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Tree Models
Statistical Distributions of Trees

Priors on evolutionary trees:
I Uniform tree topologies
I Coalescent trees
I Birth death processes

Different priors for different
purposes:

I Branch lengths in
substitutions per site?

I In units of time?



Shape, Topology, Labeled History
Three Aspects of Trees

Tree Shape

branching diagram with no labels at the tip
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Shape, Topology, Labeled History
Three Aspects of Trees

Labeled History
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the topology plus a temporal ordering of the nodes
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Tree Models
Statistical Distributions of Trees

Three tree models we’ll
introduce today:

I Uniform tree topologies
I Uniform labeled histories

I Coalescent trees
I Birth death processes



Uniformly Distributed Tree Topologies

We ignore labeled histories and simply assign each tree
topology an equal prior probability:

1. An OK assumption if we don’t care about time
2. Branch length in units of the expected # of

substitutions per site
3. Not all tree shapes will be equally probable



Uniformly Distributed Tree Topologies

Uniformly distributed tree topologies are:

1. the implicit assumption in RAxML, PAUP*, etc.
2. the default tree prior in MrBayes

In a Bayesian framework we also need to define a prior for
branch lengths, something like:

vi ∼ Exponential(λ = 10.0)



Uniformly Distributed Labeled Histories

We often want to disentangle time from the rate of
character change:

I Estimating demographic parameters
I Estimating divergence times
I Estimating diversification rates

I adaptive radiation
I key innovations
I mass extinction

To do this, we must use tree models that account for
labeled histories:

I coalescent trees
I birth death processes

Why?



Uniformly Distributed Labeled Histories

The expected # of substitutions/site occurring along a
branch is the product of the substitution rate and time.

To get branch lengths in unit of time we must estimate
substitution rates and time separately.

Image from Tracy Heath’s slides (2017)
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Coalescent Trees

I Fisher-Wright and other classical population genetic models predict allele
frequencies in forward time.

I Coalescent theory looks at the same process backwards in time and describes
the time until sampled lineages “coalescence”.

I These models usually assume random mating, no selection, no structure, no
recombination, and no gene flow – but they can be extended to handle these
scenarios.

Image from Yang (2014)



Coalescent Trees

t

N

What is the probability of two lineages
coalescing in a single generation?



Coalescent Trees
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N

What is the probability of two lineages
coalescing in a single generation?

P (g = 1|N) =
1

N



Coalescent Trees
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So what is the probability of two
lineages not coalescing in a single
generation?
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So what is the probability of two
lineages not coalescing in a single
generation?

P (g 6= 1|N) = 1− 1
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Coalescent Trees

t

N

What is the probability that coalescence
occured g + 1 generations ago?

I Probability of no coalescence for g
generations:

(
1−

1

N

)
×
(
1−

1

N

)
× · · · =

(
1−

1

N

)g
I Followed by probability of coalescence:

1

N

P (g + 1|N) =
1

N

(
1− 1

N

)g



Coalescent Trees

t

N

This is the geometric distribution:

=
1

N

(
1−

1

N

)g
It describes the time until the first success in a
series of independent trials, where the
probability of success is p and the probability of
failure is (1− p).

mean wait time = 1/p = N

The expected time until coalescence is N
generations!



Coalescent Trees

t

N

I The probability of a coalescence among
n sampled lineages:(n

2

)
N

I n choose 2 is the number of ways the
coalescent event could have occurred:(n

2

)
=

n!

2!(n− 2)!

I So now our probability is:

P (g + 1|N,n) =
(n
2

)
N

(
1−

(n
2

)
N

)g



Coalescent Trees

t

N

I The geometric distribution is a discrete
distribution.

I The exponential distribution is the
equivalent continuous distribution:

λe−λt

I Instead of discrete generations, we now
use continuous time.

I Now the coalescent process converges to
a continuous time Markov process with
instantaneous rate of coalescence:

λ =

(
n
2

)

N

f(t|N,n) =
(
n
2

)

N
e−

(n2)
N t



Coalescent Trees

t

N(t)

I We have assumed a constant population
size N .

I Instead we can specify a function that
describes a changing population size
through time:

N → N(t)

I Now the rate of coalescence is a function
of t: (n

2

)
N(t)

,

so we must integrate with respect to t:

(
n
2

)

N
e−

(n2)
N t →

(
n
2

)

N(t)
exp

(
−
∫ t

0

(
n
2

)

N(t)
dt

)



Coalescent Trees

t

N(t)

I So given a set of samples n and a
demographic function N(t) we know the
time t of a coalescent event occurring
has the distribution:

f(t|N(t), n) =

(
n
2

)

N(t)
exp

(
−
∫ t

0

(
n
2

)

N(t)
dt

)

I But what about more than one
coalescent event?



