INCIDENCE, INTENSITY OF ATTACK AND CONTROL OF THE BAMBOO BORER, Phloeobius crassicollis Jord.

Forest Research Institute Dehradun, India

Indian Council of Forestry Research and Education (Ministry of Environment , Forest and Climate Change, Gol)

(email: singhkp@icfre.org, Web: www.icfre.org)


INDIAN COUNCIL OF FORESTRY RESEARCH & EDUCATION

DISTRIBUTION OF BAMBOO

GLOBAL SCENARIO

- **Genera-75**
- **4** Species- 1250

Tropical, Sub-Tropical and Temperate Zone Africa, Asia, Central and South America

INDIAN SCENARIO

- Genera-23
- Species- 125

 North-Eastern India alone reports about 66% of growing stock

FEW IMPORTANT FACTS

- An arborescent plant of Global Interest
- Its known as **'GREEN GOLD'** for its fast growth rate
- The name originated from Malay word 'MAMBU'
- Bamboos occur naturally in four of the five continents, except Europe
- The Global consumption has been calculated to approx. 2 million tonne
- China is the maximum producer to the tune of about 1.3 million tonne
- There are about 1500 documented traditional uses of bamboos

IMPORTANT USES

- Housing and agricultural implements
- Pulp and paper, domestic commodities and in cottage industries
- Vegetable and pickles
- Employment in small cottage industries
 - It is estimated that about 2.5 billion people depend on use of bamboo
 - Estimated value of US\$ 7 billion per annum

BAMBOOS : THE WONDERFUL GIFT OF

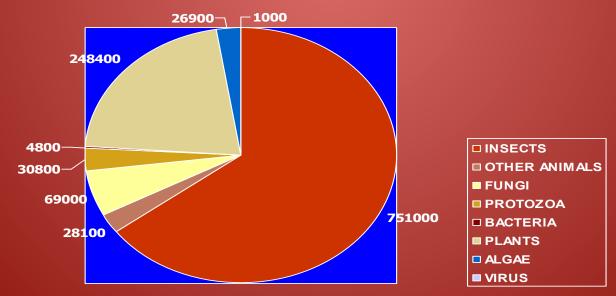
Bamboo Handicraft

Bamboo Bridge

Activated Charcoal

Bamboo Hut

Bamboo Furniture


<image>A CONTRACT OF CON

Conc. vinegar used as insecticide

THE INSECT

- The most dominating group occupying highest position in the whole animal kingdom
- Insects play decisive role in forest productivity, resources and products
- Affect growth increment, even lead to death of the tree as well as its products

No. OF ORGANISMS ON EARTH 1413000 (APPROX.)

LOSSES CAUSED BY FOREST INSECTS

Forest Crop	Per cent damage	Insect pest responsible	Estimated loss (INR in million per unit area / vol.)	Authority					
Nurseries	93.5	White grubs 0.45 per ha		Vaishampayan & Bhandari, 1981					
Forests and Plantations									
Eucalyptus	05.0	Stem borer and termites	0.0024 per ha	Forest Research Institute, India (Unpublished)					
Teak	13-65	Teak defoliators	0.05 per ha	Champion, 1934					
Timber									
Industrial wood	10.0	Wood borers and termites	332.27 for 7.97 millions m ³	Purushotham, 1970					
Bamboo	25-40	Ghoon borers	2.81 for 0.15 million koris (20 no.)	Beeson, 1941 as well as present records of FRI, India					

INSECT PESTS OF BAMBOOS (Insect species in Indian Sub-Continent - 212)

- Nursery pest 05
- Defoliators 48
- Termites 13
- Sapsuckers 90
- Borers 56

- Borers on felled / dried bamboo- 44
- Culm and shoot borers 12

BORERS ON FELLED /DRY BAMBOOS

Dinoderus ocellaris				
Dinoderus minutus	Coleoptera: Bostrychidae			
Dinoderus brevis				
Lyctus africanus	Coleoptera: Lyctidae			
Chlorophorus annularis				
• Stromatium barbatum	Coleoptera: Cerambycidae			

SHOOT AND CULM BORERS OF BAMBOOS

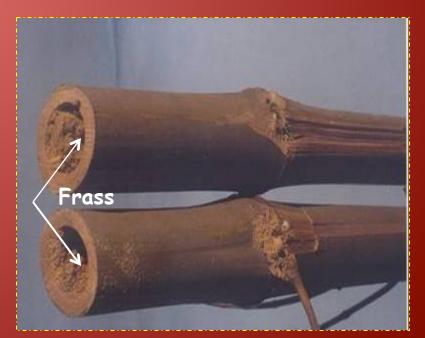
 Cyrtotrachelus dux (Coleoptera: Curculionidae)

