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Abstract

We discuss the reconstruction of piecewise smooth data from its (pseudo-) spectral informa-
tion. Spectral projections enjoy superior resolution provided the data is globally smooth, while
the presence of jump discontinuities is responsible for spurious O(1) Gibbs oscillations in the
neighborhood of edges and an overall deterioration to the unacceptable �rst-order convergence
rate. The purpose is to regain the superior accuracy in the piecewise smooth case, and this is
achieved by molli�cation.

Here we utilize a modi�ed version of the two-parameter family of spectral molli�ers intro-
duced by Gottlieb & Tadmor [GoTa85]. The ubiquitous one-parameter, �nite-order molli�ers
are based on dilation. In contrast, our molli�ers achieve their high resolution by an intricate
process of high-order cancelation. To this end, we �rst implement a localization step using edge
detection procedure, [GeTa00a, GeTa00b]. The accurate recovery of piecewise smooth data is
then carried out in the direction of smoothness away from the edges, and adaptivity is responsible
for the high resolution. The resulting adaptive molli�er greatly accelerates the convergence rate,
recovering piecewise analytic data within exponential accuracy while removing spurious oscilla-
tions that remained in [GoTa85]. Thus, these adaptive molli�ers o�er a robust, general-purpose
\black box" procedure for accurate post processing of piecewise smooth data.
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1 Introduction

We study a new procedure for high resolution recovery of piecewise smooth data from its (pseudo-
)spectral information. The purpose is to overcome the low-order accuracy and spurious oscillations
associated with Gibbs phenomena, and to regain the superior accuracy encoded in the global
spectral coeÆcients.

A standard approach for removing spurious oscillations is based on molli�cation over a local region
of smoothness. To this end one employs a one-parameter family of dilated unit mass molli�ers of
form '� = '(x=�)=�. In general, such compactly supported molli�ers are restricted to �nite-order
accuracy, j'� ? f(x) � f(x)j � Cr�

r, depending on the number r of vanishing moments ' has.
Convergence is guaranteed by letting the dilation parameter, � # 0.
In [GoTa85] we introduced a two-parameter family of spectral molli�ers of the form

 p;�(x) =
1

�
�(
x

�
)Dp(

x

�
):

Here �(�) is an arbitrary C1
0 (��; �) function which localizes the p-degree Dirichlet kernel Dp(y) :=

sin(p+1=2)y
2� sin(y=2) . The �rst parameter | the dilation parameter � need not be small in this case, in fact

� = �(x) is made as large as possible while maintaining the smoothness of �(x� ��)f(�). Instead, it
is the second parameter { the degree p, which allows the high accuracy recovery of piecewise smooth
data from its (pseudo-)spectral projection, PNf(x). The high accuracy recovery is achieved here
by choosing large p's, enforcing an intricate process of cancelation as an alternative to the usual
�nite-order accurate process of localization.

In x2 we begin by revisiting the convergence analysis of [GoTa85]. Spectral accuracy is achieved
by choosing an increasing p � p

N , so that  p;� has essentially vanishing moments all orders,R
ys p;�(y)dy = Æs0 + Cs � N�s=2; 8s, yielding the 'in�nite-order' accuracy bound in the sense of

j p;� ? PNf(x)� f(x)j � Cs �N�s=2; 8s.
Although the last estimate yields the desired spectral convergence rate sought for in [GoTa85], it
su�ers as an over-pessimistic restriction since its derivation ignores the possible dependence of p on
the degree of local smoothness, s, and the support of local smoothness, � � = �(x). In x3 we begin
a detailed study on the optimal choice of the (p; �) parameters of the spectral molli�ers,  p;�:

� Letting d(x) denote the distance to the nearest edge, we �rst set � = �(x) � d(x) so that
 p;� ? PNf(x) incorporates the largest smooth neighborhood around x. To �nd the distance
to the nearest discontinuity we utilize a general edge detection procedure, [GeTa99, GeTa00a,
GeTa00b], where the location (and amplitudes) of all edges are found in one global sweep.
Once the edges are located it is a straightforward matter to evaluate, at every x, the appro-
priate spectral parameter, �(x) = d(x)=�.

� Next, we turn to examine the degree p, which is responsible for the overall high accuracy by
enforcing an intricate cancelation. A careful analysis carried out in x3.1 leads to an optimal
choice of an adaptive degree of order p = p(x) � d(x)N . Indeed, numerical experiments
reported back in the original [GoTa85] and additional tests carried out in x3.2 below and
which motivate the present study, clearly indicate a superior convergence up to the immediate
vicinity of the interior edges with an adaptive degree of the optimal order p = p(x) � d(x)N .

Given the spectral projection of a piecewise analytic function, SNf(�), our 2-parameter family of
adaptive molli�ers, equipped with the optimal parameterization outlined above yields { consult
Theorem 3.1 below,
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j p;� ? SNf(x)� f(x)j � Const � d(x)N � e��
p

d(x)N :

The last error bound shows that the adaptive molli�er is exponentially accurate at all x's except for
the immediate O(1=N)-neighborhood of the jumps of f(�) where d(x) � 1=N . We note in passing
the rather remarkable dependence of this error estimate on the C1

0 regularity of �(�). Speci�cally,
the exponential convergence rate of a fractional power is related to the Gevrey regularity of the
localizer �(�); in this paper we use the G2-regular cut-o� �c(x) = exp(cx2=(x2 � �2)) which led to
the fractional power 1=2.
Similar results holds in the discrete case. Indeed, in this case, one can bypass the discrete Fourier co-
eÆcients: expressed in terms of the given equidistant discrete values, ff(y�)g, of piecewise analytic
f , we have { consult Theorem 3.2 below,

j �
N

2N�1X
�=0

 p;�(x� y�)f(y�)� f(x)j � Const � (d(x)N)2 � e��
p

d(x)N :

Thus, the discrete convolution
P

�  p;�(x�y�)f(y�) forms an exponentially accurate near-by inter-
polant1, which serves as an e�ective tool to reconstruct the intermediate values of piecewise smooth
data.

What happens in the immediate, O(1=N)-neighborhood of the jumps? in x4 we complete our
study of the adaptive molli�ers by introducing a novel procedure of normalization. Here we enforce
the �rst few moments of the spectral molli�er,  p = �Dp to vanish, so that we regain polynomial
accuracy in the immediate neighborhood of the jump. Taking advantage of the freedom in choosing
the localizer �(�), we show how to modify � to regain the local accuracy by enforcing �nitely
many vanishing moments of  p = �Dp, while retaining the same overall exponential outside the
immediate vicinity of the jumps. By appropriate normalization, the localized Dirichlet kernel we
introduce maintains at least second order convergence up to the discontinuity. Increasingly higher
orders of accuracy can be worked out as we move further away from these jumps and eventually
turning into the exponentially accurate regime indicate earlier. In summary, the spectral molli�er
amounts to a variable order recovery procedure adapted to the number of cells from the jump
discontinuities, which is reminiscent of the variable order, Essentially Non Oscillatory piecewise
polynomial reconstruction in [HEOC85]. The numerical experiments reported in x3.2 and x4.3
con�rm the superior high resolution of the spectral molli�er  p;� equipped with the proposed
optimal parameterization.

Acknowledgment. Research was supported in part by ONR Grant No. N00014-91-J-1076 and
NSF grant #DMS97-06827.

2 Spectral Molli�ers

2.1 The two-parameter spectral molli�er  p;�

The Fourier projection of a 2�-periodic function f(�),

SNf(x) :=
X
jkj�N

f̂ke
ikx; f̂k :=

1

2�

Z �

��
f(x)e�ikxdx (2.1)

1Called expolant for short
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enjoys the well known spectral convergence rate, that is, the convergence rate is as rapid as the
global smoothness of f(�) permits in the sense that for any s we have2

jSNf(x)� f(x)j � ConstkfkCs � 1

N s�1
8s: (2.2)

Equivalently, this can be expressed in terms of the usual Dirichlet Kernel

DN (x) :=
1

2�

NX
k=�N

eikx � sin(N + 1=2)x

2� sin(x=2)
; (2.3)

where SNf � DN ? f , and the spectral convergence statement in (2.2) recast into the form

jDN ? f(x)� f(x)j � ConstkfkCs � 1

N s�1
8s: (2.4)

Furthermore, if f(�) is analytic with analyticity strip of width 2�, then SNf(x) is characterized by
an exponential convergence rate, e.g., [Ch, Ta94]

jSNf(x)� f(x)j � Const� �Ne�N�: (2.5)

If, on the other hand, f(�) experiences a simple jump discontinuity, say at x0, then SNf(x) su�ers
from the well known Gibbs' phenomena, where the uniform convergence of SNf(x) is lost in the
neighborhood of x0, and moreover, the global convergence rate of SNf(x) deteriorates to �rst order.

