CONTRAST

CONCLUSION: Difference in luminance more important than difference in hue

LUMINANCE

GENERATION OF STIMULUS

DEPENDENCE ON SOURCE

DEPENDENCE ON SPECTRAL REFLECTANCE

METAMERISM

COLOR MIXING

Newton started in 1730.

Grassman formulated acceptable laws in 1853
[Symbols in square brackets are color names and not numeric values. The \Leftrightarrow sign indicates a color match.]

GRASSMAN'S FIRST LAW

Any color (source C) can be matched by a linear combination of three other colors (called primaries, e.g., RGB), provided than none of those three (primaries) can be matched by a combination of the other two.

This is fundamental to colorimetry. Any color C can be matched by R_{c} units of red, G_{c} units of green and B_{c} units of blue. The units can be measured in any form that quantifies light.

$$
\mathrm{C} \Leftrightarrow \mathrm{R}_{\mathrm{c}}[\mathrm{R}]+\mathrm{G}_{\mathrm{c}}[\mathrm{G}]+\mathrm{B}_{\mathrm{c}}[\mathrm{~B}]
$$

GRASSMAN'S SECOND LAW

A mixture of any two colors (sources C_{1} and C_{2}) can be matched by linearly adding together the mixtures of any three other colors that individually match the two source colors. It can be extended to any number of source colors.

$$
\begin{aligned}
\mathbf{C}_{3}\left[\mathbf{C}_{3}\right] & \Leftrightarrow \mathbf{C}_{1}\left[\mathbf{C}_{1}\right]+\mathbf{C}_{2}\left[\mathbf{C}_{2}\right] \\
& \Leftrightarrow\left(\mathbf{R}_{1}+\mathbf{R}_{2}\right)[\mathbf{R}]+\left(\mathbf{G}_{1}+\mathbf{G}_{2}\right)[\mathbf{G}]+\left(\mathbf{B}_{1}+\mathbf{B}_{2}\right)[\mathbf{B}]
\end{aligned}
$$

GRASSMAN'S THIRD LAW

Color matching persists at all luminances.

$$
\mathrm{kC}_{3}\left(\mathrm{C}_{3}\right) \Leftrightarrow \mathrm{kC}_{1}\left(\mathrm{C}_{1}\right)+\mathrm{kC}_{2}\left(\mathrm{C}_{2}\right)
$$

It does fail at very low light levels where rod (scotopic) vision predominates over cone (photopic) vision.

These laws govern all aspects of additive color work, but they apply only to signals in the "linear-light" domain. They can be extended into subtractive color work.

INITIAL EXPERIMENTS

Attempt to mix colors using three real primaries
R @ 700 nm (Tungsten lamp w/ long-pass filter)
G at 546 nm (Hg green line)
B @ 435 nm (Hg blue line)

Result is color-matching functions (approx. color sensitivity of the eye) that include negative values (not physically possible).

Conclusion: There is no set of real primaries that can match all real colors.
Solution: Adopt artificial primaries

CIE COLOR MATCHING FUNCTIONS

Adopt a set of real color matching functions

$\bar{y}(\lambda)$ (green curve) was deliberately chosen to equal $\mathrm{V}(\lambda)$, the relative spectral luminous efficiency for photopic vision.

CALCULATE TRISTIMULUS VALUES

$$
\begin{aligned}
& X=c \int_{380}^{760} \Phi_{\lambda} \cdot \rho(\lambda) \cdot \bar{x}(\lambda) d \lambda \\
& Y=c \int_{380}^{760} \Phi_{\lambda} \cdot \rho(\lambda) \cdot \bar{y}(\lambda) d \lambda \\
& Z=c \int_{380}^{760} \Phi_{\lambda} \cdot \rho(\lambda) \cdot \bar{z}(\lambda) d \lambda
\end{aligned}
$$

Φ_{λ} is the spectral power of the source, $\rho(\lambda)$ is the spectral reflectance of the object (may be replaced by $\tau(\lambda)$ if object is transmissive), and \bar{x}, \bar{y} and \bar{z} are the spectral tristimulus values or color matching functions (table look-up). The term \bar{y} was deliberately chosen to equal $\mathrm{V}(\lambda)$, the relative spectral luminous efficiency for photopic vision. Then $\mathrm{c}=\mathrm{K}_{\mathrm{m}}=$ $683 \mathrm{~lm} /$ watt and Y is measured in lumens.

