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1 Introduction

In this section we will introduce the concept of vorticity, which is formally
defined as the curl of the velocity field, but can be thought of as the ’spininess’
of a parcel in a fluid.

ω = ∇×U (1)

This means that if the flow is two dimensional, the vorticity will be a vector in
the vertical direction. As we will later see, both vorticity and potential vorticity
play a central role in large scale dynamics. But first a few more definitions.

1.1 Definitions

Divergence - the divergence of a fluid is defined as D = ∇ ·U
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Stokes theorem relates the surface integral of the curl of a vector field (F)
over a surface (A) to the line integral of the vector field over its boundary.∮

F · dl =

∫ ∫
S

∇× F · dS

So if we apply this

Circulation, C, - around a closed path is the integral of the tangential ve-
locity around that path:

C =

∮
U · dl =

∫ ∫
S

(∇×U) · dS =

∫ ∫
S

ω · dS

Where we applied stokes theorem to relate the closed path integral to the vor-
ticity. In words, this means that the ciruclation around a closed path is equal to
the integral of the normal component of vorticity over any surface bounded by
that path. To consider the vorticity of a single point, one can imagine shrinking
the bounding path smaller and smaller until it is an infinitesimal point. Or,
alternatively, consider dropping a flower into a draining sink. If you drop the
flower into the outer edges of the sink, it will be carried around the drain by the
flow but will not itself spin. If, however, you drop it on the water directly above
the drain, it will spin in place. By this example we can infer that the point of
the drain has vorticity, while the parcels circulating around the drain do not.

Relative vorticity (ζ) - Vorticity as viewed in the rotating reference frame
of earth. In cartesian coordinates ζ =

(
∂v
∂x −

∂u
∂y

)
Planetary vorticity (ωp) - Vorticity associated with the rotation of the earth
(ωp = 2Ω)

Absolute vorticity (ωa) - Vorticity as viewed in an inertial reference frame
ωa = ζ + ωp

Where Ω is the rotation of the earth. Because we are concerned with hor-
izontal motion on the earth’s surface, we can make use of the tangent plane
approximation. And if we remember that in the case of two-dimensional flow
the vorticity is normal to the surface, then we can rewrite the planetary vorticity
in terms of the component of the earths rotation that is normal to our tangent
plane as f = 2Ωsinφ. We can then rewrite the absolute vorticity as the sum of
the absolute and planetary vorticity

ωa = ζ + f

Similarly, we can now rewrite the absolute circulation

Ca = Cr + 2Ωcos(θ0)A

where A is the area enclosed by the circulation, so cos(θ0)A is the projection of
that area onto a plane perpendicular to the axis of rotation of the earth.
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1.2 Conventions

Northern Hemisphere
Low pressure systems (cyclones): anti-clockwise flow, C > 0, ζ > 0
High pressure systems (anticyclones): clockwise flow, C < 0, ζ < 0

Southern Hemisphere
Low pressure systems (cyclones): clockwise flow, C > 0, ζ > 0
High pressure systems (anticyclones): anti-clockwise flow,C < 0, ζ < 0

2 Vorticity and circulation

Here we will explore Kelvin’s Circulation theorem, which is one of the most
fundamental conservation laws in fluid mechanics. The theorem provides a
constraint on the rate of change of a circulation, and is intimately related to the
potential vorticity.

So beginning again with the absolute circulation

Ca = Cr + 2Ωcos(θ0)A

where A is the area enclosed by the circulation, so cos(θ0)A is the projection
of that area onto a plane perpendicular to the axis of rotation of the earth. We
will explore the implications of the above formula by first considering a closed
loop around a fluid parcel as it travels toward the pole (see below figure). If the
parcel begins with no relative circulation, then as it travels towards the pole its
projection onto a surface normal to the rotation of the earth will increase. In
order to conserve absolute circulation, the relative circulation will go from zero
to negative (anticyclonic). We have thereby induced a circulation by decreasing
the relative term as the 2Ωcos(θ0)A term increases
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Figure 1: circulation induced by moving a parcel polewards

Now that we’ve described the behavior of this system, let’s explicitly define
the time rate of change of the circulation of a fluid parcel (the material derivative
of the circulation)