To accelerate the slow convergence rate, we focus our attention on the classical process of molli�-
cation. Standard molli�ers are based on a one-parameter family of dilated unit mass functions of
the form

'�(x) :=
1

�
'
�x
�

�
(2.6)

which induce convergence by letting � to zero. In general, j'� ? f(x)� f(x)j � Cr�
r describes the

convergence rate of �nite order r, where ' possesses r vanishing momentsZ
ys'(y)dy = Æs0 s = 0; 1; 2; : : : ; r � 1: (2.7)

In the present context of recovering spectral convergence, however, we follow Gottlieb and Tadmor,
[GoTa85], using a two-parameter family of molli�ers,  p;�(x), where � is a dilation parameter,
 p;�(x) =  p(x=�)=�, and p stipulates how closely  p;�(x) possesses near vanishing moments. To
form  p(x), we let �(x) be an arbitrary C1

0 function supported in (��; �) and we consider the
localized Dirichlet kernel

 p(x) := �(x)Dp(x): (2.8)

Our two-parameter molli�er is then given by the dilated family of such localized Dirichlet kernels

 p;�(x) :=
1

�
 p

�x
�

�
� 1

�
�
�x
�

�
Dp

�x
�

�
: (2.9)

According to (2.9),  p;� consists of two ingredients, �(x) and Dp(x), each has essentially separate
role associated with the two independent parameters � and p. The role of �

�
x
�

�
is, through its �-

dependence, to localize the support of  p;�(x) to (���; ��). The Dirichlet kernel Dp(x) is charged,

2Here and below we denote the usual kfkCs := kf (s)kL1 .
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by varying p, with controlling the increasing number of near vanishing moments of  p;�, and hence
the overall superior accuracy of our molli�er. Indeed, by imposing the normalization of

�(0) = 1; (2.10)

we �nd that an increasing number of moments of  p;� are of the vanishing order O(p�(s�1)),Z ��

���
ys p;�(y)dy =

Z �

��
(y�)s�(y)Dp(y)dy = Dp ? (y�)

s�(y)jy=0 = Æs0 + Cs � p�(s�1) 8s; (2.11)

where according to (2.4), Cs = Constk(y�)s�(y)kCs . We shall get into a detailed convergence
analysis in the discussion below.
We conclude this section by highlighting the contrast between the standard, polynomially accurate
molli�er, (2.7) and the spectral molli�ers (2.9). The former depends on one dilation parameter,
�, which is charged of inducing a �xed order of accuracy by letting � # 0. Thus, in this case
convergence is enforced by localization, which is inherently limited to a �xed polynomial order.
The spectral molli�er, however, has the advantage of employing two free parameters: the dilation
parameter � which need not be small - in fact, � is made as large as possible while maintaining
�(x��y)f(y) free of discontinuities; the need for this desired smoothness will be made more evident
in the next section. It is the second parameter, p, which is in charge of enforcing the high accuracy
by letting p " 1. Here, convergence is enforced by a delicate process of cancelation which will
enable us to derive, in x3, exponential convergence.

2.2 Error analysis for spectral molli�er

We now turn to consider the error of our molli�cation procedure, E(N; p; �; f(x)), at an arbitrary
�xed point x 2 [0; 2�)

E(N; p; �; f(x)) = E(N; p; �) :=  p;� ? SNf(x)� f(x); (2.12)

where we highlight the dependence on three free parameters at our disposal { the degree of the
projection, N, the support of our molli�er, �, and the degree with which we approximate an arbitrary
number of vanishing moments, p. The dependence on the degree of piecewise smoothness of f(�)
will play a secondary role in the choice of these parameters.
We begin by decomposing the error into the three terms

E(N; p; �) = (f ?  p;� � f) + (SNf � f) ? ( p;� � SN p;�) + (SNf � f) ? SN p;�: (2.13)

The last term, (SNf � f) ? SN p;�, vanishes by orthogonality, and hence we are left with the �rst
and second terms, which we refer to as the Regularization and Truncation errors, respectively

E(N; p; �) � (f ?  p;� � f) + (SNf � f) ? ( p;� � SN p;�) =: R(N; p; �) + T (N; p; �): (2.14)

Sharp error bounds for the regularization and truncation errors were originally derived in [GoTa85],
and a short re-derivation now follows.
For the regularization error we consider the function

gx(y) := f(x� �y)�(y)� f(x) (2.15)

where f(x) is the �xed point value to be recovered through molli�cation. Applying (2.4) to gx(�)
while noting that gx(0) = 0, then the regularization error does not exceed
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jR(N; p; �)j := jf ?  p;� � f j =
����Z �

��
[f(x� �y)�(y)� f(x)]Dp(y)dy

����
= jDp ? gx(y)jy=0j = j(Spgx(y)� gx(y))jy=0j � Const:kgx(y)kCs � 1

ps�1
: (2.16)

Applying Leibnitz rule to gx(y),

jg(s)x (y)j �
sX

k=0

�
s
k

�
�kjf (k)(x� �y)j � j�(s�k)(y)j � k�kCskf (s)kL1loc(1 + �)s; (2.17)

gives the desired upper bound

jR(N; p; �)j � Const:k�kCskf (s)kL1loc � p
�
2

p

�s

: (2.18)

Here and below Const represents (possibly di�erent) generic constants; also, k � kL1loc indicates the
L1 norm to be taken over the local support of  p;�. Note that kf (s)kL1loc <1 as long as � is chosen
so that f(�) is free of discontinuities in (x� ��; x+ ��).
To upperbound the truncation error we use Young's inequality followed by (2.4),

jT (N; p; �)j � k(SNf � f) ? ( p;� � SN p;�)kL1
� kSNf � fkL1 � k p;� � SN p;�kL1 �MkSNf � fkL1 � k p;�kCs

1

N s�1
: (2.19)

Leibnitz rule yields,

j (s)
p;�j � ��(s+1)

sX
k=0

�
s
k

�
j�(s�k)j � jD(k)

p j � k�kCs

�
1 + p

�

�s+1

; (2.20)

and together with (2.19) we arrive at the upper bound

jT (N; p; �; f)j � ConstkSNf � fkL1 � k�kCs � (1 + p)N

�

�
1 + p

N�

�s

: (2.21)

A slightly tighter estimate is obtained by replacing the L1 � L1 bounds with L2 bounds for f 's
with bounded variation,

jT (N; p; �)j � kSNf � fkL2 � kSN p;� �  p;�kL2 �
� Const:kfkBV �N�1=2 � k (s)

p;�kL2 �N�(s�1=2); (2.22)

and (2.20) then yields

jT (N; p; �)j � Const:k�kCs �N
�
1 + p

N�

�s+1

: (2.23)

Using this together with (2.18), we conclude with an error bound of E(N; p; �; f(x)),

j p;� ? SNf(x)� f(x)j � Constk�kCs

"
N

�
1 + p

N�

�s+1

+ p

�
2

p

�s

kf (s)kL1loc(x)
#
; 8s; (2.24)
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where kf (s)kL1loc = supy2(x���;x+��) jf (s)j measures the local regularity of f . It should be noted
that one can use di�erent orders of degrees of smoothness, say an r order of smoothness for the
truncation and s order of smoothness for the regularization, yielding

jE(N; p; �; f(x))j � Const:

"
k�kCr �N

�
1 + p

N�

�r+1

+ k�kCs � p
�
2

p

�s

kf (s)kL1loc
#
; 8r; s:

(2.25)

2.3 Fourier interpolant - error analysis for pseudospectral molli�er

The Fourier interpolant of a 2�-periodic function, f(�), is given by

INf(y) :=
X
jkj�N

~fke
iky; ~fk :=

1

2N

2N�1X
�=0

f(y�)e
�iky� : (2.26)

We observe that the moments computed in the spectral projection (2.1) are replaced here by the
corresponding trapezoidal rule evaluated at the equidistant nodes y� =

�
N �, � = 0; 1; : : : ; 2N � 1.

