existence of cluster wakes in the inflow of GT I using data480

from the same measurement campaign as used here. In the wind directions we chose for the analysis of global blockage, no

distinct wind speed gradients are present in the inflow. Schneemann et al. (2020) did not find signatures of the wakes of single

wind turbines in the inflow of GT I. Nygaard and Newcombe (2018) showed dual Doppler radar measurements of a wind farm

wake with the signatures of single wind turbines disappearing less than 10 km behind the farm. Generally, the data we present

here could be influenced by cluster wakes. However, we do not expect disturbances of the global blockage measurement since485

the centre flow of a cluster wake in the far-field is comparably homogeneous and would only reduce the mean wind speed in

the whole lidar scan. Recovery of the possible cluster wake influence with a positive wind speed gradient towards GT I could

on the other hand contradict the global blockage effect with a negative wind speed gradient. This would lead to a reduction of

the observable global blockage effect. Furthermore, cluster wakes could have an influence on the prevailing wind profile that

can not be quantified here. This is subject of current research.490

The magnitude of global blockage: We found the magnitude of the global blockage induced deficit of approx. 4 % (uncer-

tainty range 2 % to 6 %) in stable stratification to correspond well with values measured in an onshore free field experiment by

Bleeg et al. (2018) based on met mast point measurements at three different wind farms of typically 2 % to 4 %. One possible

explanation of the comparably lower deficits of Bleeg et al. (2018) is the lack of stability information and thus the comparison

of long intervals including the climate mean of stratifications. Our results suggest less or no global blockage effects in unstable495

stratification, this effect possibly reduced the average values of Bleeg et al. (2018). RANS simulations performed by Bleeg

et al. (2018) typically showed similar or slightly smaller global blockage deficits. Wu and Porté-Agel (2017) found global

blockage deficits in LES simulations of large finite-size wind farms of 1.3 % and 3 % for different farm layouts in a weak

free-atmosphere with neutral stratification across the rotor area, which is slightly lower than our findings. When discussing the

strength of global blockage in our data, we need to consider the measurement distances. We analyzed a wind speed difference500

between 40 D and 4 D upstream. On the far distance the effect seems to have almost vanished with a constant wind speed.
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Nevertheless, a further slight increase in wind speed for larger distances is possible. Moreover, the strong wind speed gradients

at the lower distance of 4 D suggest an even further wind speed decrease towards the wind farm. Therefore, we assume the

global blockage effect to be even stronger than quantified here.

The spatial extent of global blockage: Aside results from wind tunnel experiments (Segalini and Dahlberg, 2019) and on-505

shore free field point measurements (Bleeg et al., 2018) our lidar measurements represent the first areal free field investigation

of the global blockage effect offshore. Spatial analysis of global blockage has only been reported from numerical studies so

far. RANS simulations performed by Bleeg et al. (2018) for three different large onshore wind farms reveal homogeneous

induction zones upstream of the farms with spatial extents of more than 2 km for a deficit of 1 %. Such distances correspond

well to our findings in Scenario 4. The higher wind speed deficits in our data could possibly be explained by the restriction510

to stable stratification. Nevertheless, the shape of the induction zones in their RANS simulations seem to smoothly follow

the first row of turbines. The contours we show in Figure 7 tend to have the same shape in the middle sector of the wind

field but deviate from that shape on the sides. We assume this behaviour to be mainly related to the applied assumption of a

homogeneous wind direction. With an increasing angular difference of the lidar’s azimuth angle from the wind direction the

orthogonal components of the main wind direction, i.e. local deviations in the wind direction increasingly contaminate the515

measurement of the local horizontal wind under the assumption of a homogeneous wind direction. (cf. Section 2.5.4). Flow

effects resulting from the wind farm’s blockage with wind components tending to flow around the wind farm (Porté-Agel et al.,

2019) can influence the observed contours. The exemplary local deviation of the estimated horizontal wind field we show in

Figure 3 assumes a diverging flow with wind direction deviations of 2.0◦. This low value of divergence could well explain

the observed shape of the contours with underestimated horizontal wind speeds of more than 4 %. Future experimental studies520

should focus on assessing the global blockage induced flow around the farm from dual Doppler lidar measurements or single

lidar measurements with more advanced analysis techniques.

