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Abstract 
 
White rust (WR) (caused by the oomycete Albugo candida) inflicts significant yield decline 

in brassica crops across the world.  It is a particular problem in countries like India, where 

resource poor farmers cultivating oilseed mustard (Brassica juncea) suffer between 30-

60% yield losses per year.  Breeding for host resistance is the most effective and 

environmentally friendly way of protecting brassica crops from WR.  Rapid evolution of 

the pathogen highlights the need to efficiently map multiple resistance genes for 

combined integration into cultivars.  Here we present novel methods for achieving this, 

with an emphasis on directly mapping from undeveloped genebank populations. 

 In this work, the application of Whole Genome Resequencing (WGS) and Bulked 

Segregant Analysis (BSA) proved to be highly effective for rapidly mapping sixteen major 

effect white rust resistance (WRR) QTLs across five geographically diverse Brassica rapa 

genebank populations, including a landrace and a wild species.  This includes a QTL 

mapped on chromosome 6, containing a WRR allele that provides resistance to Donskaja-

virulent UK race 2 isolate AcBjDC.  WGS for all QTLs has been scrutinised, allowing 

identification of various polymorphic candidate WRR genes.  

WRR was also explored in the Brassica oleracea EBH527 x A12DH mapping 

population, where a previously fine-mapped ACA2 locus contains a recessive race non-

specific resistance. A CRISPR-Cas9 knockout of the primary candidate (a GDSL Lipase) 

yielded no alteration to susceptibility and WGS of the two parents has since been used to 

identify other potentially causal mutations within the region.  WGS-BSA was also applied 

here to map a dominant resistance locus in tight-linkage to ACA2 from segregating 

recombinant line EH177.  

 Finally, Oxford Nanopore Technology long-read sequencing was used to produce 

high-quality genome assemblies for race 2 isolates AcBj12 and AcBjDC, augmented with 

Illumina reads.   The AcBj12_ONT assembly provided a 30 % improvement in contiguity 

relative to previous efforts using PacBio data.  Comparative genomics that included 

Donskaja-virulent isolate Ac2v was used to document allelic variation in “CCG” class 

effectors that provides a platform for future identification of the Avr elicitor.  Collectively, 

methods presented here enhance rapid identification of loci and candidate genes for the 

benefit of global brassica production.    
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1.1  Preface 
 
“You can’t build a peaceful world on empty stomachs and human misery” – 
Norman Borlaug 
 
The remainder of the century and beyond will present the greatest challenges faced in 

the history of crop development and global food security. Human populations are 

projected to reach 9.8 billion people by 2050, which will require an increase in agricultural 

output of 60%, as well as increased provision of balanced nutritional diets within 

developing countries (FAO, 2016).  This target is made even more challenging by an 

approaching ‘perfect storm’ of global issues, including the decreasing availability of 

farmland per capita, water and energy scarcity, as well as the increasing impacts of 

extreme weather events associated with climate change.  These environmental 

perturbations are impacting the global distributions and severity of pests and pathogens, 

whose traditional control by pesticide application is becoming increasingly restricted by 

tightening agrochemical legislations. This leaves farmers with a limited ability to protect 

their crops from disease.  

Put simply, agriculture must rapidly increase outputs, without further conversion 

of non-agricultural land and whilst simultaneously reducing inputs of water, energy and 

chemicals.  This requires sustainable intensification, where increases in yields do not come 

at a cost to biodiversity and ecosystem services upon which food systems are ultimately 

dependent.  Failure to do so will result in widespread food insecurity, ecological 

destruction, civil conflict and human suffering.   

The goals of sustainable intensification necessitate an unprecedented 

transformation in global food systems akin to the next agricultural revolution.  This will 

require vast global efforts of innovation across both biotic and abiotic components of 

agriculture; from enhancing the natural ecological processes underpinning food systems, 

to utilising agri-tech for production and distribution of harvests with reduced wastage. 

Ultimately, this will depend upon the rapid adoption of research-based strategies that 

enhance both the productivity and resilience of agroecosystems in the light of impending 

environmental stresses.  
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1.2  Founding fathers for modern use of plant genetic resources 

Plant genetic resources (PGRs) are an invaluable foundation for the genetic improvement 

of crops, providing allelic diversity for breeding of desirable traits such as high yields, 

environmental adaptation, and nutritional quality for human consumption.  However, 

continual selection for such traits over several millennia has resulted in genome-wide 

divergence in crops relative to their wild progenitors, with a broad trend towards a 

reduction of genetic diversity within the crop species.  This narrow genetic basis of most 

crop species today has direct implications for their ability to withstand environmental 

perturbations such as climate extremes as well as their ability to resist damage from 

pathogens and insect pests.  Genetic improvement of crop varieties is a global agricultural 

priority for meeting sustainability targets, with an emphasis on utilizing the natural allelic 

diversity contained within plant genebanks.  Integration of disease resistance traits from 

diverse stores of germplasm into crop varieties can best be understood within a historical 

context of the subject. 

 The Austrian monk Gregor Mendel (1822 - 1884) discovered the theoretical 

foundations of genetics through his seminal work on the common pea (Pisum sativum) to  

“deduce the law according to which they (traits) appear in successive generations” 

(Mendel, 1901).  Using pure-breeding varieties of pea as an experimental system, Mendel 

produced monohybrid crosses to observe inheritance for seven traits (phenotypes) 

including:  flower colour, mature seed colour and form (wrinkled or smooth), mature pod 

colour and form (inflated or constricted), colour of the unripe pod and overall plant 

height.  His key findings were that F1 hybrid (first generation) offspring all resembled one 

of the two parental phenotypes, with no ‘blending’ of the trait (as was generally expected 

at the time).  Also, amongst the offspring derived from F1 hybrids, both the parental 

phenotypes were observed, suggesting that hybrids retain two factors (now referred to 

as alleles) for producing both parental types.  He described the trait observed in the F1 

hybrid as dominant, and the alternative trait that reappears in offspring of the following 

generation as recessive.  By conducting hundreds of crosses and extensively counting the 

numbers of individual offspring from each phenotype class, Mendel was able to observe 

an approximate ratio of 3:1 for dominant vs recessive in the second-generation offspring.  

From his data, Mendel surmised his law of segregation; that the two phenotypes observed 

consisted of three classes; a dominant (AA), a recessive (aa) and a hybrid (Aa), where the 
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hybrid always displays the dominant phenotype.  When exploring results from dihybrid 

crosses (where parents differ in two observable traits) Mendel found that the resulting 

segregation ratio of 9:3:3:1 fit the product of two 1:2:1 ratios.  He concluded that both 

traits segregate independently, where inheritance of one characteristic does not affect 

inheritance of the other, a law he termed independent assortment.  Whilst the 

significance of Mendel’s findings were not realised for more than three decades after 

publishing in 1865, they ultimately provided a paradigm shift in understanding of heredity 

and genetics.  

 The Russian plant geneticist Nickolai Vavilov (1887 - 1943) was greatly influenced 

throughout his life’s research by established Mendelian and Darwinian theories.  Vavilov 

was a plant breeder and head of the All-Union V.I. Lenin Academy of Agricultural Sciences, 

where he founded over 400 research institutes throughout Russia (Cohen & Loskutov, 

2016).  He was also an avid collector of plants and during numerous overseas expeditions 

Vavilov amassed a collection of approximately 50,000 wild varieties.  Observations made 

during this time lead Vavilov to postulate that a crop species evolutionary centre of origin 

would be from regions where the wild progenitor species showed maximum adaptiveness 

and diversity.   

Before his time, Vavilov saw the potential of non-cultivated diversity as a means 

to improve current crops by providing plant breeders with the necessary genetic variation 

from which to produce new varieties with qualities such as disease resistance and 

tolerance to adverse growing conditions.  From his travels he also became aware of the 

growing threat to this wild diversity posed by human activities and the modernisation of 

agriculture, a phenomenon he described as “genetic erosion” (Hummer, 2015).  

Subsequently, Vavilov formed the first ex situ genebank in the world in St Petersberg in 

the 1920s (today called the N.I. Vavilov Research Institute for plant industry) with the aim 

of preserving wild species diversity and accessions.  Despite the theoretical and practical 

contributions Vavilov made to crop science, species diversity and conservation, political 

leaders in Russia came to reject Mendelian principals and ultimately Vavilovs research.  

Tragically, this resulted his incarceration in 1941, where he two years later he died of likely 

starvation.  Vavilov was eventually pardoned posthumously in 1955 by the Russian 

government and today is fully recognised for his contributions to science. His work and 

philosophy provided a great inspiration for the theoretical direction of this thesis.   
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 The idea that Mendelian principals could be used to harness key agricultural traits 

such as disease resistance from natural plant genetic resource collections was first 

demonstrated by Rowland Biffen in 1907, through his breeding of yellow rust (Puccinia 

striiformis f.sp. tritici) resistance in wheat (Biffen, 1907).  Biffen observed that crosses 

between the partially resistant cultivar ‘Rivet’, and the highly susceptible cultivar ‘Red 

King’ produced F1 hybrids that all showed Red King susceptibility.  The F2 generation 

produced 194 susceptible to 64 rust-free (resistant) individuals in an approximate 3:1 

Mendelian ratio.  Data from both generations indicated that resistance was recessive, or 

that susceptibility is conferred as a dominant trait.  From his assessment of F3 lines, Biffen 

found that offspring from partially resistant individuals were fixed for the trait (F2 was 

homozygous for a resistance allele), whilst those from susceptible F2 parents either 

conferred full susceptibility (F2 was homozygous for a susceptibility allele) or segregated 

in a 3:1 ratio (F2 was heterozygous).  Importantly, using his understanding of wheat yellow 

rust resistance as a single recessive gene, Biffen was then able to deploy of the resistance 

trait into new wheat varieties, which went on to provide longstanding (durable) control 

of yellow rust.   

 In the mid 1900’s, the plant pathologist/geneticist Harold Flor went on to extend 

the work of Biffen and Mendel by applying genetics to the investigation of corresponding 

traits in both the host plant (resistant and susceptible) and the pathogen (avirulent and 

virulent).  He used the experimental pathosystem of flax or linseed (Linum usitatissimum) 

and the fungal rust (Melampsora lini) (Flor, 1942; Flor, 1947; Flor 1955).  Flor was adept 

at producing rust hybrids through cross-fertilisation of different pathotypes which he used 

to screen F2 progeny of differential flax genotypes that were each homozygous for a 

different resistance allele.  In the pathogen, Flor observed 3:1 ratios of avirulent to 

virulent progeny and was able to conclude that a single avirulence (avr) allele in the 

pathogen corresponded to a matching resistance (R) allele, whose interaction resulted in 

an incompatible phenotype (no disease).  The term ‘gene-for-gene’ was coined to 

characterise the inheritance of matching resistance and avirulence pairing to explain rust 

resistance in flax (Flor, 1971).  Flor consciously excluded examples of alternative 

inheritance for host-pathogen interactions from his pathosystem (e.g., digenic inheritance 

and recessive resistance) to simplify his findings, even though he was certainly familiar 

with seminal work of Biffen on recessive yellow rust resistance in wheat.  However, a 
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simplified theory was needed to present plant pathologists with tractable examples for a 

genetical approach to research of disease resistance. 

‘Gene-for-gene’ was borne and provided a testable hypothesis for investigating 

the molecular basis of plant-pathogen interactions. Albert Ellingboe was an early 

geneticist who hypothesised that a direct interaction was occurring between a product of 

the pathogen race-specificity allele and the complementary R-allele product in the host 

(Ellingboe, 1976).  This provided seminal biochemical predictions of pathogen receptor-

like proteins as the basis for R-gene mediated triggering of plant defence, now referred 

to as the plant innate immune system.  

 

1.3  Molecular basis of induced host defence and the innate immune system of plants 

Pathogens capable of breaching the external waxy cuticle or “skin” layer of the plant 

encounter an active immune system which is highly adapted to detect pathogen 

molecules produced during infection (Amir et al., 2008; Chisholm et al., 2006; Dodds & 

Rathjen, 2010; Jones, 2006).  Host receptor-like proteins embedded in the plasma 

membrane enable detection of pathogen molecules released in the apoplast, and 

cytoplasmic receptors enable detection of pathogen molecules released within the host 

cell.  Detection then triggers a rapid cascade of kinase-mediated defence responses 

including programmed cell death (often referred to as a hypersensitive response or HR) 

of the penetrated host cell (Balint-Kurti, 2019), and hormonal induction of broad-

spectrum systemic acquired resistance in surrounding cells (Ryals, 1996; Dangl & Jones, 

2001).  This effectively quarantines biotrophic pathogens from acquiring their necessary 

substrate, and thereby arresting further proliferation in host tissue.  It is now know that 

the R-genes predicted by Flor and Ellingboe are explained by allelic variation in genes 

encoding different classes of receptor-like proteins.  These genes are explained in more 

detail below.  Similarly, predicted avirulence (Avr) proteins that elicit defence when 

detected by a corresponding R-protein have been characterised from a wide range of 

pathogens.   

Interestingly, AVR proteins generally provide a role as effectors of pathogenicity 

during infection of a susceptible host genotype.  All major classes of plant pathogens 

including viruses, fungi, oomycetes, bacteria, nematodes, and feeding insects have 

evolved vast repertoires of highly diverse effector proteins (Baltrus et al., 2011; Quispe-
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Tintaya, 2017; Raffaele et al., 2010).  Pathogen effectors are under continuous selection 

pressure to facilitate compatible (virulent allele in a susceptible host) rather than 

incompatible (avirulent in a resistant host) interactions.  Compatibility can result from 

effectors that either subvert defence responses or facilitate acquisition of nutrients. 

 The development of recombinant DNA technology was pivotal for molecular plant 

pathology, allowing further understanding of host-pathogen mechanistic interactions. For 

example, the first Avr elicitor was cloned from a race 6 isolate of Pseudomonas syringae 

pv. glycinea which is the causal agent of bacterial blight of soybean (Staskawicz et al., 

1984).  A library of 680 randomly cloned genomic fragments were individually conjugated 

to a race 5 isolate of P. s. glycinea and inoculated onto susceptible soybean cultivars.  From 

these, a single clone (pPg6L3) was responsible for changing the wild-type virulent 

phenotype of the race 5 isolate from virulent to avirulent, producing a HR response in the 

host plant.  The result stimulated wider research efforts to clone and identify Avr elicitors 

in other groups of pathogen including Avr9 in the fungal species Cladosporium fulvum 

(Van Den Ackerveken et al., 1993) and Avr1b in the oomycete Phytophthora sojae (Shan 

et al., 2004). 

 The first R-gene was molecularly characterised in 1993 as Pto from tomato which 

encodes a cytoplasmic kinase (Martin et al. 1993).  The Pto gene cluster was identified 

from a yeast artificial chromosome clone, where a cDNA clone of Pto provided resistance 

to any race of P. syringae pv. tomato that carries the previously identified Avr effector 

AvrPto (Ronald et al., 1992).  Later, a study using yeast two-hybridisation experiments 

confirmed the physical interaction of the Pto and AvrPto proteins, providing the molecular 

evidence of both components of the gene-for-gene hypothesis (Tang et al., 1996). 

Since the discovery of Pto, several classes of R-genes encoding receptor-like 

proteins have been molecularly characterised in a range of plant species.  Extracellular 

pattern-recognition receptors (PRRs) include receptor like kinases (RLK) and receptor like 

proteins (RLP) that are embedded in the plasma membrane and confer function by 

detecting pathogen-associated molecular patterns (PAMPs) such as bacterial flagellin or 

fungal chitin (Zipfel, 2008).  The high conservation of PAMPs across whole classes of 

microbes suggests they are indispensable components of the pathogen, and therefore 

difficult to mutate.  PAMP detection by PRRs is referred to as PAMP-triggered immunity 

(PTI) which triggers intracellular signalling and transcriptional regulation of defence 
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responses such as release of reactive-oxygen species and callose deposition for cell wall 

reinforcement (Bailey-Serres & Mittler, 2006; Luna et al., 2011) 

 Within plant cells, cytoplasmic R-proteins detect pathogen effectors either directly 

or indirectly via effector activity on the host substrate (Chisholm et al., 2006).  Detection 

instigates effector-triggered immunity (ETI) and leads to rapid induction of HR in locally 

infected tissues (Jones, 2006).  R-genes represent a class of cytoplasmic receptors termed 

NLRs, that typically include a central nucleotide binding (NB) domain, a C-terminal leucine-

rich repeat (LRR) and a N-terminal signalling domain (Meyers et al., 2003).  NLRs are 

grouped into two subclasses, containing either a coiled coil (CC) or a human toll 

interleukin receptor (TIR) signalling domain (Meyers et al., 2002, 2003) where the activity 

of each class is dependent on different network components.  The class TIR-NB-LRR (TNL) 

receptors require a functional copy of an enhanced disease susceptibility gene (EDS1) 

whilst the CC-NB-LRR (CNL) class often requires the non-race-specific disease resistance 

(NDR1) to induce a defence response, representing two distinct resistance pathways 

(Aarts et al., 1998).  

 The extensive diversity of NLR genes, both within and between species is 

becoming increasingly well documented (Wei et al., 2016), where copy number variation 

has been shown to differ by orders of magnitude.  For example, apple (Malus x domestica) 

has a reported 1015 NLR genes (Arya et al., 2014), whilst papaya (Carica papaya) only 

contains 54 (Porter et al., 2009) which is a significantly lower number than species with 

smaller genomes such as Arabidopsis thaliana (159 NLRs) (Guo et al., 2011).  Such copy 

number variation is formed within plant genomes through a combination of hybridisation, 

whole genome duplication (WGD), individual gene duplications, transposon activity and 

mutation.  This produces functionally redundant gene copies that are free for selection of 

new NLR specificities, facilitating coevolution with pathogen effector repertoires.  

Specifically, exon tandem duplication (TD) is considered to be the primary mechanism for 

increasing gene copy number and is responsible for production of complex NLR clusters 

with variable domain architectures (Cannon et al., 2004; Yang et al., 2008).  Examples have 

been found that lack LRR domains such as RLM3 (TIR-NB) in Arabidopsis (Staal et al., 2008), 

or contain additional integrated domains (IDs) (Baggs et al., 2017).  Discovery of NLR-IDs 

provided a major shift in understanding of NLR function as some exogenous domain 

fusions have evolved to resemble pathogen targets.  The WRKY DNA-binding domain of 
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RRS1 is an example of this where interaction with the wilt pathogen Ralstonia 

solanacearum effector PopP2 or the leaf pathogen Pseudomonas syringae pv. Pisi effector 

AvrRps4 modifies the ID to trigger an immune response (Staal et al., 2008). 

 

1.4  The Brassicaceae  

The large angiosperm and dicot family the Brassicaceae (order Brassicales) constitutes 

nearly 338 genera and 3,709 species, distributed globally across every continent except 

Antarctica (Anjum et al., 2012).  Several species have great agricultural, economic and 

scientific importance such as the diverse genus of Brassica crop species and the wild 

relative Arabidopsis thaliana.   

The German PhD student Friedrich Laibach originally chose A. thaliana as a study 

species in 1907 (University of Bonn, Germany) and found the plant presented a number 

of useful characteristics for study.  These include that it contains only a small number of 

chromosomes (n = 5), displays significant natural variation for a number of traits, produces 

fertile hybrids and rapidly produces large amounts of progeny that can be easily cultivated 

to adult plants in ~ 8 weeks (Jare & Williams, 2014).  By the late 1980s A. thaliana had 

been widely adopted as the model species to study plant molecular biology.  It became 

the first plant species put forwards for genome sequencing in the mid-1990s, where 

collaborative efforts of the Arabidopsis Genome Initiative culminated in the landmark 

publication of complete sequence and analysis in 2000 (Poczai et al., 2014).  This resource 

has been vital for driving contemporary understanding of plant biology, which in turn has 

provided new means for developing crops that contribute to issues of food security.   

The Brassica genus is comprised of 76 species which are all highly diverse and 

show equally variable morphotypes in terms of plant size, colour, leaf shape, hypocotyl, 

flower buds, branching patterns and seed oil composition (Nanjundan et al., 2020).  This 

diversity has enabled selection and breeding of Brassica crops that are widely adapted to 

climates and environmental conditions around the world, with harvestable produce that 

includes oilseed, condiments, fodder and vegetable crops (Cheng et al., 2014).  There are 

six major Brassica crop species including three diploid species (B. rapa = AA, n = 10; B. 

nigra = BB, n = 8; and B. oleracea = CC, n = 9) and three amphidiploids whose genomes 

are constituted by the diploid species (B. juncea = AABB, n = 18; B. napus = AACC, n = 19; 

and B. carinata = BBCC, n = 17).  The relationships between these species were first 
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established in 1935 by Nagaharu U as the ‘Triangle of U’ (Figure 1.1.) who made extensive 

crosses between diploid and tetraploid plants and examined how the chromosomes 

paired in the resulting hybrids (U, 1935).  

 

 

Figure 1.1.  The triangle of U (U, 1935) describing the relationship between the three diploid 
Brassica crop species (B. rapa, A genome; B. nigra, B genome; and B. oleracea, C genome), and 
the intermediate hybrid or allotetraploid species (B. juncea, B. napus and B. carinata).  

 
 

The Brassica lineage underwent a whole genome triplication (WGT) event after 

splitting from the Arabidopsis genera at a still disputed period approximately either 7.9–

18.8 Mya years ago (Lysak et al., 2005) or 22.5 Mya (Beilstein et al., 2010).  This event 

was important to the speciation and expansion of brassica crops, where the subsequent 

genomic rearrangement and gene evolution initiated by WGT resulted in the rich diversity 

of morphotypes found today.  In the Brassica crop species this variation includes leafy 

heads, enlarged roots, variable stem or inflorescence structure, oilseeds, or even 

ornamental features.  Many of these features have developed independently, such as the 

distinct leafy head of B. rapa which is also produced by B. oleracea and B. juncea.  Whilst 

the enlarged root of B. rapa turnip varieties are also a feature of B. juncea and B. napus 
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(Anjum et al., 2012).  B. rapa forms include turnip, napa cabbage, bomdong, bok choi and 

rapini.  B. nigra is primarily cultivated for its dark coloured seed which is commonly used 

as spice.  B. oleracea, commonly referred to as ‘the dog of the plant world’ due to its 

hyperdiversity, includes broccoli, Brussels sprout, cabbage, cauliflower, kale and kohlrabi 

varieties.   

Brassica juncea is a mustard crop, with English, Indian and Chinese varieties.  B. 

caratinia is less widely cultivated globally, though is grown in Ethiopia as an oilseed crop 

and for biofuel.  B. napus, otherwise known as rapeseed, is cultivated for its oil-rich seed 

that contains low levels of erucic acid. Also bred for turnip varieties, B. napus is considered 

to be the third largest source of vegetable oil in the world and the second largest source 

of protein meal (Anjum et al., 2012).  There are also numerous wild relative or lesser-

known Brassica crop species that have highly diversified morphotypes.  These represent 

a virtually untapped genetic resource for development of agronomic traits such as disease 

resistance (Warwick & Al-Shehbaz, 2006).  

 Brassica species diversity is mirrored by an equally diverse array of pathogen 

species that have coevolved to infect the various host types.  Exploitation of host 

resources by pathogens and subsequent disease causes significant agricultural and 

economic losses, symptoms of which are frequently treated by application of 

environmentally damaging chemicals.  Breeding for host resistance is considered to be 

the most efficient, cost-effective and environmentally sustainable way of protecting 

Brassica plants from disease.  A number of R-genes have now been identified and 

introgressed into brassica crop species by use of conventional breeding efforts aided by 

marker assisted selection (MAS) or transgenic methods.  This not only provides crop 

protection but has also significantly advanced understanding of host-pathogen 

interactions.  Research efforts have been hugely enhanced since the 2010s with the 

widespread development and adoption of genomic and ‘omics’ technologies.  The 

availability of these vast genetic datasets, and in particular the release of all six brassica 

crop species reference genomes, has been pivotal in the elucidation of R-genes and their 

functions (Chalhoub et al., 2014; Inturrisi et al., 2020; S. Liu et al., 2014; Parkin et al., 2014; 

J. Yang et al., 2016). 

 Turnip mosaic virus (TuMV) is the most prevalent virus that infects brassica crops, 

causing heavy economic crop losses of up to 30% across Europe, Asia and North America 
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(Walsh, 2002).  High variation exhibited by TuMV, as well as its widespread nonpersistent 

dispersal by 89 species of aphid make the disease difficult to control.  Fortunately, more 

than ten TuMV R-genes have now been characterised in brassica crops so far, 

predominantly from the A genomes of B. rapa and B. napus (Lv et al., 2020).  Work is being 

undertaken to utilise TuMV R-genes in breeding programs, such as by use of Kompetitive 

Allele-Specific PCR (KASP) markers located within the TuMV recessive R-gene retro2 for 

high-throughput MAS application (Li et al., 2016).  Direct breeding methods have also 

been undertaken by transforming the susceptible B. rapa cultivar ‘Seoul’ with eukaryotic 

initiation factor eIF(iso)4E variants to produce broad resistance to multiple TuMV strains 

(Kim et al., 2014).   

Black rot (BR), caused by Xanthomonas campestris pv. campestris (Xcc) is the 

major bacterial pathogen of brassica crops.  Most BR research to date has focused on 

preliminary mapping of QTLs in the A genome to Xcc races 1 and 4.  Though markers tightly 

linked to the Xca1Bo resistance locus in B. oleracea show potential for MAS cauliflower 

breeding (Kalia et al., 2017).   

Black leg or stem canker is caused by the air borne fungal agent Leptosphaeria 

maculans (Lm), which is highly destructive to brassica crops in Australia, North America 

and Europe (Fitt et al., 2006).  Extensive mapping of Lm resistance loci has been conducted 

since the 1990s and improved resistance cultivars are frequently produced today using 

MAS (Lv et al., 2020). 

 Stem rot, caused by the soil borne fungus Sclerotinia sclerotiorum (Ss) is 

devastating for brassica production and in particular for oilseed rape production where 

yield losses can be as high as 80%.  Spores can persist in soil for several years to reinfect 

crops and no highly resistant sources of Ss resistance have yet been found, impeding on 

breeding efforts.  Some moderate resistances have been mapped in B. napus, though 

research is now focusing on wild relatives where Ss resistance from Brassica incana has 

been bred unto B. napus using a combination of hexaploidy hybridization and MAS (Mei 

et al., 2015).   

Fusarium wilt, caused by the fungal pathogen Fusarium oxysporum f. sp. 

conglutinans (Foc) provides a global threat to Brassica production.  B. oleracea provides 

the main source for Foc resistance and gene targets such as FOC1 are currently being 

developed in breeding programs using MAS (Lv et al., 2014).   
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Downy Mildew is a foliar disease, caused by the oomycete Hyaloperonospora 

brassicae (Hb) that inflicts considerable yield losses to brassica crops particularly in 

Europe, Asia and Australia.  Markers closely linked to several resistance loci in in B. 

oleracea and B. rapa are being utilised with MAS for improved resistance breeding.  For 

example, Yu et al., (2011) developed a sequence-characterized amplified region (SCAR) 

marker from the random amplified polymorphic (RAPD) marker K14-1030 to enable early 

selection in resistant progenies.   

Clubroot is caused by the soil borne Plasmodiophora brassicae (Pb) from the taxon 

Rhizaria (Yu et al., 2011), and is rapidly becoming a major threat to Brassica production 

around the world.  Pb is a highly variable pathogen whose ability to survive in the soil for 

many years as resting spores make it difficult to control.  Efforts to identify resistance to 

Pb have been extensive and have collectively identified more resistance loci than any 

other brassica disease (Lv et al., 2020), with MAS applied to produce a series of resistant 

cultivars.  For example, distant hybridisation embryo rescue and MAS have been used to 

transfer B. rapa Pb resistance loci into B. napus to produce clubroot resistant hybrids (Liu 

et al., 2018). 

 

1.5  White Blister Rust 

The eukaryotic oomycete Albugo candida belongs to the order Albuginales, which is 

comprised exclusively of obligate plant pathogens (Choi et al., 2008).  This clade is part of 

the peronosporalean lineage that includes other major plant pathogens such as 

Phytophthora, Pythium and downy mildews (Thines & Kamoun, 2010).  The genus Albugo 

contains more than 40 species that infect over 400 host species that span 31 families of 

dicots and one family of monocot (Biga, 1955; Choi et al., 2009; Erma, n.d.; Meena et al., 

2014).  Several species cause extensive yield losses to agriculturally important crops 

including Albugo candida on oil seed and vegetable brassicas, A. tragopogonis on 

sunflower, A. ipomoeae-pandurate on sweet potato and A. occidentalis on spinach 

(Saharan et al., 2014). 

Albugo candida is the causal agent of the globally distributed white blister rust and 

can infect as many 63 genera and 241 species, including those in the Brassicaceae, 

Cleomaceae and Capparaceae families (Biga, 1955; Choi et al., 2009; Meena et al., 2014). 

Infections of economically important oilseed and vegetable crops worldwide can result in 
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losses of between 9 – 60 % (Harper, 1974; Ram & Awasthi, 2018; Saharan & Verma, 1992).  

The initial stage of infection is characterised by development of white pustules (1 – 2 mm 

in diameter) on foliage, which converge to form larger characteristic blisters (Figure 1.2).  

This impedes the photosynthetic capacity of the host and thereby reduces the nutritional 

and aesthetic quality of the harvested product.  Systemic spread of hyphae through the 

plant can then produce stem blisters which reduces structural integrity of the plant as well 

as impede transpiration and transportation of nutrients. The most severe crop damage 

often results from pustules produced on the inflorescence, where the effects of 

hypertrophy and hyperplasia distort tissue growth to produce characteristic ‘staghead’ 

formations.  This leads to abortion of siliques and substantial loss of harvestable seed.  

This is a major problem for oilseed growing regions of the world such as India where 

cultivars of B. juncea are highly susceptible to white rust, and where climatic conditions 

in the northern oilseed growing regions favour growth of the pathogen (Li et al., 2009).  

Favourable environmental conditions for A. candida proliferation include 12 - 15 °C 

temperature, > 70 % relative humidity and 2.7 – 3.4 km/h of wind velocity with 

intermittent rain (Saharan & Verma 1992; Chattopadhyay et al., 2011). 

 The white blisters that characterise infection by the diploid agent A. candida result 

from the exerted pressure generated within tissues by rapidly multiplying sporangiospore 

mother cells and linked chains of desiccated zoosporangia (Holub et al., 1995).  This results 

in eventual rupturing of the sorus, where expelled zoosporangia are dispersed by air 

currents or rain droplets.  Water is crucial for successful germination of zoosporangia, 

where rehydration stimulates cellular differentiation to produce four to six biflagellate 

zoospores.  These become motile when released and navigate towards host stomatal 

pores where they encyst, losing their flagella and producing a cell wall.  A short germ tube 

is then formed which extends into the substomatal chamber and penetrates adjacent 

mesophyll cells via a haustorial structure.   

Where a host pathogen interaction is compatible then hyphae are produced that 

spread through the mesophyll to access host cells with production of further haustoria.  

Hyphae can then access plant vasculature to facilitate access to the hypercotyl and 

promote systemic spread throughout the plant.  Production of new pustules and dispersal 

of zoosporangia represents completion of the asexual lifecycle of A. candida.  