Since $\bar{y}(\lambda)$ deliberately chosen to equal $\mathrm{V}(\lambda), c=\mathrm{K}_{\mathrm{m}}=683 \mathrm{~lm} / \mathrm{W}$, and Y is measured in lumens.

NORMALIZE TO CHROMATICITY COORDINATES

$$
x=\frac{X}{X+Y+Z} \quad y=\frac{Y}{X+Y+Z} \quad z=\frac{Z}{X+Y+Z}
$$

Since x, y and z range from 0 to 1 , and $x+y+z=1$, we can just plot x vs. y, and z is implied. Therefore a plot of x vs. y gives all information except Y . This is the chromaticity diagram. The primaries are located at the "corners"

PRIMARY	x	y	z
RED	1	0	0
GREEN	0	1	0
BLUE	0	0	1

1931 CIE CHROMATICITY DIAGRAM

Outer curve is spectrum locus.
Equi-energy (white) at $\mathrm{x}=\mathrm{y}=\mathrm{z}=0.333 \ldots$

BLACKBODY RADIATION

From perfect (Planckian) radiator. Absorbs all and emits all.

The peak wavelength is inversely related to the temperature:

$$
\lambda_{\max }=\frac{2898000}{T} \lambda i n n m
$$

The fraction in the visible ranges from 40% for 6000 K (sunlight) to less than 10% for 2854 K (incandescent).

1931 CIE CHROMATICITY DIAGRAM

SIGNAL LIGHT SPECIFICATIONS - RED

x and y data refers to 1931 CIE diagram.

SIGNAL LIGHT SPECIFICATIONS YELLOW AND GREEN

Comparison of Color Boundaries of Yellow Traffic Signal

Comparison of Color Boundaries of Green Traffic Signal

STANDARD SOURCES

Illuminant A (2854 K , represents incandescent lighting) Illuminant D65 (6500K, represents daylight)

DOMINANT WAVELENGTH AND PURITY

Mix with a spectral color and white
For magenta region, add complementary wavelength to color being matched.

RGB TELEVISION

SMPTEC RGB PRIMARIES (1982)
Adopted to give greater screen brightness at expense of range of colors attainable.

REAL-LIFE COLOR RANGE

Range of FCC/NTSC primaries encompasses nearly all of pigment and dye color gamut, SMPTE primaries somewhat less

UNIFORM COLOR SPACE

Ellipses represent three times the minimum perceptible color difference. A uniform chromaticity scale would be much nicer.

1960 CIE UCS CHROMATICITY DIAGRAM

$$
u=\frac{4 x}{-2 x+12 y+3} \quad v=\frac{6 y}{-2 x+12 y+3}
$$

Location of primaries: RED

	$\mathrm{u}=4$	$\mathrm{v}=0$
GREEN	$\mathrm{u}=0$	$\mathrm{v}=0.4$
BLUE	$\mathrm{u}=0$	$\mathrm{v}=0$

1976 CIE UCS CHROMATICITY DIAGRAM

$$
v^{\prime}=\frac{9 y}{-2 x+12 y+3}
$$

Location of primaries: RED

$$
\mathrm{u}=4 \quad \mathrm{v}=0
$$

GREEN

$$
\begin{array}{ll}
\mathrm{u}=0 & \mathrm{v}=0.6 \\
\mathrm{u}=0 & \mathrm{v}=0
\end{array}
$$

BLUE

A SAMPLING OF COLOR SPACES

- CIE-XYZ - the international standard capable of representing all colors.
- CIE-xyY - a variant of the CIE standard using two color components plus luminance (Y).
- CIE-uvY - Another variation of the CIE standard using two color components plus luminance (Y).
- PhotoYCC ${ }^{\text {TM }}$ - Kodak system for PhotoCDs ${ }^{\text {TM }}$
- CIE L***** - A popular perceptually uniform space i.e., numerical distance in the space is proportional to perceived color difference. Used for additive applications.
- $\mathbf{L} * \mathbf{a}$ *b* - A popular perceptually equalized space, i.e., numerical distance in the space is proportional to perceived color difference. Used for subtractive applications.
- CMY - Cyan, magenta, yellow, for low-end color printing.
- CMYK - Cyan, magenta, yellow, key (black); for high-end four-color printing.