The influence of global blockage on power production: To assess the impact of the global blockage effect on a wind farms

annual energy production (AEP) more research and development on the implementation and validation of the effect in wind

farm planning tools is needed. A detailed AEP assessment then needs to consider particularly the local undisturbed wind speed525

and stability wind roses. The consideration of global blockage in the future could further increase the accuracy of wind energy

site assessment which is especially important for the financing process of wind farm projects. Despite its possible negative

impact on energy production, global blockage seems not to have a critical impact on wind energy utilization. In our study, we

observed the effect only below rated power, in stable stratification and with a magnitude of 4 % within the uncertainty range of

2 % to 6 %. Consequently, we expect global blockage to have a much lower impact on the power production than other wind530

farm flow features like inner wind farm wakes.

4.2 Global blockage measurement techniques

Compared to wind turbine wake effects with several ms−1 wind speed deficit over a distance of less than one rotor radius

between wake centre and free flow the global blockage effect has a comparably small magnitude. Scenario 4 reveals a deficit

of about 4 % of the average wind speed of 9.2 ms−1 which equals approx. 0.4 ms−1. This difference builds up over a distance535
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of 25 D = 2.9 km. This is well below typical fluctuations in wind fields due to e.g. orographic or thermal influences which

makes global blockage hard to identify in measurement data.

There are no further areal wind field measurements of global blockage in literature. The shape of the zone with reduced wind

speeds in front of the wind farm and comparisons of different locations could not be analyzed using single-point measurements

like presented by Bleeg et al. (2018). Spatial characteristics of global blockage inflows of wind farms that were generated by540

numerical simulations and modelling (Bleeg et al., 2018; Branlard and Meyer Forsting, 2020) have not been experimentally

verified, yet. Different from point measurements areal lidar wind field measurements of the wind farm inflow resolving the

zone with wind speed reduction can allow for a more detailed analysis.

Generally, we do not expect global blockage to be significantly identifiable in single flow measurements like an individual lidar

scan. The effect is much smaller than the common fluctuations in wind farm inflows and needs to be derived from averaged545

measurements where the influence of local turbulence and coherent turbulent structures is reduced in the averaging process.

The lidar measurements we analyse in this paper were originally performed to study the effect of cluster wakes in the inflow

of GT I (Schneemann et al., 2020) and to perform minute-scale power forecasts (Theuer et al., 2020b). Due to the comparably

small global blockage effect, all errors influencing the accuracy of lidar measurements need to be carefully examined and

reduced wherever possible. We give an overview on sources of uncertainty in Table 2. For lidar measurement campaigns550

aiming at the assessment of global blockage or similar small flow effects we recommend to

– calibrate the lidar before the campaign. This includes the measurement of radial velocities, the range gate distance from

the device and especially the scanner orientation and movements. Here especially the scanners elevation angle deviation

is crucial since it results in height errors of the measurement.

– carefully align the lidar at the measurement location and to monitor the lidar’s tilt dynamically. We recommend using555

accurate inclinometers and accelerometers and in offshore campaigns the method of "sea surface levelling" for lidar tilt

alignment and the method of "hard targeting" for alignment of the north direction (Rott et al., 2017, 2020).

– perform independent measurements of the prevailing wind profile either by e.g. met mast, VAD lidar or virtual met masts

spanned by scanning lidars (Bell et al., 2020) to be able to perform a proper height correction of the scanning lidar data.

– perform measurements of meteorological quantities for characterization of atmospheric stability to support a more pre-560

cise interpolation of the wind profile (e.g. Schneemann et al., 2020).

The stronger tilting on the nacelle compared to the transition piece and the resulting large errors in the measurement height

introduce increased uncertainties to nacelle-based measurements especially when aiming to achieve several kilometres of range

or to detect small flow effects like global blockage. Active motion compensation of the lidar’s scanner or similar measures could

enable the possibility of nacelle-based measurements.565

Further, the use of overlapping Dual Doppler measurements could be beneficial to better resolve local flow characteristics

like global blockage induced flow deflections and to overcome the need for basic assumptions like the homogeneity of the

wind field in the VAD algorithm ( e.g. van Dooren et al., 2016; Stawiarski et al., 2013). Another measurement system to assess
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global blockage could be the remote sensing method Doppler radar which was successfully deployed for wind turbine and

wind farm wake measurements (Nygaard and Newcombe, 2018).570

5 Conclusions

This paper has pursued the objective to analyze whether it is possible to measure global wind farm blockage with long-range

Doppler lidar dependant on different atmospheric stability estimates and wind farm operational states. We present averaged

lidar PPI measurements of the inflow of the 400 MW offshore wind farm Global Tech I. In stable stratification and with the

turbines operating below and up to rated power with a high thrust coefficient, the measurements revealed reduced wind speeds575

at the height of the transition piece in the approaching flow. At unstable stratification and similar operating conditions, however,

no effect was visible. We relate this upstream wind speed reduction to the presence of the wind farm, namely to global wind

farm blockage. Therefore, we conclude global blockage to be dependant on atmospheric stability.