It should be noted that this approximation by the trapezoidal rule converts the Fourier-Galerkin
projection to a Pseudo Spectral Fourier collocation (interpolation) representation. It is well known
that the Fourier Interpolant also enjoys spectral convergence, i.e.

jINf(x)� f(x)j � ConstkfkCs � 1

N s�1
; 8s: (2.27)

Furthermore, if f(�) is analytic with analyticity strip of width 2�, then SNf(x) is characterized by
an exponential convergence rate [Ta94]

jSNf(x)� f(x)j � Const� �Ne�N�: (2.28)

If, however, f(�) experiences a simple jump discontinuity, then the Fourier Interpolant su�ers from
the reduced convergence rate similar to the Fourier projection. To accelerate the slowed convergence
rate we again make use of our two-parameter molli�er (2.9). When convolving INf(x) by our two
parameter molli�er we approximate the convolution by the Trapezoidal summation

 p;� ? INf(x) � �

N

2N�1X
�=0

f(y�) p;�(x� y�): (2.29)

We note that the summation in (2.29) bypasses the need to compute the pseudo spectral coeÆcients
~fk. Thus, in contrast to the spectral molli�ers carried out in the Fourier Space [MMO78], we are
able to work directly in the physical space through using the sampling of f(�) at the equidistant
points, f(y�).

The resulting error of our discrete molli�cation at the �xed point x is given by

E(N; p; �) :=
�

N

2N�1X
�=0

f(y�) p;�(x� y�)� f(x): (2.30)

As before, we decompose the error into two components
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E(N; p; �) =

 
�

N

2N�1X
�=0

f(y�) p;�(x� y�)� f ?  p;�

!
+ (f ?  p;� � f)

=: A(N; p; �) +R(N; p; �); (2.31)

where R(N; p; �) is the familiar regularization error, and A(N; p; �) is the so-called aliasing error
committed by approximating the convolution integral by a Trapezoidal sum. It can be shown that,
for any m > 1=2, the aliasing error does not exceed the truncation error, e.g., [Ta94, (2.2.16)],

kA(N; p; �)kL1 �MmkT (N; p; �; f (m))kL1 �N (1=2�m); m > 1=2: (2.32)

We choose m = 1: inserting this into (2.21) with f replaced by f
0

, and noting that kSNf 0�f 0kL1 �
ConstkfkBV

p
N , we recover the same truncation error bound we had in (2.21),

kA(N; p; �)kL1 � Const:jT (N; p; �; f 0)j 1p
N

� Const:k�kCs �N2

�
1 + p

N�

�s+1

: (2.33)

Consequently, the error after discrete molli�cation of the Fourier Interpolant satis�es the same
bound as the molli�ed Fourier projection

jE(N; p; �; f(x))j � Constk�kCs

"
N2

�
1 + p

N�

�s+1

+ p

�
2

p

�s

kf (s)kL1loc
#
; 8s � 1=2: (2.34)

We close by noting that the spectral and pseudospectral error bounds, (2.24) and (2.34), are of
the exact same order. And as before, one can use di�erent orders of degrees of smoothness for the
regularization and aliasing errors.

2.4 On the choice of the (�; p) parameters { spectral accuracy.

We now turn to asses the role of the parameters, � and p, based on the spectral and pseudospectral
error bounds (2.24) and (2.34). We �rst address the localization parameter �. According to the �rst
term on the right of (2.24), and respectively { (2.34), the truncation, and respectively { aliasing
error bounds decrease for increasing �'s. Thus we are motivated to choose � as large as possible.
However, the silent dependence on � of the regularization error term in (2.24) and (2.34) appears
through the requirement of localized regularity, i.e. kf (s)kL1loc = supy2(x���;x+��) jf (s)(y)j < 1.
Hence, if d(x) denotes the distance from x to the nearest jump discontinuity of f ,

d(x) := dist(x; sing supp f); (2.35)

we then set

� :=
d(x)

�
� 1: (2.36)

This choice of � provides us with the largest admissible support of the molli�er  p;�, so that
 p;� � f(x) incorporates only the (largest) smooth neighborhood around x. This results in an adap-
tive molli�er which amounts to a symmetric windowed �lter of maximal width, 2d(x), to be carried
out in the physical space. We highlight the fact that this choice of an x-dependent, �(x) = d(x)=�,
results in a spectral molli�er that is not translation invariant. Consequently, utilizing such an
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adaptive molli�er is quite natural in the physical space, and although possible, it is not well suited
for convolution in the frequency space.
How can we �nd the nearest discontinuity? we refer the reader to [GeTa99, GeTa00a, GeTa00b],
where a general procedure to detect the edges in piecewise smooth data from its (pseudo-)spectral
content. The procedure { carried in the physical space, is based on appropriate choice of concentra-
tion factors which lead to (generalized) conjugate sums which tend to concentrate in the vicinity of
edges and are vanishing elsewhere. The locations (and amplitudes) of all the discontinuous jumps
are found in one global sweep. Equipped with these locations, it is a straightforward matter to
evaluate, at every x, the appropriate spectral parameter, �(x) = d(x)=�.

Next we address the all important choice of p which controls how closely  p;� possesses near vanish-
ing moments of increasing order, (2.11). Before determining an optimal choice of p let us revisit the
original approach taken by Gottlieb and Tadmor [GoTa85]. To this end, we �rst �x an arbitrary
degree of smoothness s, and focus our attention on the optimal dependence of p solely on N . With
this in mind, the dominant terms of the error bounds (2.24) and (2.34), are of order (p=N)s and
p�s, respectively. Equilibrating these competing terms gives p =

p
N , which results in the spectral

convergence rate sought for in [GoTa85], namely, for an arbitrary s

jE(N; p; �)jp=pN � Consts;�N
�s=2: (2.37)

Although this estimate yields the desired spectral convergence rate sought for in [GoTa85], it
su�ers as an over-pessimistic restriction since the possible dependence of p on s and � were not
fully exploited. In fact, while the above approach of equilibiration with p-depending solely on N
yields p = N0:5, numerical experiments reported back in the original [GoTa85] have shown that
when treating p as a �xed power of N , p = N�, superior results are obtained for 0:7 < � < 0:9.
Indeed, the numerical experiments reported in x3.2 below and which motivate the present study,
clearly indicate that the contributions of the truncation and regularization terms are equilibrated
when p � N . Moreover, the truncation and aliasing error contributions to the error bounds (2.24)
and (2.34) predict convergence only for x's which are bounded away from the jump discontinuities
of f , where �(x) > p=N . Consequently, with �(x) := d(x)=� and f(�) having a discontinuity, say at
x0, convergence can not be guaranteed in the region

(x0 � p

N
�; x0 +

p

N
�): (2.38)

Thus, a non-adaptive choice of p { chosen as a �xed fractional power of N independent of �(x),
say p � p

N , can lead to a loss of convergence in a large zones of size O(N�1=2), around the
discontinuity. The loss of convergence was con�rmed in the numerical experiments reported in
S3.2. This should be contrasted with the adaptive molli�ers introduced in the next x3, which
will enable us to achieve exponential accuracy up to the immediate, O(1=N) vicinity of these
discontinuities. We now turn to determine an optimal choice of p by incorporating both { the
distance to the nearest discontinuity, d(x), and by exploiting the fact that the error bounds (2.24)
and (2.34) allow us to use a variable degree of smoothness, s.