DC

Dt
=

D

Dt

∮
U · dl =

∮
DU

Dt
· dl +

∮
Ddl

Dt
·U

And we can rewrite the last term as:∮
Ddl

Dt
·U =

∮
U · (dl · ∇U) =

∮
dl · ∇

(
1

2
|U|2

)
= 0

The term goes to zero because it is the integral of a gradient around a closed
curve. We can then rewrite the remaining term as a momentum equation. Let’s
first remind ourselves of one form of the momentum equation:

DU

Dt
= −1

ρ
∇p−∇Φ

where Φ represents conservative body forces (i.e. the Coriolis force). Now let’s
consider this equation in our context. Here we will neglect viscosity but include
friction:

DC

Dt
=

∮
(−2Ω×U) · dl−

∮
∇p
ρ
· dl +

∮
F · dl (2)

So here we can see that there are three main terms that can alter the circu-
lation. The first is the Coriolis force, the second is the baroclinic term and the
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third is the friction term. We will now explore each of these in greater detail.

1. The Coriolis term If we consider the circulation around a divergent
flow, the Coriolis force will act on the flow field to induce a circulation.

2. The baroclinic term Let’s begin by rewriting this term in a more
helpful form using Stokes Theorem

−
∮
∇p
ρ
· dl = −

∫ ∫
S

∇×
(
∇p
ρ

)
· dl =

∫ ∫
S

∇ρ×∇p
ρ2

· dl

From this form we can see that the numerator (and therefore the entire term)
will be zero when the surfaces of constant pressure are also surfaces of constant
density. We can define a fluid as either Barotropic or Baroclinic. A fluid is
barotropic when the density depends only on pressure, which implies that tem-
perature does not vary along a pressure surface. This furthermore implies – via
thermal wind – that the geostrophic flow of the fluid does not vary with height.
When a fluid is baroclinic ∇ρ×∇p 6= 0, so temperature is allowed to vary along
a pressure surface, and therefore the geostrophic wind will vary with height.

To visually see how the baroclinic term can induce a circulation, consider the
case in which a fluid is initially at rest such that two fluids of different densities
are side by side. Here we have a pressure gradient in the vertical and a density
gradient in the horizontal. This means that ∇ρ×∇p induces a circulation such
that the denser fluid flows beneath the less dense fluid until the system comes
to equilibrium with the lighter fluid sitting atop the denser fluid as pictured in
the final panel.

Figure 2: Credit: Isla Simpson’s notes
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3. the Friction term The friction is often simply considered to be a linear
drag on velocity such that it acts to damp the circulation.

3 The vorticity equation

Now that we’ve described how circulation changes around a parcel, let’s walk
through the same exercise for a single point by considering vorticity. We will
again begin with the momentum equation.

DU

Dt
= −1

ρ
∇p−∇Φ + F

Here we’ll use a few vector identities. First remember that

U× (∇×U) =
1

2
∇(U ·U)− (U · ∇)U

Now substitute in the definition of vorticity (ω = ∇×U), expand the material
derivative and make use of the above identity to get

∂U

∂t
+ (ω ×U) = −1

ρ
∇p+ F−∇

(
Φ +

1

2
|U |2

)
now take the curl of this field, again keeping in mind the definition of vorticity
and that ∇× (∇A) = 0, where A is any twice differentiable scalar field

∂ω

∂t
+∇× (ω ×U) = −∇ρ×∇p

ρ2
+∇× F

Now make use of one more vector identity

∇× (U×V) = U∇ ·V + (V · ∇)U−V(·∇U)− (U · ∇)V

and note that the divergence of vorticity is zero, such that we are left with

Dω

Dt
= (ω · ∇)U− ω(∇ ·U) +

∇ρ×∇p
ρ2

+∇× F (3)

As with the time rate of change of the circulation (equation 2), the last two
terms are the baroclinic term and the frictional term. The first two terms on
the left hand side are the vortex tilting ((ω · ∇)U) and vortex stretching term
(ω(∇ ·U)), respectively.

