

Intercomparison of blade-based ice detection systems

Winterwind 2019 Umea, 6 February 2019

Paul Froidevaux, Saskia Bourgeois, René Cattin Meteotest AG, Bern, Switzerland

Motivation

Ice detection systems, review study Meteotest AG, 2016 in VGB PowerTech Journal

Nacelle-based ice detectors: 10 systems some with long experience, well tested

Blade-based ice detectors: 4 systems (beside power curve) More recent, no quantitative intercomparison so far

06.02.2019

Motivation

Instrumental icing is NOT blade icing

- Standstill structure vs. moving structure
 - blades may cross several air layers
 - different wind speeds
 - vibrations and acceleration forces
- Different size/shape of structure (sensor vs. blade)

Motivation

"If you want to know about ice on the blades, you will have to measure on the blades."

Nacelle based systems

Blade based systems

06.02.2019

Idea

- Install commercially-available blade-based ice detectors on the same turbine
- Compare results, use webcams as a reference
- Winters 2017/18 and 2018/19

Financing

- Financed by the VGB research foundation
- Additional contribution from 11 VGB member companies

06.02.2019

- weidmüller, BLADEcontrol (GER, 2005)
- wölfel, IDD.Blade (GER, 2012)
- fos4X, fos4lce (GER, 2013)
- eologix (AUT, 2015)

Vibration sensors inside-glued

Impedance sensors outside-taped

Experiment: test turbine

Vestas V90,1.8 MW, 95 m hub no heating, no restrictions due to icing

Harsh conditions No risk, No gain !

Stor-Rotliden, Sweden ~ 500 m.a.s.l.

Experiment: webcams

- Nacelle and blades
- Vis and IR sensors
- Heated
- IR projector

Experiment: webcams limitation

06.02.2019

Preliminary results: intercomparison

	Numerical signals	Alarm/warning signals	Icing levels	Minimum wind speed
Woelfel	3 one per blade	4 one per blade and summary	3 icing levels	2-3 m/s
Weidmueller	1	1	2 icing levels	2 m/s
Eologix	no	16 one per sensor	3 icing thicknesses	0 m/s
Fos4x	3 one per blade	4 one per blade and summary	2 icing levels	2 m/s

Standardized:

- No icing
- Warning
- Alarm
- Missing data

06.02.2019

Preliminary results: case studies

29 Jan 2018 14:00 CET

-7°C 7.9 m/s 0 kW, **-100%**

Ice Detector A: Alarm Ice Detector B: Alarm Ice Detector C: Alarm

hereafter A,B,C = weidmueller, eologix, woelfel ! In random order !