 Phloeobius crassicollis (Coleoptera: Anthribidae)

BAMBOO BORER Phloeobius crassicollis (Coleoptera- Anthribidae)

Phloeobius crassicollis

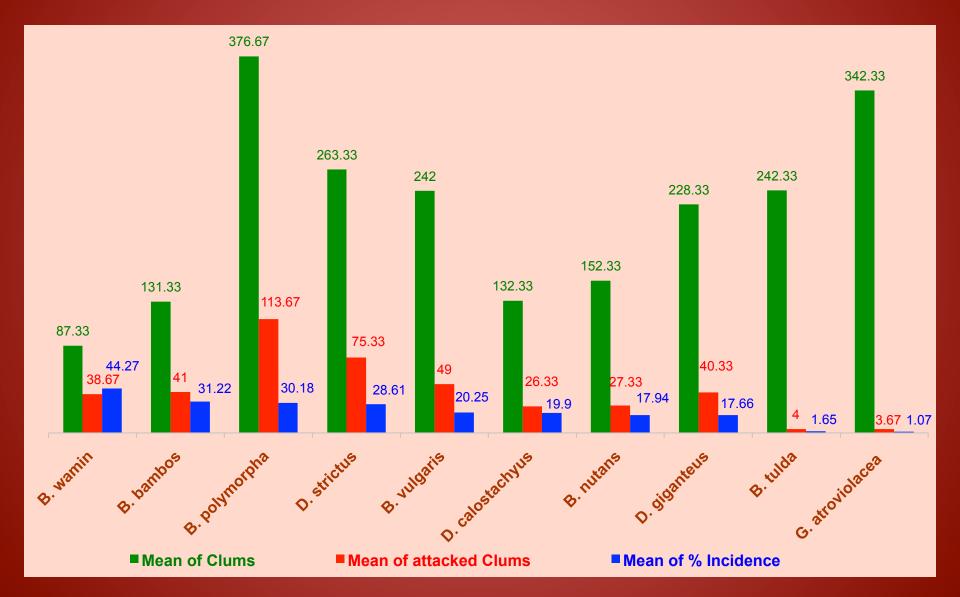
Emergence of beetle in May-June
Eggs laid at nodes/culm sheaths
Larval period is more than 300 days


- First record on green standing bamboo species.
- Earlier reported only on felled bamboo
 (*Dendrocalamus strictus*)

FEEDING PATTERN (LARVA)

Freshly hatched larvae nibble and scratch at the point of hatching on the nodes/culms sheaths

At later stage, larvae feed on woody tissues of nodes and internodes to deposit larval frass inside hollow internodes



INCIDENCE AND INTENSITY OF ATTACK

	Mean		e of attack lean)	Mean	Intensity
Bamboo species	No. of culms	No. of attacked culms	% of incidence	No. of holes	/ Category of attack
Bambusa wamin	087.33	38.67	44.27±1.15	124.00	High
Bambusa bambos	131.33	41.00	31.22±0.46	91.33	High
Bambusa polymorpha	376.67	113.67	30.18±1.63	254.00	High
Dendrocalamus strictus	263.33	75.33	28.61±2.59	178.00	High
Bambusa vulgaris	242.00	49.00	20.25±0.97	65.67	Moderate
Dendrocalamus calostachyus	132.33	26.33	19.90±1.90	34.67	Moderate
Bambusa nutans	152.33	27.33	17.94±0.22	38.33	Moderate
Dendrocalamus giganteus	228.33	40.33	17.66±0.49	75.00	Moderate
Bambusa tulda	242.33	4.00	01.65±0.41	2.33	Low
Gigantochloa atroviolacea	342.33	3.67	01.07±0.11	1.67	Low

INCIDENCE OF ATTACK

- 1. Bambusa bambos
- 2. Bambusa nutans
- 3. Bambusa polymorpha
- 4. Bambusa tulda
- 5. Bambusa vulgaris
- 6. Bambusa wamin
- 7. Dendrocalamus calostachyus
- 8. Dendrocalamus giganteus
- 9. Dendrocalamus strictus
- **10.** Gigantochloa atroviolacea