3.1 Vortex stretching and tilting

A useful property of vorticity in a barotropic, inviscid (having negligible viscos-
ity), unforced field the lines of vorticity follow material lines, meaning the two
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are joined together as the fluid evolves (they are ‘frozen in’). Let’s first expand
the stretching and tilting terms to see more clearly what they describe

(ω · ∇)U− ω(∇ ·U) = ω
∂

∂z
(ui+ vj + wk)− ωk

(
∂u

∂x
+
∂v

∂y
+
∂w

∂z

)

(ω · ∇)U− ω(∇ ·U) =

(
ωi
∂u

∂z
+ ωj

∂v

∂z

)
− ωk

(
∂u

∂x
+
∂v

∂y

)
So because of the ‘frozen in’ property of vorticity, the vortex tilting term tells
us that when advection acts to tilt the material lines, vorticity in one direction
(e.g. x-direction) may be generated from vorticity in either of the orthogonal
directions (e.g. y- or z-directions). The stretching term tells us that if the ma-
terial lines are stretched, then the coincident vorticity component is intensified
proportionally to the stretching.

Figure 3: Credit: Vallis (2006)

4 Potential vorticity

So far we have shown that Kelvin’s circulation theorem is, in fact, a general
statement about the conservation of vorticity. But there are two constraints
on our derivations thus far. (1) Kelvin’s circulation theorem is only applicable
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to barotropic flow but the motion in the atmosphere and the ocean is often
baroclinic and (2) it is a statement about flow around a parcel, not what is
happening at any individual point. While equation 3 is a statement about a
point, it provides no constraint (i.e. the right hand side of equation 3 could
be anything). So what we want is to combine these two concepts to provide a
constraint at each point in a flow field.

To do this we can tweak the concept of vorticity to form a conservation law
that holds for baroclinic flow. This is the conservation of potential vorticity. The
idea here is to formulate a scalar field that is advected by the fluid and which
describes the evolution of fluid elements. As we will see, potential vorticity is a
consequence of the ‘frozen in’ property of vorticity. Below we examine potential
vorticity in the case of both bartropic and baroclinic flow.

4.1 Barotropic flow

In the absence of friction and viscosity, Kelvin’s circulation theorem holds for
barotropic flow

DCa

Dt
= 0− > D

Dt

∮
U · dl =

D

Dt

∫ ∫
S

ω · dS = 0

Now consider two isosurfaces of a conserved tracer (χ). Imagine an infinitesimal
volume element bounded by these two isosurfaces, as depicted below.

Figure 4: A fluid element confined between two isosurfaces of a conserved tracer
χ

Because we have defined χ to be materially conserved, Dχ
Dt = 0. So if we

apply Kelvin’s circulation theorem to this fluid element

D

Dt
ωa · dS =

D

Dt
(ωa · n)dS

where n is the unit vector in the direction normal to the isosurfaces of χ. n can
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be defined as

n =
∇χ
|∇χ|

And we can define the volume of the infinitesimal element using the spacing
between isosurfaces and the surface area of the top/bottom of the fluid element
(∂V = ∂h∂S). Therefore we have

(ωa · n)dS = ωa ·
∇χ
|∇χ|

∂V

∂h

Now we make use of the fact that we defined ∂h as the separation between
isosurfaces (∂χ|). So because ∂χ = ∂χ · ∇χ = ∂h|∇χ, we can substitute this in

(ωa · n)dS = ωa ·
∇χ
∂χ

∂V

So substituting the above equation into Kelvin’s circulation theorem

D

Dt

[
(ωa · ∇χ)∂V

∂χ

]
=

1

∂χ

D

Dt

[
(ωa · ∇χ)∂V

]
=
∂M

∂χ

D

Dt

[
(ωa · ∇χ)

ρ

]
= 0

where we have made use of the fact that χ and therefore ∂χ are conserved
scalars, so we can move them outside of the material derivative. Rewriting this
result in a more compact form, we have

Dq

Dt
= 0, where q =

ωa · ∇χ
ρ

(4)

Here we have defined the conservation of potential vorticity, where q is potential
vorticity and χ is any materially conserved quantity (e.g. potential temperature
(θ) for adiabatic motion of an ideal gas).

