Biogenic volatile organic compound emissions from bamboo: Exploring patterns of diversity across species

Andrea Melnychenko
Dr. Todd Rosenstiel Lab, Biology Department
Portland State University, Oregon, USA

World Bamboo Congress April 10, 2012

Volatile: gaseous, reactive

Organic: carbon based

Compounds: molecules, chemicals

VOCs have a big impact on the atmosphere

▶ 95%: Biogenic "B" VOCs

▶ 5%: Anthropogenic VOCs

BVOCs are 2% of photosynthetic carbon

BVOCs impact Atmospheric Chemistry:

- Increase tropospheric ozone levels
 - Human health consequences
 - NO_x dependent
 - Higher in urban areas
 - Higher around combustion sources
- Form Secondary Organic Aerosols (SOA)
 - Create particles in air
 - Decrease visibility
- Influence air quality
- Indirectly effect global change

BVOCs have multiple Biological roles

- Function as plant-plant communication
- Defense compounds
- Recruitment for insect predators
- Protect against oxidative damage
- Metabolic overflow
- Increase under abiotic or biotic stress

BVOCs have diverse forms and functions

Compound	Structure	Function
Isoprene C ₅ H ₈	Isoprene	Heat, Drought stress
Monoterpenes C ₁₀ H ₁₆	(1R)-(+)-alpha-pinene Limonene	Signaling, Plant- insect interactions
Sesquiterpenes C ₁₅ H ₂₄	Alpha-farnesene	Signaling, Abiotic and biotic stress
Green Leaf Volatiles (Alkenes, Aldehydes, Alcohols, Acetate)	(Z)-3-hexen-1-ol (Z)-3-hexenyl-acetate	Released from wounded tissue, Signaling

BVOCs have diverse forms and functions

Compound	Structure	Function
Isoprene C ₅ H ₈	Isoprene	Heat, Drought stress
Monoterpenes C ₁₀ H ₁₆	(1R)-(+)-alpha-pinene Limonene	Signaling, Plant- insect interactions
Sesquiterpenes C ₁₅ H ₂₄	Alpha-farnesene	Signaling, Abiotic and biotic stress
Green Leaf Volatiles (Alkenes, Aldehydes, Alcohols, Acetate)	(Z)-3-hexenal (Z)-3-hexenyl-acetate	Released from wounded tissue, Signaling

Isoprene is everywhere

- Most abundant BVOC emitted
- Broad taxonomic distribution
 - Mosses, Kudzu, Eucalyptus, Poplar
- Increases during stress events
 - Aids in membrane stability
 - Acts as an antioxidant
- Plant taxa typically do or do not make isoprene
 - Bamboos are an exception

Bamboo: A novel system for BVOC studies

- Variable isoprene emission
- Diverse forms, many genera
- Few physiological studies
- Fewer BVOC studies

Isoprene emission in Bamboo: Extreme variation across genera and species

Sinobambusa (N=6)

0

1000

2000

nmol isoprene g dry weight ⁻¹ hour⁻¹

3000

4000

5000

Isoprene emission in Bamboo: Extreme variation across genera and species

$\left\{ \begin{array}{c} \\ \end{array} \right\}$

Isoprene emission in Bamboo: Extreme variation across genera and species

Average isoprene emission rate within a single genus, *Phyllostachys*

Central Questions: What about other BVOCs?

How variable are BVOCs emissions within the Bambusoideae?

Does isoprene emission influence the composition of other BVOCs?

Genus species 'Cultivar'	Relative Isoprene Emission	Growth Form	Leaf Color	Subfamily		
Arundo donax	High	Clumping	Variegated	Arundinoideae		
Arundinaria gigantea	None	Running	Green	Bambusoideae		
Bambusa ventricosa	High	Clumping	Green	Bambusoideae		
Bambusa ventricosa 'Kimmei'	High	Clumping	Variegated	Bambusoideae		
Fargesia rufa	None	Clumping	Green	Bambusoideae		
Phyllostachys aurea	High	Running	Green	Bambusoideae		
Phyllostachys edulis	None	Running	Green	Bambusoideae	The of	
Phyllostachys nigra	High	Running	Green	Bambusoideae		
Pleioblastus chino	None	Running	Green	Bambusoideae		
Pleioblastus chino 'Murakamianus'	None	Running	Variegated	Bambusoideae		
Pleioblastus chino 'Vaginatus Variegatus'	None	Running	Variegated	Bambusoideae		
Sasa kurilensis	None	Running	Green	Bambusoideae		P. C.
Sasa kurliensis 'Simofuri'	High	Running	Variegated	Bambusoideae		
			n jeuna-			

Sampling Procedure

Sampling Procedure

GCxGC-TOFMS

- Two-dimensional gas chromatography
- Time of flight mass spectrometry
- Leco Pegasus 4D GC × GC-TOFMS

Difference in many compounds emitted by bamboos

Difference in many compounds emitted by bamboos

No difference in number of compounds emitted by isoprene emitting bamboos

Genus species 'Cultivar'	Average number of compounds (n=4)	Isoprene emitting
Bambusa ventricosa	75	
Bambusa ventricosa 'Kimmei'	105	
Sasa kurilensis	117	
Fargesia rufa	123	
Arundinaria gigantea	140	
Arundo donax	141	
Phyllostachys aurea	150	
Phyllostachys edulis	154	
Sasa kurliensis 'Simofuri'	156	
Pleioblastus chino	169	
Pleioblastus chino 'Murakamianus'	176	4
Phyllostachys nigra	195	
Pleioblastus chino 'Vaginatus Variegatus'	196	

Significant difference in BVOC composition across species

Leaf BVOC composition varies with isoprene emission

NMDS of Bamboo BVOCs by Compound Classes

Leaf BVOC composition varies with isoprene emission

NMDS of Bamboo BVOCs by Compound Classes

Low isoprene emitting bamboos emit more sesquiterpenes

Field study verifies greenhouse results: Lower isoprene = higher sesquiterpene

- Bamboo Garden Nursery
- ▶ 16 different species, 12 genera
 - Phylogenetically diverse
 - Isoprene emission across entire range

Sesquiterpene / Isoprene shift means different:

- Biochemistry
 - May influence other aspects of physiology
- Ecological roles
 - Less insect recruitment?
- Strategies of stress protection
- Atmospheric fates
 - ▶ Isoprene = ozone
 - Sesquiterpenes = SOA particles

Conclusions

- Bamboo emissions are not all equal
- Vast diversity of BVOCs in Bamboos
 - BVOC emissions not predicted by genus alone
 - Variation in BVOC emission is tied to isoprene production
- Bamboos may impact air quality differently
 - Species matters
 - Placement matters
 - Amount matters

Acknowledgements

- Todd Rosenstiel, PSU Biology
- Ned Jaquith, Bamboo Garden
 Nursery
- Noah Bell and Bamboo Garden
 Nursery Staff
- Jim Pankow, PSU Chemistry
- Pankow Group
 - Wentai Luo
 - Lorne Isabel
- Sarah Eppley, PSU Biology
- Eppley/Rosenstiel lab members