Coalescent Trees

t

N(t)

I Define a list of i coalescent times:

C = t1, t2, . . . , ti

I And finally:

f(C|N(t), n) =

i∏

j=1

(
n
2

)

N(tj)
exp

(
−
∫ tj

0

(
n
2

)

N(t)
dt

)

I This gives us the probability density of a
coalescent tree (a labeled history) within
a lineage.

I It relates:
1. the population size, to the
2. the times of coalescent events



Coalescent Trees

Image from Sainani (2009)



Coalescent Trees

Image from Leliaert et al. (2014)

How can we link coalescent theory and
phylogenetic theory?

I Each branch of the phylogeny is a
lineage.

I We already derived the probability of a
coalescent history within a single branch:

f(C|N(t), n) =

i∏

j=1

(
n
2

)

N(tj)
exp

(
−
∫ tj

0

(
n
2

)

N(t)
dt

)

I The probability density of the coalescent
history of a “gene tree” embedded within
a “species tree” is the product of the
coalescent probabilities for each
branch...



f(C1|N1(t), n1) f(C2|N2(t), n2) f(C3|N3(t), n3)

f(C4|N4(t), n4)

f(C5|N5(t), n5)

f(g|S,N ) =
∏

k∈S

f(Ck|Nk(t), nk)

where
N = {N1(t), . . . , Nk(t)}



Coalescent Trees

Now we have everything we need to describe
the multispecies coalescent :

f(S,N|D) =
∏n
i=1 f(di|gi)f(gi|S,N )f(S)f(N )

f(D)

This is the fully parameterized model as
implemented in software like:

I RevBayes

I *BEAST

I BPP

Since the model is computationally intensive
there are many methods that approximate it
like SVDQuartets and ASTRAL.

Image from Leliaert et al. (2014)



Coalescent Trees

The multispecies coalescent:

f(S,N|D) =
∏n
i=1 f(di|gi)f(gi|S,N )f(S)f(N )

f(D)

f(di|gi) =

f(gi|S,N ) =

f(S) =

f(N ) =

f(D) =

Felsenstein likelihood for gene
alignment given a gene tree

coalescent probability of gene
tree given species tree

prior probability of species tree

prior probability of population
sizes

marginal likelihood

Image from Leliaert et al. (2014)



Coalescent Trees

What sort of prior could we use for the
species tree?

f(S) = ?

Birth-death process!

Image from Leliaert et al. (2014)



Birth-Death Processes

I A species gives birth to a new species with rate λ

I A species goes extinct with rate µ

I This is a continuous-time Markov process with the rate
matrix:

Qij =





iλ j = i+ 1, i ≥ 1,

iµ j = i− 1, i ≥ 1,

0 otherwise.
I How many states does it have?
I How are the times between events distributed in a

Markov process?



Birth-Death Processes

t

A B C D E

Now we can simulate a tree using the birth-death process:

.

origination time t0 →



Birth-Death Processes

t

A B C D E

Now we can simulate a tree using the birth-death process:

.

speciation event↗



Birth-Death Processes
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Now we can simulate a tree using the birth-death process:

.



Birth-Death Processes

t
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Now we can simulate a tree using the birth-death process:

.



Birth-Death Processes

t
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Now we can simulate a tree using the birth-death process:

.



Birth-Death Processes

t

A B C D E

☠

☠
☠

Complete simulated tree with 5 extant lineages:



Birth-Death Processes

t
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☠

A B C D E

Complete Tree Reconstructed Tree



Birth-Death Processes

A B C D E

Reconstructed Tree

The probability density function of the set of
speciation times T of a reconstructed tree under
the constant-rate birth-death process is:

f(T |N(t0) = 1, λ, µ) = (np − 1)!λnp−1 r3e−r(tp−t0)

(re−r(tp−t0))3

×
np−1∏
i=1

r2e−r(tp−ti)

(re−r(tp−ti))2

where r = λ− µ, np is the number of lineages that
survived to the present, tp is the time at the present,
and conditioned on there being one lineage at the
origination time t0.



Birth-Death Processes

A B C D E

Reconstructed Tree

Now we can use the probability density function
f(T |N(t0) = 1, λ, µ) to estimate divergence times
and speciation/extinction rates.