Alternatively, sexual reproduction can occur through production of male and female 
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gametangia called antheridia and oogonia which develop at hyphal tips within the 

inflorescence tissue.  Fertilisation leads to production of large oospores with thick cell 

walls that provide protection through a period of dormancy within the soil before 

germinating to release zoospores (Holub et al., 1995).  This sexual phase provides A. 

candida with both the means to persist through unfavourable environmental conditions 

as well as to genetically recombine, facilitating adaptation to numerous hosts.  
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Figure 1.2.  White blister rust caused by the biotrophic oomycete Albugo candida growing on: A); Stem and 
inflorescence of B. juncea having infiltrated systemically throughout the plant. B); leaf tissue of Brassica 
juncea 
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A. candida is a highly specialised pathogen that is currently classified into 17 

distinct physiological races based on specificity to different species of Brassica.  Pound 

and Williams (1963) originally used a host differential to distinguish six A. candida races 

including race 1 - Raphanus sativus, race 2 – B. juncea, race 3 - Armoracia rusticana, race 

4 - Capsella bursa-pastoris, race 5 - Sisymbrium officinale and race 6 - Rorippa islandica.  

Verma et al (1975) then described race 7 from B. rapa. Race 8 was documented 

by Delwiche and Williams (1977) on B. nigra. Race 9 is specific to B. oleracea, race 10 to 

Sinapis arvensis (Hill et al., 1988) and race 11 is adapted B. carinata (Williams, 1985). 

Races 12 – 17 were described based on a host differential of different Indian varieties of 

B. rapa and B. juncea (Verma et al., 1999, Gupta & Saharan, 2002).  A. candida can also 

specialise amongst varieties of the same species, with sub-races described for race 2 and 

race 7 based on virulence (V) or avirulence (A) on different cultivars of B. rapa and B. 

juncea.  Pathotypes are considered to be most virulent on the plant species from which 

they were isolated (homologous host) whilst also able to infect certain genotypes of 

closely related Brassica species, particularly where hosts share significant genetics 

(Rimmer et al., 2000).  

 The wide range of host adaptation and race specialisation of A. candida, which 

represents a single species, is of wider interest to research of host-pathogen evolution.  

Most plant pathogens have restricted host ranges due to host specialization and cannot 

exploit even closely related hosts.  This is because adaptation of pathogen effectors that 

facilitate access to one host may subsequently impede access to others by triggering R-

gene mediated innate immunity, which subsequently drives host-specialisation.  A. 

candida seems to have overcome these issues however, having evolved multiple host-

specialised races or pathotypes.   

The first major insights into A. candida race evolution have been facilitated by 

advances in next-generation-sequencing (NGS) technology and publishing of the 

reference genome in 2011 (Links et al., 2011).  Four years later, a study by (McMullan et 

al., 2015) produced complete genome sequence for several isolates to reveal three 

genetically divergent (~1%) host-races, each showing evidence of historical 

recombination.  In some rare instances, recombination between A. candida pathotypes is 

thought to generate novel effector repertoires that enable adaptation to a new host, 

which is proceeded by rapid asexual propagation of the pathogen.   Understanding of A. 



 18 

candida race evolution has since been advanced by (Jouet et al., 2019) who 

adopted  pathogen enrichment sequencing (PenSeq)  to show that each host plant species 

supports colonisation by one of 17 distinct phylogenetic lineages, each containing a 

unique arsenal of effector alleles.   

 Albugo spp. have evolved the ability to supress host innate immunity, thereby 

enabling secondary infection by other typically avirulent pathogens (Cooper et al., 2008).  

Subsequent colonisation of the host by multiple physiological races could then enable 

sexual recombination and genetic exchange between races to produce variants that could 

colonise new hosts (Hedrick, 2013).  It has now been demonstrated in vivo using 

sequential inoculations that infection by a virulent race can facilitate colonization by a 

second otherwise avirulent race to potentially enable sexual reproduction between 

pathotypes (McMullan et al., 2015).  In many cases, sexual recombination between 

different pathogen races could put them at an evolutionary disadvantage, with novel 

combinations of inherited effectors putting them at high risk of detection by immune 

systems of both host species. However, contemporary monoculture cropping systems 

exert extreme selection pressure on pathogens, where once a variant with basic 

compatibility is produced it can proliferate rapidly throughout crops.  

 Enhanced susceptibility imposed by A. candida may also enable colonisation and 

adaptation of other pathogen species such as Hyaloperonospora parasitica to an Albugo-

susceptible host (Thines, 2014).  This appears to be a maladaptive trade-off against the 

benefits conferred by sexual reproduction, as it leads to intraspecific competition for 

access of the same resources (Cooper et al., 2008). 

 

1.6  White Rust Resistance 

The most extensive work on the genetics of white rust resistance (WRR) have been 

undertaken using the A. candida – A. thaliana pathosystem (Borhan et al., 2008; Borhan 

et al., 2004; Borhan et al., 2010; Cevik et al., 2019).   Early research efforts focused on 

identifying resistance in A. thaliana to race 4 isolates and were able to identify three 

resistance loci (RAC1, RAC2 and RAC3) each conferring phenotypes of reduced blister 

formation or complete lack of asexual reproduction by the parasite.  The RAC1 locus was 

fine mapped in resistant accession Ksk-1 to chromosome 1, between restriction fragment 

length polymorphism (RFLP) markers m253 and m254 (Holub et al., 1995).  Positional 



 19 

cloning was later used to identify the dominant RAC1 gene as a TNL R-allele, which was 

found to be dependent on a functional copy of the lipase-like defence regulator EDS1 

(Borhan et al., 2004).  Use of recombinant inbred mapping located the recessive RAC2 loci 

in Ksk-2 to a 6 cM interval on the bottom arm of chromosome 3, whilst RAC3 (Ksk-1) was 

mapped in close linkage to the RPP8/HRT resistance complex on chromosome 5 (Borhan 

et al., 2004).   

Importantly, several A. thaliana accessions were later discovered that permitted 

varying degrees of infection by A. candida Brassica crop races 2, 4, and 7, enabling study 

of non-host resistance (NHR) mechanisms for these agriculturally important pathotypes.  

The white rust resistance gene WRR4 was identified as an EDS1 dependent TNL allele in 

the accession Col-0, located on chromosome 1 that confers full immunity to each race 

(Borhan et al., 2008; Borhan et al., 2010).  It has since been determined that Col-0 contains 

three other WRR alleles (WRR5, WRR6 and WRR7) situated on chromosome 5 (Holub & 

Cevik, unpublished).  A recent study by Cevik et al. (2019) of A. thaliana NHR to races 2 

and 9 was able to produce two susceptible transgressive segregant lines from a MAGIC 

inbred line population which were crossed back to each MAGIC parent for mapping in the 

F2.  It was found that resistance to the race 2 isolate Ac2v could be explained by up to four 

genes that include two adjacent paralogues of WRR4 (WRR4A + WRR4B), WRR8 

(chromosome 5) and WRR9 (chromosome 1).  Whilst resistance to the race 9 isolate 

AcBoT was conferred by WRR12 on chromosome 1.  All these genes belong to the TNL 

class of R-genes.  Three A. candida isolates have been collected from different Arabidopsis 

species that are virulent in Col-0 (overcoming WRR4 resistance), and one of these isolates, 

Ac-Exeter, was used to map an alternative WRR4 allele in A. thaliana accession Oy-0 

(Fairhead, 2016).  

 Assessment of WRR in the major Brassica crop species has been met with mixed 

results, with several studies focusing on preliminary identification of resistant sources of 

germplasm.  B. oleracea for example remained largely unexplored for WRR until (Santos 

& Dias, 2004) screened a core collection of 400 accessions for disease expression using a 

Portuguese race 2 isolate Ac502.  They identified 47 sources of resistance, with nine 

accessions presenting sufficient disease index scores for consideration in breeding 

programs.  An important source of recessive resistance has recently been found in the 

doubled haploid B. oleracea accession EBH527, which provides broad spectrum resistance 
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when tested with 18 race 2 isolates at the Wellesbourne Crop Centre, UK.  The resistance 

has been fine-mapped to an 18 kb interval on chromosome 2 (ACA2), that contains four 

candidate genes (Fairhead, 2016).  Further work to identify the functional gene will be a 

focus of Chapter 3.  

 Inheritance studies in B. napus have found sources of dominant resistance in 

accession BN-Sel where progeny derived from an F1 backcross suggest control by 

dominant duplicate genes (Verma & Bhowmik, 1989).  A study by Fan et al. (1983) made 

two independent crosses between the race 7 resistant Canadian cultivar ‘Regent’ and two 

susceptible Chinese lines to identify independent dominant genes at three loci designated 

Ac7-1, Ac7-2, and Ac7-3.  In B. juncea WRR has been shown to be inferred by monogenic 

dominance  (Ebrahimi et al., 1976; Tiwari et al., 1988; Paladhi et al., 1993; Somers et al., 

2002; Vignesh et al., 2009; Panjabi-Massand et al., 2009; Vignesh et al., 2011).    

Earlier studies such as (Cheung et al., 1998) used densely populated RFLP markers 

to map a 6.7 cM interval (Ac2) on chromosome 7 in the resistant accession J90-2733.  

Subsequently, (Varshney et al., 2004) developed co-dominant and more precise PCR-

based cleaved amplified polymorphic (CAPS) markers in closer proximity to the Ac2 locus.  

Later studies used a variety of marker types including intron polymorphic (IP) markers, 

amplified fragment length polymorphism (AFLP) markers and simple-sequence 

repeat (SSR) markers to map three previously established WRR loci (Panjabi-Massand et 

al., 2010), which were then followed up by marker validation in known resistant cultivars 

(Singh et al., 2015). Two independent resistances have since been mapped in Eastern 

European B. juncea lines, with partial resistance in Heera identified on linkage group A4 

(AcB1-A4.1) and complete resistance in Donskaja located on linkage group A5 (AcB1-A5) 

(Panjabi-Massand et al., 2010).  The causal resistance gene was recently determined as a 

canonical CNL protein using a combination of positional cloning and a candidate gene 

methods, and verified as the resistance gene via transformation into the susceptible B. 

juncea background Varuna (Arora et al., 2019).  This R-gene called BjuWRR1 confers broad 

spectrum resistance against a collection of six race 2 A. candida isolates collected from 

across India (including Cutlass virulent AcB1). 

 In B. rapa, a study by Santos et al., (2006) screened for WRR in several genebanks 

before studying inheritance patterns of the most resistant pak choi line BRA 117 by 

crossing to the rapid cycling line CrGC 1.19.  Analysis in the F2 segregants suggested that 
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resistance is controlled by two nuclear genes with a dominant recessive interaction.  

Another study by Kole et al., (2002) utilised 144 RFLP markers to map WRR using a race 2 

and a race 7 isolate from a biparental cross between resistant accession Per and 

susceptible R500.  A single, major effect locus (Aca1) was identified on linkage group A04 

for both races, suggesting either control of both isolates by a single gene, or two tightly 

linked genes.  A second minor effect QTL was also discovered on A02, which is syntenic to 

the race 9 B. oleracea locus studied here in chapter 3.  

 

1.7  Plant genebanks 

Since Vavilov created the first ex situ genebank in the 1920s (The Institute of Plant 

Industry, Petersburg) they have since become a key global resource for long term storage 

and conservation of plant genetic resources (PGRs), where material is made available to 

plant breeders, researchers and general users for crop development.  Today, there are 

about 1700 gene banks globally, storing an estimated 7.4 million accessions; comprising 

of advanced cultivars, landraces and wild type varieties (On et al., 2019).  Approximately 

50% of global gene bank accessions are made up of the top ten agriculturally important 

species, where 28% of which only represent wheat, rice and barley (Kilian & Graner, 2012).  

However, minor crops, crop wild relatives and under-utilised crops are still widely under-

represented.  This is problematic as crop wild relatives and locally adapted landraces 

contain rich allelic repertoires, most of which have been selected out of elite crop varieties 

over centuries of intensive breeding.  Stored PGR diversity therefore represents an 

invaluable resource for future breeding strategies that are able to cope with challenges 

of sustainable agriculture and food security.   

Whilst the proliferation of global genebanks over the past century is testament to 

the progress made in germplasm conservation, the resources they contain are still widely 

under-exploited.  A study by (Sharma et al., 2013) for example, estimated that as little as 

< 1% of accessions conserved have ever been used in crop development.  The large sizes 

of genebank collections are inherently part of the problem, where characterisation, 

evaluation, utilisation and maintenance of such large sets of broadly distributed material 

is inherently difficult (Odong et al., 2013).   For example, passport and genotype data 

suggests that < 30 % accessions across global genebanks are unique accessions and not 

duplicated (On et al., 2019).   
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For plant breeders, selecting the appropriate accessions to include in working 

collections can be problematic, where detailed information on phenotype is often lacking.  

Core collections, an idea first proposed by  Frankel (Frankel & Brown, 1984) go some way 

to address these issues where smaller subsets of germplasm are selected that maximise 

the range of genetic diversity represented within the overall collection, thus making their 

effective management and application much simpler.  However, useful alleles often miss 

out from inclusion in core collections, particularly for traits such as disease resistance 

where R-alleles are frequently rare within or amongst populations. (Reyes-Valdés et al., 

2018).   

 

1.8  Advances in molecular mapping technology  

Advances in next-generation sequencing technologies (NGS) are beginning to unlock the 

potential of germplasm resources and are rapidly becoming an integral part of genebank 

management (Kilian & Graner, 2012).  The continuously falling prices of NGS have 

widened availability of the technology within research, opening the door to production of 

thousands of genetic markers for characterising biological variation.  These vast datasets 

allow for precise classification of stored accessions in genebanks, aiding in studies of 

relatedness as well as management of duplicated material.  For marker-trait association 

studies, the high marker density provided by NGS allows trait variation to be mapped with 

high precision, facilitating the discovery of candidate genes underlying key agronomic 

traits.  This is all enhanced by the continuous publishing of new and improved plant 

reference genomes, providing overdue research on non-major crop varieties.  

Affordability of NGS is enhanced further by improvements in DNA barcoding and sample 

multiplexing, allowing simultaneous high-throughput sequencing of hundreds of 

individuals (Buermans & den Dunnen, 2014).  

Accessing genetic diversity to identify genes controlling traits of interest is 

therefore no longer constrained by the availability of genetic information.  However, 

technicalities regarding the mapping processes themselves place an inherent limitation 

on the sampling of germplasm diversity.  For example, traditional linkage mapping 

methods, (details of which are reviewed by Collard et al. (2005)), are frequently reliant on 

producing mapping populations from bi-parental crosses, where diversity is restricted to 

that of two genetically fixed parents.  This represents a tiny amount of the variation 
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contained within ex situ genebanks.  The method is labour and resource intensive, 

requiring assessment of hundreds of individuals for generating phenotype and genotype 

data.  Subsequently only a very small number of mapping populations are ever advanced 

at once, which effectively bottlenecks the screening and discovery of useful alleles for 

crop development.  

Association mapping, which relies on linkage disequilibrium to assess the 

relationship between phenotypic variation and genotype (reviewed Breseghello & Sorrells 

(2006)) goes some way to correcting for these issues.  Instead of producing bi-parental 

crosses, collections of advanced cultivars landraces or wild species can be utilized directly 

to identify marker-trait associations.  Benefits of this include:  1) access to a greater 

diversity of allelic variation; 2) a greater likelihood of higher resolution mapping due to 

leveraging historical recombination events; 3) no need for production of bi-parental 

mapping populations, saving considerable time, effort and expense.  This method, 

typically conducted in the form of genome-wide association studies (GWAS), requires the 

utilisation of hundreds of individuals to raise both the numbers of alleles within the study 

and the historical recombination events which add power to the analysis. 

Bulked Segregant Analysis (BSA) is now a widely used strategy for rapidly 

identifying markers across the genome that associate with a trait of interest.  The method 

was first developed in the early 1990s (Michelmore et al., 1991) and resides on the idea 

that a bulked sample containing a group of individuals with the same phenotype will 

contain all the alleles for the trait.  Therefore, where two bulked pools of individuals that 

differ for a particular trait are compared, the allele frequency will only significantly deviate 

at the locus controlling this trait.  The major benefit of BSA over both linkage mapping and 

association mapping studies is that it does not require genotyping of hundreds of 

individuals within a segregating population.  Instead, individual plants are grouped into 

two bulked samples according to whether they represent an extreme level of the 

particular trait. With only two DNA samples then required for analysis, this provides 

substantial savings in time and costs. Importantly, the savings made through use of BSA 

allow for a greater amount of germplasm to be processed and assessed, thereby 

enhancing the use of genebank diversity for marker-trait discovery.  

BSA can be utilised with any co-dominant marker dataset and has subsequently 

been adapted for next-generation sequencing (NGS) to maximise provision of SNPs for 
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analysis (NGS-BSA).  Within a segregating F2 population, SNPs unlinked to the trait of 

interest are expected within approximately 50% of the reads, whilst SNPs linked to the 

trait should be over- or under- represented in comparison (closer to 0 or 100%).  

Computational methods such as QTL-seq developed by Takagi et al., (2013) generate SNP-

indices (defined as the number of reads containing a SNP divided by the total sequencing 

depth at that SNP) to enable rapid detection of quantitative trait loci (QTLs).  
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1.9  Research objectives 
 

Chapter 2.  

Developing novel mapping methods to rapidly identify major effect disease resistance loci 

directly from genebank accessions. 

Objective 1. Developing a Genotyping-by-Sequencing (GBS) method for mapping WRR loci 

directly from a genebank diversity collection in Brassica rapa.  

Objective 2.  Application of whole genome resequencing (WGS) and bulked-segregant-

analysis (BSA), to map WRR QTL directly from genebank Brassica rapa collections.  

 

Chapter 3. 

Investigating broad-spectrum white rust resistance in Brassica oleracea accession 

EBH527. 

Objective 1. Molecular investigation of a predicted non-NLR determinant of white rust 

resistance in B. oleracea. 

Objective 2. Mapping a dominant white rust resistance in Brassica oleracea using WGS-

BSA. 

 

Chapter 4.   

Pathogenomics of Albugo candida race 2 isolates from English mustard production in 

the UK. 
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2.1  INTRODUCTION 
 
Brassica juncea (oilseed mustard) is an important multi-purpose crop for the economy 

and health of people living throughout south Asia, and is the Brassica used in English 

mustard.  In India for example, B. juncea is used for production of cooking oil from seeds, 

green vegetable and animal fodder from leaves, and domestic cooking fuel from dried 

straw after harvest (Shekhawat et al., 2012).  India is among the major rapeseed-mustard 

growing countries in the world and ranks second in area and third in production after 

China and Canada.  Indian mustard comprises more than one third of the home-grown 

vegetable oil production in India and covers ca. 7.0 million hectares.  The crop is cultivated 

mostly by resource poor farmers in smallholdings (1 hectare or less).  Annual yields from 

this production are around 6.4 million tonnes and a local market value of about £ 2.4 

billion.  Similar production and consumption of B. juncea occurs elsewhere in south Asia 

and China.  The production per hectare of oilseed mustard in India is lower than the 

world’s average due to a large number of factors including cultivation under marginal (low 

rainfall) conditions, and losses caused by various biotic and abiotic stresses.  

 Albugo candida (Brassica white rust) is the major biotic constraint of B. juncea 

oilseed production in the Indian subcontinent, where it can cause yield losses of 30-60% 

(Li et al., 2009). The most severe damage results from ‘staghead’ formation, where 

impaired floral development results in pod abortion and loss of seed (Saharan et al., 

2014).  Almost all the major varieties of B. juncea belonging to the Indian gene pool are 

highly susceptible to white rust.  Whilst fungicides such as metalaxyl and garlic extract can 

provide partial control of the disease (Gairola & Tewari, 2019), the use of chemicals is 

ecologically undesirable.  Furthermore, the costs inferred from their usage adversely 

affect small and marginal farmers.  Breeding for white rust resistance (WRR) is therefore 

the most efficient, cost-effective, and environmentally sustainable way of protecting 

Brassica crops from white rust disease.  Due to the potential for rapid evolution in A. 

candida, it is important that as many sources of WRR genes are identified as possible that 

when combined by pyramiding using conventional breeding methods, by transgenic 

‘stacking’ of resistance alleles in a single construct using recombinant DNA methods, or 

by mutational knock-out of dominant susceptibility alleles using gene-editing methods 

(see Chapter 3) will provide the best chance for durable disease control. 
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 White rust resistance is considered to be relatively rare in germplasm collections 

of B. juncea (Anupriya et al., 2020; Awasthi et al., 2012; Panjabi-Massand et al., 2010).  

This was also observed in screening of a B. juncea collection from the UK Vegetable 

genebank (Wellesbourne, UK) with two UK isolates of A. candida race 2 where < 10% of 

accessions contained resistance (Holub & Vicente, unpublished).  However, Indian 

researchers identified two Eastern European accession with white rust resistance (WRR) 

including one Donskaja which appeared to confer broad spectrum resistance to a 

collection of six Indian isolates (Panjabi-Massand et al., 2010).  The causal resistance allele 

(designated BjuWRR1-Donskaja) was recently determined as a canonical CNL protein 

using map-based cloning, and verified via transformation as the dominant resistance allele 

in the susceptible accession Varuna (Arora et al., 2019).  Subsequently, Dev et al. (2020) 

characterised a larger collection of Indian A. candida race 2 isolates and identified four 

that were virulent in Donskaja (Ac-BjBio-Pant,  Ac-BjV-Pant, Ac-Bna-Pant and Ac-Alw).  

Similarly, Donskaja is a host differential between two isolates of the pathogen (AcBj12-

avirulent and AcBjDC-virulent) that were collected from an English mustard farm.  Thus, 

durable white rust control in B. juncea will require a combination of at least two 

complementary WRR alleles.  

 In contrast, Brassica rapa is an excellent resource as a secondary gene pool for 

Indian mustard of additional WRR alleles.  In a European Union genetic resources project 

(RESGEN CT99 109-112; https://ecpgr.cgn.wur.nl/Brasedb/brasresgen.htm), 95 out of 

100 accessions in a diversity collection of B. rapa were reported as heterogenous 

populations of resistant and susceptible individuals following inoculation with a Canadian 

isolate of A. candida race 7 (naturally occurring pathotype in B. rapa).  A subset of fifteen 

accessions from this B. rapa collection all contained resistant individuals following 

inoculation with AcBj12, a UK isolate of A. candida race 2 from B. juncea (Holub EB and J 

Brough, unpublished).  These accessions represented a global distribution and range of 

vegetable and oilseed crop types of B. rapa.  Although races 2 and 7 can be outcrossed in 

the laboratory (Adhikari et al., 2003) they are substantially divergent within the species 

(Jouet et al., 2019) so the high occurrence of resistance in B. rapa to the B. juncea 

pathotype was unsurprising.  

The aim of this chapter was to determine whether genes conferring major effect 

white rust resistance could be mapped and identified directly from genebank accessions.  
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Given the extensive resource of potentially novel resistance alleles, conventional linkage 

mapping (LM) by selecting individual resistant plants from each accession and cross-

pollinating with a susceptible control genotype would provide a methodical but slow and 

resource intensive process.  Alternatively, a bulked segregant mapping approach could 

take advantage of that fact that B. rapa is an outcrossing species, and that genebank 

accessions have been maintained from collection of advanced cultivars, landraces and 

wild species as small intra-pollinated populations (referred to henceforth as accessions).  

It should therefore be possible to apply mapping to rapidly identify WRR loci directly from 

the phenotypically heterogeneous genebank accessions.   

Thus, the specific objectives of this chapter were to test two DNA-sequencing 

methods for generating genome-wide genotyping data.  This included: Objective 1, testing 

Genotyping-by-Sequencing (GBS-mapping) which potentially offers a cost-effective way 

to genotype individual plants; and Objective 2, Whole Genome Re-sequencing (WGS) of 

pooled DNA which could potentially combine with conventional bulked segregant analysis 

(WGS-BSA). 

 

2.2  MATERIALS AND METHODS 

 
2.2.1  Maintenance of Albugo candida isolates.  The UK A. candida race 2 isolates AcBj12 

and AcBjDC were collected in 2016 by Professor Eric Holub’s group from an English 

mustard farm near Thorney (east of Peterborough).  To generate genetically uniform 

cultures, susceptible B. juncea cv Sutton were inoculated with zoosporangia harvested 

from single small pustules, using a pipette tip.  This was suspended in a small volume of 

sterile water before being applied to the underside of nine-day-old cotyledons.  After two 

cycles of inoculations from single pustules, the two refined isolates were then used to 

generate bulked sporangial inoculum on a tray of Sutton seedlings for long term storage 

in -80 freezers.  The race 2 isolate Ac2v was recovered from Wellesbourne freezer 

collections on B. juncea cv Sutton and was maintained and disposed of under the 

enhanced quarantined conditions required by a licenced isolate. Whilst the race 9 isolate 

AcBoWells (used in Chapter 3) was collected from a cabbage field experiment at the 

University of Warwick Crop Centre and maintained on B. oleracea var Maris Kestrel.   
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 To prepare plants used for maintaining isolates, P180 plug trays (2.5 x 2.5 cm cells), 

cut to 10 x 6 grids were filled with Levington M2 compost, and were left to soak for 30 

minutes in a tray of water.  Holes of 0.5 cm depth were made in the compost for each cell, 

and a single seed was sown before covering with a fine layer of vermiculite.  Plug trays 

were then placed in propagators with a clear sealed lid and stored in a Conviron plant 

growth cabinet at 20±2°C with a 10h photoperiod.  

 To quantify inoculum, the concentration of suspended zoosporangia was assessed 

using a haemocytometer and adjusted to approximately 4 x 104 zoosporangia per ml. 

Plants were inoculated using two 10 ul droplets applied to each half of the upper 

cotyledon surface with a pipette.  Propagators were then sealed and placed back into the 

Conviron at 20±2°C for an initial 24h period of darkness, followed by a 10h photoperiod.  

Depending on the isolate, pustules would emerge 7-10 days-post-infection (dpi) and were 

subcultured onto fresh plants every two weeks.  

 

2.2.2  Selection of Brassica rapa genebank accessions.  Seed was obtained from the UK 

Vegetable Genebank in Wellesbourne.  These were accessions which Prof Holub had 

previously tested using a Canadian isolate of A. candida race 7 (Ac7v) and AcBj12.  

Approximately 50 plants were sown per line and inoculated at the cotyledon stage, as 

described in maintenance of A. candida isolates.  Eight lines which exhibited 

heterogeneity for resistance and susceptibility were chosen for subsequent mapping 

experiments (Table 2.1).  These accessions, which originate from between East Europe 

and East Asia represent a mixture of commercially viable varieties, landraces and wild 

relatives.  Collectively they present a range of morphological and varietal types (Figure 

2.6).  

 

2.2.3  Inoculation of experiments, and tissue sampling.  The eight experimental lines of B. 

rapa were sown, inoculated and maintained in the same manner as described in 

maintenance of A. candida isolates.  These were divided between two trays per line (50 

plants in each), sown with two susceptible control cultivars Burgonde and Cutlass (five 

plants of each), with no resistant control available.  The experiment was set up and 

conducted twice using both UK race 2 isolates AcBj12, and AcBjDC. 
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 After 10 days-post-inoculation (dpi) plants were assessed for disease symptoms 

on both the upper and lower cotyledon surface, and given quantitative scores based on 

the eight-class scale of phenotypic variation described by (Fairhead, 2016;  Figure 2.4).  

Plant tissue was harvested from the first primary leaves of phenotyped seedlings using a 

sterile 6mm Harris Uni-Core Leaf Punch.  This was rinsed in 70% ethanol and wiped dry 

between sampling of each plant.  For each line, a fully resistant (no sporulation; a 

phenotype score ≤ 1), and fully susceptible (unrestricted pustule formation within 7-10 

dpi; a phenotype score ≥ 4) were produced, as well as individual samples of every plant 

contained in the bulks.  Five leaf disks were taken per plant, with a single disk contributing 

to the relevant phenotype bulk and the remaining four used to produce individual plant 

samples stored in 2 ml Eppendorf tubes.  The number of individuals per bulk was 

determined by the ratio of distinct resistant vs susceptible individuals available across the 

two experimental trays (Figure 2.4).  Tissue samples were then freeze dried for 48 hours 

and stored at -20 C.  

 

2.2.4  DNA extraction.  Freeze dried tissue samples were homogenised by adding two 

sterile tungsten steel beads to each Eppendorf tube which were then sealed with parafilm 

and placed into the TissueRuptorÒ for a total time of 1.5 m at 60 Hz.  The two 

TissueRuptorÒ  sample plates were removed after 45 s and inverted to ensure samples 

received equal levels of reverberation and subsequent tissue disruption.  Samples were 

visually inspected to ensure each was completely homogenised to powder before being 

stored on ice.  

 DNA extraction was undertaken using a modified CTAB protocol from (Afanador 

et al., 1993), with volumes of reagents doubled for bulk samples to account for the 

increased tissue mass.  Chemical lysing of cell membranes was performed by adding 400 

ul of CTAB (Sigma Aldrich) with 5ul of RNase A to each sample.  These were vortexed, spun 

down and incubated in a water bath for 1 hr at 60 °C, agitating samples every 20 minutes.  

The lysate was then centrifuged for 15 minutes at 13,000 rpm before careful removal and 

transfer of the supernatant (without disturbing the tissue layer) to fresh 1.5 ml DNA 

LoBindÒ Eppendorf tubes.  To separate the aqueous phase (containing the DNA) from the 

organic phase, 400 ul of phenol:chloroform:isoamyl alcohol (25:24:1) was added and 

samples were inverted 30 times to produce an emulsion.  This was centrifuged for 15 
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minutes at 13,000 rpm and the supernatant aqueous layer was carefully removed and 

transferred to fresh 1.5 ml DNA LoBindÒ Eppendorf tubes.  To remove residual lipids and 

organic matter, this last step was repeated a second time from the addition of 

phenol:chloroform:isoamyl alcohol (25:24:1).  DNA was then precipitated out of solution 

with the addition of 280 ul of ice-cold isopropanol (0.7 x volume), inverting tubes 30 times 

before storing them on ice for 5 minutes.  Samples were centrifuged at 13,000 rpm for 10 

minutes to pellet the DNA before discarding the isopopropanol.  To remove residual salts, 

the pellet was then washed twice, first with 70% ethanol and then 90% ethanol.  After 

carefully discarding the 90% ethanol (using a pipette so as not to lose the pellet) samples 

were air dried for 10 minutes on the lab bench before eluting in 50 ul of TE buffer.  To 

ensure complete re-suspension of DNA, samples were incubated in a water bath at 50 ° C 

for 30 minutes.  From the final eluted stocks, aliquots were prepared as 1:10 dilutions to 

provide DNA template for downstream PCRs.  

 DNA yields were quantified using a Qubit dsDNA BR Assay Kit with a Qubit 2.0 

Fluorometer (Invitrogen, Waltham, USA) to confirm adequate concentrations of ≥ 50 ng 

μl−1 were achieved.  DNA quality was assessed using a NanoDrop Spectrophotometer 

(NanoDrop, Wilmington, USA).  Electrophoresis was conducted on 1% agarose gels, 

stained with GelRed (Biotium, Fremont, USA), and visualised using an ultraviolet 

transilluminator to ensure extracted DNA was of high molecular weight with minimal 

shearing.  

 

2.2.5  Genotyping-by-Sequencing (GBS).  For GBS, extracted DNA stocks were eluted to 

provide 3 ug per sample, at an approximate concentration of 50 ng/ul.  This included 207 

samples in total, split across eight accessions.  Independent resistant samples were 

prepared for sequencing, with the number sent determined by the availability of 

phenotypically distinct resistant plants available for each line (Table 2.1 and Figure 2.4).  