3 Adaptive Molli�ers { Exponential Accuracy

Epilogue - Gevrey regularity. The spectral decay estimates (2.2) and (2.27) tell us that for
C1
0 data, the (pseudo) spectral errors decay faster than any �xed polynomial order. To quantify

the actual error decay, we need to classify the speci�c order of C1
0 regularity. The Gevrey class,
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G�; � � 1, consists of �'s with constants � := �� and M := M�, such that the following estimate
holds,

sup
x2<

j�(s)(x)j �M
(s!)�

�s
; s = 1; 2; : : : (3.1)

We have two prototypical examples in mind.

Example 1 A bounded analytic function � belongs to G1 withM� = supx2< j�(x)j and 2�� equals
the width of �'s analyticity strip.

Example 2 Consider a C1
0 (��; �) cut-o� function depending on an arbitrary constant c > 0,

which takes the form

�c(x) =

8>>><>>>:
e

0
@ cx2

x2 � �2

1
A

jxj < �

0 jxj � �:

(3.2)

In this particular case there exists a constant � = �c such that the higher derivatives are
upper bounded by3

j�c(x)j �M
s!

(�cjx2 � �2j)s e

0
@ cx2

x2 � �2

1
A
; s = 1; 2; : : : (3.3)

The maximal value of the upper bound on the right hand side of (3.3) is obtained at x = xmax

where x2max � �2 � ��2c=s; consult4. This implies that our cut-o� function �c admits G2

regularity, namely, there exists a constant �c := �c�
2c such that

sup
x2<

j�(s)c (x)j � Constc � s!
�
s

�c

�s

e�s � Constc
(s!)2

�sc
s = 1; 2; : : : (3.4)

We now turn to examine the actual decay rate of Fourier projections, jSN� � �j, for arbitrary
G�-functions. According to (2.2) combined with the growth of k�kCs dictated by (3.1), the L1

error in spectral projection of a G� function, �, is governed by

jSN�(x)� �(x)j � Const:N
(s!)�

(�N)s
; s = 1; 2; : : : (3.5)

The expression of the type encountered on the right of (3.5), (s!)�(�N)�s, attains its minimum at
smin = (�N)1=�,

min
s

(s!)�

(�N)s
� min

s

�
s�

�e�N

�s

= e��(�N)1=� : (3.6)

Thus, minimizing the upper-bound in (3.5) at s = smin = (�N)1=�, yields the exponential accuracy
of fractional order

3To this end note that �c(x) = e+(x)e�(x) with e�(x) := exp(cx=(x � �) for x 2 (��; �). The functions e�(x)

upper bounded by je
(s)
� (x)j �M�s!(�cjx� �j)�se�(x); with appropriate � = �c, [Jo, p. 73]

4For large values of s, the function ja(x)j�s � exp(�a(x) + �=a(x)) with �xed � and � is maximized at x = xmax

such that a(xmax) � ��=s. In our case, a(x) = x2 � �2 and � � c�2



Adaptive Mollifiers for Accurate Recovery of Piecewise Smooth Data 11

jSN�(x)� �(x)j � Const �Ne��(�N)1=� ; � 2 G�: (3.7)

The case � = 1 recovers the exponential decay for analytic �'s, (2.5), whereas for � > 1 we have
exponential decay of fractional order. For example, our G2 cut-o� function � = �c in (3.2) satis�es
(3.7) with (�; �) = (�c; 2), yielding

jSp�c(x)� �c(x)j � Const:p � e�2
p
�cp: (3.8)

Equipped with these estimates we now revisit the error decay of spectral molli�ers based on G�

cut-o� functions �. Both contributions to the error in (2.14) | the regularization R(N; p; �), and
the truncation T (N; p; �) (as well as aliasing A(N; p; �) in (2.31)), are controlled by the decay rate
of Fourier projections.

3.1 The (�; p) parameters revisited { exponential accuracy.

We assume that f(�) is piecewise analytic. For each �xed x, our choice of � = �(x) = d(x)=�
guarantees that f(x��y) is analytic in the range jyj � � and hence its product with the G�(��; �)
function �(y) yields the G� regularity of gx(y) = f(x � �y)�(y) � f(x). According to (2.16), the
regularization error, R(N; p; �) is controlled by the Fourier projection of gx(�), and in view of its
G� regularity, (3.7) yields

jR(N; p; �)j = j(Spgx(y)� gx(y))jy=0j � Const� � p e��(�p)1=� : (3.9)

For example, if � = �c we get

jR�c(N; p; �)j � Constc � p � e�2
p
�cp: (3.10)

Remark. It is here that we use the normalization, �(0) � 1 = gx(y = 0) = 0, and (3.9) shows that
one can slightly relax this normalization within the speci�ed error bound

j�(0) � 1j � Const: e��(�p)
1=�
: (3.11)

Next we turn to the truncation error, T (N; p; �). According to (2.19), its decay is controlled by
the Fourier projection of the localized Dirichlet kernel  p;�(x) =

1
� p

�
x
�

�
. Here we shall need the

speci�c structure of the localizer �(x) = �c(x) in (3.2). Leibnitz rule and (3.3) yield

j (s)
p (x)j �

sX
k=0

�
s
k

�
j�(k)c (x)j � jD(s�k)

p (x)j

� Const: s!

 
sX

k=0

ps�k

(s� k)!
(�cjx2 � �2j)�k

!
� e

0
@ cx2

x2 � �2

1
A

� Const:
s!

(�cjx2 � �2j)s e

�
p�cjx2 � �2j+ cx2

x2 � �2

�

which after dilation satis�es
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j (s)
p;�(x)j � Const: s!

�
�

�cja(x)j
�s

� e

�
p�cja(x)j

�2
+

cx2

a(x)

�
; a(x) := x2 � �2�2(x): (3.12)

Following a similar manipulation we used earlier, the upper bound on right hand side of the (3.12)
is maximized at x = xmax with x2max � �2�2 � �c�2�2=s, which leads to the G2-regularity bound
for  p;� (where as before, �c := �c�

2c)

sup
x2<

j (s)
p;�(x)j � Const � s!

�
s

�c�e

�s

ep�c=s � Cosnt:
(s!)2

(�c�)s
ep�c=s s = 1; 2; : : : (3.13)

With (3.13) we utilize (2.22) to obtain the following precise bound of the truncation error

jT (N; p; �)j � Const:
(s!)2

(�c�N)s
ep�c=s (3.14)

To minimize the upperbound (3.14), we �rst seek the minimizer for the order of smoothness, s = sp,
and then optimize the free spectral parameter p � N for both the truncation and regularizations
errors. We begin by noting that a general expression of the type encountered on the right of (3.14),

(s!)2

(�c�N)s
ep�c=s �

�
s2

�c�e2N

�s

ep�c=s =:M(s; p);

is minimized at the p-dependent index smin such that

@s(logM(s; p))js=smin
= log(

s2min

�c�N
)� p�c

s2min

= 0 (3.15)

Though we cannot �nd its explicit solution, (3.15) yields a rather precise bound on smin which turns
out to be essentially independent of p. Indeed, for the �rst expression on the right of (3.15) to be
positive we need smin =

p
��c�N with some � > 1. Plugging this expression, smin =

p
��c�N ,

into (3.15), we �nd that for p � N we must have, log � = log(s2min=�c�N) = �cp=s
2
min � 1=��. We

therefore set s � smin of the form

s =
p
��c�N; 1 < � < 1:764;

so that the free � parameter satis�es the above constraint5 � log � � 1 � 1=�. The corresponding
optimal parameter p is then given by

pmin =
s2

�c
� (log s2

�c�N
)js=smin

= � � �N; 0 < � =: � log � < 1(� 1

�
): (3.16)

We conclude with an optimal choice of p of order O(�N), replacing the previous choice, (2.37), of
order O(pN). The resulting exponentially small truncation error bound, (3.14), now reads

jT (N; p; �)j � Const:
(s!)2

(�c�N)s
ep�c=sjs=smin

�
p
�N

�
�

e

�2
p
��c�N

; 1 < � � 1:764: (3.17)

With this choice of p = pmin in (3.16) we �nd essentially the same exponentially small bound on
the regularization error in (3.10),

5Recall that � = �(x) := d(x)=� < 1.
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jR(N; p; �)j � Const � �N
�
1

e

�2
p
� log ���c�N

: (3.18)

Figures 3.1(f) and 3.2(f) below con�rm that the contributions of the truncation and regularization
parts of the error are of the same exponentially small order up to the vicinity of the discontinuous
jumps with this choice of optimal p � Nd(x)=�, in contrast to previous choices of p = O(N
); 
 < 1,
consult Figures 3.1(b)-(d) and 3.2(b)-(d).