Compared to wind turbine wakes or cluster wakes, global blockage is a very small effect that is overlaid with different

atmospheric phenomena and thus very hard to detect. Nevertheless, based on our detailed uncertainty assessment we arrive at580

the conclusion that the wind speed deficit in front of Global Tech I in our lidar measurements is caused by global blockage.

Generally, we assume long-range Doppler lidar to be able to accurately measure global blockage and recommend to carefully

align and calibrate the used lidar systems.

Our measurements agree with recent findings of the magnitude of the global blockage effect to range from 2 % to 6 %.

At platform level, we found a wind speed reduction of 4 % within an uncertainty range from 2 % to 6 %, over a distance of585

approx. 2.9 km or 25 D. The influence of the global blockage effect on the annual energy production of a wind farm requires

further experimental and numerical investigations. Due to the expected limited appearance of global blockage only in special

atmospheric situations and wind farm operational states and its small magnitude, we expect the impact on power production

to be much smaller in comparison to inner wind farm wakes. Accurate estimates of the global blockage effect by means of

well-calibrated engineering models could further decrease uncertainties in wind farm site assessments and power calculations590

in the future.

In this work, we demonstrated scanning long-range Doppler lidar to be a suitable tool to study global wind farm blockage

and provide strong evidence for the existence of the global blockage effect for a wind farm with the turbines operating at high

thrust coefficients in a stably stratified atmosphere.

Data availability. Lidar data are not published and could be made available on request. The OSTIA data set can be obtained from http:595

//marine.copernicus.eu/.
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Table 2. Possible errors and uncertainties that might be introduced during the lidar measurement campaign and data analysis. In addition to a

description of the uncertainty components, the measures we take to minimise those are stated and it is indicated whether they are considered

in the uncertainty estimation.

uncertainty components Description Measures

Azimuth / elevation pointing

error

Internal unknown offsets of lidar scanner Not corrected for, calibration prior to

measurement campaign recommended.

Considered in uncertainty estimation.

Movement / tilt of lidar Uncertainties in pointing accuracy, in particu-

lar caused by a wind turbine thrust-dependent

tilt of the device. Influences the measurement

height of the device and varies with the range

gate.

Empirical correction function for thrust

dependent platform movement (Rott

et al., 2020). Considered in uncertainty

estimation.

Curvature of the Earth Systematic variation in measuring height Corrected for, not considered in

uncertainty estimation

Tide Uncertainty in measuring height estimated to be

±0.6m here

Not corrected for, not considered in

uncertainty estimation

Uncertainty in elevation angle

due to earth’s curvature, lidar

tilt and scanner pointing error

Transfer of tilted LOS wind speed to horizontal

wind speed (1/cos)

Here less then 1◦ in total, contribution

neglectable. Not corrected for, not con-

sidered in uncertainty estimation.

LOS wind speed Uncertainty in LOS wind speed causes uncer-

tainty in horizontal wind speed

Not corrected for, considered in

uncertainty estimation

Assumption of a homogeneous

wind field

Wind speed error as a consequence of wind field

reconstruction (VAD algorithm)

Not corrected for, not considered in

uncertainty estimation

Uncertainties in meteorological

measurements

Results in uncertainties in stability estimation Not corrected for, considered in

uncertainty estimation

Uncertainties in roughness

length estimation

Results in uncertainties in wind profile estima-

tion

Not corrected for, considered in

uncertainty estimation

Inapplicability of the

logarithmic wind profile

Occurs especially during stable atmospheric

conditions (Theuer et al., 2020a; Peña et al.,

2008), which might be related to the occurrence

of e. g. kinks or low level jets (Møller et al.,

2019). Leads to uncertainty in wind speed cor-

rection to lidar height.

Not corrected for, not considered in

uncertainty estimation

Laser beam deflection due to

thermal gradients in the lower

boundary layer

Results in measurement height error Not corrected for, not considered in

uncertainty estimation.
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