For the susceptible phenotype, DNA from two biological replicate tissue bulks were used 

per line.  The logic here was that sources of WRR in these B. rapa lines would more likely 

be dominant than recessive, due to expected heterozygosity at the causal locus in 

resistant individuals.  Maintaining the resistant samples as individuals, rather than a single 

bulk, would provide clear resolution of any such heterozygous states in downstream 

analysis.  Samples were sent to LGC Genomics facility in Berlin, Germany, where 
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sequencing libraries were prepared through restriction digests at ApeKI recognition sites, 

using the methods described by (Elshire et al., 2011).  Samples were each ligated with 

index barcodes and multiplexed before running on an Illumina NextSeq 500 V2, to 

produce single-end reads (75 bp) using 96-plex sequencing (150 cycles). 

 

2.2.6  Whole genome resequencing (WGS) of DNA bulks.  For WGS, five B. rapa genebank 

accessions (EH_5, EH_25, EH_47, EH_61 and EH_95) were chosen and each used to 

generate two phenotype DNA bulks (one resistant and one susceptible) for further 

mapping of WRR loci using  a method described by Mansfeld and Grumet (2018).  

Selection of these accessions was based on a combination of factors including that they 

produce distinct resistance phenotypes and represent a wide geographical range with 

variable genetic structure (Figure 2.9).  To provide a comparative assessment of mapping 

with Donskaja-virulent isolate AcBjDC, resistant and susceptible DNA bulks previously 

generated from line EH_25 (tested with AcBjDC) were also included for sequencing.  

Factors that favoured EH_25 for testing with a second isolate included:  1) this accession 

is represented by the highest number of resistant individuals for GBS-mapping, and thus 

demonstrates the strongest association to phenotype in these results (Objective 1); 2) 

resistant individuals exhibited a distinct host response following inoculation with either 

AcBj12 and AcBjDC and therefore provided a bulk sample that minimises risk of false 

negatives (susceptible individuals that escaped infection); 3) as a wild species (not a crop 

type) results can inform about the possibility of mapping in a non-domesticated accession.   

Resistant and susceptible DNA bulks for WGS were produced from the same 

sample extractions that were used for GBS.  For a resistant bulk this required combining 

equal amounts of individual DNA stocks, as determined by a Qubit 2.0 Fluorometer.  Final 

bulks were eluted to provide a total of 3.5 ug at a concentration > 50 ng/ul per sample.  

The numbers of individuals represented in each bulk is displayed in Table 2.1. Samples 

were submitted to Novogene (UK) in Cambridge, for library construction and sequencing.  

Sequencing libraries were generated using a NEBNext® DNA Library Prep Kit (following 

manufacturers recommendations) and indices were added to each sample.  DNA was 

fragmented to a size of 350 bp using sonication, with fragments end polished, A-tailed 

and ligated with the NEBNext adapter for Illumina sequencing.  Finally, libraries were PCR 

enriched, purified (AMPure XP system) and quantified using qPCR.  Paired-end (150 bp) 
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sequencing was performed on an Illumina Novaseq 6000.  To account for heterozygosity 

in the genebank accessions, WGS (Novogene Ltd) was performed at an enhanced 

sequencing depth of 90x. 

 

2.2.7  Bioinformatic pipeline of GBS and WGS-BSA datasets.  Bioinformatic support for 

advancing next-generation sequencing datasets was provided by Richard Stark and Dr 

Laura Baxter.  Raw GBS reads were processed in-house by LGC to produce a single 

reference-based SNP dataframe containing genotype information for all 207 samples.  

This began with demultiplexing of raw reads based on ligated sample barcodes, which 

were then adapter clipped and removed.  Reads where 5’ ends did not match an ApeKI 

restriction site were also removed.  Further quality trimming of adapter clipped reads 

included:  1) removal of reads containing Ns;  2) Trimming of reads to maintain a minimum 

average Phred quality score > 20 (equating to a 1 in 100 probability of an incorrect base 

call);  3) Removal of reads with final length < 20 bp.  All read quality reports were produced 

using FastQC (Andrews, 2010). 

 The GBS alignment was performed against the Brassica rapa IVFCAASv3 reference 

assembly (Wang et al., 2011) using the quality trimmed reads and the Burrows-Wheeler 

Aligner (BWA) (v0.7.12, (Li & Durbin, 2009)).  For variant discovery and genotyping 

Freebayes (v1.0.2-16, (Garrison & Marth, 2012)) was applied with parameter settings 

including; a minimum base quality of ten, a read mis-match limit of five, and a minimum 

coverage of five.  Initial filtering of variants was then performed using a GBS-specific rule 

set which determines that read count for a locus must exceed eight reads and contain a 

minimum allele frequency (MAF) across all samples of 10%.  

 For WGS, raw reads were received from Novogene that had undergone initial 

filtering for removal of low-quality reads, such as where N > 10% (with N representing an 

undetermined base) and reads where low-quality bases (Qscore <= 5) represent > 50% of 

the total bases.  Reads containing sequencing adaptors were also removed, and quality 

control reports were checked in FastQC (v0.11.9).  From this point the data was processed 

through the GATK germline short variant discovery (SNPs + Indels) pipeline (Figure 2.1).  

Filtered paired-end reads were aligned to the Brassica rapa IVFCAASv3 reference, using 

BWA (v0.7.12) with default settings.  The aligned *.sam files were then soft-clipped using 

CleanSam (Picard v2.23.7, GitHub Repository. http://broadinstitute.github.io/picard/; 
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Broad Institute), before being converted to sorted *.bam files using Samtools (v1.9; Li et 

al. (2009)).  Any duplicate reads were then marked for downstream analysis using 

MarkDuplicates (Picard v2.23.7).  Final error checks of *.bam files were then made using 

the Picard tool ValidateSam to ensure files were ready for calling SNPs and INDELs.  This 

was performed using HaplotypeCaller (GATK tool, Poplin et al. (2017)), which performs de 

novo assembly of any variable region to accurately and simultaneously call SNPs and 

INDELs.  Outputted gVCF files for both phenotype bulks were consolidated per line into a 

single gVCF (GATK tool, GenotypeGVCFs) and converted to Table format (GATK tool, 

VariantsToTable) for marker-trait analysis. 

 
 
  

Figure 2.1.  The GATK (Genome Analysis Toolkit) germline short variant discovery (SNPs + Indels) 
pipeline, utilized here for advancing Brassica rapa phenotype bulked WGS data through to 
consolidated and genotyped (SNP + INDEL) gVCF files.  
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2.2.8  Genome-wide mapping analyses.  For the GBS datasets, the SNP variant dataframe 

containing filtered genotypes for all 207 samples (eight accessions) was processed for 

identification of WRR associated SNPs (raSNPs) using a combination of Excel® (v16.43) and 

R (v1.1463) based platforms.  The dataframe was initially processed for:  1) removal of 

rows where > 5% of sample genotypes were missing data; 2) removal of rows where the 

two biological replicate susceptible bulks display different genotypes; 3) removal of SNPs 

aligned to scaffolds; 4) for each row, counting the number of resistant individual 

genotypes that matched with the susceptible bulk, termed MatchCount; and 5) retaining 

rows where MatchCount is ≤ 5%.  From the remaining raSNPs, filtering was performed to 

identify both dominant and recessive raSNPs by selecting rows where the susceptible bulk 

was either homozygous (dominant) or heterozygous (recessive) respectively.  

 For the WGS-BSA datasets, QTL analysis was performed using WGS datasets and 

QTLseqr (v0.7.5.2, (Mansfeld & Grumet, 2018)), which is an R package currently available 

for BSA-NGS mapping.  The G’ statistical approach (Magwene et al., 2011) was applied, 

which uses a tricube smoothed G statistic to identify and assess statistical significance of 

QTL.   

 

2.2.9 R-gene annotation. 

Disease Resistance Analysis and Gene Orthology (DRAGO 2) software (Osuna-Cruz et al., 

2018) was used here to annotate the B. rapa IVFCAASv3 reference assembly and visualise 

the position of identified raSNPs relative to R-genes.  The tool applies 60 profile hidden 

Markov modules (HMM) from the HMMER v3 package (Finn et al., 2011) to automatically 

annotate and predict R-genes from DNA or amino acid.   
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2.3  RESULTS 
 
2.3.1  Characterising virulence phenotypes of three race 2 Albugo candida isolates on 

Brassica juncea accession Donskaja.  The two UK isolates AcBj12 and AcBjDC, as well as 

Canadian isolate Ac2cv were inoculated onto Donskaja cotyledons for an assessment of 

virulence phenotype regarding BjuWRR1 resistance. Sporulation was observed for all 

three isolates ten days post inoculation, with minor levels present of AcBj12, moderate 

levels with AcBjDC and major levels with Ac2v.  For clarity, as delayed, minor sporulation 

indicates elicitation of a host response, AcBj12 has been categorised here as Donskaja-

avirulent, whilst AcBjDC and Ac2v are described as Donskaja-virulent.  These virulent 

isolates are therefore considered as BjuWRR1 resistance-breakers, with no elicitation of a 

host response.  Of note, confirmation of AcBjDC and Ac2v as Donskaja-virulent was not 

made until the latter part of this project, which is why these isolates were not prioritised 

here for mapping of WRR.  

 

 

Figure 2.2.  Interaction phenotype classes observed on the upper (top row) and lower (bottom row) 
cotyledon surfaces of Brassica juncea accession Donskaja, for UK race 2 isolates AcBj12 and AcBjDC, as 
well as Canadian race 2 isolate Ac2v.  Each presents a distinct level of sporulation ten dpi, with AcBj12 
considered as minor virulence, AcBjDC as moderate and Ac2v as major.  
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2.3.2  Confirming presence of the BjuWRR1 resistance allele in Donskaja seed stocks.  To 

confirm that the seed stock of Donskaja used as a resistant control in this study contains 

the BjuWRR1 resistance allele previously reported by researchers in India (Arora et al., 

2019), attempts were made to amplify the complete gene from genomic DNA using 

published gene specific flanking primers.  Non-specific amplification was observed, 

therefore a forward primer designed from just inside the N terminus of exon 1 (DonF1- 5-

ATGGCTGACGGAGTTGTGTCG-3) was combined with the original BjuWRR1 reverse primer 

(5-GCTCTCACCTTAAATGTTAAAATCGG-3) and a clean product of approximately the 

correct 5.4 kb length was produced.  Sequencing with internal primers captured the 

complete first and third largest exons, totalling 94.6% of the 2739 bp CDS.  Only 147 bp 

of exon 2 could not be acquired.  Sequence was a 100% match to the published BjuWRR1 

allele, containing several SNP and INDEL markers unique to Donskaja when compared to 

other B. juncea accessions.  An example of one such unique identifier is illustrated in 

Figure 2.3.  

 

 
 

Figure 2.3. Sequence alignment of part of the BjuWRR1 allele (third exon) for seven B. juncea 
accessions (obtained from the (Arora et al., 2019) study), with sanger sequence amplified from 
the Wellesbourne Donskaja seed stock.  The 12 bp INDEL shown here, as well as several other 
markers captured confirm presence of the BjuWRR1 resistance allele. Race 2 isolates AcBjDC 
and Ac2v, which were pathotyped as virulent on this material are therefore able to break the 
gene-for-gene resistance provided by this well documented R-gene. 
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2.3.3  Identification of genebank Brassica rapa accessions segregating for resistance to 

UK Albugo candida race 2 isolates.  Thirteen accessions all exhibited phenotypic variation 

for resistance and susceptibility to both AcBj12 and AcBjDC (Figures 2.4) and were all thus 

confirmed as heterogeneous accessions suitable for mapping of WRR loci.  Ten of these 

were advanced for GBS-mapping (Objective 1) by collecting cotyledon samples from a 

subset of resistant individuals per line, and a bulked sample of cotyledons from at least 

ten susceptible individuals (Table 2.1).  Eight of these produced sufficient datasets 

required for GBS-mapping of resistance. These accessions represent a range of crop types 

and one wild species (EH_25).  The results from the GBS-mapping experiment 

subsequently informed design of the following Objective 2 experiment, where five 

accessions were selected for WGS-BSA mapping.  

 
Figure 2.4.  Stacked bar plot showing the % degree of phenotypic variation found in each Brassica 
rapa accession when screened with race 2 isolates AcBj12 and AcBjDC respectively. Proportions 
are an average count of Resistant = no sporulation, Susceptible = full (non-restricted) sporulation 
within 7-10 dpi and Intermediate = partial and delayed sporulation (10 – 14 dpi) individuals, grown 
across two propagators per accession. Susceptible controls of Burgonde, Sutton and Cutlass were 
used.  It is observable for each line (except EH_4) that there is a higher degree of susceptibility 
when tested with AcBjDC compared to AcBj12, suggesting it is the more virulent of the two 
isolates.  
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Figure 2.5.  Distinct phenotype classes observed on the upper (top row) and lower (bottom row) 
cotyledon surfaces of the eight Brassica rapa accessions selected for GBS-mapping of WRR.  Susceptible 
variants (left) show some degree of sporulation, whilst resistant variants (right) typically presented 
either some necrosis, or as asymptomatic.  Photos were taken ten days post inoculation with the race 
2 isolate AcBj12. 

 

 
 
Figure 2.6. Adult plant morphology of the eight Brassica rapa lines used for GBS-mapping of WRR in 
this study, demonstrating the wide range of phenotypically variable crop types available.  Accessions 
originate from between Eastern Europe and East Asia.
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Table 2.1.  List of Brassica rapa accessions screened from the UK vegetable genebank that were found to 
show phenotypic variation (within a seed sample) for resistance/susceptibility following inoculation with two 
UK isolates of Albugo candida race 2 (AcBj12 and AcBjDC).  Accessions originate from a wide geographic 
distribution and represent a range of crop types including one non-domesticated wild type (EH_25).  Ten 
accessions were selected for inclusion for GBS-mapping (Genotyping-by-Sequencing) with a variable number 
of resistant individuals included. Five of these were subsequently chosen for WGS-BSA (whole genome 
sequencing for bulked segregant analysis) mapping of major effect white rust resistance loci. 

  

EH 
no. 

HRIGRU 
ID no. Subspecies (crop type) 

Country 
origin 

 
GBS 

No. res 
individuals 

 
WGS 

No. individuals 
in susc. Bulk 

         
4 4722  B. rapa broccoletto  

(brocco cima di rapa) 
 

Italy N - - - 

5 5274  
 

B. rapa broccoletto  
(brocco cima di rapa) 
 

Italy Y 20 Y 37 

15 7692  
 

B. rapa broccoletto  
(brocco cima di rapa) 
 

Italy Y 42 N 27 

16 
 

8170 B. rapa rapa  
(turnip) 
 

Syria Y 10 N 24 

25 6699  
 

B. rapa sylvestri  
(wild, non-
domesticated) 
 

Algeria Y 49 Y 35 

47 6202  
 

B. rapa pekinensis 
(Chinese cabbage) 
 

Thailand Y 21 Y 42 

54 4714  
 

B. rapa broccoletto  
(brocco cima di rapa) 
 

Italy  
 

N - - - 

61 7576  
 

B. rapa parachinensis 
(Choy sum) 
 

China Y 17 Y 29 

75 3116  
 

B. rapa rapa  
(turnip) 
 

Bhutan  
 

N - - - 

80 4734  
 

B. rapa broccoletto ( 
brocco cima di rapa) 
 

Italy N - - - 

90 4682  
 

B. rapa perviridis 
(Japanese greens) 
 

Japan Y 21 N - 

91 2488  
 

B. rapa chinensis 
(Chinese cabbage) 
 

Malaysia  
 

N - - - 

95 7573  
 

B. rapa chinensis 
(Pak choi) 
 

China Y 15 Y 25 
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2.4  Objective 1:  mapping WRR loci using GBS data  

2.4.1  Identification of resistance-associated SNPs (raSNPs).  Approximately 3 million reads 

were generated from Illumina sequencing of each of the 207 pooled barcoded B. rapa 

samples (eight accessions).  The average alignment rate of reads to the B. rapa IVFCAASv3 

reference genome was 86.53%, with an average single alignment rate of 40.92%, and an 

average multiple alignment rate of 42.61%.  Variant discovery (performed by LGC on all 

207 individual sample alignments) produced a single genotype dataframe (minimum allele 

frequency across all samples > 10%) containing 125680 variants in total.  Initial filtering 

based on the GBS-specific rule set (described in Section 2.26) resulted in the total marker 

counts for each line shown in Table 2.2.  These were then parsed through a succession of 

filtering steps to reduce the data set and only show markers with a highly conserved 

association to phenotype, where the resistant genotypes are consistently different to the 

susceptible bulk genotype.  This involved:  1) removal of markers mapped to scaffolds;  2) 

removal of markers where either of the two susceptible bulk genotypes were missing;  3) 

removal of markers where the two susceptible bulks (biological replicates) showed 

differing genotypes;  and 4) retaining markers where the proportion of resistant individual 

genotypes that matched the susceptible genotype (MatchCount) was either ≤ 10% (non-

conservative filter) or ≤ 5% (conservative filter).   

            Primarily, this approach was undertaken to identify dominant raSNPs with a 

homozygous susceptible bulk genotype vs an alternative heterozygous or homozygous 

resistant genotype.  Non-conservative filtering resulted in a total of 117 raSNPs across all 

lines, whilst a conservative raSNP count identified a total of 36 markers.  An attempt was 

made to also identify recessive raSNPs (with heterozygous susceptible bulks and 

homozygous resistant individuals).  However, even with the maximum possible 

MatchCount stringency (parameter = 0) only lines EH_15 and EH_25 produced < 100 

raSNPs each (Table 2.2).  These two lines were represented with the highest number of 

resistant individuals (42 and 49 respectively).  The relationship between the number of 

raSNPs identified per line and the number of resistant individuals included for GBS-

mapping can be seen in Figure 2.7.  To estimate an average error rate in genotype calling, 

disagreement between the total calls of the two biological replicates (two susceptible 

bulks) was calculated at 13.6%.  
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Table 2.2.  Summary of GBS marker filtering, for the identification of resistance-associated SNPs (raSNPs).  
Filtering steps previously described were applied to identify both dominant (non-conservative = 
MatchCount ≤ 10%; conservative = MatchCount ≤ 5%;) and recessive raSNPs (MatchCount = 0%)) from a 
database containing GBS-mapping markers for eight Brassica rapa genebank accessions.   

 Line EH_5 EH_15 EH_16 EH_25 EH_47 EH_61 EH_90 EH_95 Average 
Average% 
decrease 

Number Res. 
individuals 20 42 10 49 21 17 21 15   
           
Total markers 86872 75206 99423 77489 87602 91347 86947 76602 85186  
Scaffolds 82128 71318 94103 73494 82648 86108 81993 72495 80536 5.5 
Sus_missing 77989 68462 89254 69893 80825 84612 80262 73805 78138 8.3 
Sus_similarity 66982 57038 77477 60837 69664 75770 71023 61462 67532 20.7 
           
Rec 
MatchCount = 
0% 

346 25 1113 30 103 325 202 169 287 99.663 

Dom 
MatchCount ≤ 
10%  

27 13 37 3 10 13 10 4 15 99.983 

Dom 
MatchCount ≤ 
5% 

6 1 6 3 4 4 8 4 5 99.995 
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A 
 

B 

C 

No. 
raSNPs 
produced  

Number of resistant individuals sequenced 

Figure 2.7.  Response between the number of resistant individuals provided per line for GBS-mapping 
and the number of outputted resistance-associated SNPs (raSNPs) including: A) Recessive markers 
filtered for MatchCount = 0, with each point representing one of the eight Brassica rapa accessions.    
; B) non-conservative dominant markers (MatchCount ≤ 10%); and C) Conservative dominant markers 
(MatchCount ≤ 5%). Logarithmic lines of best fit indicate a negative correlation between these two 
factors. 

No. res individuals 
sequenced 
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2.4.2  Characterisation of population structure, linkage disequilibrium and phylogenetic 

relatedness amongst Brassica rapa accessions using GBS data.  Prior to GBS-mapping, a 

subset of GBS SNP data (containing five randomly selected individuals per accession) was 

assembled into a GBS-subset dataframe to make an assessment of population structure 

both within and between the geographically diverse B. rapa populations. In addition to 

the eight accessions used for GBS-mapping, data was also available for accessions EH_75 

(Bhutan) and EH_91 (Malaysia) which have been added to the genome analyses 

conducted here.  A GWAS QC pipeline developed by (Marees et al., 2018) was applied to 

subset for high quality markers, which were then inputted into the model-based program 

fastSTRUCTURE (Raj et al., 2014).  SNPs were filtered based on the following factors:  1) 

Delete SNPs with high levels of missing data (SNP missingness > 0.02);  2) Remove SNPs 

with a low minor allele frequency (MAF) (MAF < 0.05); and 3) Delete SNPs which are not 

in Hardy-Weinberg equilibrium (HWE) (HWE < 1e-6).  Parameter setting were determined 

by visualising histogram frequencies for calculations made at each step (Figure 2.8). 

Filtering of the GBS-subset (containing 124000 SNPs) produced a final set of 31883 SNPs 

distributed across the B. rapa genome.  

Population structure was estimated with the 31883 QC filtered SNPs using 

FastSTRUCTURE (Raj et al., 2014), which uses a variational Bayesian framework for 

posterior inference to rapidly infer population structure from large SNP genotype data.  

The algorithm was run independently for population sizes (K) of 1:10 to obtain a 

reasonable range of values for the appropriate model complexity required to explain 

structure in the data.  The model complexity that maximised marginal likelihood) was 7, 

and the model components (populations) used to explain structure in the data was K = 6, 

which ran for 30 iterations.  The degree of admixture inferred by FastSTRUCTURE can be 

visualised in the distruct plot (Figure 2.9), generated from the mean of the variational 

posterior distribution over admixture proportions.  Results show clear differences in 

structure between accessions relative to individuals from the same accession.  Accessions 

with enough similarity to be included in the same population include an east European 

pairing (EH_15 from Italy and EH_25 from Algeria), and an east Asian pairing (EH_47 from 

Thailand and EH_61 from China).  Interestingly, the Japanese accession EH_90 displayed 

significant admixture, with genetic contributions from three Asian populations and an east 

European population (represented by EH_5 and EH_25). 
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. 

Figure 2.8.  Histograms of SNP frequencies from the GBS-subset (five individuals per accession) 
dataframe, QC filtered for input into FastSTRUCTURE.  SNPs were removed with respect to:  A) SNP 
missingness > 0.02; B) MAF < 0.05;  C) HWE < 1e-6. Graph D provides a zoomed in visual of SNPs 
strongly deviating from HWE, which were subsequently removed from the dataset. 
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Figure 2.9.  Distruct plots showing relative population structure of GBS data from ten B. rapa accessions (five 
individuals included per accession). Analysis was performed using fastSTRUCTURE, based on an optimal 
population number of K = 6 (C), though K = 4 (A) and K = 5 (B) have also been provided for comparison. Each 
individual is represented by a vertical bar, where colour indicates the estimated membership fractions for K = 
n clusters (or sub populations). The admixture seen in accession EH_90 suggesting historical breeding between 
at least four different structural classes.  

A 

B 

C 



 48 

Patterns of linkage disequilibrium (LD) were estimated from the same GBS-subset 

used for structure analysis, with the LD analysis function in Tassel 5 (Bradbury et al., 2007).  

A sliding window of 50 SNPs was applied making 1592875 comparisons across the 

dataframe to calculate r2 statistics.  The r2 value is the square of the correlation coefficient 

between two indicator variables which represent the presence absence state of alleles as 

two different loci (Hill & Robertson, 1968).  The resulting LD plot shown in Figure 2.10 

highlights a 300 kb window on chromosome 6, showing haplotype blocks of markers in LD 

as determined by the r2 statistic.  To visualise LD decay over distance, a custom R script 

(https://www.biostars.org/p/300381/#300423) using plink (v1.90, (Purcell et al., 2007)) 

was adapted to measure and plot the mean r2 within 10 kb intervals (Figure 2.11).  

A single resistant individual from each of the ten accessions was selected to assess 

phylogenetic relatedness.  Analysis was undertaken using Tassel 5 (Bradbury et al., 2007) 

and a neighbour joining clustering method to produce a distance matrix and the 

phylogenetic tree seen in Figure 2.12.  A total of 31899 GBS markers across all ten B. rapa 

chromosomes was used to compile the tree. Two divergent clades were produced that 

distinguish the Asian accessions (clade 1), from the Eastern European accessions (clade 

2). 
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Figure 2.10.  Visualisation of LD in Brassica rapa accessions (cumulative GBS dataset) for a 200 kb 
window on chromosome 6.  The colour spectrums above and below the black diagonal line 
represent the r2 (above) and the p-value (below) scores respectively.  Haplotype blocks can be 
seen in red, which indicate regions where there has been little historical recombination.  
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Figure 2.11.  Genome-wide decay of the linkage disequilibrium (LD) in Brassica rapa accessions 
(cumulative GBS dataset).   
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Figure 2.12.  Neighbour joining tree constructed from GBS sequence of the ten Brassica rapa 
genebank accessions. SNP data for one individual per accession was used to collate 31899 markers in 
total, spanning all ten chromosomes.  The scale bar indicates 0.01 substitutions per site.  Accessions 
can be seen to cluster into two main clades which reflect their geographic origins of domestication, 
ranging longitudinally from between Algeria (EH_25) and Malaysia (EH_91).  
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2.4.3   Identifying R-genes relative to positions of GBS-mapping raSNPs.  DRAGO 2 

software was able to detect possible R-genes genes from any combination of the following 

resistance associated domains; coiled-coil (C), kinase (K), leucine rich repeat (L), 

nucleotide binding domain (N), protein (P) and Toll-interleukin region (T).  A total of 1002 

R-genes were detected across the reference assembly that exclusively contained these 

domains (Figures 2.13 and 2.14).  Approximately 50% make up transmembrane receptors 

including receptor like kinases (RLK) and proteins (RLP), with the remaining predominantly 

of the intracellular receptor class which includes toll-interleukin region or coiled-coil NLR 

(TNL and CNL) genes.  
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Figure 2.13.  Resistance genes (R-genes) annotated in the Brassica rapa IVFCAASv3 reference 
assembly using DRAGO 2 hidden Markov model software.  In total, 1002 R-genes were identified, 
with approximately 50% making up transmembrane receptors (receptor like kinases (RLKs) and 
proteins (RLPs)).  The remaining 50% are predominantly of the intracellular receptor class, with 
the number of major class TNL and CNL receptors totalling 106. Genes make up combinations of 
domain classes that include: coiled-coil (C), kinase (K), leucine rich repeat (L), nucleotide binding 
domain (N), protein (P) and Toll-interleukin region (T). 
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Figure 2.14.  Physical positions of annotated R-genes across the Brasscia rapa IVFCAASv3 
reference genome.  These represent the major classes that encode CC-NB-LRR (CNL), TIR-NB-LRRs 
(TNL) and receptor-like kinases (RLK).  

  

Mb 

Chromosome 
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2.4.4  Physical mapping of GBS-mapped raSNPs against the Brassica rapa 

reference.  A custom R script (Appendix Script 1) was used to physically position filtered 

GBS-mapped raSNPs from eight B. rapa accessions (Table 2.2) on the ten chromosomes 

of the B. rapa IVFCAASv3 reference assembly. Collectively, all chromosomes except nine 

and ten contained mapped raSNPs.  

 

 

 

 
 

Figure 2.15.  Distribution of the 37 conserved (MatchCount ≤ 5%) dominant raSNPs (AcBj12) 
across the Brassica rapa IVFCAASv3 reference genome, for each accession, and their positions 
relative to R-genes (CNL, TNL and RLKs).  Yellow stars denote the 14 raSNPs that are within a 200 
kb physical distance of an R-gene. 
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Figure 2.16. Distribution of 117 non-conserved (MatchCount ≤ 10%) dominant raSNPs (AcBj12) 
across the Brassica rapa IVFCAASv3 reference genome for eight genebank accessions. Positions 
can be seen relative to major R-gene classes (CNL, TNL and RLKs). 
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Figure 2.17.  Distribution of recessive raSNPs for lines EH_15 and EH_25 across the B. rapa 
IVFCAASv3 reference assembly, filtered for maximum association to phenotype (MatchCount = 0).  
The remaining lines, which were each represented by ≤ 21 resistant individuals, generated high 
numbers (> 100) of raSNPs, and so have not been represented here.  
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Table 2.3.  List of conserved dominant GBS-mapping raSNPs that are < 200 kb from a predicted R-gene (class 
TNL, CNL and RLK). 

 
Chr Line raSNP pos R-gene < 200 kb Class 
     
A01 EH_16 27,737,747 BraA01g041090 RLK 
  27,750,382   
 
A02 EH_5 2,215,025 BraA02g004210 TNL 
 
A03 EH_5 1,922,446 BraA03g004100 RLK 
   BraA03g004600 TNL 
 
A05 EH_16 4,726,668 BraA05g008990 CNL 

 
 
EH_95 5,074,313 BraA05g009590 RLK 

 
 
EH_90 5,145,355 BraA05g009590 RLK 

  5,145,405   
 
A06 EH_25 544,426 BraA06g001180 RLK 
  574,781   
  2,230,620 BraA06g003420 CNL 
   BraA06g003430 CNL 
   BraA06g003770 CNL 
 
A08 EH_47 168249 BraA08g000110 RLK 
  168276   
  7130746 BraA08g008060 RLK 
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2.5  Objective 2:  mapping WRR loci using WGS-BSA data  

 
2.5.1  Referenced-based SNP identification from WGS of B. rapa tissue bulks.  Whole 

genome sequences (WGS) of pooled DNAs were generated using paired end (150 bp) 

sequencing on the Illumina Novaseq6000 platform.  Sequencing generated a total of 

466.6 Gb of raw data, with an average of 110 and 116 M PE reads for the resistant and 

susceptible samples respectively.  Low quality reads and adapters were removed before 

checking read quality using FASTQC (Andrews, 2010).  High-quality sequences were 

aligned and mapped to the B. rapa IVFCAASv3 reference assembly (Wang et al., 2011) 

downloaded from http://brassicadb.org/brad/ using BWA with default parameters. 

Across all samples, the average coverage of aligned sequence reads to the reference was 

68.2%, with an average of 95.6% breadth of the reference genome covered by mapped 

reads. The average alignment rate of reads to the reference was 84.18%, with an average 

of 75.12% mapping in pairs.  Mapping statistics for individual lines can be viewed in Table 

2.4. 

 Reference-based SNP identification was applied as described in Section 2.2.6.  SNP 

datasets were then merged per accession for each resistant and susceptible bulk to 

produce the SNP counts seen in Table 2.5. 

 

2.5.2  WGS based BSA mapping of WRR QTL in B. rapa genebank accessions.  To map WRR 

QTL, WGS-BSA was performed using QTLseqr (Mansfeld & Grumet, 2018) and the G’ 

approach (Magwene et al., 2011).  Consolidated resistant and susceptible SNP tables were 

passed into QTLseqr using the function importFromGATK, which also calculates the 

following parameters for each SNP in the dataframe: 
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Resistant bulks were assigned as the high bulk and susceptible bulks as the low.  

