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Abstract

Many aspects of macroevolutionary theory and our knowledge of biotic responses to global environ-
mental change derive from literature-based compilations of paleontological data. Although major features
in the macroevolutionary history of life, notably long-term patterns of biodiversity, are similar across
compilations, critical assessments of synthetic databases have been limited to the enumeration of taxo-
nomic and geochronological errors in single lineages. Existing databases also leverage a small fraction of
relevant published knowledge and are difficult to extend with new data types. Here, we develop a statis-
tical machine reading and learning system, PaleoDeepDive, to automatically find and extract data from
the text, tables, and figures of publications. We show that PaleoDeepDive requires comparatively little
training data to perform comparably to humans in many complex data extraction tasks, and then deploy
the system to extend the human-constructed Paleobiology Database to include nearly ten times more
journal articles. Large-scale Phanerozoic taxonomic diversity and genus-level extinction and origination
patterns are robust, even when derived from different bodies of literature. Unlike traditional databases,
PaleoDeepDive produces a probabilistic database that improves as new information is added and that
is extendable to include data not previously accessible on large scales, including morphological data in
biological illustrations. Although literature-based compilations will always be subject to errors caused by
inconsistent and erroneous data reporting, our high quality machine-reading approach to data synthesis
and integration brings within reach questions that are now underdetermined and does so in ways that
may stimulate new modes of inquiry.

Paleontology is based on the description and biological classification of fossils, an enterprise that has
played out in countless collecting expeditions, museum visits, and an untold number of scientific publica-
tions over the past four centuries. The construction of synthetic databases that aggregate fossil data has
greatly expanded the intellectual reach of paleontology (1-8) and led to many fundamental new insights into
macroevolutionary processes (e.g., 9-16) and the nature of biotic responses to global environmental change
(e.g., 17-20). Nevertheless, paleontologists often remain data limited, both in terms of the pace of discovery
and description of new fossils, and in terms of their ability to find, access, and synthesize existing knowledge
on the fossil record. Many other sciences, particularly those for which publication is a primary means of
data distribution, face similar challenges, which diminishes the overall return on investments in primary data
acquisition and which limits the pace and scope of scientific inquiry.

The Paleobiology Database (PBDB) is one of the largest compilations of fossil data yet assembled.
Founded nearly two decades ago by a small team who generated the first sampling-standardized global
Phanerozoic biodiversity curves (21,22), the PBDB has since grown to include more than 300 international
scientists with diverse research agendas. Collectively, this group has spent nearly 10 continuous person years
entering more than 290,000 taxonomic names, 500,000 taxonoic opinions, and 1.17 million fossil occurrences
(i.e., temporally and geographically resolved instances of fossils). Some data derive from the fieldwork and
taxonomic studies of the contributors, but the majority of the data were acquired from over 40,000 publica-
tions. Nevertheless, the PBDB leverages only a small fraction of the paleontological literature. Moreover,
because the database is divorced from original sources, asssessing data quality and extending it to include
new data types is difficult.
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Here we develop and deploy PaleoDeepDive (PDD), a statistical machine reading and learning system,
to find and extract taxonomic and fossil occurrence data from the published literature. Our motivations
for doing so are threefold. First, we aim to quantitatively test the reproducibility of the PBDB and key
macroevolutionary results that frame much of our understanding of the large-scale history of life. Second,
we aim to overcome many of the challenges to machine reading that are posed by ambiguity at a large
scale and scope, in this case within the scientific literature. Third, we aim to develop a system with the
capacity to change the practice of science by removing the substantial barriers to large-scale data synthesis
and integration that currently exist. In so doing, we hope to shift the balance of effort away from time-
consuming and expensive data compilation efforts and towards creative hypothesis testing and more efficient
generation of new data. Assessing the quality of our system is therefore critical to establishing its potential
utility and for testing the specific hypothesis that a machine reading system can perform comparably to
humans in complex scientific data extraction tasks.

1 System Description

1.1 Overview

A fundamental challenge faced by machine reading systems is that computers cannot read documents un-
ambiguously. Instead, machines have difficulty with all aspects of document reading, from optical character
recognition (OCR) and natural language understanding tasks, to the more complex subtleties involving
domain-specific representations of facts. As a result, coping with ambiguity is a key challenge in many areas
of computer science (23-27).

To accommodate the inherent ambiguity of the literature, PDD is built upon the DeepDive machine
reading infrastructure (27), which is designed to extract information from text, tables, and figures in a way
that achieves a deeper level of understanding than previous generation systems. To do this, DeepDive treats
all sources of information, including existing data and dictionaries, as evidence that may or may not be
correct. Extraction tasks then become probabilistic inference challenges. A joint probabilistic, or collective
inference (28), approach is motivated by the challenge of retrieving complex, structured information from
a heterogeneous and unstructured literature designed for human visual consumption. Other systems use
a pipelined approach to data extraction (26, 29, 30), in which hard decisions are made after each stage
of document processing, leading to compounding errors and suboptimal data quality. The cost of a joint
probabilistic approach is that the underlying computational problem is more difficult because complexity
grows exponentially with each source of ambiguity. Recent work, driven by the challenges posed by building
PDD, allows us to perform the necessary statistical inference tasks orders of magnitude more efficiently than
was possible just several years ago (31-35).

Similar conceptual underpinnings are now in use by Google’s Knowledge Graph, IBM’s Watson, and
CMU’s NELL project, but these systems have not been applied to the scientific literature in a systematic
way, nor have they tackled as complex a problem as we do here.