We summarize what we have shown in the following theorem.

Theorem 3.1 Given the Fourier projection, SNf(�) of a piecewise analytic f(�), we consider the
2-parameter family of spectral molli�ers

 p;�(x) :=
1

�
�c(

x

�
)Dp(

x

�
); �c := e

0
@ cx2

x2 � �2

1
A
; c > 0;

and we set

� = �(x) :=
d(x)

�
; d(x) = dist(x; sing suppf) (3.19)

p = p(x) � � � �(x)N; 0 < � = � log � < 1: (3.20)

Then there exits constants, Constc and �c, depending solely on the analytic behavior of f(�) in
the neighborhood of x, such that we can recover the intermediate values of f(x) with the following
exponential accuracy

j p;� ? SNf(x)� f(x)j � Constc � �N
�
�

e

�2
p

��c�(x)N

; 1 < � � 1:764: (3.21)

Remark. Theorem 3.1 indicates an optimal choice for the spectral molli�er,  p;�, based on an
adaptive degree of order p = ��(x)N , with an arbitrary free parameter, 0 < � = � log � < 1. We
could further optimize the error bound (3.21) over all possible choices of �, by equilibrating the
leading term in the truncation and regularization error bounds so that�

�

e

�2
p

���c�(x)N
�
�
1

e

�2
p

� log ���c�(x)N
;

with the minimal value found at log �� = (3 �p
5)=2, the corresponding �� := �� log �� = 0:5596,

and 2
p
��=� = 0:8445 leading to an error bound,

j p;� ? SNf(x)� f(x)j � Constc � d(x)N
�
1

e

�0:845
p

�cd(x)N

: (3.22)

Although the last estimate serves only as an upperbound for the error, it is still remarkable that the
(close to) optimal parameterization of the adaptive molli�er is found to be essentially independent
of the properties of f(�).
Similar result holds in the pseudospectral case. In this case, we are given the Fourier interpolant,
INf(x) and the corresponding discrete convolution is carried out in the physical space with overall
error, E(N; p; �; f) =  p;� ? INf(x) � f(x), which consists of aliasing and regularization errors,
(2.31). According to (2.32), the former is upper bounded by the truncation of f 0, which retains the
same analyticity properties as f does. We conclude
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Theorem 3.2 Given the equidistant gridvalues, ff(x�)g0���2N�1 of a piecewise analytic f(�), we
consider the 2-parameter family of spectral molli�ers

 p;�(x) :=
1

�
�c(

x

�
)Dp(

x

�
); �c := e

0
@ cx2

x2 � �2

1
A
; c > 0;

and we set

� = �(x) :=
d(x)

�
; d(x) = dist(x; sing suppf) (3.23)

p = p(x) � � � �(x)N; 0 < � = � log � < 1: (3.24)

Then, there exits constants, Constc and �c, depending solely on the analytic behavior of f(�) in
the neighborhood of x, such that we can recover the intermediate values of f(x) with the following
exponential accuracy

��� �
N

2N�1X
�=0

 p;�(x� y�)f(y�)� f(x)
��� � Constc � (d(x)N)2

�
�

e

�2
p

��c�(x)N

; 1 < � < 1:764: (3.25)

3.2 Numerical experiments

The �rst set of numerical experiments compares our results with those of Gottlieb-Tadmor, [GoTa85],
involving the same choice of f(�) = f1(�)

f1(x) =

�
sin(x=2) x 2 [0; �)
� sin(x=2) x 2 [�; 2�)

0 1 2 3 4 5 6
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

(3.26)

A second set of results is demonstrated with a second function, f2(x) given by

f2(x) =

�
(2e2x � 1� e�)=(e� � 1) x 2 [0; �=2)
� sin(2x=3 � �=3) x 2 [�=2; 2�):

0 1 2 3 4 5 6
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

(3.27)

This is a considerable challenging test problem: f2 has a jump discontinuity at x = �=2 and due to
the periodic extention of the Fourier series two more discontinuities at the boundaries x = 0; 2�.
Moreover, a relatively large gradient is formed for x � �=2�, and the sharp peak on the left of
x = �=2 is met a jump discontinuity on the right.
For the computations below we utilize the same localizer � = �c as in (3.2), with c = 10. In the
�rst case, f1 has a simple discontinuity at x = � so the � parameter was chosen according to (2.36),
� = �(x) = min(jxj; jx � �j)=�. In the second case of f2(x) we set

�(x) = [min(x; �=2� x)+ +min(x� �=2; 2� � x)+] =�:
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Since the error deteriorates in the immediate vicinity of the discontinuities where �(x)N � 1, a
window of minimum width of �min = minf�(x); 1=4Ng was imposed around x0 = f0; �=2; �; 2�g.
More about the treatment in the immediate vicinity of the discontinuity is found in x4.1.
The di�erent policies for choosing the parameter p are outlined below. In particular, for the near
optimal choice recommended in Theorems 3.1 and 3.2 we use a molli�er of an adaptive degree
p = ��(x)N with � = 1=

p
e = 0:6095 � ��.

We begin with the results based on the spectral projections, SNf1 and SNf2. For comparison
purposes, the exact convolution integral,  p;� ?SNf was computed with composite Simpson method
using �

8000 points, and the molli�ed results are recorded at the left half points, �
150�, � = 0,

1; : : : ; 149. Figure 3.1 shows the result of treating the spectral projection  p;� ? SNf1 based on
N = 128 modes, for di�erent choices of p's. Figures 3.2 show the same results for f2(x). It is
evident from these �gures, �gure 3.1(e)-(f) and �gure 3.2(e)-(f), that best results are obtained with
p = �(x)N=

p
e, in agreement with our analysis for the optimal choice of exponentially accurate

molli�er in (3.22). We note that other choices for p � N
 , lead to large intervals where exponential
accuracy is lost due to the imbalance between the truncation and regularization errors, consult
cases (a)-(d) in �gures 3.1-3.2. As we noted earlier in (2.38), a nonadaptive choice of p independent
of �(x) leads to deterioration of the accuracy in an increasing region of size � p�=N around the
discontinuity, and the predicted locations of these values, given in table 3.1, could be observed in
�gures 3.1(a)-(d) for the function f1(x).

pnN 32 64 128

N0:8 1.6 1.8 2.0

N0:5 2.6 2.7 2.9

N0:2 2.9 3.0 3.1

Table 3.1: Predicted location where spectral convergence is lost at jx� x0j � p�=N .

Figure 3.3 illustrates the spectral convergence as N doubles from 32 to 64, then to 1286. The
exponential convergence of the near optimal adaptive p = �(x)N=

p
e can be seen in �gure 3.3(e)-

(f), where the log-slopes are constants with respect to d(x) (for �xed N) and with respect to N
(for �xed x).
Next, the numerical experiments are repeated for the discrete case, using discrete molli�cation of
the Fourier interpolant. Given the gridvalues of f1(x�) and f2(x�) at the equidistant gridpoints
x� = ��=N , we recover the pointvalues at the intermediate gridpoints f(x�+1=2). A minimal window
width of �min = min(�(x); 2�=N) was imposed in the immediate vicinity of the discontinuities to
maintain a minimum number of two sampling points to be used in the discrete molli�cation.
Compared with the previous molli�ed results of the spectral projections, there are two noticeable
changes, both involving the non-optimal choice of p � N
 with 
 < 1: (i) The location where
spectral/exponential convergence is lost is noticeably closer to the discontinuities compared with
the molli�ed spectral projections, but at the same time (ii) Much larger oscillations are observed
in the regions where spectral convergence is lost. Comparing �gures 3.1 vs. 3.4, and 3.2 vs. 3.5,
gives a visual comparison for both changes from spectral to pseudo spectral. The deterioration for
p = N0:8 and N0:5 are very noticeable.