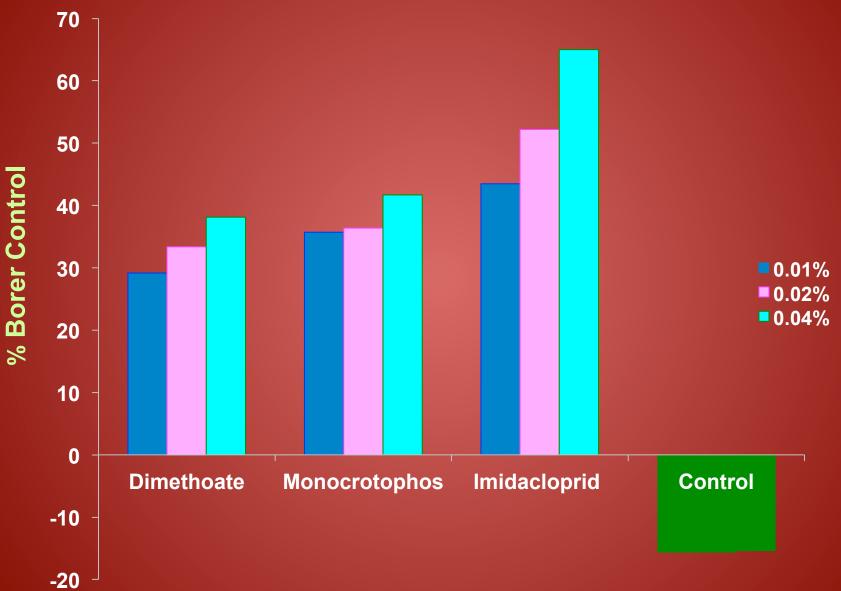
Chemical Control INSECTICIDES USED

Contact insecticides (4)