To select for high-confidence SNPs for analysis, the following six filtering steps were 

applied to each dataset:  1) reference allele frequency (0.3 ≤ REF_FRQ ≤ 0.7);  2) total 

sample read depth (total DP ≥ 60);  3) total sample read depth (total DP ≤ 400);  4) per 

sample read depth (DP ≥ 30);  5) GATK genotype quality (GQ ≥ 99); and 6) difference 

between bulks (≤ 100).  The number of SNPs filtered at each step has been reported per 

accession in Table 2.5.  Filtering here serves to remove extremely low and high coverage 

(from repetitive regions) SNPs, either in both bulks (Steps 1 and 2), and/or in each bulk 

independently.  The largest reduction came from filtering the reference AF (SNPs that are 

over or under-represented in both bulks), where an average of 69.26% of SNPs were 

removed from the dataset.  

 The SNP index and G statistics were calculated for each individual SNP as described 

by (Magwene et al., 2011).  Tricube smoothed ∆(SNP-index) and G values (G’ value) were 

calculated within a window size spanning 1.0 Mb of genomic region and were plotted 

against all ten B. rapa chromosomes (Figure 2.18).  Here, the G’ statistic functions as a 

weighted moving average across neighbouring SNPs, accounting for linkage 

disequilibrium (LD), whilst also minimising noise attributed to SNP calling errors (Mansfeld 

& Grumet, 2018).  G’ values calculated for each SNP are weighted by physical distance to 

the focal SNP, decreasing in value as they get closer to the window edge.  Significance 

thresholds (p-values), and genome-wide Benjamini-Hochberg false discovery rate (FDR) 

(Hochberg, 2016) adjusted p-values (q-values) were estimated from the null distribution 

of the G’, which assumes there is no QTL linked to the SNP.  The tricube smoothed G’ 

values from the analysis show significant peaks across the FDR (q) threshold of 0.001 in 

all accessions.  In total, this produced 26 QTLs, though due to noise in the background of 

the EH_47 output, only the four most prominent G’ peaks on A05 and A07 will be 

considered for this accession.  This leaves a total of 16 mapped QTLs (EH_5 = 3, EH_25 

(AcBj12) = 1, EH_25 (AcBjDC) = 1, EH_47 (most prominent QTLs) = 4, EH_61 = 3 and EH_95 

= 4).  Chromosomes A08 and A10 are the only two not to contain identified QTLs for any 

accession.  The genomic regions mapped by QTLs (across all accessions) varied from the 

smallest of 250 kb (EH_47 - A05) to the largest of 7.22 Mb (EH_95 – A02), with the average 

interval spanning 2.44 Mb.  Statistics inferred from QTLs of each accession have been 

documented in Table 2.6. 
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 Amongst all 16 QTLs, EH_25_12.A06 and EH_95.A02.2 show the highest G’ peaks 

(11.4 and 11.3 respectively), indicating major effect QTLs for WRR.  Interestingly, these 

genomic regions on both chromosome A02 and A06 have been mapped independently by 

different accessions.  The A02 region (18670297 – 21646283 / 2.96 Mb), termed BraA02 

is spanned by both EH_61 (EH_61.A02) and EH_95 QTLs (EH_95.A02.2), whilst the A06 

region (948017 – 2715701 / 1.76 Mb) termed BraA06 is spanned three times, twice by 

EH_25 (AcBj12 and AcBjDC) and once by EH_5.  The overlap of mapped QTLs here 

indicates the possibility of shared resistance loci in these regions.  This is supported by the 

relative geographic origins of the accessions, with the A02 region mapped using Chinese 

accessions and the A06 region mapped using accessions from Italy (EH_5) and Algeria 

(EH_25). Mapping the A06 region twice in EH_25 (EH_25_12.A06 + EH_25_DC.A06) using 

both race 2 A. candida isolates (AcBj12 and AcBjDC) indicates a potentially shared 

resistance locus capable of preventing infection to both isolates.  Other regions of interest 

include where clear G’ peaks are intercepted by short non-significant gaps, such as on A02 

(EH_95) and A05 (EH_47).  These examples suggest multiple QTLs that are linked in 

coupling phase. 
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Table 2.4.  Paired-end read counts in millions (M) from WGS at 90x sequencing coverage and alignment statistics (against the B. rapa IVFCAASv3 reference assembly) for each 
accession.  Statistics are averaged between the resistant and susceptible files and represent average read depth across the genome, average breadth of coverage and the % of 
reads that mapped to the refer Table 2.5.  SNPs filtered using the QTLseqr pipeline prior to association mapping of WRR.  Accessions were filtered by; 1) Reference allele 
frequency (REF_FRQ);  2) Total sample read depth (DP);  3) Total sample DP;  4) Per sample DP;  5) Genotype quality (GQ);  6) Difference between bulks (DBB).  

 
 
 
 
 
 
 
 
 

Table 2.5.  SNPs filtered using the QTLseqr pipeline prior to association mapping of WRR.  Accessions were filtered by; 1) Reference allele frequency (REF_FRQ);  2) Total sample 
read depth (DP);  3) Total sample DP;  4) Per sample DP;  5) Genotype quality (GQ);  6) Difference between bulks.

Step Parameter EH_5 EH_25_12 EH_25_DC EH_47 EH_61 EH_95 Mean Mean % 

1 

0.3 ≤ 
REF_FRQ ≤ 
0.7 3999366 4178261 4116117 3204722 3080262 2876657 3575897 69.3 

2 
Total DP ≥ 
60 457791 602056 651579 471732 467012 428680 513141 9.9 

3 
Total DP ≤ 
400 2809 1594 1278 943 765 1030 1403 0.03 

4 
per samp DP 
≥ 30 201763 150667 161703 136596 129643 115373 149290 2.9 

5 GQ ≥ 99 16540 17379 16993 18993 14176 18598 17113 0.3 
6 DBB ≤ 100 1568 43 51 65 56 31 302 0.01 
          

 
Original 
SNPs 5645999 6051194 5974602 4708192 4467496 4132498 5163330  

 Filtered 4679837 4950000 4947721 3833051 3691914 3440369 4257148 82.5 
 Remaining 966162 1101194 1026881 875141 775582 692129 906181  

 EH_5 EH_25_12 EH_25_DC EH_47 EH_61 EH_95 
Res bulk reads (M) 163  108 114 103 102 103 
Sus bulk reads (M) 109 127 105 101 101 102 
       
Depth coverage (x) 63.3 76.4 70.3 66.9 65.4 66.7 
Breadth coverage 94.6 96.2 95.9 97.1 96.1 93.9 
% mapped to ref. 79.1 79.9 85.4 88.9 87.8 83.8 
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Figure 2.18.  WGS-BSA mapping of resistance to two Albugo candida race 2 isolates (AcBj12 and AcBjDC) in five 
Brassica rapa genebank accessions. A) shows EH_25 exclusively mapped with Donskaja-virulent isolate AcBjDC. 
Whilst B-F show all five accessions (B = EH_25, C = EH_5, D = EH_47, E = EH_61, F = EH_5) with mapped resistance 
to Donskaja-avirulent isolate AcBj12.  Resistant and susceptible phenotype bulks were produced at 14 dpi.  QTL 
is displayed using the –log10 (p-value) which is derived from the G’ statistic.  The red line indicates the genome-
wide false discovery rate (FDR) of 0.001. 
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Pop ID QTL ID Inoculum Chr. Start End Length nSNPs posPeak 
DeltaSNP 

Max 
Gprime 

posMax 
Gprime 

meanPval meanQval 
 
 

NLR no.  
in QTL 

5 EH_5.A01 AcBj12 1 23042028 23916720 874692 4738 23582433 5.0 23582433 1.69E-05 0.0015 2 

61 EH_61.A02 AcBj12 2 18670297 21646283 2975986 9226 20643769 6.8 20625396 1.41E-05 0.0008 0 

95 EH_95.A02.1 AcBj12 2 13506392 18172743 4666351 17239 18172743 10.1 16702949 7.37E-05 0.0018 20 

95 EH_95.A02.2 AcBj12 2 18188233 25414269 7226036 22426 19645629 11.3 24564074 2.26E-05 0.0006 2 

95 EH_95.A03 AcBj12 3 2803749 3747166 943417 2591 2803749 6.8 3037302 2.51E-04 0.0060 0 

5 EH_5.A04 AcBj12 4 12167391 13148321 980930 5532 12334533 4.5 13019461 3.00E-05 0.0026 2 

47 EH_47.A05.1 AcBj12 5 7122562 10560738 3438176 11325 10560738 5.0 9793968 1.98E-05 0.0009 0 

47 EH_47.A05.2 AcBj12 5 12155492 13426805 1271313 2468 12897772 5.2 12485401 4.29E-06 0.0002 0 

47 EH_47.A05.3 AcBj12 5 18194528 18445118 250590 263 18245030 4.0 18256222 2.45E-04 0.0081 8 

5 EH_5.A06 AcBj12 6 948017 2715701 1767684 9841 948017 6.4 1834178 4.24E-06 0.0004 8 

25 EH_25_12.A06 AcBj12 6 12787 2945454 2932667 9979 1378963 11.4 1834238 3.08E-06 0.0004 8 

25 EH_25_DC.A06 AcBjDC 6 15873 2720230 2704357 7632 1383848 9.8 1383848 2.77E-06 0.0004 0 

47 EH_47.A07 AcBj12 7 4774432 7584393 2809961 5193 6817217 5.7 6817217 9.45E-06 0.0004 0 

61 EH_61.A09.1 AcBj12 9 15438675 17164935 1726260 6622 16931552 4.6 16931552 5.01E-05 0.0032 1 

61 EH_61.A09.2 AcBj12 9 24490331 27607522 3117191 11925 24706707 4.7 26813210 1.13E-04 0.0056 0 

95 EH_95.A09 AcBj12 9 35474968 36853630 1378662 4903 36689196 7.9 35982177 6.28E-05 0.0017 0 

            

Table 2.6.  Summary of significant QTL regions for resistance to Albugo candida race 2 in five Brassica rapa genebank accessions (FDR of 0.001).  Calculated using 
WGS-BSA and the QTLseqr pipline and the G’ approach.  Table includes chromosome start and end positions for each QTL, plus the number of SNPs each contains.  
A mean p-value score is given per QTL.  The mean Q-value is the average adjusted p-value in the region. EH_25 is the only accession to be inoculated with both 
AcBj12 and AcBjDC.  
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2.5.3  Positions of WGS-BSA QTLs relative to GBS raSNPs.  For a comparison of results from 

the two resistance mapping approaches, raSNPs (conserved dominant) from GBS-

mapping were overlayed with QTLs from WGS-BSA mapping (Figure 2.19).  Generally, 

there is little correlation between the two datasets as only three raSNPs (EH_25 on A06) 

out of 22 (from the five accessions used for WGS-BSA mapping) are positioned inside the 

equivalent accessions QTLs.  The remainder seem to have a random association and are 

frequently found on different chromosomes to their relevant accession QTLs.  However, 

the location of all three EH_25 raSNPs (AcBj12) inside the EH_25_12.A06 QTL is a strong 

indication that the same WRR locus is being successfully mapped using both methods.  

Interestingly, EH_25 was represented for GBS-mapping by the most resistant individuals 

(49) relative to the other accessions.  It was also the only accession to produce a single 

major-effect QTL from WGS-BSA mapping.
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Figure 2.19.  Physical map of the Brassica rapa reference assembly, showing the positions of GBS-
mapped raSNPs (dominant conservative) (coloured lines) relative to QTLs (coloured blocks) mapped 
with WGS-BSA methods, for five genebank accessions.  EH_25 has been represented twice in the 
WGS-BSA experiment, once tested with AcBj12 and once with AcBjDC.  The only example where 
approximately the same WRR locus is identified using both methods is at the top of chr6, where 
three EH_25 (AcBj12) raSNPs are positioned inside the EH_25_12.A06 QTL.  
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2.5.4  Positions of WGS-BSA QTLs relative to R-genes.  QTLs mapped using WGS-BSA were 

assessed relative to positions of annotated major R-genes classes in the B. rapa IVFCAASv3 

reference genome (see Figure 2.20 and Table 2.7).  Using the full suite of R-gene families 

outputted from DRAGO 2, all 16 QTLs from five accessions span regions that contain 

candidate resistance genes.  Seven out of the 16 QTLs span regions containing genes from 

the major classes of cytoplasmic TNL and CNL receptors.   The key regions of BraA02 and 

BraA06 both span multiple R-genes (eight and 13, respectively).  BraA02 region contains 

a single TNL gene (BraA02g031160) and two RLKs (BraA02g025430 + BraA02g026280), 

whereas the BraA06 region contains a cluster of five CNL genes (BraA06g002390, 

BraA06g003120, BraA06g003420, BraA06g003430 + BraA06g003770) and four RLKs 

(BraA06g002310, BraA06g002330, BraA06g002340, BraA06g002360).  Other QTLs 

containing TNL and CNL classes of R-gene include EH_95.A03 which covers the TNL 

BraA03g008470 on chromosome 3, and EH_47.A05.1 which covers the CNL 

BraA05g013230.  
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Figure 2.20.  Physical map of the Brassica rapa reference assembly showing positions of WGS-
BSA QTLs (coloured blocks) relative to major R-gene classes of CNL and TNL receptors, for five 
genebank accessions. 
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Table 2.7.  Tabulated positions of all Brassica rapa R-genes (annotated using DRAGO 2 hidden Markov model 
software) physically located within QTL boundaries.  This is a collection of WGS-BSA mapping results from 
five genebank accessions.  

 

 

Chr Accession QTL QTL pos. R-gene  Start pos. Gene ID Length (bp) 

1 EH_5.A01 23042028       
   RLP 23250564 BraA01g033950 2522 

   CK 23460000 BraA01g034200 2368 

 EH_5.A01 23916720       
       
2 EH_95.A02.1 13506392       
   CK 14916326 BraA02g024950 4024 

   RLK 15276025 BraA02g025430 6251 

   CK 15307031 BraA02g025490 2027 

   RLK 15736348 BraA02g026280 3599 

   CK 16411969 BraA02g027010 2003 

   CK 17945401 BraA02g028670 3580 

 EH_95.A02.1 18172743       
 EH_95.A02.2 18188233       
 EH_61.A02 18670297       
   RLK 20707211 BraA02g030530 5547  
   TNL 21266944 BraA02g031160 5931  
   RLK 21489193 BraA02g031450 6182  
   RLP 21553166 BraA02g031530 3170 

   RLP 21560904 BraA02g031540 3014 

   T 21639494 BraA02g031600 976 

   NL 21640978 BraA02g031610 2170  
   T 21645948 BraA02g031620 539  
 EH_61.A02 21646283       
   T 21668513 BraA02g031630 608 

   NL 21671827 BraA02g031640 5572 

   T 21682868 BraA02g031650 1616 

   CTNL 21690398 BraA02g031660 4277  
   TNL 21721969 BraA02g031710 8231 

   CN 22006775 BraA02g032040 2195  
   RLK 22169791 BraA02g032180 3178  
   RLK 22615923 BraA02g032770 3656 

   TNL 22679826 BraA02g032840 4979  
   CT 22689939 BraA02g032850 467  
   N 22690837 BraA02g032860 1420  
   NL 22697547 BraA02g032880 4650  
   TNL 22708626 BraA02g032890 4225  
   TNL 22727424 BraA02g032920 4276 
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Table 2.7.  Continued 

       

2   RLP 22864900 BraA02g033130 1654 

   RLP 22983576 BraA02g033280 1792 

   TNL 22988009 BraA02g033300 3369  
   N 23873443 BraA02g034580 3204 

   CK 23988923 BraA02g034690 2518 

   RLP 24298773 BraA02g035120 2979 

   RLK 24604525 BraA02g035420 2831 

   CT 25028210 BraA02g036020 560 

   T 25058968 BraA02g036040 625 

   T 25072116 BraA02g036050 580 

   RLP 25388090 BraA02g036490 8499 

 EH_95.A02.2 25414269       
       

3 EH_95.A03 2803749       
   RLK 3108539 BraA03g007260 3479 

   RLP 3248782 BraA03g007610 746 

   RLP 3250839 BraA03g007620 728 

   TNL 3638481 BraA03g008470 3484 

   T 3665776 BraA03g008540 1642 

 EH_95.A03 3747166       
       

4 EH_5.A04 12167391       

4   RLP 12781016 BraA04g016800 587 

4   RLK 13063146 BraA04g017130 2533 

4 EH_5.A04 13148321       
       

5 EH_47.A05.1 7122562       
   CNL 7301160 BraA05g013230 2582 

   CK 9952022 BraA05g016740 1478 

   RLK 10150191 BraA05g017000 4867 

   CK 10369339 BraA05g017290 4474 

 EH_47.A05.1 10560738       
 EH_47.A05.2 12155492       
   RLP 12200454 BraA05g019240 2585 

   RLP 12228174 BraA05g019250 3047 

   RLP 12583786 BraA05g019590 1811 

 EH_47.A05.2 13426805       
       

 EH_47.A05.3 18194528       
   RLP 18277084 BraA05g024400 1442 

 EH_47.A05.3 18445118       
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Table 2.7.  Continued 

       
6 EH_25_12.A06 12787       
 EH_25_DC.A06 15873       
   RLK 729161 BraA06g001180 2827  
 EH_5.A06 948017       
   T 1053954 BraA06g001690 693 

   N 1143970 BraA06g001890 1308  
   RLK 1420096 BraA06g002310 5439 

   RLK 1431545 BraA06g002330 3817 

   RLK 1437114 BraA06g002340 4678 

   RLK 1453223 BraA06g002360 4073 

   CNL 1477751 BraA06g002390 2540 

   N 1688841 BraA06g002870 4841 

   CNL 1831588 BraA06g003120 2558 

   CNL 2067355 BraA06g003420 2531 

   CNL 2072095 BraA06g003430 2555 

   N 2214326 BraA06g003690 650 

   CNL 2246940 BraA06g003770 2564 

 EH_5.A06 2715701       
 EH_25_DC.A06 2720230       
 EH_25_12.A06 2945454       
       

7 EH_47.A07 4774432       
   RLK 5131735 BraA07g006070 3325 

   RLK 6949607 BraA07g006770 2100 

 EH_47.A07 7584393       
       

9 EH_61.A09.1 15438675       
   T 16021466 BraA09g023950 1034 

 EH_61.A09.1 17164935       
 EH_61.A09.2 24490331       
   CK 27053695 BraA09g034380 3416 

 EH_61.A09.2 27607522       
 EH_95.A09 35474968       
   RLK 35594894 BraA09g046870 2819 

   RLK 35714543 BraA09g047080 3292 

   RLK 35785877 BraA09g047260 3334 

   CK 36397077 BraA09g048400 1055 

   RLK 36422709 BraA09g048440 2523 

 EH_95.A09 36853630       
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2.5.5  An automated assessment of candidate genes within mapped QTL intervals 

(autoSNP).  A major benefit of using WGS data compared to other marker techniques is 

that the dataset used to identify QTLs can then be screened at the sequence level to look 

for candidate mutations.  This is achieved by checking genome assemblies within QTLs 

and screening gene coding sequences (CDS) for mutations with allele frequencies that 

distinguish phenotype bulks.  Here for example, where major effect dominant R-genes are 

thought to be the main precursors to WRR, SNPs that are homozygous in the susceptible 

bulk and heterozygous in the resistant should be considered.  This could also be applied 

to look for recessive resistance by reversing this pattern (homozygous resistant vs 

heterozygous susceptible).  

 An automated method (termed autoSNP) was used in this study for filtering 

available WGS SNP datasets to identify genes within mapped QTLs that contain dominant 

associated mutations.  Firstly, SNPs within the relevant accession QTLs were selected for.  

This list was then filtered to identify those located within CDS regions of genes.  SNPs with 

coverage < 30x were removed from the dataset.  Remaining SNPs were compared 

between phenotype bulks using vcftools (v0.1.16, (Danecek et al., 2011)) to identify 

shared positions where allele frequencies (AF) were suitably distinct.  Parameters 

determining selection were: homozygous SNPs in the susceptible bulk with AF < 0.1 or AF 

> 0.9 versus heterozygous SNPs in the resistant bulk with AF > 0.4 & AF < 0.6.  A subset of 

the final markers was checked manually in Integrated Genome Viewer (IGV) to confirm 

they met these criteria.  Genes containing markers identified by the autoSNP process were 

blasted in Phytosome (Goodstein et al., 2012) against the B. rapa reference genome FPsc 

v1.3 to obtain gene descriptions (Table 2.8).  Amongst all accessions, 14 out of 16 QTLs 

contain genes identified using the autoSNP method.  The total number of genes in the B. 

rapa IVFCAASv3 reference annotation file (.gff) contained within all QTLs is 4884.  The 

total number of genes identified using autoSNP within all QTLs was 272, which accounts 

for 5.75% of the total gene count.  Of these genes, those described (using a combination 

of Phytosome and DRAGO 2 R-gene annotations) as having a potential role in disease 

resistance have been presented in Table 2.8.  These are each presented along with an 

available marker selected by autoSNP. 
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Accession Chr QTL 

No. 
genes 
in QTL 

No. 
R-
genes R-gene 

Marker 
pos. Description 

        
EH_5 1 EH_5.A01 122 10 BraA01g033920 23226809 Transcription 

initiation factor 
        
EH_61 2 EH_61.A02 240 14 BraA02g030540 20722322 Cyclin dependent 

kinase 
        
EH_95 2 EH_95.A02.1 582 21 BraA02g025430 15277340 RLK 
  EH_95.A02.2 759 35 BraA02g031160 21267472 TNL 
     BraA02g031540 21562914 RLP 
     BraA02g032880 22700315 NL 
     BraA02g032890 22710556 TNL 
 3 EH_95.A03 228 5 None detected   
        
EH_5 4 EH_5.A04 120 11 BraA04g016530 12562680 Kinase interacting 

protein 
     BraA04g016540 12567323 Containing Protein 
        
EH_47 5 EH_47.A05.1 446 9 BraA05g013580 7572697 Transcription factor 
  EH_47.A05.2 132 0 None detected   
  EH_47.A05.3 25 0 None detected   
        
EH_25 6 EH_25_12.A06 489 37 BraA06g001440 880367 RNA-Binding 

Protein 
     BraA06g001980 1186971 D-mannose kinase 

domain 
     BraA06g002480 1508992 Lectin binding 

protein 
     BraA06g003420 2069204 CNL 
EH_25 6 EH_25_DC.A06 461 47 BraA06g002300 

BraA06g003420 
1416918 
2069204 

RLK 
CNL 

        
EH_5 6 EH_5.A06 309 50 BraA06g002300 1417199 RLK 
     BraA06g002360 1454484 RLK 
     BraA06g003420 2069204 CNL 
        
EH_47 7 EH_47.A07 153 6 BraA07g006070 5133150 RLK 
     BraA07g006770 6951408 RLK 
        
EH_61 9 EH_61.A09.1 335 9 BraA09g024950 16752708 Salt stress response 

kinase 
     BraA09g025250 16958583 Protein tyrosine 

kinase 
  EH_61.A09.2 219 3 None detected   
        
EH_95 9 EH_95.A09 264 24 BraA09g048400 36397457 CK 
     BraA09g048440 36422792 RLK 
        

Table 2.8.  Candidate genes identified within QTL loci of Brassica rapa using the autoSNP method.  Genes were selected 
on the basis of containing a dominantly associated SNP (homozygous susceptible AF < 0.1 or AF > 0.9 vs heterozygous 
resistant AF > 0.4 & AF < 0.6) within CDS gene regions.  Those with descriptions related to R-genes (using a combination 
of Phytosome and DRAGO 2 annotation) have been listed.  This method provides an assessment of all genes contained 
within mapped QTLs.  
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2.5.6  Secondary screening of the BraA02 and BraA06 region.  Repeated mapping of the 

BraA02 region on A02 using EH_61 and EH_95, as well as the BraA06 region with EH_25 

(AcBj12 and AcBjDC) and EH_5 provides an opportunity for screening R-genes in these 

regions for conserved functional resistance alleles.  The eight R-genes in BraA02 and 13 in 

BraA06 were checked for those showing a conserved resistance allele that matches a 

pattern of homozygosity in all susceptible bulks vs heterozygosity in all resistant bulks.  

Due to subtle variations in allele frequencies apparent in WGS bulked samples, only 

distinct SNPs matching these criteria were considered.  Inspection of these regions was 

performed both visually, using the superimposed resistant and susceptible .bam file 

sequences of the relevant accessions in IGV, and using outputs from the autoSNP analysis 

listed in Table 2.8.  

 The only R-gene example found to fit the expected pattern was the CNL gene 

BraA06g003420 located in the BraA06 region.  Other examples in this cluster either 

contained visually ambiguous allele ratios, were not conserved between accessions, or 

lacked partial sequence coverage and so could not be confirmed.  BraA06g003420 

contains three distinct heterozygous SNPs at positions 2069204, 2069428 and 2069463 

in the resistant bulk and homozygous in the susceptible.  These SNPs are fully conserved 

in the same expected ratios between the three experiments of EH_25 (AcBj12 and 

AcBjDC) and EH_5 (Figure 2.21).  To determine the effect these mutations may have on 

protein translation and structure, the mutations were checked for effect on amino acid 

sequence. It was found that two of the three SNPs (positions 2069204 and 2069428) result 

in non-synonymous amino acid substitutions.  The A > T at position 2069204 results in a 

lysine to threonine substitution, whilst the G > A at 2069428 results in an alanine to 

threonine substitution.  The remaining SNP (2069463) produces a synonymous amino acid 

substitution and is unlikely to affect protein structure or function.  
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Figure 2.21.  Trace files of resistant and susceptible WGS bulks (top and bottom respectively for each of 
1, 2 and 3) visualised in IGV, showing the C terminus of the coiled-coil CNL candidate BraA06g003420 
for 1) EH-5; 2) EH-25, tested with AcBjDC; 3) EH-25, tested with AcBj12.  The bottom bar denotes an 
annotated gene track from the B. rapa reference genome (v3.0).  SNPs that distinguish phenotypes and 
are conserved between accessions are denoted by the yellow arrows at positions 2069204, 2069428 
and 2069463.  This would be the expected pattern for any causal dominant candidate gene. 
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2.6  DISCUSSION  

2.6.1 Discussion of GBS-mapping method 

The rapid evolution of plant pathogens relative to their hosts allows them to frequently 

overcome immune defences under the control of a single pathogen resistance gene (R-

gene).  Subsequently, there is a need to continuously identify new R-genes, that when 

combined together in a cultivar will provide durable protection of the crop.  A major aim 

of this thesis was to trial new methods for rapidly mapping WRR genes directly from a 

range of genetically diverse genebank material.  Two distinct approaches were deployed 

to achieve this: GBS-mapping and WGS-BSA mapping.  Here, each method is considered 

accordingly, with results from the initial GBS-mapping experiment informing the decision 

to then proceed with WGS-BSA methods.  In turn, WGS-BSA results were then used to 

validate the accuracy of the GBS-mapping data. 

 Identification of 36 resistance-associated SNPs (raSNPs) from GBS-mapping of 

eight B. rapa accessions was an insightful first attempt at mapping resistance loci directly 

from segregating genebank material.  This was achieved using GBS of a susceptible bulk 

and multiple resistant individuals per accession, and extensive filtering of genotype data 

to select SNPs with strong association to phenotype (raSNPs).  Considering the novelty of 

the experimental method, as well as the potentially heterozygous nature of the 

germplasm, there were no prior expectations regarding the generation of raSNPs.  The 

output of 36 candidate raSNPs that passed the highly stringent filtering parameters was 

therefore initially deemed successful.  Furthermore, that such a large proportion (38%) of 

these markers are found within 200 kb of known R-genes was a promising indication that 

this marker-trait association method was effective in identifying resistance loci.  When 

assessing the results however, it became apparent there were potential issues with the 

data quality.  For example, prior expectations were that if raSNPs were generated at all, 

that multiple associated markers would coalesce around a given resistance locus.  This 

was not the case and raSNPs were almost exclusively found in isolation, with few close 

proximity markers (< 1 kb) meeting the filtering criteria for association to phenotype.  

Markers proximate to raSNPs were frequently not ‘borderline’ candidates either but 

actually showed very little or highly variable associations.  When considering a single 

marker in this manner with no proximate support, there is no local ‘replication’ (and 
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therefore confidence) of association to suggest a candidate raSNP is not a false positive.  

Arguably the lack of local association seen in this dataset could be due to very high rate 

of recombination in these lines.  However, assessment of LD decay (Figure 2.11) using the 

GBS-subset suggests that for so many raSNPs, this would be improbable across such small 

distances. 

 The main factor determining the number of outputted raSNPs was the number of 

resistant individuals included per accession for sequencing (Figure 2.4).  Lines represented 

by few resistant individuals (< 25) typically outputted more raSNPs, whilst those 

represented by lots of individuals (> 40) typically produced the fewest.  Essentially, the 

greater the number of resistant individuals included, the greater the opportunity for 

disagreeing genotype calls between phenotypes.  Accessions represented by higher 

numbers therefore have a higher stringency than accessions represented by fewer 

individuals and when screening many millions of markers it appears that those 

represented by fewer individuals will generate raSNPs just by chance.  

 The unexpectedly high genotype error rate of 13.6% between the two biological 

control susceptible bulks was a further issue impacting the accuracy of predicted raSNPs.  

This was not foreseen in the design of the experiment and is likely a result of ‘grey area’ 

allele frequencies (between a homozygous (0 or 1) and heterozygous state (0.5)), that 

deviate sufficiently between susceptible bulks to produce different genotype calls.  This 

will have resulted in a proportion of raSNPs being unnecessarily excluded (where the 

susceptible bulk genotypes do not match).  True homozygosity in the susceptible bulks 

(AF = 0) was also rare and will have effected filtering when using conservative parameters.  

 With these factors impacting the potential validity of the GBS-mapping results, it 

was decided to pursue a more conventional mapping approach using WGS-BSA and the 

QTLseqr pipeline.  With hindsight this method proved to be much more creditable for 

reasons that will later be discussed.  The more statistically rigorous WGS-BSA approach 

highlighted the extent of the GBS-mapping experimental design flaws by showing the wide 

discord between positions of GBS-mapped raSNPs relative to WGS-BSA mapped QTLs 

(Figure 2.19).  

 From the five B. rapa accessions used for WGS-BSA, only the three GBS-mapping 

raSNPs from EH_25 were successfully positioned within the relative accessions QTL.  This 

wild species was represented by the most resistant individuals (49) out of any accession 
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and tentatively indicates the numbers required to make accurate associations.  As the 

only accession to map a single major effect resistance locus (as demonstrated by QTLs 

EH_25_12.A06 and EH_25_DC.A06), EH_25 demonstrates that the GBS-mapping method 

seemingly breaks down where multiple loci are involved.  The identified EH_25 raSNPs 

were a satisfying yet solitary example that it is possible using the GBS-mapping method to 

produce true raSNPs.  Considering however that GBS-mapped raSNPs for other accessions 

were mostly not even on the same chromosome as their constituently mapped QTLs, it 

suggests that the approach is far from efficient, with only a very limited output relative to 

the time and expenses invested. 

 

2.6.2 Discussion of WGS-BSA method 

Of the two methods, WGS-BSA mapping proved far superior, identifying sixteen distinct 

QTLs across five B. rapa accessions that likely contain major effect WRR genes.  These 

were defined by high-resolution QTLs (averaging 2.44 Mb), with all sixteen spanning some 

form of potential R-gene.  Seven of these QTLs contained the major classes of TNL and 

CNL resistance genes. WGS-BSA mapping was achieved rapidly, in a span of approximately 

five months from screening germplasm to mapped outputs, and at minimal cost requiring 

WGS of only two bulks per accession.  The relative simplicity of processing two tissue bulks 

per accession in turn enabled screening and mapping of multiple lines in parallel to 

identify a range of WRR loci within a diverse range of B. rapa germplasm.  