06.02.2019

tor-Rotliden C11

Active Sensor: LEFT Exposure Time: 1/6622 n/a Temperature: - 6.1°C

Selected Events: SSI,Blade_VM,TT Activated Events: BBlade_VM

eteotest

04 March 2018 10:30 CET

-8°C 5.8 m/s 106 kW, **-70%**

Ice Detector A : Alarm Ice Detector B : Alarm Ice Detector C : Warning

06.02.2019

tor-Rotliden Cll ------

Active Sensor: LEFT Exposure Time: 1/5347 1/9615 Temperature: -18,6°C

Selected Events: BBlade_VM,SI,TT Activated Events: BBlade_VM

05 March 2018 12:00 CET

-10°C 6.2 m/s 330 kW, **-24%**

Ice Detector A : Warning Ice Detector B : No icing Ice Detector C : No icing

06.02.2019

06 March 2018 12:00 CET

-10°C 5.5 m/s 190 kW, **-33%**

Ice Detector A : Warning Ice Detector B : No icing Ice Detector C : No icing

06.02.2019

ictive Sensor: LEFT xposure Time: 1/3481 1/9615 emperature: + 1,2°C

elected Events; BBlade_VM,SI,T ctivated Events; SSTade_VM

Aeteotes

10 March 2018 04:00 CET

-6°C 5.3 m/s 110 kW, **-58%**

Ice Detector A: Alarm 5h13 Ice Detector B: Alarm 4h29 Ice Detector C: Alarm 4h04

06.02.2019

11 March 2018 10:00 CET

-7°C 4.7 m/s 80 kW, **-50%**

Ice Detector A: Alarm Ice Detector B: Alarm Ice Detector C: Alarm

Preliminary results: case studies

- Ice detectors do not always agree, especially during light to medium icing
- Some «missed events» identified, «false alarms» are more difficult to detect
- How important is the sensitivity of the thresholds?
- Webcam doesn't show everything at any time

- More case studies: winter 2018/19 with all 4 ice detectors
- Statistics: availability, icing time, icing severity, accuracy (skill score hit rate, false alarms, etc).
- Collaboration with Nergica, similar study. Standardisation of thresholds.
 "When do we want a warning / an alarm ?"

- Detailed results for financially contributing VGB members in 2019
- Public report will follow

Preliminary results: case studies

Mar-2018

Meteotest

- Private independent company, located in Bern, Switzerland
- Founded in 1981, University spin-off
- 25-30 scientist, engineers and technicians
- Business fields: wind energy, solar energy, geo informatics, air pollution monitoring, climatology, web and software applications
- Wind energy specialists for complex terrain and icing climate
 - Measurement campaigns in cold climate
 - Production loss calculation due to icing
 - Icing forecasts for wind energy
 - Ice throw studies and risk assessments
- Long experience with wind energy in cold climate
- Elaboration of independent studies for ENERCON since 2009 looking at performance of blade heating and ice detection system

06.02.201 g

	Principle	Meteorological Icing	Instrumental Icing	Rotor Icing
Power curve	Deviation between produced power and power curve at low temperatures	No	No	Yes
Weidmüller Blade Control	Piezo-Electric Accelerators Change in natural oscillation frequencies when blade is iced	Yes	No	Yes
fos4 Ice Detection	Fibre-optic Accelerators Change in Eigenfrequency when blade is iced	Yes	No	Yes
Wölfel SHM.Blade/ IDD.Blade	Structural Noise Sensors (accelerators), change in Eigenfrequency when blade is iced	Yes	No	Yes
Eologix	Change of impedance/capacitance on sensor surface when probe iced	No	No	Yes

	Operation	Standstill	Minimum wind speed	SCADA data required	Anywhere on blade
Power curve	Yes	No	3 m/s	Yes	Yes
Weidmüller BladeControl	Yes	Yes	2 m/s	Yes	Yes
fos4 Ice Detection	Yes	Yes	3 m/s	Yes	Yes
Wölfel SHM.Blade/ IDD.Blade	Yes	Yes	2-3 m/s	Yes	Yes
Eologix	Yes	Yes	0 m/s	No	No

06.02.201 9

	No. of sensors	Sensor position	Electrical wires in blade	Blade sensor Installation	Retrofit
Power curve	none	n/a	No	n/a	n/a
Weidmüller BladeControl	Minimum 1 per blade	1/3 of the blade radius	Yes	inside glued	Yes
fos4 Ice Detection	Minimum 1 per blade	1/3 of the blade radius	No	inside glued	Yes
Wölfel SHM.Blade/ IDD.Blade	Minimum 1 per blade	12- 18 m from root	Yes	inside glued	Yes
Eologix	Minimum 2 per blade every 10 m recommended	leading edge	No	outside taped	Yes

	Commercially available since	No. of systems sold	Stage of development
Power curve	n/a	n/a	serial
Weidmüller Blade Control	2005	> 2000	Small scale series all turbine types
fos4 Ice Detection	2013	>100 ~ 200 after 2017/18	Serial all turbine types
Wölfel SHM.Blade/ IDD.Blade	2012	150 IDD.Blade 400 SHM.Blade	Serial all turbine types
Eologix	2015	~100	Small scale series all turbine types