

2019 ASA BIOPHARMACEUTICAL SECTION
REGULATORY/INDUSTRY STATISTICS WORKSHOP

Equivocals: What do you mean you don't know!?!

24 | September | 2019

Presenter: Vicki Petrides, MS | Principal Research Statistician | Abbott Laboratories

Based on Research by: AdvaMed Equivocal Working Group

This presentation is based on work by the AdvaMed Equivocal Working Group, with special thanks to

Haja El Mubarak, Marina Kondratovich, and Kristen Meier.

Why this topic is important to me...

Photograph by Vicki Petrides, permission to share photograph granted by the subjects.

Outline

Definition Considerations **ALBiD** Comparisons Example Summary

Definition from Merriam-Webster...

equivocal | \i-'kwi-və-kəl

Definition of equivocal

1 a : subject to two or more <u>interpretations</u> and usually used to mislead or confuse

// an equivocal statement

- **b**: uncertain as an indication or sign // equivocal evidence
- **2 a** : of uncertain nature or classification // equivocal shapes
 - **b** : of uncertain <u>disposition</u> toward a person or thing : <u>UNDECIDED</u> // an *equivocal* attitude
 - c : of doubtful advantage, genuineness, or moral <u>rectitude</u>
 // equivocal behavior Synonyms

<u>debatable</u>, <u>disputable</u>, <u>dodgy</u> [chiefly British], <u>doubtable</u>, <u>doubtful</u>, <u>dubious</u>, <u>dubitable</u>, <u>fishy</u>, <u>problematic</u> (also <u>problematical</u>), <u>queer</u>, <u>questionable</u>, <u>shady</u>, <u>shaky</u>, <u>suspect</u>, <u>suspicious</u>

Source: https://www.merriam-webster.com/dictionary/equivocal (Accessed May 23, 2019)

Definition from AdvaMed Equivocal Working Group...

Equivocal result

- A <u>valid</u>, non-missing, non-erroneous result that is neither positive nor negative
 - Could be due to biological, pre-analytical, or analytical reasons
 - May or may not require additional testing before reporting

Context

- Qualitative tests with a continuous underlying response, where binary results are preferred but not always possible
- Middle category along a continuum between a positive and a negative test result:

Equivocal zone

• An interval that contains equivocal results

Considerations: Why should we care about equivocal results?

Impact clinical decisions

Performance near the cutoff may be the distinguishing factor between two methods

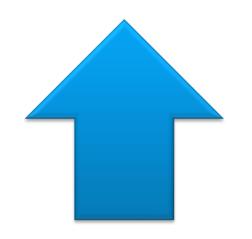
Product performance estimates can vary based on...

- Proportion of equivocal results in data set
- How (or whether) equivocal results are used in calculations

Considerations: What are underlying reasons for equivocal results?

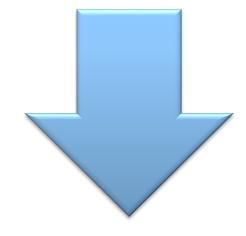
Biological

- Seroconversion
- Overlapping patient populations


Preanalytical

- Short draw
- Mis-handled sample (improper storage, centrifugation, etc.)

Analytical


- Imprecision
- Bias

Considerations: What are the benefits and risks of equivocal results?

Benefits

- Minimizes mis-diagnosis / mis-classification
- Optimizes correct course of treatment

Risks

- Delayed diagnosis and treatment
- Return to clinic
- Additional testing

Considerations: How might equivocals be resolved to binary outcome?

When a candidate test has equivocal results, additional steps may be taken to resolve the equivocals, thus leading to a binary decision.

Approach Leading to a Binary Decision (ALBiD)

Retest same sample using same test

• Helpful when test has high variability near cutoff

Test same sample using different test

 Helpful when equivocal due to biological or analytical reasons such as potential interference with initial test

collect new sample and test using same or different method

• Helpful when equivocal due to pre-analytical issue such as sample mis-handling or a biological reason such as seroconversion

Comparisons and Contingency Tables

Comparisons

- Candidate method vs. Target condition (TC)
- Candidate method vs. Comparator method

Contingency Tables

- 2 × 2: No equivocals
- 3 × 2: Equivocals in candidate
- 2 × 3: Equivocals in TC or comparator
- 3 × 3: Equivocals in candidate and in TC or comparator