 With costs of next generation sequencing (NGS) continuing to fall, WGS became a 

viable option for this project, allowing complete resequencing of B. rapa tissue bulks.  Low 

prices meant that enhanced 90x sequencing coverage could be applied, accounting for 

heterozygosity in the genebank accessions and maximising capture of tens of thousands 

of high-quality SNPs.  Mapping of WRR was achieved using the recently developed WGS-

BSA (QTL-seq) R package QTLseqr (Mansfeld & Grumet, 2018), which made it possible to 

progress rapidly in identifying QTLs.  Use of WGS datasets provided several advantages 

over other marker technologies.  For example, unlike those that reduce the genome 

complexity prior to sequencing such as GBS or RAD (Andrews et al., 2016), WGS datasets 

provide a near-complete view of sequence variation and highlights a set of potential 

markers across defined QTL regions.  Also, relative to bait design technologies such as 
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RenSeq (Jupe et al., 2013), which are limited to the selection of genes chosen for the bait, 

WGS requires no a priori knowledge about the types of genes responsible for phenotype.  

 QTL-seq has been used to successfully map traits in other crop species including; 

seed weight in chickpeas (Das et al., 2014; Singh et al., 2016), early flowering in cucumber 

(Lu et al., 2014), rust and late leaf spot resistance in groundnut (Pandey et al., 2017), a 

cytosolic component of photosynthesis efficiency in potato (Kaminski et al., 2015), tomato 

fruit weight (Illa-Berenguer et al., 2015), cold tolerance in rice (Luo et al., 2018), resistance 

to crown rot in squash (Ramos et al., 2020), plant height in soybean (X. Zhang et al., 2018), 

flowering time in chickpea (Srivastava et al., 2017), fusarium wilt resistance in watermelon 

(Branham et al., 2018) and heat tolerance loci in broccoli (Branham & Farnham, 2019).  Of 

note, these studies all utilised RILs and F2 recombinants from biparental crosses (where 

the parents have previously been fixed in a homozygous state) to produce the phenotypic 

extremes required for tissue bulks.  The approach undertaken in this study therefore 

represents the first known example of QTL-seq methods being applied directly to 

undeveloped genebank material, utilising the phenotypic variation found with a single 

packet of seed to generate sufficient mapping bulks.  Importantly, by using this approach 

a greater range of genebank material can be accessed that includes genetically diverse 

landraces and wild species.  The outcrossing nature of B. rapa is particularly well suited to 

this, where the maintenance of genebank accessions through controlled intercrossing 

within small accessions preserves the genetic variation required for mapping.  This 

suggests that other outcrossing species may be equally receptive to this approach. 

The majority of marker-trait analysis performed in plants, including previous WRR 

mapping efforts, have been undertaken using linkage mapping (LM).  These experiments 

require construction of a mapping population from crossing two genetically fixed parents.  

This typically requires multiple generations of inbreeding, that depending on the species 

can take years to produce.  Maintaining the large number of individuals required for an 

effective analysis is also expensive, time-consuming and labour intensive.  Furthermore, 

mapping populations are derived from the genetic hybridization of two parental 

genotypes with an alternative trait of interest, which limits variation to that contained 

within the two parents.  This represents a tiny amount of the variation contained within 

ex situ genebanks and typical germplasm collections.  When considering the significant 
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expenditures in time, cost and resources required by using LM methods, strategies that 

utilize genebank resources directly are comparably highly effective.  

 A key WGS-BSA result here was the mapping of the chromosome 6 region BraA06, 

using the wild species accession EH_25 (tested independently with both AcBj12 and 

AcBjDC) and the landrace EH_5.  These highly significant QTLs, particularly in EH_25 

indicate a single major effect resistance locus, confined to a 2.93 Mb window.  This result 

was particularly distinguished by repeatedly mapping the BraA06 region with a total of 

four independent sources, including: EH_25 GBS-mapping raSNPs, the EH_25 AcBj12 QTL 

(EH_25_12.A06), the EH_25 AcBjDC QTL (EH_25_DC.A06) and the EH_5 AcBj12 QTL 

(EH_5.A06).  Firstly, this provided validation of the EH_25 raSNPs and to a limited extent 

the GBS-mapping method.  Secondly, mapping the same locus using both race 2 isolates 

strongly implies that a single major resistance gene controls resistance to both isolates.  

Finally, mapping the same locus using the advanced cultivar EH_5 is suggestive that this 

resistance allele is conserved between both accessions.  This is supported by their shared 

ancestry as demonstrated from the neighbor joining tree in Figure 2.12, as well as their 

relatively close geographic origins (EH_5 from Italy and EH_25 from Algeria). 

 Annotated R-genes within the cumulative BraA06 window highlight a number of 

candidate WRR genes, including the largest cluster of coiled-coil NLRs (CNL) in the B. rapa 

genome.  These five CNLs, five RLKs and three other R-genes in this region are all strong 

resistance candidates, with bulked WGS data only able to rule out BraA06g001690 as 

monomorphic.  By using a combination of automatedly searching for highly associated 

SNPs (autoSNP), as well as visual assessment of sequence files in IGV, the CNL 

BraA06g003420 emerged as a strong candidate.  The three non-synonymous SNPs 

displayed in Figure 2.21 represent the most distinct dominant allele frequencies 

(homozygous susceptible vs heterozygous resistant) of any SNPs in BraA06 R-genes.  

Conservation of these markers in the same distinct ratios in both accessions lends support 

to BraA06g003420 being a functional WRR gene.  

 The other major QTLs on chromosome 2 (EH_61.A02 in EH_61 and EH_95.A02.2 

in EH_95) whose overlapping locus is termed here as BraA02, enabled a similar 

assessment for conserved R-gene SNPs in the region.  However, alleles for the eight 

BraA02 R-genes do not appear to be conserved between the two accessions.  The strength 

of SNP association in EH_61 is also not sufficient to distinguish any candidate genes for 
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this accession in the EH_61.A02 QTL.  For EH_95, only the EH_95 QTL EH_95.A02.2 

showed allelic associations strong enough to be detected with either the automated 

method or visually in IGV.  The EH_95.A02.2 R-genes displaying particularly strong 

associations include: BraA02g032840 - TNL, BraA02g032850 - CT, BraA02g032860 - N, 

BraA02g032880 - NL and BraA02g032890 - TNL.  This 28.8 kb region, which lies 

approximately between positions 22679826 and 22708626 has distinct SNP associations 

to phenotype relative to anything further out, making these R-genes of particular interest. 

Furthermore, the orthologue of the TNL gene BraA02g032840 is At5g46270, which has 

been identified as the WRR gene WRR8 in the Arabidopsis background Sf-2 and confers 

resistance to the race 2 isolate Ac2v.  Subsequent transformation of the WRR8 allele into 

a susceptible B. juncea background however did not produce Ac2v resistance and it is 

speculated that WRR8 resistance in Arabidopsis involves a guardee that is present in 

Arabidopsis but not in Brassica spp. However, WRR8 remains untested in a B. rapa 

background.  

 Complimenting WGS-BSA mapping with R-gene annotation (DRAGO 2 software) 

and raSNP analysis proved to be an effective way to scrutinise mapped QTL regions for 

candidate genes.  The autoSNP method for example was able to identify some of the most 

highly associated R-genes in these datasets, such as BraA02g032890 in EH_95 and 

BraA06g003420 in EH_5 and EH_25.  However, scrutiny of QTLs regions using bulked WGS 

datasets is limited in terms of what can be inferred about candidate genes.  This is because 

bulk samples represent a combined or ‘averaged’ recombination window where any 

polymorphism linked to the functional gene shows a degree of allelic bias towards 

phenotype.  The extent of any marker association is directly proportional to distance from 

the functional gene, with those in close proximity showing higher associations.  Whilst this 

regional association provides the necessary signal required to generate QTL intervals it 

hinders identification of any single candidate gene.  The tendency of major R-gene families 

such as TNL and CNL receptor genes to cluster in the genome further hampers efforts to 

distinguish individual candidates.  

 Whilst the average resolution of QTLs mapped here is relatively high (average 

physical interval size of 2.44 Mb), it is not possible to refine them further without design 

of new experiments.  Primarily, this would require screening individual recombinants 

using markers obtained from the R-genes located within mapped QTLs in a classic LM 
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experiment.  Candidate genes would then be retained or excluded based on their 

segregation with phenotype.  This highlights a major benefit of using WGS datasets as 

opposed to standard marker technologies, where the abundance of markers obtained 

(particularly those within R-genes) can then be utilised for fine-mapping experiments.  

Effective LM depends on not only the abundance of available markers however but also 

on the availability of recombinant individuals (Cantor, 2018). This is potentially a limiting 

factor when using packets of genebank seed, which here weigh approximately 0.5 grams 

and supplying approximately 200 – 400 Brassica seeds.  Where stocks are limited crosses 

would need to be made to generate necessary F2 segregants.  In this instance, the broadly 

susceptible and rapid cycling B. rapa line R-O-18 would provide a suitable parent for 

crossing resistant material to.  An alternative approach to fine mapping would be to clone 

candidate WRR alleles into a susceptible background for functional testing.  Availability of 

the broadly susceptible Arabidopsis background MAGIC-MAGIC, as well as relatively 

simplistic modern cloning systems such as Golden Gate (Engler et al., 2008) and USER 

protocols (Geu-Flores et al., 2007) makes direct testing of alleles a tempting option here 

over further fine mapping.   

 Obtaining the F1 resistance phenotype for screened genebank accessions would 

be recommended for future work, with the suggestion being to generate them alongside 

the WGS-BSA experiment. The QTLseqr method (Mansfeld & Grumet, 2018) does not 

differentiate between dominant and recessive resistance and knowledge of this would 

determine the relevant raSNP ratios to screen for, as well as the classes of genes assessed 

within QTLs.  As the first test of this method directly applied to genebank material, analysis 

of QTL regions here focused on major effect dominant resistance genes, though it is 

possible that some of the mapped WRR loci here could be recessive.  As recessive 

resistances are a vital source of both broad spectrum and durable resistance it is 

important that future work using this method accounts for both types.  If prioritising 

recessive resistance, one would need to perform initial crosses (using a broadly 

susceptible parent) with a selection of genebank accessions to identify recessive 

resistance from F1 progeny, selecting only those with a susceptible phenotype for bulk 

production and mapping.  

The use of the BjuWRR1 resistance breaking isolate AcBjDC here for mapping WRR 

in wild species accession EH_25 provides an important demonstration of employing a 
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virulent isolate to identify the next ‘best’ resistance genes. As recently demonstrated by 

Dev et al. (2020), isolates have already been identified in India that can overcome 

BjuWRR1 resistance. If BjuWRR1 is to contribute to durable white rust resistance in Indian 

oilseed crops, then it is imperative that new resistance genes controlling Donskaja-

virulent pathotypes are identified and combined alongside BjuWRR1 for targeted 

deployment within commercial B. juncea cultivars.  This can only be achieved using 

resistance breaking isolates to screen material with.  Consequently, the isolation of the 

EH_25_DC.A06 R-allele for deployment alongside BjuWRR1 in B. juncea crop varieties 

would pre-emptively provide targeted resistance against emerging virulent pathotypes. 

Alternatively, introgression of BjuWRR1 by itself would likely squander the potential 

benefits of the R-gene by increasing the prevalence of adapted pathotypes. 

To conclude, the application of WGS-BSA QTL-seq methods using undeveloped 

genebank germplasm was successful in revealing multiple WRR loci in a broad range of B. 

rapa accessions including advanced cultivars, a landrace and a wild species.  The simplicity 

of the technique, as well as savings in time and expenses gained when compared to 

traditional LM methods enabled multiple accessions to be processed in parallel.  This was 

achieved in a time span of approximately five months, a significant improvement on the 

five to six years required to develop a standard mapping population from a single bi-

parental cross.  Mapping in the diploid background of B. rapa, as opposed to the 

potentially recalcitrant tetraploid genome of B. juncea, facilitated identification of distinct 

WRR loci.  This extends the potential benefits of these identified loci to a total of three 

globally important Brassica crop species, including B. rapa (AA), B. juncea (AABB) and B. 

napus (AACC).  Importantly, these results demonstrate a more effective use of genebank 

resources for rapid mapping of WRR loci that may directly benefit sustainable oilseed 

mustard production in India.  
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3.1  INTRODUCTION 
 
Recessive disease resistance plays an important role in crop protection as it can provide 

both broad-spectrum and durable disease control.  The Mlo gene in barley is an exemplary 

demonstration of this, where a recessive mutant found seven decades ago has since 

maintained field resistance against all races of powdery mildew (Jørgensen, 1992).  This 

first example of recessive resistance was described by Roland Biffen (1907) as an early 

application of genetics following rediscovery of Gregor Mendel’s seminal work in the 

1860s.  Biffen investigated inheritance of a recessive allele for yellow rust resistance in 

wheat, which he then deployed in varieties that provided durable disease control.  

Similarly, Norman Borlaug deployed recessive stem rust resistance (Sr2 locus) to breed 

durable wheat varieties as part of the Green Revolution in Mexico (Spielmeyer et al., 2003; 

Zeyen et al., 2002).  The molecular mechanisms of susceptibility genes (S-genes) has 

emerged as a hot topic since cloning of the barley mlo gene (Büschges et al., 1997), and 

seminal research in Arabidopsis thaliana which led to pmr6 encoding a pectate lysase-like 

gene for susceptibility to powdery mildew (Vogel et al., 2002), and dmr6 encoding a novel 

oxygenase for susceptibility to downy mildew (Van Damme et al., 2008). 

 S-genes are now established as any host gene that is exploited by pathogens to 

facilitate the infection process.  Since the earlier discoveries, numerous S-genes have been 

identified from a range of crop species, which are well documented in the review by van 

Schie & Takken (2014).  Molecular mechanisms by which S-genes facilitate pathogenesis 

are diverse but share general features:  1) basic compatibility which the pathogen requires 

to initiate penetration; and 2) negative regulation of host immune signals to sustain 

growth and proliferation of the pathogen without detection by the host.  Mutational 

disruption of S-genes in commercial crops is increasingly a key focus for resistance 

breeding and are ideal targets for loss-of-function mutation using gene-editing 

technology.  However, as S-genes typically have an established evolutionary role in 

maintaining plant functions, loss-of-function mutants require careful monitoring for 

detrimental secondary effects on host fitness (e.g., cell death or lesion mimic 

phenotypes). 

 Advances in genome editing technologies such as CRISPR-Cas are making it 

increasingly feasible to make precise alterations to DNA sequence, and as such are 
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heralded as a vital new tool within crop sciences.  Application so far has enhanced both 

understanding and application of major agricultural traits such as yield, biotic and abiotic 

stress management (Yi Zhang et al., 2019).  Most of the applications to date have been 

considered as ‘proof-of-concept’ within a particular plant species and have focused on 

knocking out one or several genes with known functions.  Disease resistance has become 

an obvious targetable trait for the use of CRISPR loss-of-function experiments (Table 3.1).  

Firstly, because scientific understanding of specific pathosystems and their molecular 

mechanisms is sufficiently advanced to allow selection of the most likely gene candidates 

for assessment.  Secondly, disease resistance is often controlled by the action of single, 

major-effect genes whose modification results in a distinct ‘all-or-nothing’ alteration to 

phenotype.  This is generally easier to process than other traits such as abiotic stress 

tolerance, which are frequently under control of numerous genes, each providing 

incremental effects to phenotype.  And thirdly, commercial advances in disease resistant 

crops are possible through targeted mutagenesis of S-genes, which is the most widely 

established function of CRISPR/Cas technology to date.  

Previous PhD research (Fairhead, 2016) undertook mapping of a major effect 

recessive white rust resistance (WRR) locus in Brassica oleracea, screened using an isolate 

of A. candida race 9 (AcBoWells).  The resistant parent EBH527 is a doubled haploid 

developed in an earlier DEFRA funded project (Holub, 2002) and was characterised for 

complete resistance to 18 isolates of A. candida race 9 collected from across the B. 

oleracea growing regions of the UK.  This is the first known example of recessive WRR to 

be mapped in B. oleracea and is a potentially valuable source of broad-spectrum 

resistance for use as a future control of white rust in vegetable and oilseed Brassica crops. 

A recombinant inbred mapping (RIL) population produced from the biparental 

cross of susceptible parent A12DH and EBH527 was used to map the recessive WRR locus.  

Genotyping-by-sequencing (GBS) marker technology (Elshire et al., 2011) enabled linkage 

mapping in the F5 generation of a 1.2 Mb map interval on chromosome 2 designated Bo-

ACA2 (Fairhead, 2016).  An 18 kb interval (termed ACA2) was defined using a combination 

of markers generated from R-gene enrichment sequencing (RenSeq, (Jupe et al., 2013)) 

and reference-based markers developed from other genes within the Bo-ACA2 locus.  The 

interval spans four candidate genes, including three that were previously shown via 

Sanger sequence to be monomorphic (Bo2g016510, Bo2g016500 and Bo2g016490) and 
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one (Bo2g016480) that contains a single SNP in the first exon that co-segregates with 

phenotype in all recombinant individuals tested.   

 

Table 3.1.  Susceptibility genes targeted using CRISPR/Cas gene-editing for engineered disease resistance. 
References were predominantly sourced from reviews by Zaidi et al. (2018) and Zhang et al. (2019). 
Abbreviations include; TG = contains transgene, TGF = transgene free, PM = powdery mildew.  
 

Plant  S gene target  System Targeted pathogen/disease Result Ref 

Rice  OsERF922  TGF Rice blast Enhanced rice blast 

resistance 

(F. Wang et al., 2016) 

Tomato SIMlo1 TGF PM Resistance to PM (Nekrasov et al., 

2017) 

Arabidopsis eIF4E TGF TuMV Resistance to TuMV (Pyott et al., 2016) 

Cucumber eIF4E TGF CVYV, ZYMV and PRSMV 

(virus) 

Broad resistance to 

specified viruses 

(Chandrasekaran et 

al., 2016) 

Grape MLO-7 TGF PM Enhanced PM 

resistance 

(Malnoy et al., 2016) 

Apple DIPM-1, DIPM-

2, and DIPM-4 

TGF Fire blight (Erwinia 

amylovora) 

Enhanced Fire blight 

resistance 

(Malnoy et al., 2016) 

Tomato  SlJAZ2 TG Bacterial spec Bacterial spec 

resistance 

(Ortigosa et al., 2019) 

Grapefruit  CsLOB1 

promoter 

TG Citrus canker Alleviated citrus 

canker 

(Jia et al., 2016) 

Grapefruit  CsLOB1  TG Citrus canker Citrus canker 

resistance 

(Jia et al., 2017) 

Orange  CsLOB1 

promoter 

TG Citrus canker Citrus canker 

resistance 

(Peng et al., 2017) 

Wheat  EDR1 TG PM Powdery mildew 

resistance 

(Y. Wang et al., 2014) 

Wheat  TaMLO  TG PM Resistance to PM (Y. Wang et al., 2014) 

Wheat  TaEDR1  TG PM Resistance to PM (Yunwei Zhang et al., 

2017) 

Rice OsSWEET11, 

OsSWEET14 

TG Bacterial blight  Indels in promoter, 

resistance not 

confirmed 

(Jiang et al., 2013) 

Rice OsMPK5 TG Fungal (Magnaporthe 

grisea) and bacterial 

(Burkholderia glumae) 

pathogens 

Indels in promoter, 

resistance not 

confirmed 

(Xie & Yang, 2013) 
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Tomato DMR6  TG Pseudomonas syringae, 

Phytophthora capsici, and 

Xanthomonas spp. 

Broad spectrum 

resistance to specified 

bacterium 

(Paula de Toledo 

Thomazella et al., 

2016) 

 

Bo2g016480 encodes a GDSL-Lipase, a family of intracellular membrane-bound 

proteins that has been found to play a role in intracellular signalling and regulation of 

plant defences.  Examples of this include AtGLIP1 in Arabidopsis which modulates 

resistance to Alternaria brassicicola in association with ethylene signalling of systemic 

acquired resistance (SAR) (Kwon et al., 2009).  In rice (Oryza sativa), OsGLIP1 and OsGLIP2 

were identified as functional lipases whose function in lipid metabolism was shown as a 

negative modulator of host immune responses to bacterial blight caused by Xanthomonas 

oryzae pv. oryzae and rice blast caused by Magnaporthe oryzae (Gao et al., 2017).  As the 

obvious candidate dominant susceptibility factor, the A12DH Bo2g016480 allele provides 

an ideal target for a loss-of-function (knock-out) experiment to determine its role in host 

susceptibility to the race 9 A. candida isolate AcBoWells.   

 Interestingly, screening of ACA2 based markers on F2 individuals from the A12DH 

x EBH527 mapping population revealed a rare recombinant line (EH177) that exhibits 

complete resistance to AcBoWells yet contains the A12DH haplotype across the ACA2 

interval.  This prompted prediction of a dominant major effect R-gene that is expected to 

be tightly linked to ACA2.   

In the current study, investigation of the B. oleracea A12DH x EBH527 resistance 

is continued with two specific objectives:  1) CRISPR gene editing of the GDSL Lipase 

(Bo2g016480) to test whether loss-of-function mutation confers resistance to A. candida 

race 9; and 2) mapping of a dominant resistance locus using whole genome sequencing 

and bulked segregant analysis (WGS-BSA). 
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3.2  METHODS  

3.2.1  Objective 1.  CRISPR knock-out of candidate susceptibility gene Bo2g016480  

3.2.2  Design of CRIPSPR sgRNA baits.  Target sequences conforming to G(N)20GG for 

sgRNA bait design were identified on sense and antisense strands of the A12DHd 

Bo2g016480 allele first exon, using Geneious v10.2.3 (Kearse et al, 2012).  These were 

then assessed for potential off-target matches within the B. oleracea TO1000DH3 

reference assembly (Parkin et al., 2014) using BLAST searches (The Brassica Database. 

http://brassicadb.org/brad/blastPage.php).  Final targets were chosen based on their off-

target specificity as well as proximity to the start codon.  Two tandem pairs of sgRNAs 

were chosen to target the first exon (Table 3.2) and thereby maximise the chances of 

generating a successful edit (Figure 3.1).  To guaranty effective genotyping of the edits in 

downstream screening, suitable PCR primers were established prior to development of 

sgRNA constructs that cleanly amplify the edited region.  These were the forward primer 

Ed_F (5-TTTCTTGGACCACAAATACTTTGGTAATAT-3) and the reverse primer Ed_R (5-

TCAGAACAACTTGAGTTATTTCATTCTCAT-3).  

 

 

 

 

 

 

 

Construct sgRNA-1 sgRNA-2 

1991 GCGGTATCAACTAGAAGACCCGG GGAGACTCGCTCGTCGACAGTGG 

1992 GACCGGACACAACCAATGCTAGG GGAAAATCAATTCCATATGGTGG 

Table 3.2. Designed sgRNAs, split between the two constructs 1991 + 1992 that each target the first exon of 
ACA2 candidate gene Bo2g016480. The sgRNAs are attached to the Cas9 DNA cleaving enzyme to induce 
functional knockouts of the target recessive GDSL-Lipase Bo2g016480.  Black letters represent the spacer, which 
is complimentary to the target sequence.  Red letters represent the protospacer adjacent motif (PAM) which is 
required for binding of the Streptococcus pyogenes Cas9 endonuclease used here. 
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3.2.3  Vector construction.  CRISPR construct assembly was undertaken at the John Innes 

Centre in Norwich by the BRACT research facility.  To compile the binary plasmid vector, 

Golden Gate Modular Cloning toolkit (Engler et al., 2008) and Addgene assembly 

components were assembled as described in (Lawrenson et al., 2015).  The final pBRACT 

vector (sgRNABolC.GA4.a), containing 35 s tandem sgRNAs, a Cas9 expression cassette 

and a spectinomycin resistance cassette can be visualised in Figure 3.2.  The binary 

plasmid vector (sgRNABolC.GA4.a) is available online from the non-profit plasmid 

depository AddGene (https://www.addgene.org/browse/article/14759/). 

 

 

 

Figure 3.1.  Brassica oleracea gene model for Bo2g016480, which includes five exons as determined by genome 
annotation of the T01000 reference assembly.  The magnified lower portion displays the relative positions of sgRNA 
editing sites within exon 1, where 1991 and 1992 represent different binary constructs each containing two tandem 
sgRNAs (1 and 2 respectively).  

 

Figure 3.2.  The binary plasmid vector sgRNABolC.GA4.a delivered to the transformable Brassica oleracea 
background DH1012.  Transcription units were assembled into the binary plasmid backbone pAGM8031 using 
Golden Gate Modular Cloning.  The vector houses a spectinomycin resistance cassette consisting of the neomycin 
phosphotransferase coding sequence (nptII) driven by a 35 s promoter P-CaMV35S and terminated by T-AtNos; 
the Cas9 component is driven by a constitutive promoter from Cassava Vein Mosaic Virus (P-CsVMV) and a 
tandem pair of sgRNAs (assembled into two cassettes - 1991; sgRNA1 + sgRNA2; 1992; sgRNA1 + sgRNA2 
respectively) driven by an Arabidopsis U626 promoter (P-AtU626). 
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3.2.4  Brassica transformation.  The transformable B. oleracea line DH1012 was used as a 

background for editing of the A12DH Bo2g016480 allele.  This is a doubled haploid 

progeny from the Brassica oleracea ssp alboglabra (A12DHd) and B. oleracea ssp italica 

(GDDH33) mapping population (Bohuon et al, 1996) and is homozygous for the target 

allele.  Transformation of DH1012 was performed by the BRACT research facility using 

Agrobacterium tumefaciens mediated infection of four-day-old cotyledonary petioles 

according to methods developed by (Hundleby & Irwin, 2014).  The primary steps taken 

to maintain transformed juvenile plantlets can be seen in Figures 3.3 and 3.4, where 

explant transgenic shoots were isolated after three - four weeks of spectinomycin 

selection (15mg/l).  Transgenic T0 explants were screened for edits using DNA extraction 

and PCR amplification methods described by (Lawrenson et al., 2015) and target specific 

primers Ed_F and Ed_R.  Estimations of transgene insert copy number were determined 

for each explant using quantitative real-time PCR as described by (Weng et al., 2004).  
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3.2.5  Processing transformants.  A total of 96 T0 transformant explants, established on 

spectinomycin selective growth media were then taken to Wellesbourne Crop Centre for 

continued development.  Those showing elongated shoots were transferred to sterile 

peat plugs in magenta pots and kept in a Conviron growth cabinet at 20±2°C with a 10h 

photoperiod.  Once established, these were transplanted to Levington M2 compost and 

maintained in shaded propagators for the first week to acclimatise to natural light 

intensity and decreased humidity.  Adult plants producing buds were then sleeved with 

clear, perforated bags (Cryovac (UK) Ltd), and gently shaken daily to facilitate self-

pollination (Figure 3.5).  Pods were dried on the plants before being harvested and 

threshed for seed.  

Figure 3.3.  Explant isolation of four-day-old Brassica oleracea DH1012 seedlings from cotyledon petioles. 
A) The position where the petiole is exercised. B) Explant isolation. C) Cotyledonary petiole dipped into 
Agrobacterium suspension for transformation of the CRISPR/Cas9 t-DNA. D) Selection and maintenance 
of transformant explants on co-cultivation medium containing 15mg/l of selective antibiotic 
spectinomycin. 
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Figure 3.4.  Shoot isolation of CRISPR transformed plantletes.  A) Early formation of selection 
shoots after two weeks of maintenance on spectinomycin medium.  B) Callus formation and 
evident chlorosis of non-transformed tissue under spectinomycin selection. C) Established T0 
juvenile plantlets, grown on Gamborgs B5 medium with increased (50mg/l) concentrations of 
spectinomycin to minimise development of escapee shoots that could result in chimeric plants. 
D) Plants transferred to sterile peat plugs in magenta pots, hanving shown sufficient root and 
shoot growth. 
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3.2.6  Molecular genotyping of transformants.  To genotype transformant seedlings, a 

single 6 mm leaf disk punch of tissue was harvested from primary leaves for DNA 

extraction using the CTAB method (Doyle, 1991).  PCR amplification of an 820 bp product 

spanning the edited regions of Bo2g016480 was produced for all samples using the exon 

1 edit-spanning primers Ed_F and Ed_R.  Presence or absence of the transgene was 

established using Cas9 specific primers - forward primer CasF (5- 

CTGCGAGTGAACACGGAGATC -3) and reverse primer CasR (5-

AGAGAGTGTTTAGGAAGCACC-3).  PCR reactions were conducted using Phusion high-

fidelity DNA polymerase.  Reaction volumes of 25 ul were produced using 5 μl of 5 x GC 

buffer, 0.5 μl of 10 mM dNTPs, 1.25 μl of 10 μm forward and reverse primers, 1 μl of 

template (~20 ng/ μl), 15.75 μl nuclease-free water and 0.25 μl of DNA polymerase added 

last.  All reactions were prepared on ice.  PCR was performed using the standard 

touchdown program (Table 3.2).  A 3 μl sample of PCR product was added to 1 μl of loading 

dye for amplicon assessment using electrophoresis with a 1% agarose gel in Tris Borate 

buffer (TBE).  Where required, PCR products were purified using the QIAquick PCR 

Purification Kit according to protocol. 

 A 5 ul aliquot of purified PCR product and 5 ul of primer at a concentration of 

0.5mM was sent for Sanger sequencing through the LightRun service provided by GACT 

Biotech.  Sequence analysis was performed using Geneious v10.2.3 (Kearse et al., 2012).  

Trimmed reads were aligned to the DH1012 reference allele and visually inspected to 

detect polymorphisms.   

Figure 3.5.  Self-fertilisation of CRISPR edited T0 DH1012 lines in the glasshouse for production of T1 seed with 
the following genotype characteristics: 1) a stably inherited homozygous edit; 2) segregated loss of the 
transgene cassette. 
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Table 3.3.  Standard PCR program used for the amplification of the Bo2g016480 CRISPR/Cas9 edited region, 

as well as the Cas9 transgene. Where phases D = denaturation, A = annealing and E = extension.  

 

 Start (32 cycles) Finish 

D D A E E 

Temperature (°C) 98 98 60 72 72 

Time (minutes) 5.00 0.30 0.30 1.30 7.00 

 

 

3.2.7  Phenotypic assessment of confirmed edited lines.  Thirty T2 offspring from the 

advanced T1 line 3.1, which possesses a homozygous edit and no transgene were assessed 

for altered susceptibility to AcBoWells.  Unedited DH1012 was used as a susceptible 

control, and EH527 as a resistant control.  All seedlings were tested using the same 

method previously described for the maintenance of A. candida isolates. 

 

3.2.8  WGS-BSA, using segregating dominant resistance in recombinant EH177 (Objective 

2).  All methods applied in Objective 2, including production of EH177 phenotype bulks, 

WGS and BSA have been described already in Chapter 2 methods (Sections 2.2.3, 2.2.4, 

2.2.6 and 2.2.7). 
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3.3  RESULTS 
 
3.4  Objective 1.  CRISPR knock-out of candidate susceptibility gene Bo2g016480 

3.4.1  Management and selection of CRISPR edited transformants. In total, 96 T0 

transformant plants were provided by BRACT and taken for development at the University 

of Warwick Crop Centre.  Genotype data provided with the plants was assessed to identify 

22 individuals that contained distinct heterozygous edits.  Of these, ten plants contained 

edits from 1991 – sgRNA 1, three from 1991 – sgRNA 2, six from 1992 – sgRNA 1, and 

three from 1992 -sgRNA 2.  The remaining 74 plants contained transgenes though no edits 

were observed and the plants were subsequently discarded.  Of the 22 lines containing 

active edits, six were previously described by quantitative real-time PCR as containing 

single transgene inserts (Weng et al., 2004), four of which; 3.1, 8.2, 10.4 and 29.1 were 

advanced to the T1 generation.  Genotyping of the T1 offspring (24 individuals per line) 

revealed that only line 3.1, showed a 3:1 segregation ratio for presence/absence of the 

transgene, whilst the others showed patterns consistent with a >1 copy number.  