6Machine truncation error is at �16.
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Figure 3.1: Recovery of f1(x) from its �rst N = 128 Fourier modes, on the left, and the cor-
responding regularization errors (dashed) and truncation errors (solid) on the right, using the
spectral molli�er  p;� based on various choices of p: (a)-(b) p = N0:5, (c)-(d) p = N0:8, (e)-(f)
p = Nd(x)=�

p
e.
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Figure 3.2: Recovery of f2(x) from its �rst N = 128 Fourier modes, on the left, and the cor-
responding regularization errors (dashed) and truncation errors (solid) on the right, using the
spectral molli�er  p;� based on various choices of p: (a)-(b) p = N0:5, (c)-(d) p = N0:8, (e)-(f)
p = Nd(x)=�

p
e.
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Figure 3.3: Log of the error with N = 32, 64, 128 modes for f1(x) on the left, and for f2(x) on the
right, using various choices of p: (a)-(b) p = N0:5, (c)-(d) p = N0:8, (e)-(f) p = Nd(x)=�

p
e.
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Figure 3.4: Recovery of f1(x) from its N = 128 equidistant gridvalues on the left, and the cor-
responding regularization errors (dashed) and truncation errors (solid) on the right, using the
spectral molli�er  p;� based on various choices of p: (a)-(b) p = N0:5, (c)-(d) p = N0:8, (e)-(f)
p = Nd(x)=�

p
e.
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Figure 3.5: Recovery of f2(x) from its N = 128 equidistant gridvalues on the left, and the cor-
responding regularization errors (dashed) and truncation errors (solid) on the right, using the
spectral molli�er  p;� based on various choices of p: (a)-(b) p = N0:5, (c)-(d) p = N0:8, (e)-(f)
p = Nd(x)=�

p
e.
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4 Adaptive Molli�ers { Normalization

The essence of the 2-parameter spectral molli�er discussed in x3,  p;�(x), is adaptivity: it is based
on a Dirichlet kernel of a variable degree, p � �(x)N , which is adapted by taking into account the
location of x relative to its nearest singularity, �(x) = d(x)=�. The resulting error estimate tells us
that there exist constants, Const; 
 and � > 1 such that one can recover a piecewise analytic f(x)
from its spectral or pseudospectral projections, PNf(�),

j p;� ? PNf(x)� f(x)j � Const:e�(
d(x))N)1=� :

The error bound on the right shows that the adaptive molli�er is exponentially accurate for all x's,
except for what we refer to as the immediate vicinity of the jump discontinuities of f , namely, those
x's where d(x) � 1=N . This should be compared with previous, non-adaptive choices for choosing
the degree of  p;�: for example, with p � p

N we found a loss of exponential accuracy in a zone
of size � 1=

p
N around the discontinuities of f . Put di�erently, there are O(pN) 'cells' which are

not accurately recovered in this case. In contrast, our adaptive molli�er is exponentially accurate
at all but �nitely many cells near the jump discontinuities. According to the error estimates (3.21),
(3.22) and (3.25), convergence may fail in these cells inside the immediate vicinity of sing suppf ,
and indeed, spurious oscillations could be noticed in �gures 3.1 and 3.2. In this section we address
the question of convergence up to the jump discontinuities.

One possible approach is to retain a uniform exponential accuracy up to the jump discontinuities.
Such an approach, developed by Gottlieb, Shu, Gelb and their co-workers is surveyed in [GoSh95,
GoSh98]. It is based on Gegenbauer expansions of degree � � N . Exponential accuracy is retained
uniformly throughout each interval of smoothness of the piecewise analytic f . The computational
of the high order Gegenbauer coeÆcients, however, is numerically sensitive and the parameters
involved need to be properly tuned in order to avoid triggering of instabilities, [Ge97, Ge00].
Here we proceed with another approach where we retain a variable order of accuracy near the jump
discontinuities, of order O((d(x))r+1). Comparing this polynomial error bound against the interior
exponential error bounds, say (3.22),

Const:d(x)N � e�0:845
p

�cd(x)N � (d(x))r+1;

we �nd that there are only �nitely many cells in which the error { dictated by the smaller of the
two, is dominant by polynomial accuracy

d(x) � Const:
r2(log d(x))2

�cN
� r2

N
: (4.1)

In this approach, the variable order of accuracy suggested by (4.1), r � p
d(x)N , is increasing

together with the increasing distance away from the jumps, or more precisely { together with the
number of cells away from the discontinuities, which is consistent with the adaptive nature of our
exponentially accurate molli�er away from the immediate vicinity of these jumps. The current
approach of variable order of accuracy which adapted to the distance from the jump discontinu-
ities, is reminiscent of the Essentially Non Oscillatory (ENO) piecewise polynomial reconstruction
employed in the context of nonlinear conservation laws [HEOC85, Sh97].
How to enforce that our adaptive molli�ers are polynomial accurate in the immediate vicinity of
jump discontinuities? as we argued earlier in (2.11), the adaptive molli�er  p;� admits spectrally
small moments of order p�s � (d(x)N)�s. More precisely, using (3.7) we �nd for � 2 G�,Z ��

���
ys p;�(y)dy =

Z �

��
(y�)s�(y)Dp(y)dy = Dp ?

�
(y�)s�

�
(y)jy=0 =
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= Æs0 + Const:�s � e��(�p)1=� ; p � d(x)N:

Consequently,  p;� possesses exponentially small moments at all x's except for the immediate
vicinity of the jumps where p � d(x)N � 1, the same O(1=N) neighborhoods where the previous
exponential error bounds fail. This is illustrated in the numerical experiments exhibited in x3.2
which show the blurring in symmetric intervals with width � 1=N around each discontinuity. To
remove this blurring, we will impose a novel normalization so that �nitely many moments of (the
projection of)  p;� precisely vanish. As we shall see below, this will regain a polynomial convergence
rate of the corresponding �nite order r. We have seen that the general adaptivity (4.1) requires
r �

p
d(x)N ; in practice, enforcing a �xed number of vanishing moments, r � 2; 3 will suÆce.

4.1 Spectral normalization - adaptive molli�ers in the vicinity of jumps

Rather than  p;� possessing a �xed number of vanishing moments as in standard molli�cation (2.7),
we require that its spectral projection, SN p;�, posses a unit mass and, say r vanishing moments,Z �

��
ys(SN p;�)(y)dy = Æs0 s = 0; 1; : : : ; r: (4.2)

It then follows that adaptive molli�cation of the Fourier projection,  p;� ? SNf , recovers the point-
values of f with the desired polynomial order O(d(x))r. Indeed, noting that for each x, the function
f(x� y) remains smooth in the neighborhood jyj � �� = d(x) we �nd, utilizing the symmetry of
the spectral projection,

R
(SNf)g =

R
f(SNg),

 p;� ? SNf(x)� f(x) =

Z ��

���
[f(x� y)� f(x)](SN p;�)(y)dy =

=

rX
s=1

(�1)s
s!

f (s)(x)

Z �

��
ys(SN p;�)(y)dy +

(�1)r+1

(r + 1)!
f (r+1)(�)

Z �

��
yr+1(SN p;�)(y)dy

�
Z �

��
(SNy

r+1) p;�(y)dy � Const:
�
d(x) +

1

N

�r+1
:

The last step follows from an upperbound for the spectral projection of monomials outlined at the
end of this subsection.
To enforce the vanishing moments condition (4.2) on the adaptive molli�er,  p;�(�) = (�(�)Dp(�=�))=�,
we take advantage of the freedom we have in choosing the localizer �(�). We begin by normalizing

e p;�(y) =  p;�(y)R �
��  p;�(z)dz

so that e p;� has a unit mass, and hence (4.2) holds for r = 0, for
R
SN ( p;�)(y)dy =

R
 p;�(y)dy = 1.

