Propagation, Plantation and Innovation

PROPAGATION OF DREPANOSTACHYUM FALCATUM (NEES) KENG F. (syn. SINARUNDINARIA FALCATA CHAO & RENVOIZE) FOR SUSTAINABLE DEVELOPMENT OF RURALS IN GARHWAL HIMALAYAS

> DR. MEENA BAKSHI GENETICS AND TREE PROPAGATION FOREST RESEARCH INSTITUTE DEHRA-DUN (UK)

GARHWAL HIMALAYAS

Drepanostachyum falcatum (Nees) Keng f. 1500-2300m Himalayacalamus falconeri (Munro) Keng f. 1800-2300m Thamnocalamus spathiflorus (Trin.) Munro 2400-3000m **4**Sinarundinaria anceps (Mitford) C.S. Chao & Renvoize 1800-2700m **Collectively called `Ringal'**

Myriad of uses. Dreaming household

Construction-roofing, flooring, fencing, windows, doors

- Handicrafts, hookah pipes, walking sticks, Hats, Mats
- Stakes for cash crops, fencing around their kitchen gardens, agricultural lands
- Fresh sprouts for vegetables, Pickels, Curries
- Fuelwood and Fodder (A. falcata)
- Weapons and agricultural tools

RINGAL FOR TRIBAL HUT

RINGAL IN HANDICRAFTS

Apart from their economic value, ecological role-soil conservation, checks soil erosion

Favoured habitat of red listed wild animals viz. Musk deer and Phaesant species like Monal and Western Tragopan

BREEDING FARM OF MUSK DEER

- Socio-economic life of rural populace providing livelihood support.
- Cottage Industry and domestic market is Ringal based. Basketry is their mainstay of income
- Baskets of different designs (agricultural produce, manure, Dung, Utensils, washing clothes, wool, fuelwood, fodder etc)

BASKETRY

VARIOUS USES OF BASKETS

DOMESTIC USES OF BASKETS

Dwindling very fast

- Over exploitation and illegal harvesting
- Gregarious flowering, Parent stock completely dies off
- Climate change and change in land use
- Frequent Forest Fires

NATURAL REGENERATION

Regeneration slow and face intense grazing pressure, forest fires, upcoming weeds

✓ Dense Thickets are barren now

✓ 2-3 artisans in a village inhabited by 100 families.

The villagers and artisans are in short supply of this life supporting resource affecting Livelihood

Solution?

Large Scale planting

- Seeds propagation is cheaper, gestation long (19-60 years), viable seeds are attacked by rodents and insects
- Long storage impossible as the viability is low (6-12 months)
- Replanting with rhizome, offsets is tedious, expensive, time consuming and slow
- Research into newer and rapid methods for sustainable production required

EXTRACTION OF MATERIAL FOR MULTIPLICATION

NURSERY THROUGH PART CLUMP, RHIZOME AND OFFSETS

CULM CUTTINGS PLANTING IN THE FIELD

Multiplication of Ringal through Culm cuttings

Training imparted to labour for preparation of culm cuttings

PROPAGATION THROUGH BRANCH CUTTINGS

Table 1. Interactive effect of SxT on rooting and allied parameters

SEASON	TREATMENT	CHARACTERS					
		Mean sproutin g (%)	Mean No. of Sprout s	Mean sprout Lengt h (cm)	Mean rooting %	Mean No. of roots	Mean root Length (cm)
March-June	Control	65.3	4.0	13.2	43.3	3.4	8.7
	IAA500ppm	68.3	7.5	14.5	56.7	4.5	7.9
	IBA500ppm	66.7	5.0	16.9	51.7	5.7	10.2
	NAA500ppm	57.3	4.0	13.7	40.0	4.0	7.1
July-October	Control	73.7	4.0	14.1	56.7	4.0	7.5
	IAA500ppm	69.7	4.5	15.6	41.7	6.5	10.4
	IBA500ppm	78.3	5.5	17.2	53.3	7.9	9.1
	NAA500ppm	60.3	3.0	13.7	43.3	5.1	7.7
Nov Feb.	In all treatments	0	0	0	0	0	0
Significance		**	*	***	***	***	*
CD		6.520	1.075	1.215	5.731	0.805	1.104

* =Significant at 5%, ** = Significant at 0.1 %, *** = Significant at 0.01%

Table 2. Effect of Phytohormones on rooting of D. falcatum

TREATMENT	CHARACTERS						
	Mean sprouting (%)	Mean No. of Sprouts	Mean sprout Length (cm)	Mean rooting %	Mean No. of roots	Mean root Length (cm)	
Control	69.5	4.0	13.7	50.0	3.7	8.1	
IAA500ppm	69.0	6.0	15.1	49.2	5.5	9.2	
IBA500ppm	72.5	5.2	17.1	52.5	6.8	9.7	
NAA500ppm	58.8	3.5	13.6	41.7	4.6	7.4	
Significance	*	*	***	*	***	***	
CD	5.761	0.726	0.923	3.726	0.682	0.925	

Table 3. Effect of season on rooting of of D. falcatum

TREATMENT	CHARACTERS							
	Mean sprouting (%)	Mean No. of Sprouts	Mean sprout Length (cm)	Mean rooting %	Mean No. of roots	Mean root Length (cm)		
March-June	64.4	5.1	14.6	47.9	4.4	8.5		
July-October	67.1	4.7	14.8	48.3	5.1	8.6		
NovFebruary	0	0	0	0	0	0		
Significance	*	***	*	*	***	*		
CD	0.768	0.621	0.39	0.584	1.154	3.714		

* =Significant at 5%, ** = Significant at 0.1 %, *** = Significant at 0.01%

MULTIPLICATION THROUGH MACROPROLIFERATION

A new technique of multiplication in D. falcatum

Farmer friendly technology for conservation in situ

Establishment of Nursery (Jaunpur range)

Future strategies

To promote villagers for cultivation on agricultural lands

To introduce Ringal in agroforestry system

Value addition of the product

Save our forests

- Save women from drudgery
- Improve rural economy

CONSERVATION AND REHABILITATION STRATEGIES

- ✓ Cultivation of Ringal on community, wasteland, fallow land, panchayat land, around schools and other premises etc.
- ✓ Encourage people to grow Ringal on agricultural bunds and agroforestry systems, agroforestry models
- ✓ Educate people on sustainable harvesting methods, harvesting age, frequency and intensity etc.- sizeable amount of seeds