In a Bayesian setting we must specify our priors. A
few possible parameterizations:

1. I Speciation rate: λ
I Extinction rate: µ

2. I Speciation rate: λ
I Turnover rate: µ/λ

3. I Net-diversification rate: λ− µ
I Turnover rate: µ/λ



Birth-Death Processes

A B C D E

Reconstructed Tree

I What are reasonable values for the priors?
I We have good prior information about

net-diversification:

E[λ− µ] = ln

(
np

n0

)
/t0

I If we assume speciation is greater than
extinction (not always a good assumption):

µ/λ~ Beta(1, 1)



Birth-Death Processes
Divergence Time Estimation

Node calibrations:
I Normal distribution
I Lognormal distribution
I Exponential distribution
I Uniform distribution w/ hard min &

soft max
I Uniform distribution w/ hard min &

hard max
I Point value
I Fossilized birth-death

Tip calibrations:
I Empirical calibrated radiocarbon

sampler
I Normal distribution
I Uniform distribution w/ hard min &

max
I Point value Image from Ho & Duchêne (2014)



Birth-Death Processes

Diversification rate estimation:
1. Constant diversification rates
2. Diversification rates through time
3. Character-dependent diversification rates
4. Branch-specific diversification rates



Birth-Death Processes

Diversification rate estimation:
1. Constant diversification rates
2. Diversification rates through time
3. Character-dependent diversification rates
4. Branch-specific diversification rates



Birth-Death Processes
Diversification rates through time

Episodic Diversification Process
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Image from Sebastian Höhna’s slides (2017)



Birth-Death Processes
Diversification rates through time

LETTER
doi:10.1038/nature11631

The global diversity of birds in space and time
W. Jetz1*, G. H. Thomas2*, J. B. Joy3*, K. Hartmann4 & A. O. Mooers3

Current global patterns of biodiversity result from processes that
operate over both space and time and thus require an integrated
macroecological and macroevolutionary perspective1–4. Molecular
time trees have advanced our understanding of the tempo and
mode of diversification5–7 and have identified remarkable adaptive
radiations across the tree of life8–10. However, incomplete joint
phylogenetic and geographic sampling has limited broad-scale
inference. Thus, the relative prevalence of rapid radiations and
the importance of their geographic settings in shaping global bio-
diversity patterns remain unclear. Here we present, analyse and
map the first complete dated phylogeny of all 9,993 extant species
of birds, a widely studied group showingmany unique adaptations.
We find that birds have undergone a strong increase in diversifica-
tion rate from about 50 million years ago to the near present. This
acceleration is due to a number of significant rate increases, both
within songbirds and within other young and mostly temperate
radiations including the waterfowl, gulls and woodpeckers.
Importantly, species characterized with very high past diversifica-
tion rates are interspersed throughout the avian tree and across
geographic space. Geographically, the major differences in diver-
sification rates are hemispheric rather than latitudinal, with bird
assemblages in Asia, North America and southern South America
containing a disproportionate number of species from recent rapid
radiations. The contribution of rapidly radiating lineages to both
temporal diversification dynamics and spatial distributions of spe-
cies diversity illustrates the benefits of an inclusive geographical
and taxonomical perspective. Overall, whereas constituent clades
may exhibit slowdowns10,11, the adaptive zone into which modern
birds have diversified since the Cretaceous may still offer oppor-
tunities for diversification.
Birds (class Aves) constitute a fascinating and widely-studied radia-

tion. Analyses based on a very incomplete ‘tapestry’ phylogeny12 sug-
gested higher speciation and diversification rates in the tropics and in
South relative toNorthAmerica13–15. In addition, numerous geographi-
cally disparate clades are considered exceptional radiations, including
both New and Old World warblers in the Northern Hemisphere10,16,
island radiations such as Darwin’s finches17, and the explosively diver-
sifying white-eyes that span much of the southern Old World18. The
prevalence and implications of such rapidly radiating clades have not
been put in broader context: how characteristic are shifts in diversifica-
tion, and to what extent do clade-specific and tree-wide variation in
diversification rate contribute to diversity dynamics across the extant
tree of the entire class? Where do these radiating lineages occur, and
how much do they contribute to current-day patterns of diversity in
the highly diverse tropics compared to relatively depauperate higher
latitudes?
We address these questions using the first set of complete phylo-

genies of extant bird species (9,993 species, see Methods), compiled in
a Bayesian framework, and a new species-level measure of past diver-
sification rate. The phylogeny builds on previously established deeper
relationships and combines molecular data for 6,663 species with
taxonomic constraints for data-deficient species to more fully account

for phylogenetic uncertainty. Lineages-through-time8 and novel diver-
sification-rates-through-time plots (Fig. 1) indicate that net diversifi-
cation leading to extant lineages generally increased from approximately

*These authors contributed equally to this work.