Of the T1 offspring from line 3.1 that lacked the transgene, only two plants were 

found to contain homozygous edits, found at the cut site of 1992- sgRNA 1.  In both cases, 

a single T insertion 66 nucleotides from the start codon of exon 1 generates a frame shift 

mutation.  This introduces a premature stop codon nine amino acids downstream from 

the edit, as seen in the ExPASy protein translation (Figure 3.8), resulting in a substantially 

truncated version of the DH1012 Bo2g016480 protein.  

 

 

 

Figure 3.6.  Sanger chromatogram showing the position of the initial heterozygous edit made by sgRNA-1 
(construct 1992) in the first exon of T0 transformant line 3.1.  This is evident by the 3’ introduction of mixed 
sequence template. 
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Figure 3.8.  Translation of the DH1012 Bo2g016480 first exon to amino acid sequence.  A) Complete first 
and second exons of the unedited DH1012 (A12DH) allele. B) Translation of the first exon for edited line 
3.1, where the single T (reverse transcribed here) insertion introduces a frame shift mutation which 
results in a downstream premature stop codon. 

Figure 3.7.  Chromatogram showing stable inheritance of a single homozygous T insertion (position 1433) 
in the transgene free T1 line 3.1.  The self-fertilised T2 offspring from this line then contain the fixed edited 
genotype required for the Bo2g016480 loss-of-function experiment.  
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3.4.2  Phenotypic assessment of CRISPR edited line 3.1 for altered susceptibility to race 9 

isolate AcBoWells.  If Bo2g016480 is a functional susceptibility gene in DH1012, then a 

homozygous knock-out mutation of the DH1012 allele is expected to confer resistance to 

A.  candida race 9 isolates.  A total of 30 T2 offspring from the homozygous edited (and 

transgene free) line 3.1 were assessed for reduced susceptibility to isolate AcBoWells, 

relative to control plants of wild-type DH1012.  The results in Figure 3.9 show that the 

knockout of the Bo2g016480 allele caused no difference to the susceptibility phenotype.  

Tested plants were genotyped and confirmed to contain the homozygous knockout, as 

well as no transgene.  All mutant seedlings were morphologically normal compared to 

wild-type, indicating that early development of DH1012 plants was not affected by the 

Bo2g016480 knockout.  

 

 

Figure 3.9.   Interaction phenotypes observed on edited DH1012 line 3.1 that contains a homozygous knock-
out of the candidate Bo2g016480 allele, when infected (ten days post inoculation) with the race 9 isolate 
AcBoWells (ten days post inoculation).  This is shown relative to the unedited DH1012 positive control and 
the EBH527 negative control. No alteration to susceptibility is found in edited plants, suggesting that 
Bo2g016480 is not the ACA2 recessive susceptibility gene.  
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3.4.3  WGS of parents EBH527 and A12DH for complete sequence capture of the ACA2 

locus.  To search for other possible causal mutations within the ACA2 18 kb locus, DNA 

from the resistant EBH527 and susceptible A12DHd parents were sent for WGS.  Illumina 

sequencing was performed at 30x sequencing coverage, generating a total of 19.9 Gb of 

data for EBH527 and 18 Gb for A12DH.  This equated to approximately 132 and 120 million 

paired-end reads respectively, which were quality assessed in FastQC (Andrews, 2010) 

prior to alignment to the B. oleracea TO1000DH3 reference assembly (Parkin et al., 2014).  

The outputted *.bam files were visualised in IGV (v2.5.3) across the chromosome 2 ACA2 

interval and all mutational differences between the two parents are reported in Table 3.4.  

Sequence coverage across the ACA2 interval was approximately 90% complete, with full 

coverage of the four ACA2 genes. 

 

Table 3.4.  Complete set of markers across the fine mapped 18 kb ACA2 interval, generated from WGS 
datasets of the Brassica oleracea resistant (EBH527) and susceptible (A12DH) parents.  Marker ID includes 
the chromosome number (C2) and physical position (bp). CDS, indicates weather the marker is within coding 
sequence of a gene, as opposed to intron or intergenic sequence. 

Marker ID  Type  CDS? Gene ID EBH527 A12DH Description 

C2_4846936 SNP Y Bo2g016480 A T Exon no. 5  

C2_4854033 INDEL N - TA insert T 106 bp 5’ of Bo2g016490 

C2_4854092 SNP N - A G 165 bp 5’ of Bo2g016490 

C2_4855140 SNP N - C T 1215 bp 5’ of 

Bo2g016490 

C2_4855544 SNP N - C A 1619 bp 5’ of 

Bo2g016490 

C2_4856205 SNP N - T C 2280 bp 5’ of 

Bo2g016490 

C2_4858031 SNP N - G C 1436 bp 5’ of 

Bo2g016500 

C2_4858972 SNP N - T C 496 bp 5’ of Bo2g016500 

C2_4859422 SNP N - C T 45 bp 5’ of Bo2g016500 

C2_4863827 SNP Y Bo2g016510 C T Within single intron 

C2_4863839 SNP Y Bo2g016510 C T Within single intron 

C2_4864181 SNP Y Bo2g016510 A C Within single intron 

 

The ACA2 interval contains three other possible candidate genes; Bo2g016490 (an 

ethylene-responsive transcription factor), Bo2g016500 (a protein of unknown function) 
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and Bo2g016510 (a G-type lectin S-receptor-like serine/threonine-protein kinase).  Only 

Bo2g016510 (which was previously reported to be monomorphic) was found to contain 

mutational differences between the parents.  However, the three SNPs within CDS all 

result in synonymous bp changes with no predicted alteration to amino acid sequence of 

the polypeptide. Both Bo2g016490 and Bo2g016500 are confirmed here as 

monomorphic, though each gene contains mutations within 5’ UTR sequences.  Within 

200 bp of the start codon of Bo2g016490, EBH527 contains a 2 bp TA insertion at position 

4854033 and a SNP at position 4854092.  Whereas Bo2g016500 has two SNPs, 46 bp and 

496 bp 5’ of the start codon, at positions 4859422 and 4858972, respectively.  

 

3.4.4 Development of ACA2 markers, using recombinant inbred line RIL_59 to assess 

remaining candidate genes.  To further narrow the 18kb ACA2 interval and potentially rule 

out any of the other three remaining candidate genes (Bo2g016490, Bo2g016500, 

Bo2g016510), it is necessary to screen internal ACA2 markers (Table 3.4) using individual 

lines that are still segregating within the locus.  Previous analysis by Dr Fairhead identified 

the resistant F5 RIL accession RIL_59 (A12DH x 527EBH) as one such recombinant using 

flanking markers that originally determined the physical mapped ACA2 interval.  Here, 

three pairs of primers were designed from the parent WGS datasets, to amplify internal 

ACA2 markers across the interval that distinguish each of the three candidate genes (see 

Table 3.5).  This was undertaken using accession RIL_59, as well as the two parents.  

 

Table 3.5.  Primers for amplifying markers developed within the ACA2 mapping interval, used to genotype 
the three-remaining candidate ACA2 genes in recombinant accession RIL_59 as well as parents A12DH and 
EBH527. 

Amplicon ID Primers Markers 
amplified 

Closest gene Clean 
amplification? 

Amp_490 5-CGTTGCCTAACTCCACGGTA-3 
5-GTTTGCCAGGGCATCCTCTA-3 

C2_4854033 
C2_4854092 

Bo2g016490 
(Intragenic) 

Yes 

Amp_500 5-TCTGTCGTCGCCATTACTGT-3 C2_4858972 Bo2g016500 Yes 
 5-TCTCAAGCTGCTGACTTGTC-3 C2_4859422 (Intragenic)  
Amp_510 5-GTTGATCTCCTCGGGTGG-3 

5-TCAGTACTCCGCTTGACCAG-3 
C2_4863827 
C2_4863839 
C2_4864181 

Bo2g016510 
(CDS) 

Only in A12DH 

 

 

Genotype results from this experiment were unable to rule out any of the three 

remaining candidates however, as RIL_59 was found to contain a resistant (EBH527) 
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haplotype across the markers that distinguish Bo2g016490 (Amp_490) and Bo2g016500 

(Amp_500) (Figure 3.10).  Whilst the marker inside of Bo2g016510 (Amp_510) failed to 

cleanly amplify and so this candidate cannot yet be ruled out either.  Ultimately, with no 

other ACA2 recombinants available, independent CRISPR knock-outs of the three 

candidate genes would be the next requirement for identifying the causal gene.  

 

 

 

Figure 3.10.  Summary of interaction phenotype and genotype information for key recombinants from previous 
mapping of the ACA2 locus with recombinant inbred lines (RIL) on chromosome 2 of Brassica oleracea (Fairhead, 
2016).  The F5 RIL population was produced from a cross of A12DH (susceptible) and EBH527 (resistant).  New 
genotype data is shown within the black outlined block.  Internal ACA2 markers were identified from WGS of the 
two parents and three PCR amplicons (Amp_490, Amp_500 and Amp_510) were produced that span several of 
these markers.  Marker positions relative to the three remaining candidate genes (Bo2g016490, Bo2g016500 
and Bo2g016510) can be inferred from Table 3.4.  These were screened on RIL_59, which represents the only 
RIL available that recombines inside this region where haplotype data could possibly rule out remaining 
candidates.  The remaining RILs documented here (RIL_49, 38 and 22) were genotyped in the previous study 
with ACA2 flanking markers and have been included to clarify genotype x phenotype relationships across the 
window.  Results show however that neither Bo2g016490 or Bo2g016500 can be ruled out as RIL_59 contains 
the EH527 haplotype across this region.  Bo2g016510 cannot be ruled out because marker amplification failed 
to produce quality sequence data for assessment of genotype.  Phenotypes were determined by inoculation of 
inbreds with a race 9 isolate of Albugo candida (AcBoWells) and assessment after ten days.  For genotype scores: 
AA indicates homozygous for an EBH527 allele; BB indicates homozygous for an A12DH allele; and AB indicates 
heterozygous alleles.  
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3.5  Objective 2.  Mapping a dominant white rust resistance in Brassica 

oleracea using WGS-BSA. 

3.5.1  Inheritance of white rust resistance in Brassica oleracea line EH177.  The F2 

recombinant line EH177 (A12DH x EBH527) is predicted to contain a dominant resistance 

gene that is tightly linked to ACA2.  Inheritance of this resistance was assessed in self-

fertilised F3 and F4 generations.  Segregation for resistance in the F3 was found in a ratio of 

289 resistant to 161 susceptible individuals, confirming dominance of the trait as well as 

heterozygosity of the F2 parent plant.  Two distinct phenotypes were observed:   a 

resistant class showing minor necrotic cell death with no sporulation, and a susceptible 

class exhibiting similar levels of sporulation to the susceptible A12DH parent (Figure 3.11).  

No intermediate phenotype was observed.  Chi-squared analysis (χ2) of the F3 segregation 

ratio was tested for multiple gene models and an expected 2:1 ratio of resistant to 

susceptible provided the best fit for the observed data (χ2 = 1.21, p = 0.3 < p < 0.2), 

suggesting the presence of a lethal allele where homozygous recessive individuals do not 

survive embryonic development.  However, phenotypic assessment of F3 seedlings was 

made during winter in a polytunnel, which had a significant impact on seedling survival 

and the ability to decern clear symptoms.  

To produce tissue bulks from distinct phenotypes the 50 F3 lines were progeny 

tested to identify lines that were either fixed or still segregating for resistance, with 12 

individuals sown and assessed per line.  Of these, 13 lines were uniformly resistant and 

nine were uniformly susceptible, indicating homozygosity for either the resistant or 

susceptibility allele, respectively.  The remaining 28 lines were still segregating 

(heterozygous).  If considered in the context of a dominant single gene model (with 41 

lines AA or AB, vs 9 lines BB), this generates an χ2 value of 1.3, and p = 0.1 < p < 0.3, with 

observed data meeting the expectations for this model and suggesting action of a single 

dominant gene.  
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3.5.2  Referenced-based SNP identification from Whole Genome Sequencing of tissue 

bulks.  Whole genome sequences (WGS) of pooled DNAs were generated using paired end 

(150 bp) sequencing on an Illumina Novaseq6000 platform by Novogene UK.  Sequencing 

of the EH177 phenotype bulks (90x sequencing coverage) generated 120.9 and 124.5 M 

PE reads for the resistant and susceptible samples respectively.  Low quality reads and 

adapters were removed before checking read quality using FASTQC (Andrews, 2010).  

High quality sequences were aligned and mapped to the B. oleracea TO1000DH3 

reference assembly using BWA (v0.7.12, (Li & Durbin, 2009)) with default parameters.  

The sequence reads of the tissue bulks provided a combined average 57.3x coverage of 

the B. oleracea genome, with an average of 87.8% breadth of the reference genome 

covered by mapped reads.  The average alignment rate of reads to the reference assembly 

was 85.15%, with an average of 77.12% mapping in pairs.  

The GATK (Genome Analysis Toolkit) pipeline (Figure 2.1) was followed for 

reference-based SNP identification, with the application of HaplotypeCaller for calling 

SNPs in each bulk (Poplin et al., 2017).  These were then merged for the resistant and 

Figure 3.11.  Interaction phenotypes observed on the upper (top row) and lower (bottom row) cotyledon 
surfaces of segregating Brassica oleracea EH177 individuals following inoculation with a race 9 isolate of 
AcBoWells.  Susceptibility (left) is comparable to that seen in the A12DH parent, and resistance (right) 
presents minor necrosis on the upper leaf surface.  
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susceptible sample, with a combined total of 3649273 SNPs produced across the nine B. 

oleracea chromosomes.  

 

3.5.3 WGS based BSA mapping of a major locus for white rust resistance in B. oleracea 

line EH177.   For QTL mapping of loci affecting EH177 resistance, WGS-BSA was performed 

using QTLseqr (Mansfeld & Grumet, 2018), and the G’ approach (Magwene et al., 2011).  

Firstly, consolidated resistant and susceptible SNPs were passed into QTLseqr for 

continued filtering of low confidence markers.  This was performed where read depth was 

< 40, where reference allele frequency was < 0.3 (removing SNPs that are over- or under-

represented in both bulks), and where a GATK GQ score was < 99.  Reads with large 

discrepancies between the bulks were removed (> 100 depth difference), which could 

otherwise affect calculation of the G statistic.  From the original SNP number of 3649273, 

3391638 were removed to leave 257635.  Filtering thresholds were established by 

plotting histograms based on SNP quality parameters (Figure 3.12).  
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Figure 3.12.  Quality filtering of WGS SNPs, based histogram distributions of raw read metrics that include:  
A) total read depth, before and after filtering reads < 40;  B) Total reference allele frequency, before and 
after filtering reads < 0.3;  C) SNP-index data before and after applying filtering steps. High-quality data 
should be approximately distributed around 0.5 in an F2 population, as observed post-filtering.  

 

A SNP index and G statistic was calculated for each individual SNP, as described by 

(Magwene et al., 2011).  The tricube smoothed delta SNP index and G value (G’ value) 

were then calculated within a window size spanning 1.0 Mb of genomic region and were 

plotted against all nine B. oleracea chromosomes (Figure 3.14).  The G’ statistic functions 

as a weighted moving average across neighbouring SNPs, accounting for linkage 

disequilibrium (LD), whilst also minimising noise attributed to SNP calling errors (Mansfeld 

& Grumet, 2018).  G’ values calculated for each SNP are weighted by physical distance to 

the focal SNP, decreasing in value as they get closer to the window edge.  Significance 

thresholds (p-values), and genome-wide Benjamini-Hochberg false discovery rate (FDR) 
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(Hochberg, 2016) adjusted p-values (q-values) were estimated from the null distribution 

of the G’, which assumes there is no QTL linked to the SNP (Figure 3.13).  The tricube 

smoothed G’ values from the analysis of EH177 bulked resistance showed significant G’ 

peaks on chromosomes C2 and C6, with peaks above the FDR (q) of 0.001, suggesting 

these regions most likely contain the loci for WRR in line EH177 (Figure 3.14).  These QTLs 

will be referred to as Bol_EH177_C2 (chromosome 2 QTL) and Bol_EH177_C6 

(chromosome 6 QTL) respectively.   

The negative direction of the delta SNP value for the Bol_EH177_C2 peak suggests 

that the association originates from the resistant bulk, whereas the Bol_EH177_C6 peak 

is ambiguous regarding which sample resistance originates from.  The genomic region 

covered by the Bol_EH177_C2 peak is approximately 3.14 Mb, whilst the peak of 

Bol_EH177_C6 covers 3.15 Mb (Table 3.6).  As predicted, the Bol_EH177_C2 peak is tightly 

linked to the ACA2 recessive locus, where the 3’ interval edge is only ~66 kb from the 

candidate Bo2g016480 gene.   

 

 

Figure 3.13.  Tricube smoothed G’ statistics, indicating a closer fit to the null distribution once low 
confidence SNPs have been removed.  These might otherwise have adversely effected calculation of p-
values which are estimated from the null distribution of G’. 
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Figure 3.14.  Quantitative trait loci (QTL) for white blister rust resistance in Brassica oleracea, shown by a G’ 
value plot.  Peaks are predominantly on chromosomes C2 and C6, identified in resistant line EH177 (A12DH 
x EBH527).  Distribution of the G’ value calculated with a 1-Mb sliding window using tricube smoothing 
kernel across the nine B. oleracea chromosomes based on the TO1000 genome assembly.  The red line 
denotes the significance threshold FDR = 0.001.  Genomic regions where the G’ crosses the threshold value 
are considered as significant.  Negative values in the delta SNP-index suggests that the allele contributing 
to the C2 (Bol_EH177_C2) peak is from the resistant bulk, whilst C6 (Bol_EH177_C6) is ambiguous.  
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Table 3.6.  Summary of the two QTL peaks (FDR = 0.001) on C2 and C6 from the G’ analysis of EH177 resistance.  QTL – ID. Chr – chromosome.  Start/End the bp position that 

passes the FDR threshold.  Length –physical distance of the genomic interval (bp).  peakDeltaSNP – the delta prime value at the peak summit.  maxGprime – G’ value at the 

peak summit.  posMaxGprime - the genomic position of the maximum G’ position in the QTL. meanPval – the average p-value in the region.  meanQval – the average adjusted 

p-value in the region. 

QTL Chr           Start  End  Length peakDeltaSNP maxGprime posMaxGprime meanPval meanQval 

Bol_EH177_C2 C2 1633149 4781105 3.14E+06 -0.215 25.624 3310173 8.76E-06 5.33E-04 

Bol_EH177_C6 C6 36666009 39817658 3.15E+06 -0.042 9.546 37952739 1.46E-05 9.70E-04 
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3.5.4  Candidate gene analysis of QTLs.  Gene annotation files for the B. oleracea TO1000 

reference show that the 3.1 Mb C2 interval Bol_EH177_C2 contains 771 genes in total.  

To identify candidate R-genes, Disease Resistance Analysis and Gene Orthology (DRAGO 

2) software was applied to annotate LRR, Kinase, NBS and TIR domains in the reference 

(Osuna-Cruz et al., 2018).  Here, we identified a cluster of 13 resistance associated genes 

within the EH177 C2 interval, comprised of ten NLR genes and three receptor-like kinases 

(RLKs).  When checking WGS across these genes, all except Bo2g011890 (monomorphic) 

were found to contain SNP differences within exons between the resistant and susceptible 

bulks.  The TNL genes Bo2g014340 and Bo2g016440 however lack coverage and therefore 

cannot be confirmed as polymorphic (Table 3.7).  Whilst the C6 QTL Bol_EH177_C6 

contains nine conventional resistance gene candidates; including two TNL genes, five RLKs 

and two coiled-coil kinases (CKs) (Table 3.8).  

Table 3.7.  Resistance genes (R-genes) within with the EH177 chromosome 2 QTL Bol_EH177_C2, as well as 

those close to the 3’ QTL edge proximate to ACA2.  These include the TNL genes (Bo2g016440 + 

Bo2g016470) which contain resistance-associated SNPs (raSNPs) and could under different BSA mapping 

parameters be included within the QTL.  No raSNPs are found downstream of Bo2g016470 (only the 

homozygous A12DH haplotype) suggesting this is the approximate cross-over position between A12DH x 

EBH527 in line EH177.  In the raSNP column MS refers to missing sequence.  

 

Gene ID In QTL? Type Start Pos. Length raSNP? 

Bo2g010410 Y TNL 2461583 3628 Y 

Bo2g010720 Y TNL 2631754 4028 Y 

Bo2g011890 Y RLK 3300854 1917 N 

Bo2g013170 Y RLK 4027039 2132 Y 

Bo2g013340 Y RLK 4120171 6262 Y 

Bo2g013810 Y TNL 4380651 5419 Y 

Bo2g013830 Y TNL 4389266 4134 Y 

Bo2g014060 Y TNL 4547657 5101 Y 

Bo2g014070 Y NL 4556225 4174 Y 

Bo2g014110 Y TNL 4576614 26454 Y 

Bo2g014320 Y TNL 4717537 9556 Y 

Bo2g014340 Y TNL 4739657 4070 MS 

Bo2g014350 Y TNL 4745390 4243 Y 

Bo2g016440 N TNL 4812074 4778 Y 

Bo2g016470 N TNL 4830258 12313 Y 

Bo2g016480 N LIP 4846722 1496 N 
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Bo2g016610 N CNL 4911474 3649 N 

Bo2g0EH17760 N TNL 4990764 2502 N 

 

Table 3.8.  R-genes within with the EH177 chromosome 6 QTL Bol_EH177_C6. 

 

Gene ID Type Start Pos. Length raSNP? 

Bo6g118660 RLK 37009978 3251 N 

Bo6g118790 RLK 37107159 4126 Y 

Bo6g119590 RLK 37475024 3542 Y 

Bo6g119760 RLK 37610630 3425 Y 

Bo6g119900 RLK 37685302 3035 Y 

Bo6g122440 CK 39098444 3360 Y 

Bo6g123720 TNL 39271601 3403 Y 

Bo6g123970 TNL 39416187 3787 Y 

Bo6g124030 CK 39438397 3887 N 

 

3.5.5  Assessment of the EH177 C2 QTL relative to the recessive ACA2 locus.  The discovery 

of EH177 resistance in a rare F2 recombinant, derived from the same mapping population 

(A12DH x EBH527) used to identify the recessive ACA2 locus, lead to the hypothesis that 

the two resistance loci were tightly linked.  WGS-BSA mapping of the EH177 resistance 

locus confirmed this to be the case, identifying a highly significant QTL on chromosome 2, 

designated Bol_EH177_C2.  The previously assessed recessive resistance candidate 

Bo2g016480 lies approximately 65 kb from the closest EH177 QTL boundary.  To identify 

the approximate physical recombination position whereby EH177 resistance segregated 

from ACA2 resistance, GBS markers derived from the parents A12DH and EBH527 were 

assessed in IGV (v2.5.3) across the combined interval.  This was located to a 2.79 kb region 

between markers at positions 4567864 and 4846936, where if moving 3’ to 5’, allele 

frequencies switch from homozygous for the A12DH parent to homozygous for the 

EBH527 parent, before resuming a state of increasing heterozygosity.  A visual assessment 

of WGS SNPs was conducted in IGV to locate the approximate position between these two 

markers. A ~5 kb region, between the recessive GDSL-lipase ACA2 candidate Bo2g016480 

and its 5’ neighbour Bo2g016470 was identified as the site of recombination (see Figure 

3.15).
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A 

B 
Figure 3.15.  Physical map highlighting the tight-linkage of the dominant Bol_EH177_C2 
locus relative to the recessive resistance in the ACA2 locus.  A) shows the relative 
chromosome 2 positions of the WGS-BSA mapped EH177 dominant resistance QTL 
Bol_EH177_C2 (top red bar) and the recessive resistance interval ACA2 (top small green 
bar).  The Bol_EH177_C2 region interval spans 3.14 Mb and includes a cluster of nine TNL 
resistance genes (stars), and three RLK genes (triangles).  The coloured bar at beneath the 
map represents the relative allele frequencies of GBS markers derived from the parents 
A12DH + EBH527.  A score of 1 (red) represents homozygosity of the A12DH susceptible 
parent whilst 0 (green) shows homozygosity of the EBH527 resistant parent, with 
intermediate frequencies/colours denoting heterozygosity between the two.  The switch 
in allele frequencies (representing recombination) occurs between Bo2g016480 and 
Bo2g016470.  B) A magnified image of the crossover region.  Bo2g016610 (the square) is 
a CNL resistance gene and B02g016480 (a circle) is the GDSL lipase ACA2 resistance 
candidate that was previously assessed for loss-of-function.  
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3.6  DISCUSSION  
 
3.6.1  Objective 1 discussion.  Previous mapping of broad-spectrum white rust resistance 

to A. candida race 9 at the ACA2 locus predicted that a gene encoding a GDSL-lipase 

(Bo2g016480) was the functional determinant (Fairhead, 2016).  The recessive nature of 

the ACA2 resistance implies that such a gene acts as a susceptibility factor, where both 

copies of the A12DHd allele are required by the pathogen to enable infection.  To confirm 

the role of the candidate GDSL lipase in ACA2 resistance it was necessary therefore to 

knock-out function of the candidate susceptibility allele, with the expectation it would 

induce a EBH527 resistant phenotype.  The CRISPR/Cas9 Bo2g016480 knockout produced 

here contains a frame shift mutation in the first exon which is predicted to induce a heavily 

truncated and non-functional GDSL-lipase allele.  However, when tested, no alteration to 

the susceptibility phenotype was observed between the Bo2g016480 mutants and the 

unedited DH1012 background (which contains the A12DH Bo2g016480 allele), suggesting 

that Bo2g016480 is either not the causal gene or that its function is somehow dependent 

on genetic background (e.g., heterozygosity of another gene).  

This was an unexpected result at the time in the light of previously established 

genetic evidence suggesting that the three other ACA2 candidates (Bo2g016490, 

Bo2g016500 and Bo2g016510) appeared to be monomorphic.  To advance the 

investigation of the ACA2 locus, it was deemed necessary to obtain complete sequence 

across the mapped interval for both A12DHd and EBH527 parents, to detail all available 

mutations in both coding and non-coding regions.  The acquired datasets revealed a 

number of interesting mutations, though ultimately ones that when tested for co-

segregation with phenotype with the ACA2 recombining line RIL_59 cannot rule out any 

of the three remaining genes as potential candidates.  Here, each remaining candidate 

will be considered based upon what is currently known about their function within plants, 

as well as their established mutational evidence. 

Candidate gene Bo2g016490 is an ethylene responsive transcription factor (ERF), 

belonging to a family of important stress response regulators in plants that act as a key 

regulatory hub for biotic and abiotic stress responses (Müller & Munné-Bosch, 2015).  

ERFs represent one of the largest subfamilies of plant transcription factors that are 

characterised by a single, highly conserved AP2 domain.  They act by binding to 
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downstream regulatory elements that include cis-acting AGCCGCC motifs (the GCC box) 

to modulate expression of other stress response genes.  ERFs have been implicated as a 

‘double-edged sword’ in plant defences, in some instances activating stress responses 

whilst in others acting as repressors (Thirugnanasambantham et al., 2015).  For example, 

in Arabidopsis the ERF5 protein is able to increase resistance to the bacterial 

pathogen Pseudomonas syringae pv. tomato via salicylic acid signalling pathways, whilst 

simultaneously enhancing susceptibility to the fungal pathogen Alternaria brassicicola via 

repression of chitin-mediated defence responses (Son et al., 2012).  An example within 

Brassicas is BrERF11 from B. rapa which provides enhanced tolerance to Ralstonia 

solanacearum infection when constitutively expressed in transgenic tobacco plants (Lai et 

al., 2013).  This induces immune responses which include HR, oxidative bursts and 

upregulation of the pyhtohormones jasmonic acid (JA), salicylic acid (SA) and ethylene (ET) 

responses in a manner that suggests BrERF11 is involved in PAMP or ETI.  

 Characterisation of the candidate gene Bo2g016500 is hampered by lack of 

annotation, though its homologue in Arabidopsis (AT5G18460) is described as a carboxyl-

terminal peptidase (CTP).  CTPs are ubiquitous in all three domains of life and have been 

associated with virulence in bacteria as a requirement for function of the type III secretion 

system.  In plants, these protease enzymes are typically located within chloroplasts and 

are involved in C-terminal processing of the chloroplastic D1 protein of photosystem II. 

Proteolytic processing by Arabidopsis CTPA3 for example facilitates light-driven assembly 

of the tetranuclear manganese cluster and has been described on UniProt (UniProt 

Consortium, 2021) as necessary for photosynthetic water oxidation.  

Both Bo2g016490 and Bo2g016500 were confirmed by WGS to be monomorphic, 

though each contains EBH527 mutations within upstream UTRs, which could be affecting 

promoter activity.  The role of promoter organisation in plants for determining 

transcriptional regulation of complex gene networks in response to pathogen invasions is 

becoming increasingly well documented, particularly with regards to determining 

downstream immune responses (Smirnova & Kochetov, 2015).  Mutational disruption of 

host plant promoters can induce loss-of-function of S-genes, though documented 

examples seemingly all involve induced resistance to bacterial pathogen Xanthamonas 

spp., where transcription activator-like (TAL) effectors are prevented from recognizing 

their effector binding element (EBE) targets within promoter regions.  Examples of this 
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includes the Lateral Organ Boundaries Domain gene CsLOB1 in grapefruit variety Duncan, 

where promoter disruption using CRISPR-Cas9 induces resistance to X. citri ssp. citri (Xcc).  

Mutational knockouts of the OsSWEET14 S-gene promoter in rice also show subsequent 

resistance to bacterial blight (X. oryzae pv. oryzae) (Blanvillain-Baufumé et al., 2017).  

However, literature searches conducted here found no examples where S-gene promoter 

mutations determine resistance to other pathogen classes. 

The remaining candidate Bo2g016510 is a G-type lectin S-receptor-like 

serine/threonine-protein kinase (STPK), which are typically localised to the cell wall or 

extra cellular matrix (ECM).  This is the same class of R-gene represented by Pto which 

interacts with Pseudomonas syringae pv. Tomato effector AvrPto to confer resistance in 

tomatoes (Ronald et al., 1992).  STPK domains play a well-established role in plant 

immunity, facilitating signal transduction pathways involving phosphorylation cascades 

upon R-gene-mediated detection of the pathogen (X. Wang et al., 2013).  The 

Bo2g016510 homologue in Arabidopsis is At5g18470, a Curculin-like (mannose-binding) 

lectin family protein, involved in the specific recognition of mannose-containing glycans 

(Barre et al., 2019).  In pepper, transient expression of the homologue CaMBL1 has been 

found to induce accumulation of salicylic acid (SA), activating defence-related genes and 

triggering HR when tested with bacterial and fungal pathogen classes (Hwang & Hwang, 

2011).  Expression analysis in A. thaliana has also shown significant increases in At5g18470 

regulation after independent inoculation with the oomycete Phytophthora infestans 

(after six hours) as well as the fungus Erysiphe orontii (after five days) relative to water 

controls (Arabidopsis eFP browser 2.0).  At5g18470 was also listed as a significantly 

expressed gene in Arabidopsis (Col-0) when infected by the hemibiotrophic fungus 

Colletotrichum higginsianum (Hwang & Hwang, 2011).  