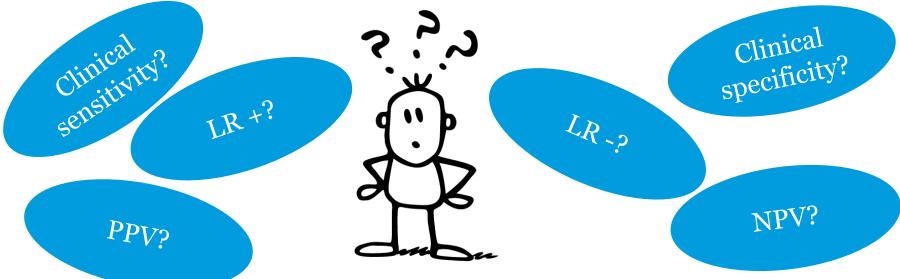
2 × 2: Candidate vs. Target Condition

		Target Condition			
		Present		Absent	Total
ate	Positive	A ₁		C ₁	N ₁
Candidate					
Car	Negative	A_3		C ₃	N_3
	Total	N _A		N _C	N

Accuracy

- Clinical sensitivity = A₁/N_A
- Clinical specificity = C₃/N_C

Prediction


- Positive predictive value (PPV) = A₁/N₁
- Negative predictive value (NPV) = C₃/N₃
- Prevalence = N_A/N

Informativeness

- Likelihood ratio, positive (LR+) = $(A_1/N_A)/(C_1/N_C)$
- Likelihood ratio, negative (LR-) = $(A_3/N_A)/(C_3/N_C)$

3 × 2: Candidate vs. Target Condition How should we characterize performance?

		Target Condition			
		Present		Absent	Total
ate	Positive	A_1		C ₁	N ₁
did	Equivocal	A_2		C ₂	N ₂
Can	Negative	A_3		C_3	N_3
	Total	N _A		N _C	N

3 × 2: Candidate vs. Target Condition Prevalence, Risk and Likelihood Ratios

		Target Condition			
		Present		Absent	Total
ate	Positive	A_1		C ₁	N ₁
ndidate	Equivocal	A_2		C_2	N_2
Car	Negative	A_3		C_3	N_3
	Total	N _A		N _C	N

Pre-test probability (Prevalence)

• TC Prevalence = N_A/N

Post-test probability (Risk)

- TC Risk when test positive = A_1/N_1
- TC Risk when test equivocal = A₂/N₂
- TC Risk when test negative = A₃/N₃

Informativeness (Likelihood ratios)

- Likelihood ratio, positive (LR+) = $(A_1/N_A)/(C_1/N_C)$
- Likelihood ratio, equivocal (LR eq) = $(A_2/N_A)/(C_2/N_C)$
- Likelihood ratio, negative (LR-) = $(A_3/N_A)/(C_3/N_C)$

Approach Leading to a Binary Decision (ALBiD)

ALBiD

- When a candidate test has equivocal results, additional steps may be taken to resolve the equivocals, thus leading to a binary decision.
- During product design verification and validation, additional steps are not always practical.

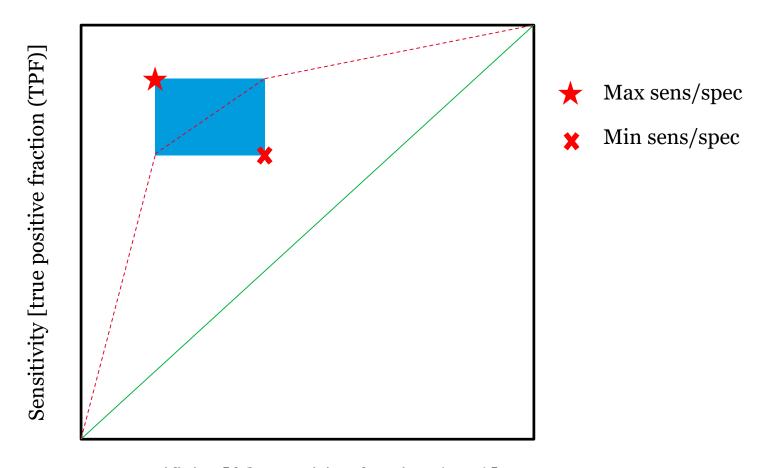
So...what to do?