: Cypermethrin, Deltamethrin, Endosulphan and Chlorpyriphos

Systemic insecticides (3) Imidachloprid : Monocrotophos, Dimethoate and

- **Method used**
- **Concentrations**

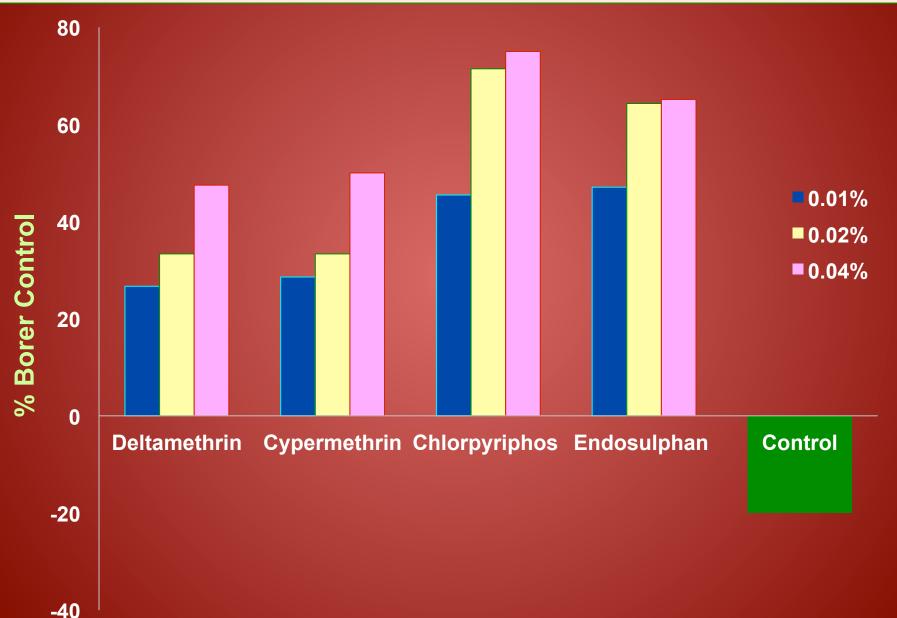

- : Internodal injection method
- : 0.01%, 0.02% and 0.04%

CHEMICAL CONTROL : SYSTEMIC INSECTICIDES

Insecticides	% of Dosages	ent	Mean No. of culms	Pre treatment observation (Mean)		Post treatment observation (Mean)		Average % borer	
		Treatment	Treatm	Treatm	No. of attacked culms	Initial % of attack	No. of attacked culms	Remained % of attack	Control
	0.01	T1	41.00	8.00	19.51	5.67	13.82	$29.17^{a} \pm 8.13$	
Dimethoate	0.02	T2	27.00	5.00	18.52	3.33	12.35	$33.33^{a} \pm 7.51$	
30 EC	0.04	Т3	40.67	7.00	17.12	4.33	10.66	38.10 ^a ± 4.76	
	0.01	T4	25.00	4.67	18.67	3.00	12.00	35.71 ^a ± 8.66	
Monocrotophos	0.02	Т5	42.33	7.33	17.32	4.67	11.02	$36.36^{a} \pm 3.36$	
36 EC	0.04	Т6	37.00	8.00	21.62	4.67	12.61	$41.67^{ab} \pm 2.58$	
	0.01	Τ7	34.00	7.67	22.55	4.33	12.75	$43.48^{ab} \pm 0.79$	
Imidachloprid	0.02	Т8	42.67	7.67	17.97	3.67	8.50	52.17 ^{bc} ± 11.56	
17.8 SL	0.04	Т9	44.67	6.67	14.93	2.33	5.22	65.00° ± 3.88	
Control	-	T10	55.33	10.67	19.28	12.33	22.29	15.63 ^{d*} ± 13.22	

Same alphabets represent statistically at par group; *Borer attack was increased in control treatment

IMPACT OF SYSTEMIC INSECTICIDES



CHEMICAL CONTROL : CONTACT INSECTICIDES

Insecticides	% of Dosages	Treatm ent	Mean No. of	of observation (Mean)		Post treatment observation (Mean)		Average % borer
			culms	No. of attacked culms	Initial % of attack	No. of attacked culms	Remained % of attack	Control
Deltamethrin	0.01	T1	25.67	5.00	19.48	3.67	14.29	26.67 ^a ±4.81
2.5 EC	0.02	T2	28.00	6.00	21.43	4.00	14.29	33.33 ^a ± 7.51
	0.04	T3	26.00	5.67	21.79	3.00	11.54	47.48 ^a ± 9.62
Cypermethrin 25 EC	0.01	T4	25.00	4.67	18.67	3.33	13.33	28.57 ^a ± 7.69
	0.02	T5	23.00	4.00	17.39	2.67	11.59	$33.33^{a} \pm 0.03$
	0.04	T6	24.67	4.67	18.92	2.33	9.46	50.00 ^a ± 11.56
Chlorpyriphos 50 EC	0.01	T7	24.33	3.67	15.07	2.00	8.22	45.45 ^a ± 17.65
	0.02	T8	31.67	4.67	14.74	1.33	4.21	71.43 ^b ± 3.86
	0.04	T9	24.33	4.00	16.44	1.00	4.11	75.00 ^b ± 2.75
Endosulphan 35 EC	0.01	T10	38.00	5.67	14.91	3.00	7.89	47.06 ^a ± 9.64
	0.02	T11	28.33	4.67	16.47	1.67	5.88	64.29 ^b ± 12.71
	0.04	T12	42.00	6.67	15.88	2.33	5.54	65.12 ^b ± 4.81
Control	-	T10	32.33	5.00	16.46	6.00	18.56	20.00*c±17.35

Same alphabets represent statistically at par group; *Borer attack was increased in control treatment

IMPACT OF CONTACT INSECTICIDES

RESULTS

- Post treatment observations showed that the contact insecticides are performing better than systemic insecticides
- Chlorpyriphos (0.02 and 0.04%) provided significantly effective damage control of 71.43 and 75.00%, respectively
- Endosulphan (0.02 and 0.04%) yielded 64.29 and 65.12% damage control
- Imidacloprid (0.02 and 0.04%) effected 52.17 and 65.00% damage control
- Monocrotophos, Deltamethrin, Dimethoate and Cypermethrin were found comparatively less effective for the control of borer

CONCLUSION

- **P.** crassicollis is a serious pest of green standing bamboo
- As many as 10 bamboo species were found to be attacked for the first time
- **Larvae feed on woody tissues at nodes and internodes**
- **4** Maximum intensity of attack was found in *Bambusa wamin* (44.27%)
- Minimum intensity of attack was found on Gigantochloa atroviolacea (1.07 %)
- Contact insecticides performed better as compared to systemic insecticides
- Insecticides should be applied judiciously
- Chlorpyriphos (0.04 %) was found to be the most effective insecticide

Thank you

Let plants and bamboos live forever !

Forest Research Institute, Dehradun, India