 The discovery from WGS collected here of three EBH527 SNP mutations within 

CDS of the single Bo2g016510 annotated intron highlighted it as a likely candidate, 

however each were found to be synonymous in their effect on amino acid composition in 

the translated protein.  The central dogma of biology (Crick, 1970),  traditionally considers 

synonymous codon changes to be ‘silent’ in their effects on protein function.  However, 

this viewpoint has changed significantly over the last decade in the light of new evidence.  

Evolutionary studies for example have shown synonymous mutations to be under 
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selection pressure, a finding that runs counter to the established idea that they have a 

neutral effect on organisms fitness (Plotkin & Kudla, 2011).   

A phenomenon called codon bias has been described whereby synonymous 

codons are utilised at different frequencies by translation machinery to regulate both the 

speed and extension length of the polypeptide chain (Sharp et al, 1993).  Positive selection 

can thus act on synonymous variants that increase translation efficiency in order to tailor 

optimal protein yield.  Codon bias is now recognised as critical for modulating gene 

expression and cellular function through impacts on RNA processing, protein translation 

and folding.  Results from human studies that utilise large GWAS datasets have attributed 

at least 50 human diseases to associations made with synonymous mutations (Sauna & 

Kimchi-Sarfaty, 2011).  In plants however, studies on the effects of non-neutral 

synonymous mutations with regards to disease resistance remains an understudied area 

of research.  

One can conclude that if ACA2 resistance is determined by one of the three 

remaining candidate genes then it would represent a novel mechanism for determining 

susceptibility in plants, determined either by transcriptional regulation (in the case of 

Bo2g016490 or Bo2g016500) or via effects of synonymous mutations (in the case of 

Bo2g016510).  To proceed with testing of candidates it would firstly be recommended to 

re-test the flanking markers used to define the ACA2 interval, to ensure the physical 

positions are correct.  Secondly, it would be necessary to perform independent loss-of-

function experiments on each of the remaining three candidates.  

Even though knockouts of the GDSL-Lipase Bo2g016480 produced for this study 

provide strong evidence that the gene is not a susceptibility candidate, it is important to 

consider other genetic factors that may be influencing the result.  For example, diploid 

Brassica species have undergone a whole genome triplication event since diverging from 

Arabidopsis, and multiple copies of genes can therefore be maintained.  It is possible 

therefore that the CRISPR baits designed for this knockout are only targeting one 

functional copy of Bo2g016480 whilst other paralogues exist to facilitate pathogen 

infection.  Another possibility is that there may be other genes in the ACA2 interval that 

are not detected here due to structural alterations in the parent lines relative to the 

reference assembly.  For example, the ACA2 locus in Arabidopsis contains nine additional 

genes to that annotated within the B. oleracea TO1000DH3 reference.  This demonstrates 
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an inherent limitation of referenced based mapping, which could be resolved by 

generating de novo assemblies of the EBH527 and A12DH parents.   

The genetic background of the transformable host accession can also introduce 

uncertainty to the CRISPR results.  Whilst DH1012 shares half its genetics with the A12DHd 

parent, including the Bo2g016480 allele, ideally the edit would be performed in A12DHd 

directly, where all other genetic factors are the same.  Significant research efforts are now 

being put towards development of transformation methods for CRISPR/Cas transgene 

delivery in previously recalcitrant accessions (Sandhya et al., 2020).  Here however, 

potential interactions due to the altered genetic background cannot be ruled out as 

influencing the result.  For example, this recessive resistance may work epistatically with 

other genes, and where the second gene is not present (perhaps in the DH1012 

background) then susceptibility is maintained.  The identification and validation of the 

ACA2 gene has eluded efforts undertaken here, though now at least there is a better 

understanding of its complexities.  

 

3.6.2  Objective 2 discussion.  Elucidation of a dominant resistance gene tightly linked to 

ACA2 was an important discovery from the A12DH x EBH527 mapping population.  Here, 

WGS-BSA was utilised to identify a highly significant QTL on chromosome 2 

(Bol_EH177_C2) in progeny of line EH177.  This was adjacent to the ACA2 locus and 

confirming tight-linkage of the two resistance loci.  A second QTL on C6 (Bol_EH177_C6) 

also suggests activity of a second resistance locus in EH177.  Dominant resistance in plants 

is primarily determined by NLR or RLK classes of R-gene and the EH177 QTLs support this 

as they both span TNL gene clusters (nine in Bol_EH177_C2 and two in Bol_EH177_C6).  

However, it remains unclear which of the TNL copies within these clusters is functioning 

in EH177 race 9 resistance.  

Identification of EH177 resistance was fortuitous, due to the confirmed loss of 

ACA2 recessive resistance allele in this line which unmasked the activity of a secondary 

source of dominant resistance.  Multiple layers of resistance are an important feature of 

white rust resistance in A. thaliana.   The accession Columbia (Col-0), for example, 

contains several WRR genes that each provide a combined layer of resistance.  The first 

of these to be mapped was the dominant, broad spectrum white rust resistance gene 

WRR4 in A. thaliana accession Columbia.  This TNL receptor induces a rapid defence 
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response that arrests pathogen development in the first epidermal cell, effectively 

masking phenotypes conferred by other resistance genes in Col-O.  These were later 

confirmed as a pair of TNLs (WRR5 and WRR5b) that induce a yellowing host response 

(Cooper, Cevik & Holub, unpublished), as well as a small LIM domain protein (WRR7) 

which exhibits flaccidity of the cotyledon and minor sporulation (Holub & Cevik, 

unpublished).  A similar discovery was made when studying natural pyramiding of non-

host resistance (NHR) genes in A. thaliana, where four genes (paralogues WRR4a and 

WRR4b, WRR8, WRR9, WRR12) were discovered that contribute to NHR of race 2 isolate 

Ac2v (Cevik et al., 2019).  

Like WRR4, it is possible that the broad spectrum ACA2 resistance acts early in 

arresting pathogen development, precluding any possible activation of EH177 defence in 

resistant parent EBH527.  This is supported by the likelihood of the Bol_EH177_C2 

resistance gene acting intracellularly as an R-gene receptor, whilst ACA2 candidates are 

more likely (based on the GDSL lipase Bo2g016480 and STPK Bo2g016510 candidates) to 

be located within the extracellular matrix and therefore activated first.  It would be useful 

for future work to assess this by studying the relative advancement of the pathogen within 

EBH527 resistant (ACA2) vs EH177 resistant tissue, using techniques such as trypan blue 

staining.  

The location of the highly significant Bol_EH177_C2 QTL, in close proximity (~ 66 

kb) to the previously mapped recessive ACA2 locus was a key finding from this study, 

raising the question of whether there is an interactive relationship between the two loci.  

Whilst EH177 resistance has been shown to function independently of ACA2 resistance, it 

is unknown if EH177 is a requirement of ACA2 resistance.  Confirming any interactive 

relationship between the two loci is important, not only for potentially characterising of a 

novel resistance complex in Brassicas, but also for practical efforts to identify the ACA2 

causal gene.  For example, loss-of-function experiments of ACA2 candidates in the 

transformable DH1012 line would be invalidated as this background lacks the 

Bol_EH177_C2 resistance allele, which would then maintain the GDSL-Lipase Bo2g016480 

as the primary ACA2 resistance candidate.  Alternatively, the co-localisation of the two 

traits may be coincidental, with the only currently available evidence to suggest otherwise 

being their close physical proximity.  
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 Clustering of R-genes due to local duplication events is a typical feature of plant 

genome evolution, whereby variation can be generated and NLRs can be coregulated for 

effective triggering of immunity.  Many R-genes/NLRs act in a singular gene-for-gene 

relationships with a pathogen substrate, whilst others require additional NLR proteins to 

function, forming connections that vary from pairs to complex networks (Adachi et al., 

2019).  Studies that demonstrate resistance mechanisms involving activity of at least two 

NLR predominantly show close genetic linkage between the loci (Ashikawa et al., 2008; 

Birker et al., 2009; Narusaka et al., 2009; Okuyama et al., 2011).  Recessive resistance in 

barley to the wheat stem rust pathogen Puccinia graminis is a good example of this which 

requires the interaction of a complex of three tightly linked genes including two NLRs and 

a non-NLR (actin depolymerizing factor-like gene, HvAdf3) (Wang et al., 2013).  This 

common requirement of two or more R-proteins in a resistance complex, coupled with 

high modular variation in NLR genes, indicates that pathogen recognition is often 

dependent on different combinations of domains from distinct proteins.  

The guard hypothesis lends support to this concept, where an R-protein (guard) 

can act by monitoring the target of the corresponding pathogen effector (guardee), 

inducing a rapid defence response upon modification of the target (Van Der Biezen & 

Jones, 1998).  Interestingly, STPK proteins (such as Bo2g016510) are understood through 

well documented examples like Pto resistance in tomato to play a role as guardee proteins 

that mimic effector virulence targets (Ntoukakis et al., 2014).  Resistance in Arabidopsis 

against Pseudomonas syringae strains carrying AvrPphB requires two genes; a NLR (RPS5) 

and an STPK (PBS1)  (Swiderski & Innes, 2001).  PBS1 is constitutively bound by the guard 

RPS5, which detects AvrPphB-specific cleavage of the PBS1 effector target to trigger an 

immune response (Van Der Hoorn & Kamoun, 2008).  It is possible that the ACA2 

resistance works in such a manner in combination with a local NLR guard protein 

(potentially contained within the Bol_EH177_C2 locus).  However, without firstly 

identifying the ACA2 resistance gene this hypothesis cannot be tested and so remains as 

speculation.  

With or without elucidation of the ACA2 resistance mechanisms, the discovery of 

the dominant resistance locus in EH177 only enhances the potential value of EBH527 

resistance for utility in Brassica crops.  Its tight-linkage to ACA2 provides natural 

pyramiding of the two loci for efficient MAS breeding into commercial cultivars, where 
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pathogen strains that overcome ACA2 resistance would also need to evade detection by 

the EH177-resistance protein to enhance durability of the trait.  This could be achieved by 

selecting for the EBH527 haplotype across the combined EH177 and ACA2 region to 

ensure successful introgression of both loci for increased durability of the resistance.  
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4.1  INTRODUCTION 
 
Plant pathogens are continuously evolving in response to the selection pressure exerted 

by disease resistance in the host, which can drive ‘boom-and-bust’ cycles of resistance 

crop varieties that succumb to sequential proliferation of virulent pathotypes.  

Anticipatory breeding of disease resistance is a strategy which requires regular monitoring 

of pathogen populations to identify virulent (resistance-breaking) pathotypes before they 

become prevalent, which can then be used to screen germplasm resources for mapping 

and deploying the next resistance genes in a new crop variety (McIntosh & Brown, 1997).  

 Anticipatory resistance breeding (ARB) is predicated on the likelihood that several 

years may pass between detection of a new virulent pathotype and the occurrence of a 

loss causing epidemic, providing the necessary time for breeders to select and enhance 

recognition specificities within cultivars.  The following are requirements for effective 

ARB:  1) knowledge of the pathogen epidemiology across the cropping system;  2) regular 

surveys across the cropping system aimed to detect emergent virulent strains that break 

currently deployed resistance;  3) knowledge of the main resistance genes currently 

deployed or in development; and 4) a well-coordinated system for screening germplasm 

using pathotypes that provide the greatest threat.  Resistance genes identified in this 

manner target the pathotype that breaks currently established resistance and are 

therefore priority gene targets for introgression into advanced cultivars.  

Advances in pathogen genomics (pathogenomics) can potentially support ARB by 

characterising variation in pathogen effectors that correspond with proteins encoded by 

matching R-genes.  Once a putative repertoire of effectors has been identified, each can 

then be transiently expressed in a host to identify corresponding R-alleles that trigger an 

immune response (HR).  Insights gained through the culmination of such effector 

targeting strategies can ultimately inform breeders when selecting the optimal 

combination of R-alleles in a breeding program.  These can then be developed for 

introgression into a crop either through transgenic ‘stacking’ of alleles into a DNA 

construct for GM, or using conventional marker assisted selection to pyramid resistance 

alleles from several loci.  

For example, the Albugo candida - Brassica pathosystem has been used 

extensively to investigate adaption of a pathogen across different closely related host 
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species.  Host specialisation within A. candida has produced many distinct subspecies or 

physiological races (Jouet et al., 2019), which were previously classified according to their 

pathogenicity on a set of differential lines that represent different host species (Saharan 

et al., 2014, Srivastava et al., 2004, Hill et al., 1988, Pound & Williams, 1963).  Race 2, for 

example, causes severe annual losses of oilseed mustard (Brassica juncea) in India, 

Canada, and Australia.  This pathogen has emerged recently as a pathogen in UK English 

mustard production (Holub and Vicente, unpublished).  Races 2 and 7 (derived from B. 

rapa) can be outcrossed under laboratory conditions (Adhikari et al., 2003).  Comparative 

genomics has also confirmed extensive introgression between races 2, 7 and 9 (McMullan 

et al., 2015), representing an approximate physical exchange of 25% of each genome.  

Consequently, such recombination amongst races could potentially spawn new variants 

with novel effector allele repertoires that facilitate expansion onto new hosts.  

The original reference assembly of Canadian isolate of A. candida race 2 (Ac2vRR) 

revealed a compact genome of 45.3 Mb, which contained an estimated 15,824 genes 

(Links et al., 2011).  The genome displays a signature of obligate biotrophy having lost 

certain key enzymes typically present in phytopathogen genomes, such as Necrosis and 

Ethylene inducing Peptides (NEPs).  A unique class of secreted effector candidates has 

also been determined, possessing a CxxCxxxxxG amino-acid motif (abbreviated as CCG) 

that are able to translocate into plant cells to supress host immunity (Kemen et al., 2011).  

Each race of A. candida has been documented to contain ~100 CCG secreted proteins that 

show considerable presence absence polymorphism (Redcar et al., unpublished 2021, 

Jouet et al., 2019).  The Ac2vRR genome assembly has recently been improved with the 

use of Pacific Biosciences (PacBio) long read data and Illumina short read augmentation 

(named Ac2VPB), increasing the assembly size by 10% (Furzer et al., submitted 2021).  

Additional RNAseq data was used to improve CCG annotation which increased the number 

of predicted CCGs by 250%, suggesting that other Illumina based Albugo spp. assemblies 

will be underestimating presence of CCGs.   

Comparative genomics enables the identification of shared or isolate-specific 

pathogenicity factors.  This process has been enhanced by long-read (third generation) 

sequencing platforms which make it possible to rapidly sequence and assemble high-

quality pathogen genomes.  It is essential that a contiguous genome assembly is acquired 



 123 

to identify and characterise pathogenicity factors such as effectors, which frequently 

reside in highly repetitive and rapidly evolving genomic regions (Thomma et al., 2015). 

Furthermore, a contiguous assembly can improve accuracy in the prediction of 

genes and co-regulated gene clusters, which have found to play a role in pathogenicity 

(Bolton et al., 2014).  Oxford Nanopore Technologies (ONT) provides a modern long-read 

sequencing platform that enables the generation of high-quality genome assemblies at 

affordable costs.  The portable MinION sequencer has already played a key role in 

monitoring numerous infectious disease outbreaks (Jain et al., 2016; Mongan et al., 2020), 

allowing field isolates to be multiplexed within a single chip for real-time sequencing and 

comparative genomics.  

The A. candida – B. juncea pathosystem is conducive to an effector targeting 

strategy for anticipatory resistance breeding, as milestones for achieving this have already 

been met.  Firstly,  race 2 isolates have already been identified in India that break the only 

identified source of WRR in B. juncea (BjuWRR1) (Dev et al., 2020), as well as Canadian 

isolate Ac2v and the UK isolate AcBjDC (established here in Section 2.3.1).  The BjuWRR1-

virulent UK isolate AcBjDC has been used to identify a new WRR locus in B. rapa (Chapter 

2) designated as EH_25_DC.A06, providing an additional target for combining with 

BjuWRR1 in a breeding program.  What remains as a prerequisite for ARB is to document 

the comparative effector repertoires of resistance breaking isolates.  This will be pursued 

here by utilising ONT long-read sequencing to compare two UK isolates (AcBj12 and 

AcBjDC) with Canadian isolate Ac2V.  
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4.2  METHODS 

4.2.1  Plant and pathogen maintenance.  The B. juncea cultivar Sutton was used to 

propagate two UK isolates of A. candida race 2 (AcBj12 and AcBjDC) in the manner 

described previously in Section 2.2.1.  Three trays containing approximately 180 seedlings 

were used per isolate to produce sufficient quantities of spores required for DNA 

extraction.  Donskaja was included as a control in each tray as a means of distinguishing 

the two isolates by their varying degree of sporulation (see Figure 2.2). 

 

4.2.2  DNA extraction and quality control.  Zoosporangia were harvested from heavily 

infected cotyledons using a handheld cyclone spore collector.  Spores were ground to a 

fine powder using a pre-chilled pestle and mortar with liquid nitrogen.  DNA extraction 

was carried out using the CTAB method as described in Section 2.2.4, though taking extra 

precautionary steps to ensure the DNA was not inadvertently fragmented.  Care was 

therefore taken once the tissue was lysed, which included widening the aperture of 

pipette tips with a sterilised scalpel as well as extremely slow pipetting of the DNA in 

solution.  Extracted DNA samples were visualised on a 1% agarose gel to check for the 

occurrence of a discrete and narrow high-molecular weight band without presence small 

DNA fragments.  DNA yields were confirmed using a Qubit dsDNA BR Assay Kit with a Qubit 

2.0 Fluorometer (Invitrogen, Waltham, USA) to confirm sufficient DNA was obtained per 

sample (≥ 1 ug).  DNA quality was assessed using a NanoDrop Spectrophotometer 

(NanoDrop, Wilmington, USA) to ensure a 260/280 ratio between 1.8 and 2.0 and a 

260/230 ratio between 2.0 and 2.2 was achieved. 

 

4.2.3  MinION sequencing library preparation.  The online Oxford Nanopore protocol – 

native barcoding genomic DNA (with EXP-NBD196 and SQK-LSK108) was followed for 

library preparation of high-molecular weight DNA.  Samples were prepared for a 

multiplexed single flowcell sequencing run, including DNA from AcBj12, AcBjDC and an A. 

candida race 4 isolate AcEM2 (whose data were not assessed further in this study).  Library 

preparation required an initial DNA end repair step using a mastermix of NEBNext FFPE 

DNA Repair Mix (M6630) NEBNext Ultra II End repair / dA-tailing Module (E7546) 

reagents, combined with 400ng of DNA per sample.  This was incubated at 20°C for 5 mins 
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and 65°C for 5 mins.  End-prepped DNA was then used for ligation of native barcodes, 

with long-fragment buffer applied to enrich for fragments > 3 kb.  This buffer was used 

along with Agencourt AMPure XP beads to pellet, elute and purify the DNA from residual 

reagents. MinION sequencing was performed using a FLO-MIN107 R9 flowcell, MinKNOW 

1.15.1 and a standard 48-hour run script with active channel selection enabled.  Reads 

were base called in real time on-instrument using the Guppy v2.2.2 GPU basecaller.  

Sequencing summary statistics are presented in Table 4.1. 

 

4.2.4  Read processing and de novo assembly.  Raw fast5 and fastq ONT read data was 

given to Dr Volkan Cevik at the University of Bath for bioinformatic processing and 

construction of genome assemblies, which were then returned for all remaining analyses.  

Initially, raw fast5 sequence reads for the two A. candida isolates were demultiplexed 

using Deepbinner (v0.2.0, (Wick et al., 2018)) before removal of  adapter and index 

sequences from fastq files using Porechop (v0.2.1, (Wick et al., 2017)).  These were then 

converted to fasta format before undergoing read correction using LoRDEC (v0.6, (Salmela 

& Rivals, 2014)) and previously generated Illumina short-read MiSeq data of the 

sequenced isolates.  The corrected reads were then used to generate polished de novo 

assemblies using Flye (v2.8.2, (Chen et al., 2020)).  To account for errors in the assembly, 

three rounds of PILON polishing were conducted (Walker et al., 2014), using BWA-MEM 

for mapping of Illumina reads (Li & Durbin, 2009). Complete assemblies were then 

recieved by Dr Cevik to the author, where final assembly statistics were generated for 

both ONT assemblies as well the PacBio Ac2vPB assembly using QUAST (v5.0.2, (Gurevich 

et al., 2013)) (Table 4.2).  This includes an estimate of genome completeness, conducted 

using BUSCO (v3, (Simão et al., 2015)) to search for near-universal single-copy fungi 

orthologues in the three assemblies. 

 

4.2.5  Prediction of open reading frames (ORFs) and CCGs.  ORFs were determined from 

the AcBj12 and AcBjDC ONT genome assemblies, as well as the Ac2v PacBio assembly 

provided by Dr Cevik using the online EMBOSS tool getorf 

(http://www.bioinformatics.nl/cgi-bin/emboss/getorf), which translated regions between 

start and stop codons from forward and reverse sequence.  A list of annotated CCGs 

identified from previous genome projects (Jouet et al., 2019; Links et al., 2011; McMullan 
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et al., 2015) was then used as a template for generating a CCG motif with MEME (v5.1.1, 

(Bailey et al., 2009)).  This motif was then used to screen translated ORFs from the three 

A. candida assemblies using MAST (Bailey et al., 2009; Bailey & Gribskov, 1998) to identify 

those containing probable CCG motifs in our datasets (E-value <0.1, correct positioning 

for the CCG motif).  The output of probable CCG proteins was then filtered based on the 

presence of a signal peptide as predicted by SignalP-5.0, excluding any with SP signal of 

<0.01% (Almagro Armenteros et al., 2019).  A comparison of predicted CCG protein 

sequences between isolates was then conducted with a combination of BLAST and 

USEARCH v11 (Edgar, 2010) (Table 4.3).  
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4.3  RESULTS 

MinION sequencing of Albugo candida isolates AcBj12, AcBjDC and AcEM2.  High-

molecular weight DNA was extracted from A. candida race 2 isolates AcBj12 and AcBjDC 

and was submitted for sequencing on the Oxford Nanopore MinION platform.  A third 

isolate AcEM2 was also included in the library multiplex, though is not part of further 

analysis here.  In total 3.53 Gb of read data was generated for the three ONT sequenced 

isolates, which equates to an average coverage of the A. candida genome of 22.5x per 

isolate and an average read length of 4012 bp (Table 4.2).  Whilst this produced sufficient 

data to proceed with assemblies, both the total yield and fragment lengths produced were 

significantly under the design capacity of the flowcell used.  Productivity of the flowcell 

was impeded by a low availability of functional pores, whilst fragment length was limited 

due to shearing that occurred during library preparation.  

 

 

Table 4.4.  Summary statistics for MinION sequencing data after completion of a 48-hour run from three 
Albugo candida isolates (AcBj12, AcBjDC and AcEM2).  High-molecular weight DNA from were multiplexed 
and run on a single FLO-MIN107 R9 flowcell. 

 
 AcBj12 AcBjDC AcEM2 

Gigabase pairs (Gb) 1.08E+09 1.52E+09 4.54E+08 

Number of reads 267150 424347 102697 

Mean read length 4036 3583 4419 

Mean coverage (x) 23.8 33.6 10.0 
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Figure 4.1.  Read length of MinION sequencing run that contained a multiplexed DNA library of the three 
Albugo candida isolates AcBj12, AcBjDC and AcEM2, extracted at 12 hours into the 48-hour run.  Whilst 
some high-molecular weight DNA fragments were sequenced these results indicate that substantial 
shearing occurred during library preparation.  
 
 
4.3.2  De novo assembly of AcBj12 and AcBjDC genomes from MinION read data.  Prior to  

assembly, raw Oxford Nanopore (ONT) reads were corrected with LoRDEC (v0.6, (Salmela 

& Rivals, 2014), using previously obtained Illumina MiSeq reads from isolates AcBj12 and 

AcBjDC.  Corrected reads then underwent de novo genome assembly using Flye (v2.8.2, 

(Chen et al., 2020), before three rounds of Pilon polishing with a BWA-MEM (algorithm 

currently unpublished) Illumina read alignment.  The two ONT assemblies have been 

named by corresponding isolate as AcBj12_ONT and AcBDC_ONT. 

When considering that both the yield and average fragment lengths sequenced 

here were considerably below the capacity of the ONT flowcell, the two assemblies 

produced are none-the-less closely comparable to the high-quality PacBio Ac2vPB 

assembly (Furzer et al., unpublished 2021).  Assembly statistics in Table 4.2 show that 

Ac2vPB is slightly larger than the two ONT assemblies in terms of total alignment length 

by an average of 4.36 %.  However, the AcBj12_ONT assembly in particular demonstrates 

an improvement on contiguity with an N50 of approximately 630 kb (29.3 % greater than 

that of Ac2vPB and 57 % greater than the original Illumina assembly Ac2vRR).  Relative to 

the Ac2vRR Illumina assembly that contained 1.7 million Ns across unresolved repetitive 

regions, the ONT assemblies contain relatively few at an average total count of 2693, 

whilst the Ac2vPB assembly contains only 100.  Structural comparisons of the genomes, 
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using the online tool D-Genes (Cabanettes & Klopp, 2018) displays a high degree of 

similarity between the three assemblies, particularly between AcBj12_ONT and AcBj12_BJ 

(Figure 4.5).  Comparisons made between either ONT assembly and Ac2vPB display a 

greater number of INDELs, as well as a shared structural inversion of a single 475 kb 

scaffold (Figures 4.3 and 4.4).  

 
Table 4.5.  Genome assembly statistics for an improved reference genome of Albugo candida race 2 using 
long-read PacBio sequencing (referred to as Ac2vPB), and comparative de novo assemblies of DNA from two 
UK isolates using Oxford Nanopore Technology (AcBj12_ONT and AcBjDC_ONT).  Presence of complete 
single-copy BUSCOs were established in each assembly using the fungi lineage dataset fungi_odb10. These 
provide a proxy for relative completeness of an assembly. 
 
 

Genome statistics Ac2vPB AcBj12 AcBjDC 
Genome fraction (%) 93.84 88.85 89.40 
Total aligned length (bp) 37372940 35540618 35945743 
No. contigs 198 230 376 
N50 466138 657574 491022 
L50 29 21 25 
Mean contig length (kb) 196 160 98 
Largest contig (bp) 1218497 1420159 1130785 
N’s per 100 kbp 0.26 8.67 5.88 
Complete fungal BUSCOs 
number (%) 

361 (47.5) 364 (48) 362 (48) 

 
 



 130 

 

 
 
 
 
 

Figure 4.2.  Plot comparing the cumulative increase in genome sizes of size-sorted contigs for three genome 
assemblies of Albugo candida race 2, including Ac2vPB (PacBio), AcBj12_ONT and AcBjDC_ONT (ONT).  
Saturation in the increase of the assembly lengths can be seen here within the first 240 contigs presented.  
The AcBj12_ONT assembly can be seen to displays the most efficient genome construction, assembling the 
largest proportion of the genome using the least contigs. Whilst the Ac2vPB has a better completeness 
(assembled length) of the assembly. Give a key to the different coloured lines 
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Figure 4.3.  Dot plot comparison of the PacBio Ac2v assembly (Ac2vPB) versus 
the ONT AcBj12 assembly (AcBj12_ONT).  The graphic was produced using the 
online tool D-Genies, which uses Minimap (v2) to align the two genomes and 
provide a synthetic similarity overview.  Features highlighted include 
repetitions (lines parallel to the diagonal line), breaks (deletions, insertions and 
out of frame mutations) and inversions (lines perpendicular to the diagonal). 
  

Figure 4.4.  Dot plot comparison of the PacBio Ac2v assembly (Ac2vPB) 
versus the ONT AcBjDC assembly (AcBjDC_ONT). 
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4.3.3  Search for candidate effector encoding genes.  As CCG effectors are known to be 

encoded by single exon genes (no intronic regions), the process of identifying them from 

the three assemblies (Ac2vPB, AcBj12_ONT and AcBjDC_ONT) began by extracting all 

open reading frames (ORFs) with the online EMBOSS tool getorf.  A list of previously 

identified CCGs from Ac2v assemblies Ac2vRR and Ac2vPB (supplied by Dr Cevik) was then 

used to construct the MEME motif in Figure 4.6 (Bailey et al., 2009) which was used as the 

input for a MAST search of the ORF files generated from the three assemblies to identify 

likely CCGs (Steuernagel et al., 2015).  This list was then screened in SignalP-5.0 (Almagro 

Armenteros et al., 2019), where any candidate with a SP signal < 0.01 was rejected to 

produce a final shortlist of ORFs containing both a detected CCG motif and secretion 

signal.  From this search, a total of 133 CCGs were identified in Ac2vPB, 122 in AcBj12_ONT 

and 126 in AcBjDC_ONT.  

Figure 4.5.  Dot plot comparison of the two ONT assemblies AcBj12_ONT and AcBjDC_ONT.  
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A protein BLAST was conducted between these candidates and the list of 

previously identified CCGs, with results summarised in Table 4.3.  Of the 128 previously 

annotated CCGs, exactly 100 of them were recognised in any of the three assemblies 

(sequence length and identity similar by > 90 %), with 96 found in Ac2vPB, 85 found in 

AcBj12_ONT and 92 found in AcBjDC_ONT.  Of these, 33 annotated CCGs were fully 

conserved between the three assemblies whilst the remaining 67 showed some degree 

of variation.  Examples were also found where the BLAST criteria matched more than one 

ORF, suggesting presence of a second paralogue.   

When comparing candidate CCG alleles using USEARCH (v11, (Edgar, 2010)), a 

total of 44 proteins remained (collectively between isolates) that did not match (> 90 % 

similarity) to any annotated CCG.  Specifically, this was 34 examples in Ac2vPB, 38 in 

AcBj12_ONT and 40 in AcBjDC_ONT.  These additional CCG/signal peptide candidates 

have been compared between the assemblies and are also documented in Table 4.3 

(examples that lack a “CCG” annotation/query ID).  