1Department of Ecology and Evolutionary Biology, Yale University, 165 Prospect Street, New Haven, Connecticut 06520-8106, USA. 2Department of Animal and Plant Sciences, University of Sheffield,
Sheffield S10 2TN, UK. 3Department of Biological Sciences, Simon Fraser University, 8888 University Drive, Burnaby, British Columbia V5A 1S6, Canada. 4Institute for Marine and Antarctic Studies,
University of Tasmania, Private Bag 49, Hobart, Tasmania 7001, Australia.
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Figure 1 | Diversification of all birds through time. a, b, Estimates of the
tree-wide lineage net diversification (speciation – extinction) rate (a) and
speciation rate (b), calculated in 5 million year intervals (line segments). These
are estimated to be very similar (see Supplementary Discussion). The shaded
region represents the area between the 5th and 95th quantiles for 525 assessed
trees with the mean rate traced in black. Intervals outside 67.5 and 2.5Myr ago
are not shown due to lack of data (#30 lineages per interval) and the difficulty
of accounting for ongoing speciation events, respectively. c, Lineage-through
time plot for 1,000 trees (in grey), with mean waiting times to speciation in
black. Green background is the tree depicted in Fig. 2. Geologic time periods are
delineated at the bottom of the plot. Ju, Jurassic period; Qu, Quaternary period.
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Bird diversification by Jetz et al.
(2012)

Diversification rates estimated in
5 million year intervals



Birth-Death Processes

Diversification rate estimation:
1. Constant diversification rates
2. Diversification rates through time
3. Character-dependent diversification rates
4. Branch-specific diversification rates



Birth-Death Processes
Character-dependent diversification rates

Joint Models of the Tree and Character Evolution�����������������������������������������

Binary State Speciation and Extinction (BiSSE) Model



Birth-Death Processes
Character-dependent diversification rates

BiSSE, MuSSE, HiSSE, GeoSSE, ChromoSSE are all special cases of ClaSSE
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where �ijk for each possible cladogenetic event is given by equation 4, and the rates153

of anagenetic changes Qij are given by equation 1.154

The di↵erential equations above have no known analytical solution, so we155

numerically integrate them by moving along each branch from the tip of the tree156

towards the root recalculating the equations for every short time interval. When a157

node l is reached, the likelihood of it being in state i is calculated by combining the158

likelihoods of its descendant nodes m and n as such:159

Dli(t) =
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where again �ijk for each possible cladogenetic event is given by equation 4. Let D160

denote a set of observed chromosome counts,  an observed phylogeny, and ✓i a161

particular set of chromosome evolution model parameters. Then the likelihood for162
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where ⇡i is the root frequency of chromosome number i and D0i(t) is the likelihood164

of the root node being in state i conditional on having given rise to the observed165

tree  and the observed chromosome counts D.166
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Image from Freyman & Höhna (2017)



Birth-Death Processes
Character-dependent diversification rates

Changes in mating system have
different long and short term
evolutionary consequences.

The time lag from the loss of
self-incompatibility until the onset of
evolutionary decline:
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Image from Freyman & Höhna (in prep)



Birth-Death Processes

Diversification rate estimation:
1. Constant diversification rates
2. Diversification rates through time
3. Character-dependent diversification rates
4. Branch-specific diversification rates



Birth-Death Processes
Branch-specific diversification rates

Hummingbird diversification by
McGuire et al. (2014)

Diversification rates estimated using
BAMM



Birth-Death Processes
Branch-specific diversification rates

�����������������������

A) actual process
(process may vary on extinct lineages)

B) described process
(extinct lineages inherit ancestral process)

time
0 T

time time time
0 T 0 T 0 T

C) implemented process
(extinct lineages laterally inherit the process of the left but not the right observed branch)

Modeling issues in BAMM

Image from Sebastian Höhna’s slides (2017)



Birth-Death Processes
Branch-specific diversification rates

The PERSEUS solution:

Discretize speciation and
extinction rates

Use MuSSE with all tip states (rate
categories) unknown



Tree Models

Three approaches covered today:

1. Uniform Tree Topologies
2. Coalescent Trees
3. Birth-Death Processes

What about phylogenetic networks?!