A FEW MORE COLOR SPACES

- DIN FSD - German standard
- Munsell HVC - US standard; hue, value, and chroma
- RGB - Red, green, blue; for color monitors and scanners
- HSV - Hue, saturation, value
- HLS - Hue, lightness, and saturation
- YIQ - Luminance, in-phase, quadrature; NTSC color TV broadcasting. Made by a linear transformation of the RGB cube.
- YUV - Also called YCbCr. Initially for PAL analog video, now used in CCIR 601 standard for digital video
- National Bureau of Standards Dictionary of Color Names - Thousands of popular and commercial color names (like mauve, teal, cobalt, etc.)
- National Bureau of Standards Color System A stylized system of about two hundred names encompassing all colors.

COLOR DIFFERENCES

In many applications, color differences with respect to a standard are more important than absolute values of x and y .

Color tolerance specifications generally written in terms of differences.

Many attempts to define a uniform chromaticity color space so $\Delta \mathrm{x}$ and $\Delta \mathrm{y}$ are consistent across color space

CIELAB COLOR SPACE

X, Y and Z are tristimulus values of sample
$\mathrm{X}_{0}, \mathrm{Y}_{0}$ and Z_{0} are tristimulus values of illuminant

APPEARANCE UNDER VARIOUS LIGHT SOURCES

In the box below, the left wall is painted blue, the right wall is painted red, the floor is painted yellow, and the back wall is painted white.

Bulb	Daylight bulb	Incandescent bulb	Mercury vapor lamp	Low-pressure sodium lamp	Hi-pressure sodium lamp
Purpose	Imitates natural daylight	Common household light bulb	First HID lamps, now obsolete.	Sometimes used for street lighting	Street lighting in cities, sports arenas
Walls around box...	Wilament emits bulb appear like they would in daylight.	Feft wall is blue; yellowish-white light; walls have a strong yellow tint.	right is blue-grey. Lamp has no red, so right wall can't reflect it. Light has some yellow, seen on. bottom wall.	Colors around lamp show that light is almost pure yellow. Controls light pollution.	Give most objects a similar color as daylight.
Appears					

COLOR TEMPERATURE

CORRELATED COLOR TEMPERATURE

COLOR RENDERING INDEX (CRI)

A scheme to compare light sources as to how they modify color. Scale runs from 0 (stinks, no color fidelity) to 100 (perfect, colors not distorted). Reference sources are sunlight and incandescent.

Uses 8 color tiles (standard) or 16 color tiles (extended)

Over 90 is considered excellent, less that 60 is lousy.

COLOR PRINTING

Start with white paper
Overlay with subtractive primary inks
CYAN (absorbs red)
YELLOW (absorbs blue)
MAGENTA (absorbs green)

PAPER PAPER PAPER

PAPER PAPER PAPER

[PAPER PAPER PAPER

Available inks do not produce sufficiently dark color. So a layer of black ink added for better definition and darker blacks. This system is CYMK.

MICHELLE WILLIAMS

FOUR-COLOR CYMK PRINTING PROCESS

CYMK LAYERS

THE RESULT

COLORIMETRY

Two classes of instruments
Tri-stimulus colorimeters
Spectroradiometers

TRI-STIMULUS COLORIMETERS

Most colorimeters of this configuration
Three detectors filtered to x, y and z
Signals proportional to X, Y and Z
CIE Color Matching Function

Calculate x and y
If Y sensor calibrated to $\mathrm{V}(\lambda)$, can get $x y$.
Use transformations to obtain other metrics

USE OF SPECTRORADIOMETERS FOR COLOR MEASUREMENTS

Two modes of operation:

Measurement of radiance:
Determine relative spectral radiance over wavelength range 380 to 760 nm .

Calculate X, Y and X
Calculate x and y

Measurement of reflectance:

Determine relative spectral reflectance over wavelength range 380 to 760 nm .
Select source (standard illuminant A or D65)
Calculate X, Y and X
Calculate x and y