We note that the resulting molli�er takes the same form as before, namely

e p;�(y) := 1

�
(~�cDp)(

y

�
); (4.3)

where the only di�erence is associated with the modi�ed localizer,

~�c(y) = q0 � �c(y); q0 =
1R �

��  p;�(z)dz
: (4.4)
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Observe that in fact, 1=q0 =
R
 p;�(z)dz �

R
 p(z)dz = (Dp ? �c)(0), and that with our choice of

p = � � �(x)N , we have in view of (3.7),

~�c(0) = q0 =
1

(Dp ? �c)(0)
= 1 +O("); " � d(x)N � e�2

p
�cp; p = � � �(x)N

which is admissible within the same exponentially small error bound we had before, consult (3.11).
In other words, we are able to modify the localizer �c(�) ! ~�c(�) to satisfy the �rst-order normal-
ization, (4.2) with r = 0, while the corresponding molli�er, (�xDp)� ! (~�cDp)�, retains the same
overall exponential accuracy. Moreover, using even �'s implies that  (�) is an even function and
hence its odd moments vanish. Consequently, (4.2) holds with r = 1, and we end up with the
following quadratic error bound in the vicinity of x (compared with (3.22))

j e p;�(x) ? SNf(x)� f(x)j � Const:
�
d(x) +

1

N

�2
� e�0:845

p
�cd(x)N :

In a similar manner, we can enforce higher vanishing moments by proper normalization of the
localizer �(�). There is clearly more than one way to proceed { here is one possibility. In order to
satisfy (4.2) with r = 2 we use a pre-factor of the form ~�c(x) � (1 + q2x

2)�c(x). Imposing a unit
mass and vanishing second moment we may take

e p;�(y) = 1

�
(~�cDp)(

y

�
); ~�c(y) � (1 + q2y

2)�c(y);

with the normalized localizer, ~�c(y), given by

~�c(y) =
1 + q2y

2R �
��(1 + q2(

z
� )

2) p;�(z)dz
�c(y); q2 =

� R ���(SNz2) p;�(z)dzR �
��(SNz

2)( z� )
2 p;�(z)dz

: (4.5)

As before, the resulting molli�er e p;� is admissible in the sense of satisfying the normalization (3.11)
within the exponentially small error term. Indeed, since

R
y2 p;�(y)dy = (Dp?(y

2�c(y)))(0) = O(")
we �nd

~�c(0) =
1R �

��(1 + q2(
y
� )

2) p;�(y)dy
=

=
1

1 + q2 � "=�2 = 1 + Const � (d(x)N)3 � e�2
p
�cp; p = � � �(x)N:

A straightforward computation shows that the unit mass e p;� has a second vanishing momentZ �

��
y2(SN e p;�)(y)dy =

Z �

��
(SNy

2)
�
a0 + a2(

y

�
)2
�
 p;�(y)dy =

=

Z �

��
(SNy

2) p;�(y)dy + q2

Z �

��
(SNy

2)(
y

�
)2 p;�(y)dy = 0: (4.6)

Since ~�c(�) is even, so is the normalized molli�er e (�), and hence its third moment vanishes yielding
a 4th order convergence rate in the immediate vicinity of the jump discontinuities,

j( e p;�(x) ? SNf)(x)� f(x)j � Const:
�
d(x) +

1

N

�4
� e�0:845

p
�cd(x)N :

We close this section with the promised
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Lemma 4.1 ([Tao]). The following pointwise estimate holds

jSN (yr)j . (jyj+ 1

N
)r:

To prove this, we use a dyadic decomposition (similar to the Littlewood-Paley construction) to
split

yr =
X
k�0

2k� (y=2k)

where  is a bump function adapted to the set f�=4 < jyj < �g.
For 2k . 1=N , the usual upperbounds of the Dirichlet kernel tell us that

jSN ( (�=2k))(y)j . 2kN=(1 +N jyj):

Now suppose 2k & 1=N . In this case we can use the rapid decay of the Fourier transform of  (�=2k)
for frequencies � N to obtain the estimate

k(1 � SN)( (�=2k))k1 . (2kN)�100:

In particular, since supp  � 1, we have jSN ( (�=2k))(x)j . 1 when jyj � 2k, and jSN ( (�=2k))(y)j .
(2kN)�100 otherwise. The desired bound follows by adding together all these estimates over k.

4.2 Pseudospectral normalization { adaptive molli�ers in the vicinity of jumps

We now turn to the pseudospectral case which will only require evaluations of discrete sums and
consequently, can be implemented with little increase in computation time.

Let f � g(x) := P� f(x � y�)g(y�)h denote the (non-commutative) discrete convolution based on
2N equidistant gridpoints, y� = �h; h = �=N . Noting that for each x, the function f(y) remains
smooth in the neighborhood jx� yj � �� = d(x), we �nd

j p;� � INf(x)� f(x)j =
���X

�

 p;�(x� y�)[f(y�)� f(x)]h
��� =

=
��� rX
s=1

(�1)s
s!

f (s)(x)
X
�

(x� y�)
s p;�(x� y�)h+

(�1)r+1

(r + 1)!
f (r+1)(�)

X
�

(x� y�)
r+1 p;�(x� y�)h

���
� Const:(d(x))r+1; Const �

kfkCr+1
loc

(r + 1)!
;

provided  p;� has its �rst r discrete moments vanish,

2N�1X
�=0

(x� y�)
s p;�(x� y�)h = Æs0; s = 0; 1; 2; : : : ; r: (4.7)

Observe that unlike the continuous case associated with spectral projections, the discrete constraint
(4.7) is not translation invariant and hence it requires x-dependent normalizations. The additional
computational e�ort is minimal, however, due to the discrete summations which are localized in
the immediate vicinity of x. Indeed, as a �rst step we note the validity of (4.7) for x's which are
away from the immediate vicinity of the jumps of f . To this end we apply the main exponential
error estimate (3.25) for f(�) = (x� �)s (for arbitrary �xed x), to obtain
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2N�1X
�=0

(x� y�)
s p;�(x� y�)h = (x� y)sjy=x +O(") =

= Æs0 +O("); " � (d(x)N)2 � e�
p

Const:d(x)�N : (4.8)

Thus, (4.7) holds modulo exponentially small error for those x's which are away from the jumps
of f , where d(x) � 1=N . The issue now is to enforce discrete vanishing moments on the adaptive
molli�er  p(x) = �(x)Dp(x) in the vicinity of these jumps, and to this end we take advantage of
the freedom we have in choosing the localizer �(�). We begin by normalizing

e p;�(y) =  p;�(y)P2N�1
�=0  p;�(x� y�)h

;

so that e p;�(x��) has a (discrete) unit mass, i.e., (4.7) holds with r = 0. We note that the resulting
molli�er takes the same form as before, namely

e p;�(y) := 1

�
(~�cDp)(

y

�
); (4.9)

and that the only di�erence is associated with the modi�ed localizer,

~�c(y) = q0 � �c(y); q0 =
1P2N�1

�=0  p;�(x� y�)h
: (4.10)

By (4.8), the x-dependent normalization factor, q0 = q0(x) is in fact an approximate identity,

1=q0 =

2N�1X
�=0

 p;�(x� y�)h = 1 +O("); " � (d(x)N)2 � e�
p

Const:d(x)�N ;

which shows that the normalized localizer is admissible, j~�(0)�1j = jq0�1j � O("), within the same
exponentially small error bound we had before { consult (3.11) with our choice of p � d(x) �N . In
other words, we are able to modify the localizer �c(�)! ~�c(�) to satisfy the �rst-order normalization,
(4.7) with r = 0 required near jump discontinuities, while the corresponding molli�er, (�xDp)� !
(~�cDp)�, retains the same overall exponential accuracy required outside the immediate vicinity of
these jumps .
Next, we turn to enforce that �rst discrete moment vanishes,

P
�(x� y�) e p;�(x� y�)h = 0, and to

this end we seek a modi�ed molli�er of the form

e p;�(y) = q(y=�)P
� q(

x�y�
� ) p;�(x� y�)h

 p;�(y); q(y) := 1 + q1y;

with q1 is chosen so that the second constraint, (4.7) with r = 1, is satis�ed7

q1 = �
P

�(x� y�) p;�(x� y�)hP
�
(x�y�)2

�  p;�(x� y�)h
: (4.11)

7We note in passing that ~�c(�) being even implies that e p;�(�) is an even function and hence its odd moments
vanish. It follows that the �rst discrete moment,