4.2 Baroclinic flow

Kelvin’s circulation theorem applies only to barotropic motion, but throughout
much of the atmosphere the baroclinic term will be nonzero (particularly in
the midlatitudes). However, we can make the baroclinic term zero if we are
clever about how we choose our χ. We need to choose a χ that will both make
the baroclinic term zero, and will be materially conserved. So let’s look at the
baroclinic term:∫ ∫

S

(
∇ρ×∇p

ρ2

)
· dS = −

∫ ∫
S

(∇lnθ ×∇T ) · dS

From the above equation we can see that if we choose isosurfaces of θ, T, ρ or
p, then the baroclinic term will go to zero. But out of these only θ will be
materially conserved in an ideal gas. So using θ as our tracer, we can write
potential vorticity as
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Dq

Dt
= 0, where q =

ωa · ∇θ
ρ

= 0

This is an important expression of the relation between potential vorticity
and potential temperature in a baroclinic atmosphere. In words, the potential
vorticity, which is materially conserved, is related to the absolute vorticity (ωa)
and the stratification (∇θ) of the atmosphere. Remember, however, that we
have assumed friction and viscosity are zero. If we included these sink terms,
they would appear on the right hand side of the equations above

4.3 Physical interpretation

In atmospheric science, potential vorticity (PV) often shows up at the very
foundation of our understanding of the dynamics of a system. Because PV is
related to the velocity and stratification of a fluid and is materially conserved
(i.e. it is advected with the mean flow), we can use it to both diagnose large-scale
dynamics and to predict the evolution of the flow in the future.

In many instances, we will be concerned with the vertical component of the
vorticity:

q =
ωa,z

∂θ
∂z

ρ

and using hydrostatic balance, we can rewrite this

Dq

Dt
= 0, q =

(f + ζ)
∂p
∂θ

where ζ =
∂v

∂x
− ∂u

∂y

From these equations, we can tell that PV is the product of absolute vorticity
and a term that accounts for the stratification of the atmosphere (i.e. the
thickness of the layer between isentropes of θ). The vorticity described here is
not quite with respect to the vertical z, but rather normal to isentropes of θ.
This will often be nearly the same in the absence of strong horizontal gradients
of θ (and by thermal wind strong vertical wind shear). If ∂θ

∂p is constant, then

temperature isn’t varying on pressure surfaces (the atmosphere is barotropic)
and absolute vorticity is conserved following the flow.

To understand how ∂θ
∂p (i.e. the thickness between isentropes) affects po-

tential vorticity, we will revisit the concept of vortex stretching in the figure
below.
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Figure 5: Credit: Isla Simpson’s notes. Available through her website at NCAR

Above a parcel is stretched between two isentropes of potential temperature.
As the area of the parcel projected onto each isentrope shrinks when the column
is stretched, the vorticity must increase to conserve the circulation. This can
be thought of as a conservation of angular momentum. When a ballerina moves
from a pirouette in a crouched position with her arms extended to a standing po-
sition in which her arms are extended, she greatly increases her spin. Similarly,
when the thickness between isentropes ∂θ

∂p increases, the sum of the absolute

and planetary vorticities (f + ζ) must also increase to conserve PV.
In the example of the ballerina, it is ζ that changes. However, we can

also change f when height in the PV equation changes. Consider the Taylor
Proudman effect on a sphere, as demonstrated in the ocean. In the north
Atlantic water masses mix, become more dense than their surroundings, and
sink (or they are ‘pumped’ downward as a result of the wind stress curl forcing
Ekman pumping). In either case, water sinks and is compressed (h decreases).
To conserve total PV, rather than inducing relative vorticity, the water column
moves equatorward so that although the physical height of the column decreases,
the projection of the height of the water column onto the axis of rotation (axis
of the earth) remains constant. Mathematically, the balance between vertical
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descent and meridional advection of planetary vorticity can be expressed as:

βv = f
wek
h

or, equivalently βvg = f
∂w

∂z

where wek < 0 is Ekman pumping (i.e. deep water formation) that, by conser-
vation of potential vorticity, leads to equatorward flow (v < 0). So to review:
Because PV is a conserved quantity, the compression of a water column either
(a) generates negative relative vorticity if the water column remains stationary
or (b) forces the water column to move to a location of lower planetary vorticity
(towards the equator). This explains why deep-water formation in the North
Atlantic (compression of the column) leads to deep western boundary currents
(equatorward flow). Figure 6 illustrates the Taylor Proudman effect.

Figure 6:

Figure source: https://pangea.stanford.edu/courses/EESS146Bweb/Lecture%
206.pdf
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