 

 

 

 

 

 

 

 

 

Figure 4.6.  CxxCxxxxxG amino-acid motif (CCG) predicted in Albugo candida Ac2v effector proteins using 
MEME. Utilised as a search pattern for identifying similar proteins in the genome assemblies Ac2vPB, 
AcBj12_ONT and AcBjDC_ONT. 
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This table needs a number and title 
 

Group No. Query sequence ID Length 
(AA) Ac2v AcBj12 AcBjDC 

Monomorphic 1 CCG51_Ac2v 115       
 3 CCG22_Ac2v 127       
 4 CCG62_Ac2v 127       
 6 CCG26_Ac2v 133       
 7 CCG13_Ac2v 145       
 8 CCG72_Ac2v 155       
 9 CCG49_Ac2v 168       
 11 CCG103_Bp135 _Ac2v 191       
 13 CCGlike41 213       
 15 CCG111_Vnew_PacBio_Ac2v 229       
 18 CCG1_Ac2v 258       
 19 CCG105_Vnew_PacBio_Ac2v 259       
 22 CCG65_Ac2v 277       
 24 CCGlike10 315       
 33 CCG3_Ac2v 559       
 36 CCG14_Ac2v 572       
 38 CCG55_HB_Ac2vRR_Ac2v 584       
 39 CCG55_HB_Ac2vRR_Ac2v 585       
 40 CCG44_Ac2v 590       
 43 CCGlike17_Ac2v 594       
 44 CCG70_Ac2v 598       
 47 CCG61_Ac2v 601       
 48 CCG106_Vnew_PacBio_Ac2v 602       
 54 CCG108_Vnew_PacBio_Ac2v 619       
 57 CCG17_Ac2v 625       
 61 CCG110_Vnew_PacBio_Ac2v 630       
 64 CCG66_Ac2v 640       
 75 CCG69_Ac2v 688       
 76 CCG36_Ac2v 691       
 82 CCG15_New_Ac2vRR_HB 708       
Monomorphic 86 CCG23_Ac2v 716       
(continued) 87 CCG8_Ac2v 716       
 89 CCG75_Ac2v 719       
 34 CCGlike16 565 A1 A1 A1 

 69 CCG7_Ac2v 682 A1 A1 A1 
 78 CCG58_Ac2v 700 A1 A1 A1 
 99 CCG60_Pac_New_Ac2v 775 A1 A1 A1 
 101  BjDC__scaffold_128_382 92      

 104 BjDC__contig_344_63 102      
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 105 BjDC__contig_77_34 103      

 106 BjDC__scaffold_171_253 103      

 107 BjDC__contig_77_251 105      

 108 BjDC__scaffold_171_277 106      

 109 BjDC__contig_218_201 111      

 111 BjDC__scaffold_171_618 120      

 113 BjDC__scaffold_171_123 126      

 114 BjDC__contig_123_238 128      

 115 BjDC__scaffold_212_260 128      

 118 BjDC__contig_39_1 141      

 119 BjDC__contig_123_321 144      

 120 BjDC__scaffold_195_143 146      

 122 BjDC__contig_223_140 160      

 123 BjDC__contig_129_30 168      

 124 BjDC__contig_21_39 180      

 125 BjDC__scaffold_147_779 181      

 130 BjDC__contig_172_55 257      

 132 BjDC__scaffold_147_136 311      

 137 BjDC__contig_77_287 486      

 143 BjDC__contig_7_266 731      

 141 BjDC__contig_7_106 676      

 2 CCG10_New_PacBio_Ac2v 125 A1/A2 A2  A2 
 30 CCG30_Ac2v 550 A1/A2     

  112 CCG10_New_PacBio_Ac2v 125 A1/A2   
 

Ac2V 14 
CCG9+C65:C861Like_new_PacBio
_Ac2v 217       

 17 CCG94_Pac_New_Ac2v 247       
 46 CCGlike35 600       
 88 CCG24_Pac_New_Ac2v 717       
 25 CCG16_Ac2v 403   A2 A2 

 28 CCG32_Ac2v 534   A2 A2 
 35 CCGlike5 565   A2 A2 

 55 CCGlike29_Pac_New_Ac2v 621   A2 A2 
 91 CCG45_Ac2v 722   A2 A2 

Ac2V 92 CCG4_Ac2v 724   A2 A2 

(continued) 98 CCG5_Pac_New_Ac2v 770   A2 A2 
 68 CCG100_New_PacBio_Ac2v 677       
 45 CCG2_Ac2v 600 A2     
 83 CCG43_New_PacBio_Ac2v 708       
 29 CCG28_Ac2v 544 A2 A1 A1 

 102 BjDC__scaffold_171_27 96      

 128 BjDC__scaffold_128_492 215      

 116 Ac2v__scaffold149_29 129      
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 138 Ac2v__scaffold123_147 539      
 126 Ac2v__scaffold_3_369 197  A2 A2 

AcBj12 20 CCG83_Ac2v 261       
 23 CCG86_Ac2v 302       
 26 CCG76_Ac2v 443       
 41 CCG71_Ac2v 590      

 59 CCG48_Ac2v 628       
 16 CCG33_Ac2v 242   A2   
 32 CCG41_Ac2v 554   A2   
 58 CCG19_Ac2v 628   A2   
 62 CCGLike30_New_PacBio_Ac2v 630   A2   
 65 CCGlike23_Ac2v 644   A2   
 100 CCG79_Ac2v 797   A2   
 90 CCG85_B_Pac_New_Ac2v 720   A2   
 70 CCG88_Real_Ac2v 682 A1 A2 A1 

 94 CCGlike31_New_PacBio_Ac2v 744 A1 A2 A1 
 121 Bj12__contig_431_73 155      

 129 Bj12__scaffold_92_631 217      
AcBjDC 10 CCGlike12 190       
 96 CCG37_Ac2v 752       
 66 CCGlike18 645       
 71 CCG77_Ac2v 684       
 5 CCG12_Ac2v 132     A2 

 12 CCGlike40 197     A2 
 31 CCG31_Ac2v 551     A2 
 49 CCG46_Ac2v 604     A2 
 50 CCGlike45_Ac2v 605     A2 
 67 CCG104_Vnew_PacBio_Ac2v 659     A2 
 81 CCG57_Ac2v 706     A2 

 95 CCG37_Ac2v 751 A2 A2   
 63 CCG109_Vnew_PacBio_Ac2v 635 A1 A1 A2 
 103 Bj12__scaffold_125_703 97    A2 

 117 BjDC__contig_386_56 140      

 127 BjDC__contig_317_10 200      

AcBjDC 134 BjDC__scaffold_264_162 410      

(continued) 136 BjDC__contig_498_13 424      

 131 BjDC__contig_123_138 284 A2 A2  

  133 BjDC__contig_237_177 314 A2 A2  

Polymorphic 53 CCG35_Ac2v 616   A2 A3 
 73 CCG101_Bp125hom_Ac2v 685   A2 A3 
 74 CCG102_Vnew_PacBio_Ac2v 685   A2 A3 
 77 CCG74_Ac2v 695   A2 A3 
 79 CCG34_Ac2v 702   A2 A3 
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 97 CCG81_93_Pac_New_Ac2v 754   A2 A3 
 52 CCG67_Ac2v 612 A2   A3 
 60 CCG80_Ac2v 628 A2 A3   

 27 CCG54_Ac2v 487 A2     
 60 CCG80_Ac2v 628 A2 A3   
 37 CCGlike37_Ac2v 577 A1 A2 A3 

 72 CCG101_Bp125_AcBoT 685 A1 A2 A3 
 80 CCG11 _Allele2_Ac2v 704 A1 A2 A3 
 84 CCG38_HB2vRR_Ac2v 710   A2 A3 
 42 CCG56_Ac2v 591   A1 A2 
 85 CCG85_A_Pac_New_Ac2v 715 A1/A2 A1 A2 
 56 CCGlike34_Ac2v 623 A1   A2 
 93 CCG53_Ac2v 730 A1 A2   

 21 CCG112_Vnew_PacBio_Ac2v 277     A2 
 51 CCG82_Ac2v 610     A2 
 27 CCG54_Ac2v 487 A2     

 139 Bj12__scaffold_92_624 607 A2  A2/A3 
 142 BjDC__contig_77_368 719 A2 A3  

 140 BjDC__contig_117_125 628 A2 A3  

 110 BjDC__contig_187_378 113   A2  

 135 BjDC__contig_77_19 412   A2  

  144 BjDC__contig_317_23 745 A2 A3/A4/A
4 A1/A2 
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Figure 4.7.  Ven diagram showing the relative overlap of CCG allelelic conservation between race 2 
isolates Ac2v, AcBj12 and AcBjDC.  Numbers reported where there is no overlap represent a count of 
unique alleles for the relative isolate.  The annotated CCGs included here indicate examples of Avr 
elicitors that are recognised between the broad-spectrum white rust resistance alleles WRR4A or 
WRR4B alleles (Col-0), as decribed by Redcar et al. (unpublished 2021).  Those included in the central 
overlap are important therefore as conserved effector targets, which would each need to be mutated 
for an isolate to avoid detection by WRR4A and WRR4B.  This highlights the potential importance of 
including these R-alleles alongside BjuWRR1 to ensure durable resistance in Indian B. juncea crops. 
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4.4  DISCUSSION 
 
Oxford Nanopore Technology (ONT) provides an exciting new alternative for rapid DNA 

sequencing and assembly of high-quality pathogen genomes.  This study reports the first 

known assemblies of an A. candida genome using this platform, with assembly statistics 

that closely match that of the best available reference genome of Canadian isolate Ac2v, 

which was recently updated using PacBio sequencing (Ac2vPB) (Furzer et al., unpublished 

2021).  Importantly, the AcBj12_ONT assembly improved genome contiguity by 23.4% 

from that of Ac2vPB.  This was achieved from a sequencing run that was suboptimal in a 

single flowcell, so it is likely that further closure of the A. candida genome could be 

achieved in a second run. 

 The read length of nanopore sequences are theoretically only limited by the length 

of the inputted DNA molecules themselves.  As such, this technology has the potential to 

generate ultra-long reads that span megabases in size, enabling the assembly and 

resolution of complex genomic regions.  A recent human genome assembly, for example, 

maximised ultra-long reads  (up to 882 kb) to yield a highly contiguous assembly of NG50  

~3 Mb from a MinION sequencer (Jain et al., 2018).  For plant pathogens, nanopore 

sequencing of the ~54 MB Rhizoctonia solani fungal genome was used to generate an 

average read length of 10.7 kb, producing an assembly with an N50 contig length of 199 

kb (Datema et al., 2016).  However, this study took steps to actively fragment genomic 

DNA, to maximise coverage rather than contiguity.  

 Whilst the average read lengths of the current ONT assemblies are markedly lower 

than preferred, the AcBj12_ONT assembly was still able to provide a significant 

improvement on genome contiguity relative to Ac2vPB (N50 of 657574 vs 466138).  Some 

reads were sequenced in the multiplex that were very long (> 80 kb), and the success of 

AcBj12_ONT may have been due to obtaining a greater ratio of these reads from the 

library.  Capturing reads of this length likely aided assembly of a few very large contigs for 

this sample, as seen by the 1.42 Mb contig produced which represents the current longest 

A. candida contig assembled (3.14 % of the genome).  However, an abundance of small 

contigs (< 5000 bp) in the ONT assemblies meant that it was not possible to reduce contig 

number relative to the Ac2vPB assembly.  This suggests that improving both the 
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abundance and ratio of long reads (relative to short) in any nanopore assembly is key to 

improving contiguity. 

 Enhancements to nanopore flowcell chemistry and hardware continue to improve 

base calling accuracy of single reads, from what was originally 60% (Laver et al., 2015) to 

a recent account of 99.1% on a PromethION (Nanopore Community Meeting, 2020).  At 

the time of sequencing this experiment however, and with the flowcell kits used, the 

accuracy of raw reads was found to be an issue.  This was partly due to the poor 

performance of the flowcell, where low availability of active pores limited the output of 

sequence data.  Consequently, the coverage of nanopore reads was insufficient for 

correcting sequence errors in the data analysis.  Illumina short read data was therefore 

required to provide accurate base calling and construction of high-accuracy ONT 

assemblies.  

 Attainment of these high-quality genomes enabled identification of novel A. 

candida CCG class effectors in the two UK isolates AcBj12 and AcBjDC.  Previous 

development of the PacBio Ac2v genome identified 110 CCGs, which provided over a two-

fold improvement on numbers obtained from the Ac2v Illumina assembly Ac2vRR (Furzer 

et al., unpublished 2021).  An updated list of 128 Ac2v CCGs was provided for this study 

by Dr Cevik, which is closely comparable to numbers gained from our assessment of 

Ac2vPB (133 CCGs) as well as AcBj12_ONT (122) and AcBjDC_ONT (126).  Of these, 80% 

from Ac2vPB, 66% from AcBj12_ONT and 72% from AcBjDC_ONT sufficiently matched (> 

90% length or sequence similarity) previously annotated Av2v CCGs (Table 4.3).  Whilst an 

average of 28% do not closely resemble a previously identified Av2v CCG and could 

potentially represent newly identified effector proteins.  However, this level of variation 

includes comparisons between Ac2v CCG alleles identified here and those identified from 

the previous study (using the same genome assembly), indicating that disparity between 

the two methods applied may be influencing selection of CCG alleles in each analysis.  

 Whether additional unique CCGs have been identified in this analysis or not, the 

majority documented here are established as this novel class of secreted A. candida 

effector and thereby provide a useful insight into effector variation between different 

strains of A. candida race 2.  The extent of CCG diversity between AcBj12 and AcBjDC was 

unexpectedly high considering the two isolates were collected from the same UK field of 

B. juncea and share such similar genome architecture (Figure 4.5).  As much as 42% of 
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their shared CCG effectors are variable between the two isolates, demonstrating the high 

mutation rate of these effector-encoding genes in the genome.  This is even comparable 

to levels of CCG variation found between Canadian isolate Ac2v and both UK isolates, with 

47% of their CCG effectors here being fully conserved. 

 Pathogenomic datasets such as the one provided here in Table 4.3 are useful tools 

for shortlisting a set of candidate Avr elicitors, where you have allelic effector sequence 

for both virulent and avirulent isolates.   Candidates would need to fit an expected pattern 

of a conserved allele across avirulent isolates, that is mutated in virulent isolates (thereby 

avoiding detection by the corresponding R-protein). To progress with shortlisting 

Donskaja Avr elicitor candidates it would be necessary to extend the current dataset, 

predominantly with additional avirulent race 2 isolate data (suggested provision of at least 

two more isolates).  This would strengthen the phenotypic association of any individual 

candidate CCG and provide a shortlist of effectors small enough to proceed with transient 

testing of alleles.  

The recent study by Redcar et al. (unpublished 2021), used transient expression 

of race-conserved A. candida CCG effectors to identify those that elicit HR when 

interacting with either of the broad-spectrum TNLs WRR4A and WRR4B.  Both R-alleles 

were found to be capable of recognising multiple pathogenic CCGs, with eight detected 

by WRR4A and four additional CCGs by WRR4B.  Of these established Avr elicitors, nearly 

all show some conservation between the three race 2 isolates Ac2v, AcBj12 and AcBjDC.  

Candidates such as CCG30 for example (recognised by WRR4A) are fully conserved 

between isolates here, as are CCG61 and CCG70 which are recognised by WRR4B.  The 

latter CCG70 was found to provide an enhanced HR relative to other CCGs.  Control of 

Donskaja resistance-breaking isolates Ac2v and AcBjDC (as well as AcBj12) would 

therefore be provided by interaction with either WRR4A or WRR4B.  A study by, Castel et 

al. (2021 submitted) identified a WRR4A homologue in Arabidopsis ecotypes HR-5 and Oy-

0 termed WRR4AOy-0, that contains a C-terminal extension which enables recognition of 

additional CCGs, including those of the WRR4A-virulent isolate AcEx1.  Furthermore, 

WRR8 and WRR9 have been identified in Arabidopsis accessions Sf-2 and Hi-0 

respectively, that confer complete resistance to Ac2v (Cevik et al., 2019). 

A selection of R-alleles has therefore recently become established that each 

provide either complete or partial resistance against Donskaja-virulent race 2 isolates, 
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including WRR4A, WRR4B, WRR4AOy-0, WRR8, WRR9 and the EH_25_DC.A06 R-allele 

(which requires confirmation).  Combining all these together in a single gene stack would 

likely confer a significant fitness costs to the host plant (Burdon & Thrall, 2003).  An 

optimal stack might therefore contain three R-genes; one from Arabidopsis - WRR4AOy-0 

(others being redundant or known to be breakable), one from B. juncea – BjuWRR1 (as 

the only one available) and one from B. rapa – the EH_25_DC.A06 R-allele.  Provision of 

this GM stack alongside an S-gene knockout would add major enhancements to durability 

of resistance and may potentially provide too-great a hurdle for the pathogen to 

overcome.  A GM approach could therefore provide great benefits to white rust resistance 

in Indian oilseed mustard, as well as other globally important Brassica crops. 
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Accessing the rich genetic diversity contained within plant genetic resources (PGRs) is a 

prerequisite for successful breeding of key agricultural traits such as disease resistance.  

Modern advances in DNA sequencing technology and high-throughput marker analysis 

have become essential to this process, making it increasingly feasible to interrogate the 

genetic diversity contained within genebanks for mapping and identification of resistance 

genes.  The wide availability of such genes is necessary for plant breeders to develop crop 

varieties containing durable resistance.  These varieties will enhance sustainable 

intensification by alleviating the need for widespread application of environmentally 

damaging agrochemical treatments for disease control.  Instead, a more targeted 

approach to pesticide application can be used alongside durable resistance to optimise 

protection of crops.  In this way, the effectiveness of both genetic and chemical 

treatments can be preserved by alleviating selection pressure on pathogen adaption to 

overcome both forms of control.  

The practice of introgressing single dominant or semi-dominant resistance genes 

into crop varieties has been undertaken throughout the latter half of the 20th century 

using conventional breeding practices.  This frequently results in breakdown of the major 

gene resistance in so called ‘boom-and-bust’ cycles, where pathogen variants are selected 

for that have mutated or lost the corresponding Avr effector allele.  The ‘boom’ can 

therefore be thought of as the widespread geographical distribution of the R-gene, 

typically throughout monoculture cropping systems.  Whilst the ‘bust’ corresponds with 

a pathogen variant in the population overcoming this R-gene and rapidly propagating as 

the better adapted variant.  This phenomenon is particularly well documented in cereal 

crops with regards to fungal rusts (Kolmer, 1996) and powdery mildews (Brown et al., 

1996).  Such boom-and-bust cycles are therefore counterproductive to resistance 

breeding, not only driving evolution of virulent pathogen isolates, but also leading to the 

permanent loss in commercial value of the broken R-gene. 

Combining multiple genes into a single cultivar can enhance durability of disease 

control, though this approach is dependent on the availability of R-genes in a given 

breeding program and deployment of alleles within a crop (Mundt et al., 2002), as well as 

population structure and diversity of the pathogen (McDonald & Linde, 2002).  In turn, R-

allele availability relies to a large extent on the efficiency of trait mapping within large 



 145 

genebank repositories and in particular within genetically diverse material such as 

landraces and wild species that may contain an abundance of currently ‘untapped’ alleles.  

The availability of multiple sources of resistance genes within breeding programs 

provides opportunities for their strategic and targeted deployment over space and time.  

This is necessary as race specific R-gene function is dependent on the availability of the 

corresponding pathogen effector within local cropping systems.  Emergence of virulent 

isolates is evidence therefore of how R-gene function can be overcome through functional 

mutations in corresponding effector genes.  The relevance of this can be seen with the 

previous identification of broad-spectrum resistance gene WRR4 Col-0 in A. thaliana 

(Borhan et al., 2008), where three isolates where subsequently discovered that were able 

to overcome WRR4 resistance (Fairhead, 2016).  One of these isolates (AcEx1) was used 

to identify a new source of resistance in accession Oystese (Oy-0)(Fairhead, 2016), which 

has recently been identified as an alternative allele of WRR4A Col-0 (termed WRR4AOy-

0)(Castel et al., 2021 submitted). This TIR allele possesses a C-terminal extension that 

enables recognition of at least one additional CCG effector to that of WRR4A Col-0 , 

providing immunity to resistance breaking A. candida isolates. 

This method of using identified resistance-breaking isolates is paramount to the 

targeted deployment of R-alleles by ensuring that multiple resistance specificities are 

available for breeding programs.  Currently, the only molecularly characterised WRR gene 

in B. juncea is the CNL BjuWRR1 from Donskaja, which is currently being considered for 

introgression into commercial varieties of Indian oilseed mustard.  However, race 2 

isolates have recently been found that break BjuWRR1 resistance, which include the four 

Indian isolates Ac-BjBio-Pant,  Ac-BjV-Pant, Ac-Bna-Pant and Ac-Alw (Dev et al., 2020), as 

well Canadian isolate Ac2v (Links et al., 2011) and the UK isolate AcBjDC.  Here, mapping 

in B. rapa using AcBjDC identified the EH_25_DC.A06 locus in wild species accession 

EH_25 that contains a probable CNL WRR allele.  This could have strategic importance for 

breeding durable white rust control in Indian B. juncea cultivars, if implemented alongside 

BjuWRR1 within B. juncea varieties.  

Future studies should therefore prioritise using the other mentioned BjuWRR1-

virulent isolates for screening and mapping sources of WRR.  It would be useful to know, 

for example, whether any of the resistance specificities identified here are shared with 

the other resistance breaking isolates.  Mapping the same chromosome 6 locus using both 
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AcBj12 and AcBjDC highlights the feasibility of identifying a shared locus using the WGS-

BSA method that provides potential control of different isolates.  However, whether these 

WRR loci in B. rapa provide broad-spectrum resistance to other isolates remains 

unknown.  The necessary resources exist in the UK to establish whether Ac2v resistance 

is found in any of the tested B. rapa accessions.  Mapping using this isolate with the same 

material could potentially identify QTLs shared with those discovered here, adding further 

value to these loci as targets for B. juncea resistance breeding.  Alternatively, seed from 

these B. rapa accessions could be sent to India for similar WGS-BSA testing with their 

BjuWRR1-virulent isolates.  

Breeding strategies can implement the resistances identified in this study as they 

are, by pyramiding functional alleles from the multiple loci of R-alleles using conventional 

marker assisted breeding.  Flanking markers, such as those denoted by the QTLseqr 

outputs (posPeakDeltaSNP and posMaxGprime) in Table 2.6, or those within candidate 

polymorphic R-genes could be used to achieve this.  This strategy of marker assisted 

selection would require combining relevant B. rapa resistances within a single line for re-

synthesis of B. juncea, followed by combining with Donskaja resistance for introgression 

into commercial cultivars.  The alternative transgenic approach would require prior 

identification of the EH_25_DC.A06 WRR allele for inclusion within a single ‘stacked’ 

construct that includes BjuWRR1.  Transformation of this construct into a crop variety 

would advance introgression of the trait by several years relative to conventional 

breeding, as well as eliminating the unwanted effects of linkage drag.  

Advances in Next-Generation-Sequencing (NGS) technology have dramatically 

enhanced the process of mapping R-genes, where the affordability of producing vast SNP 

databases means that marker availability is no longer a limiting factor for trait mapping.  

The development of reduced-representation technologies such as GBS, alongside 

improved barcoding methods have come a long way to making NGS widely available, 

allowing multiplexing of numerous samples and bypassing issues of repetition and 

complexity within plant genomes.  Today, resequencing of entire plant transcriptomes or 

whole genomes is becoming ever more feasible as prices continue to fall, maximising the 

availability of SNPs for analysis.  Given the progression of the technology, it is reasonable 

to expect future whole-genome-resequencing (WGS) of complete genebank collections, 

providing insight from numerous complex plant genomes.  Establishing these resources 
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within genebank documentation systems will add substantial value to collections, where 

combined datasets that include taxonomic, phenotypic and ecological data will provide a 

markedly improved breeding resource.  For example, acquisition of such datasets will 

benefit novel breeding methods such as genomic selection by improving the genomic-

estimated breeding value prediction accuracies required for successful breeding of 

complex traits (Bhat et al., 2016).  

Computational and statistical advances in marker-trait analyses are becoming 

increasingly efficient at processing the deluge of genotype information made available by 

NGS tools.  New methods such as QTL-seq have adapted NGS datasets with bulked 

segregant mapping (NGS-BSA) to allow rapid identification of QTLs from phenotypically 

variable resistant and susceptible tissue samples.  The financial savings incurred from 

sampling only two tissue bulks per accession allow for screening of more accessions in 

parallel to maximise sampling of germplasm diversity for R-gene discovery.  This study 

provided the first known application of QTL-seq methods (WGS-BSA) directly to 

genetically undeveloped genebank resources, which included a landrace (EH_5) and a wild 

species (EH_25).  The identification in Brassica rapa of 16 high-resolution QTLs in this 

study, between five diverse genebank accessions represents an impressive mapping 

return within approximately a five-month experimental time frame.  The result 

demonstrates the impressive potential of combining WGS-BSA methods with genebank 

resources to rapidly map novel resistance genes directly from undeveloped germplasm.  

In this study, efforts to elucidate candidate genes within QTLs was limited by the 

exclusive use of tissue bulks, with markers applied to segregating individuals required for 

fine-mapping of individual candidate genes.  This issue is compounded by the tendency of 

NLRs to cluster in the genome where NGS-BSA methods can only identify at the level of 

R-gene cluster rather than gene.  It is recommended that future research adopts a hybrid 

mapping approach that includes both WGS-BSA and linkage methods.  An optimal strategy 

for future mapping efforts is therefore described by the following steps:  1) Screen 

genebank resources for accessions that segregate for resistance;  2) Use a broadly 

susceptible accession to produce F1 crosses with any discovered resistances to ascertain 

the F1 phenotype and identify recessive resistances;  3) Prioritise recessive resistances 

(whilst simultaneously developing dominant lines where resources allow for production 

of tissue bulks using original parental phenotypic variation and generate WGS;  4) Advance 
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lines sent for sequencing for production of F2 segregants;  5) Identify QTLs from WGS 

datasets and develop internal markers within polymorphic candidate genes;  and 6) 

Screen markers back onto individual F2 segregants to fine-map resistance. 

From a breeding perspective, research efforts to identify causal genes may not be 

warranted, particularly where mapping has provided sufficiently closely linked markers 

that can be applied for MAS introgression of the trait.  The use of WGS datasets in this 

study has produced virtually complete SNP data across all mapped QTLs, essentially 

providing access to the most tightly linked trait-markers for use in future MAS and 

breeding programs.  There are obvious benefits to identifying a causal R-gene however, 

not only to provide an exact marker for MAS breeding or gene selection for GM stacking, 

but also to progress understanding of innate immunity mechanisms.  The B. oleracea 

ACA2 resistance remains an example of this, where there is still potential to identify and 

characterise a novel mechanism of recessive white rust resistance.  

The development of CRISPR genome editing technology has been pivotal in 

confirming the function of candidate genes.  CRISPR has great potential for directly editing 

recessive susceptibility (S) genes in advanced cultivars, where loss-of-function can induce 

potentially durable sources of resistances.  This represents a marked saving in time and 

resources relative to traditional breeding methods, even with use of MAS.  For example, 

it would now be possible to induce the recessive race non-specific resistance found within 

EBH527 (ACA2) with the race specific resistance provided by WRR4 Col-0.  The use of two 

different recognition specificities would provide a more durable resistance as the 

pathogen would be required to overcome control of both genes.  Synthetic biology is also 

emerging as a promising tool for designing resistance alleles, whereby point mutations 

can be introduced that mimic naturally occurring resistances from wild species.   Design 

of the synthetic A. thaliana eIF4E1 allele for example was achieved using PCR-based 

mutagenesis to induce multiple amino acid changes that were based on resistance to 

potyvirus in naturally occurring Pisum sativum alleles (Bastet et al., 2018).  The synthetic 

allele was able to extend the resistance spectrum to potyvirus isolates that lacked any 

previously established resistance, as well as to resistance-breaking isolates and an 

unrelated virus of the Luteoviridae family. 

Monitoring pathogen diversity within any cropping system is an important 

prerequisite for anticipatory resistance breeding in response to emerging virulent 
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pathotypes.  Third generation sequencing technologies such as Oxford Nanopore 

Technology platforms will play an increasingly pivotal role in achieving this, allowing rapid 

and affordable assembly of high-quality pathogen genomes from field isolates (Mongan 

et al., 2020).  Comparative genomics can then be used alongside pathology and 

differential testing of isolates to identify mutated Avr elicitors that allow virulent 

pathotypes to avoid R-gene detection. The pathogenomics dataset in Chapter 4 is an 

example of this (Table 4.3), whereby future addition of Donskaja-avirulent effectoromes 

would advance shortlisting and discovery of the BjuWRR1 Avr elicitor. Results from this 

would aid the discovery of new R-genes that recognise this elicitor via transient expression 

in planta, as well as the decision-making process regarding optimal combinations of R-

alleles for inclusion within any gene stack. 

 As discussed in Chapter 4, a suite of WRR alleles have recently been established 

(including WRR4A, WRR4B, WRR4AOy-0, WRR8 and WRR9) that each independently 

provide complete or near-complete protection against race 2 isolates (Borhan et al., 2008; 

Cevik et al., 2019; Redcar et al., unpublished 2021; Castel et al., 2021 submitted).  This 

includes Ac2v, which we have shown here is a BjuWRR1 resistance-breaking isolate (Figure 

2.2).  We have also shown that recognition specificities of these R-alleles include 

conserved CCG examples between the race 2 isolates examined in Chapter 4, such as 

CCG30, 61 or 70.  An optimal gene stack for GM transformation of B. juncea varieties 

should therefore include one of these broad-spectrum Arabidopsis R-alleles, with 

WRR4AOy-0 suggested as the best suited of these due to enhanced recognition specificity.  

 In this study, methods have been developed that enhance the utility of genebank 

diversity for rapid mapping of resistance genes.  This improves the availability of breeding 

resources required for targeted deployment of durable crop resistance against rapidly 

evolving plant pathogens.  Resistances identified here have the potential to sustainably 

intensify production of Indian oilseed mustard, as well as other globally important 

Brassica oilseed and vegetable crops.  
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Appendix  
Table 1.  Flanking primers used to amplify candidate resistance genes within the BraA06 region mapped in 
Brassica rapa accessions EH_25 and EH_5, which confers resistance to race 2 isolates AcBj12 and AcBjDC. 

Gene ID Forward/Reverse primer Sequence 
BraA06g001890 F CTTCAAAAGAAACCTAGCC 
 R TCATGTCCATCCCGACAAAGA 
BraA06g002390 F GTTGTACCTCATCTCATGTTA 
 R ACTGGAGAGAAGTGGAAAT 
BraA06g003120 F CGAAGACCGACCAATGACT 
 R GCCATTAACCAAGTTCAGA 
BraA06g003420 F TCTGTTACACCTTGGAGGA 
 R GAGAGGATACACTCACACA 
BraA06g003430 F GGCGGTTTAACCCTAGTAT 
 R CAACTGGGGATTCAGAGCC 
BraA06g003690 F ACTCCTGTTCGTGTCTCTGAA 
 R GTTCATTGGCTCTATGCACGG 
BraA06g003770 F GCATATATTTGTATCCGTGCA 
 R ACAAACTGGAGAGAAGTGG 

 
 
 
Script 1.  Produce physical maps shown in Chapter 2. 
 
library(tidyverse) 
 
### Import data, with the appropriate columns labelled as below. 
setwd("/Users/u1590355/Desktop/Master_Folder/Data_Sets/GBS_Raw_data/BJ12/R sorted output for 
Excel input") 

Data <- read_csv("BJ12_Dom_C.csv") 
 
Chr <- Data$Chr 
Pos <- Data$Position 
type <- Data$Isolate 
Pop <- Data$Population 
Chr_sizes <-
c(31028331,32791447,25129783,21622048,28517042,29418425,27501058,23223082,44954983,19932
799) 

 
data<-data.frame(chromosome=paste0("chr", c(1,2,3,4,5,6,7,8,9,10.0)),size= Chr_sizes ,stringsAsFactors = 
FALSE) 

data$chromosome<-factor(data$chromosome, levels = data$chromosome) 
SNP<-data.frame(chromosome= Chr,Position= Pos,Type= type,labels= Pop) 
 
 
### Plot chromosome map with samples labelled 
p <- ggplot(data=data, aes(x=chromosome, y=size)) +  
geom_segment(data = data, aes(x = chromosome, xend = chromosome,  y = 0, yend = size), lineend = 
"round", color = "lightgrey", size = 5)  + 

theme_minimal()  
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