ALBiD sensitivity / specificity – the performance of the binary decision based on the test with equivocals

- If lowest ALBiD sensitivity/specificity are acceptable, then test with equivocals is acceptable regardless of resolution
- If highest ALBiD sensitivity/specificity are not acceptable, then test with equivocals is not acceptable regardless of resolution

3 × 2: Candidate vs. Target Condition *ALBiD* sensitivity and specificity

		Target Condition			
		Present		Absent	Total
ate	Positive	A_1		C ₁	N_1
ndid	Equivocal	A_2		C_2	N_2
Car	Negative	A_3		C_3	N_3
	Total	N _A		N _C	N


Minimum

- ALBiD sensitivity, min = A_1/N_A
- ALBiD specificity, min = C_3/N_C

Maximum

- ALBiD sensitivity, max = (A₁ + A₂)/N_A
- ALBiD specificity, max = $(C_2 + C_3)/N_C$

3 × 2: Candidate vs. Target Condition *ALBiD Sensitivity/Specificity – ROC Plane*

1 – Specificity [false positive fraction (FPF)]

3 × 2: Candidate vs. Target Condition Example

		Target Condition			
		Present		Absent	Total
ate	Positive	242		6	248
ndidate	Equivocal	5		23	28
Car	Negative	3		1000	1003
	Total	250		1029	1279

Prevalence	
(Pre-test probability)	19.5% (250/1279)

	Positive	Equivocal	Negative
Risk			
(Post-test probability)	97.6% (242/248)	17.9% (5/28)	0.3% (3/1003)
Likelihood Ratio	166.01	0.89	0.01

3 × 2: Candidate vs. Target Condition Example, continued

		Target Condition			
		Present		Absent	Total
ate	Positive	242		6	248
ndidate	Equivocal	5		23	28
Car	Negative	3		1000	1003
	Total	250		1029	1279

	ALBiD Sensitivity	ALBiD Specificity
Minimum	96.8% (242/250)	97.2% (1000/1029)
Maximum	98.8% (247/250)	99.4% (1023/1029)
Percent Equivocals	2.2% (2	8/1279)

Summary

- An equivocal result is a valid, non-missing, non-erroneous result that is neither positive nor negative
- Consider whether the benefits of having an equivocal zone outweigh the risks by understanding the product intended use, underlying reasons for equivocals and the consequences of reporting (or not reporting) equivocal results
- For 3 × 2 cases versus a TC, calculate...
 - Prevalence (pre-test probability)
 - Risk (post-test probability)
 - Likelihood ratios
- Consider providing an ALBiD for equivocal results, and when doing so calculate...
 - Minimum and maximum ALBiD sensitivity and specificity with percentage of equivocals

References

- Food and Drug Administration. *Statistical Guidance on Reporting Results from Studies Evaluating Diagnostic Tests* (Issued: March 13, 2007)
 http://www.fda.gov/MedicalDevices/DeviceRegulationandGuidance/GuidanceDocume
 http://www.fda.gov/MedicalDevices/DeviceRegulationandGuidance/GuidanceDocume
 http://www.fda.gov/MedicalDevices/DeviceRegulationandGuidance/GuidanceDocume
 http://www.fda.gov/MedicalDevices/DeviceRegulationandGuidance/GuidanceDocume
 http://www.fda.gov/MedicalDevices/DeviceRegulationandGuidance/GuidanceDocume
 http://www.fda.gov/MedicalDevices/DeviceRegulationandGuidance/GuidanceDocume
- Kisner HJ. The gray zone. *Clinical Laboratory Management Review*. 1998; 12(4):277 280.
- Pepe MS. *The Statistical Evaluation of Medical Tests for Classification and Prediction*. New York, NY: Oxford University Press; 2003.
- Royston P, Altman DG, Sauerbrei W. Dichotomizing continuous predictors in multiple regression: a bad idea. *Stat Med.* 2006; 25:127–141.
- Schuetz G, Schlattmann P, Dewey M. Use of 3×2 tables with an intention to diagnose approach to assess clinical performance of diagnostic tests: meta-analytical evaluation of coronary CT angiography studies. *BMJ*. 2012; 345:e6717.
- Shinkins B, Thompson M, Mallett S, Perera R. Diagnostic accuracy studies: how to report and analyse inconclusive test results. *BMJ*. 2013; 346:f2778.
- Wainer H. Finding what is not there through the unfortunate binning of results: The Mendel effect. *Chance*. 2006; 19(1):49–56.

Vicki Petrides

<u>Vicki.Petrides@abbott.com</u>

(301) 802-9582