P
�(x � y�) p;�(x � y�)h vanishes at the gridpoints x = y�, and

therefore q1 = 0 there. But otherwise, unlike the similar situation with the spectral normalization, q1 6= 0. The
discrete summation in q1, however, involves only �nitely many neighboring values in the �-vicinity of x.
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Consequently, (4.7) holds with r = 1, and we end up with a quadratic error bound corresponding
to (3.22)

j e p;� � INf(x)� f(x)j � Const:(d(x))2 � e�
p

Const:d(x)N :

Moreover, (4.8) implies that q1 = O(") and hence the new normalized localizer is admissible,
~�c(0) = 1 + O("). In a similar manner we can treat higher moments, using normalized localizers,
~�c(y) � q(y)�c(y) of the form

e p;�(y) = 1

�
(~�cDp)(

y

�
); ~�c(y) :=

1 + q1y + : : : qry
rP

� q(
x�y�
� ) p;�(x� y�)h

�c(y): (4.12)

The r free coeÆcients of q(y) = 1 + q1y + : : : qry
r are chosen so as to enforce (4.7) with the

�rst r discrete moments of e vanish. This leads to a simple r � r Vandermonde system ( {
outlined in at the end of this ssection)involving the r gridvalues, ff(y�)g, in the vicinity of x,
jy� �xj � �(x)�. With our choice of a symmetric support of size �(x) = d(x)=�, there are precisely
r = 2��=h = 2Nd(x)=� such gridpoints in the immediate vicinity of x, which enable us to recover
the intermediate gridvalues, f(x) with an adaptive order (d(x))r+1; r � Nd(x). As before, this
normalization does not a�ect the exponential accuracy away from the jump discontinuities, noting
that ~�(0)c = 1=q0 = 1 +O(") in agreement with (3.11). We summarize by stating

Theorem 4.1 Given the equidistant gridvalues, ff(x�)g0���2N�1 of a piecewise analytic f(�), we
want to recover the intermediate values f(x). To this end, we use the 2-parameter family of pseu-
dospectral molli�ers

e p;�(y) := 1

�
~�c(

y

�
)Dp(

y

�
); p = 0:5596 � �N; c > 0;

where � = �(x) := d(x)=� is the (scaled) distance between x and its nearest jump discontinuity. We

set ~�c(y) := q(y)e

�
cy2

y2��2

�
as the normalizing factor, with

q(y) =
1 + q1y + : : : qry

rP
� q(

x�y�
� ) p;�(x� y�)h

so that the �rst r discrete moments of e p;�(y) vanish, i.e., (4.7) holds with r � Nd(x).
Then, there exits constants, Constc and �c, depending solely on the analytic behavior of f(�) in
the neighborhood of x, such that we can recover the intermediate values of f(x) with the following
exponential accuracy

��� �
N

2N�1X
�=0

 p;�(x� y�)f(y�)� f(x)
��� � Constc � (d(x))r+1

�
1

e

�0:845
p

�cd(x)N

; r � Nd(x): (4.13)

The error bound (4.13) con�rms our statement in the introduction of x4, namely, the adaptivity
of the spectral molli�er in the sense of recovering the gridvalues in the vicinity of the jumps with
an increasing order, Nd(x), proportional to their distance from sing supp f . We have seen that
the general adaptivity (4.1) requires r � p

d(x)N , so that in practice, enforcing a �xed number
of vanishing moments, r � 2; 3 will suÆce as a transition to the exponentially error decay in the
interior region of smoothness. We highlight the fact that the modi�ed molli�er e p;� normalized
by having �nitely many (� 2; 3) vanishing moments can be constructed with little increase in
computation time and, as we will see in x4.3 below, it yields greatly improved results near the
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discontinuities.
We close this section with a brief outline on the construction of the r-order accurate normalization
factor q(�). To recover f(x), we seek a r-degree polynomial q(y) := 1+ q1y+ : : :+ qry

r so that (4.7)
holds. We emphasize that the qr's depend on the speci�c point x in the following manner. Setting
z� := x� y� , then satisfying (4.7) for the higher moments of e p;� requiresX

�

zs�
e p;�(z�)h = 0; s = 1; 2; : : : ; r;

and with e p;�(�) � q(�=�) p;�(�) we end up withX
�

zs� [q(
z�
�
)� 1] p;�(z�)h = �

X
�

zs� p;�(z�); s = 1; 2; : : : ; r:

Expressed in terms of the discrete moments of  ,

a�(z�) :=
X
�

(
z�
�
)1+� p;�(z�); � = 1; 2 : : : ; 2r

this amounts to the r � r Vandermonde-like system for fq1; : : : ; qrg,266664
a1(z�) a2(z�) � � � ar(z�)
� � � � � �
� � � � � �
� � � � � �

ar+1(z�) ar+2(z�) � � � a2r(z�)

377775
266664
q1
�
�
�
qr

377775 = �

266664
P

� z� p;�(z�)
�
�
�P

� z
r
� p;�(z�)

377775 (4.14)

Finally we scale q(�) so that (4:7) holds with s = 0, which led us to the normalized localizer in
(4.12).

4.3 Numerical Experiments

Figure 3.1 (d) the blurring oscillations near the edges when using the non-normalized adaptive
molli�er. To reduce this blurring we will use the normalized e p;� for x's in the vicinity of the jumps
where d(x) � 6�=N . The convolution is computed at the same locations as in section (3.2), and
a minimum window width of �(x) = min(d(x)=�; 2�=N) was imposed. the Trapezoidal rule (with
spacing of �=8000) was used for the numerical integration of (SNy

2) p;�(y) and (SNy
2)y2 p;�(y),

required for the computation of q0 and q2 in 4.1. Figure 4.1(a)-(d) shows the clear improvement
near the edges once we utilize the normalized e p;�, while retaining the exponential convergence
away from these edges is illustrated in �gure 4.1(e)-(f).
We conclude with the pseudospectral case. The O(1) error remains in �gure 3.4 (d) for the non-
normalized molli�er. The normalization of the discrete molli�er in section 4.2 shows that by usinge p;� given in (4.12), with a 4th degree normalization factor q(�), results in a minimum convergence
rate of d(x)4 in the vicinity of the jumps, and with exponentially increasing order as we move away
from the jumps. This modi�cation of e p;� leads to a considerable improvement in the resolution near
the discontinuity, which could be seen in �gure 4.2. Here, normalization was implemented usinge p;� in the vicinity of the jumps, for d(x) � 4�=N , and the adaptive molli�er  p;� was used for x's
'away' from the jumps d(x) � 4�=N . A minimum window of width �(x) = min(d(x)=�; 2�=N) was
imposed.

*
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Figure 4.1: Recovery of f1(x) (on the left) and f2(x) (on the right) from their N = 128-modes
spectral projections, using the 4th order normalized molli�er (4.3),(4.5) of degree p = d(x)N=�

p
e.

Regularization errors (dashed) and truncation errors (solid) are shown on (c)-(d), and Log errors
based on N = 32; 64; and 128 modes are shown in (e)-(f).
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Figure 4.2: Recovery of f1(x) (a) and f2(x) (b) from their N = 128-modes spectral projections,
using the normalized molli�er. Log error for recovery of f1(x) (c)and f2(x) (d) from their spectral
projections based on N = 32; 64; and 128 modes. Here we use the normalized molli�er,  p;� of
degree p = d(x)N=�

p
e.

5 Summary

In their original work [GoTa85], Gottlieb & Tadmor showed how to regain formal spectral con-
vergence in recovering piecewise smooth functions using the 2-parameter family of molli�ers  p;�.
Our analysis shows that with a proper choice of parameters { in particular, an adaptive choice for
the degree p � d(x)N , hide the overall strength in the method. By incorporating the distance to
the discontinuities, � = d(x)=� along with the optimal value of p, we end up with exponentially
accurate recovery procedure up to the immediate vicinity of the jump discontinuities. Moreover,
with a proper local normalization of the spectral molli�er, one can further reduce the error in the
vicinity of these jumps. For the pseudospectral case, the normalization adds little to the overall
computation time. Overall, this yields a high resolution yet very robust recovery procedure which
enables one to e�ectively manipulate pointwise values of piecewise smooth data.
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