1.2 PaleoDeepDive Pipeline

The input to PDD is a set of documents, such as PDFs or HTML sources, and a database structure that
defines entities and relationships of interest. The first step in the DeepDive process is to perform document
parsing tasks, including optical character recognition (OCR), document layout recognition, and natural
language parsing (NLP) of the text (Fig. S1). These steps are required before the system can apply any of
the reasoning necessary to recognize entities and the relationships among them. An example of the latter
is: “Does this instance of the word ‘Waldron’ refer to the ‘Waldron Shale’, a geological formation, and if
so, what is its geologic age, where is it located geographically, and which fossils are reported from it?” The
semantics for how entities and the relationships among them are recognized can be articulated by scientists
and then formalized into features and rules (Fig. S2; Tables S1, S2). The weights of these are then estimated
(i.e., learned) from the data using classical equations based on exponential models (28). Essentially, the
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likelihood of the given set of observations is maximized, given the set of features expressed by the rules
(Fig. S3). DeepDive is able to learn from existing structured data, rules provided by users, and traditional
training examples.

The end-product of PDD is not a classical database, in which facts are all assumed to be correct. Instead,
DeepDive produces a probabilistic database in which each fact is associated with an estimated probability of
being correct (36). Only those facts that have a probability satisfying some quality threshold (e.g., ≥ 0.95)
are used in analysis.

2 Results

2.1 Overlapping Document Set (ODS)

To assess PDD’s ability to extract data from the literature, we used the PBDB as a baseline for comparison.
Specifically, 11,782 documents from the top-50 serials in the PBDB were accessible to and processed by PDD
(Table S3).

On average, PDD extracts more taxonomic data from a given document than humans. For example,
humans extracted 79,913 opinions on the status and biological classification of taxonomic names from the
ODS, whereas PDD extracted 192,365 opinions. Although many of PDD’s extracted taxonomic opinions
are simple cases that are often not entered by humans (e.g., a species belongs to a genus), they nonetheless
constitute taxonomic information which is sometimes not entered into the PBDB at all. For example, PDD
extracted 59,996 taxonomic names that have never been entered as taxonomic entities in the PBDB. A
random sample of these names indicates that most are species-level taxa and that ≥90% were correctly
extracted as taxonomic entities (Table S4). Other categories of facts, such as geological formation-taxon
tuples, currently have similar or lower rates of recovery in PDD. The cases where PDD completely failed
to recognize and extract data from a document are due primarily to OCR-related errors (Materials and
Methods; Tables S5, S6).

The quality of PDD’s database was assessed in three ways. The first used DeepDive’s internal measures
of precision. All of the extractions used here have a precision of ≥ 95% according to this criterion. We also
conducted blind assessment experiments of two types. In the first experiment, we randomly sampled 100
relations from each database and then randomized the combined 200 extractions into a single list. This list
was then manually assessed for accuracy relative to source documents. The results show that PDD achieves
≥ 92% accuracy in all cases, which is as greater or greater than the accuracy estimated for the PBDB (Table
S7). In the second blind experiment, eight paleontologists were presented with the same five documents and
the same 481 randomly selected taxonomic facts (Fig. S4). No indication was given regarding which system
generated the facts. Humans measured a mean error frequency in the PDD-constructed database of 10%, with
a standard deviation of ±6%. This is comparable to the error rate of 14±5% they estimated for those same
documents in the human-constructed PBDB (Fig. S5). Variability in the estimates between humans reflects
a combination of assessment error and divergent interpretations of the data. These assessments suggest
that the error rate is comparable in both compilations, but the comparisons are not strictly equivalent.
For example, PDD now understands only parent-child relationships and synonymy, which comprise a large
fraction (90% and 5%, respectively) but not all of the opinions in the PBDB. Human data enterers also rarely
enter all of the data from a given document. Instead they selectively enter data that are deemed important
or non-redundant with data in other documents.

The third approach we took to assessing PDD was conducted at the aggregate level of Phanerozoic
diversity and rates of extinction and origination (37). After processing the both databases with the same
algorithms in order to generate a working taxonomy as well as occurrences with the same minimum threshold
for temporal resolution, we find good overall agreement in macroevolutionary quantities (Fig. 1; data are
binned into the same 52 time intervals, mean duration 10.4 Myr). Long-term trends and interval-to-interval
changes in genus-level diversity and turnover rates are strongly positively correlated. The number of genus-
level occurrences in each time interval, which is important to sampling standardization approaches (38,39),
are also positively correlated (for first differences, Spearman rho = 0.65; p = 5.7× 10−7). The times of first
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and last occurrence of the 6,708 taxonomically and temporally resolved genera that are common to both
databases are congruent (Fig. 2).

Differences between the macroevolutionary results can be attributed to a combination of errors and in-
consistencies in the human-constructed database, as well as to data recovery and inference errors committed
by PDD. For example, the PBDB contains typographical errors that occur when humans transcribe infor-
mation from one source to another. But, there are more insidious inconsistencies that contribute to most of
the differences observed in Fig. 1. There are groups of occurrences in the PBDB that derive from multiple
documents, even though only one document is cited as the source of data. Occurrences are also sometimes
attributed to a reference that actually contains no relevant data but that instead cites the PBDB, or some
other archive, as its data source. A more prevalent cause of discrepancy involves the injection of information
by humans during the data entry process. Most notably, approximately 50% of the ages assigned to PBDB
fossil occurrences are not actually mentioned in the cited reference (Fig. S6). Although problematic in some
senses, this is justified scientifically. The stated age for an occurrence in a publication is often not the
best age that is available, and the PBDB has no capacity to dynamically assign ages to fossil occurrences.
Humans attempt to account for these limitations by entering what they determine, on the basis of other
evidence, to be the best age. PDD replicated aspects of this behavior by inferring across all documents the
most precise and most recently published age for a given geological unit and location, but this approach is
not sufficient to cover the full range of sources that were used by humans. Thus, a disproportionate number
of the occurrences extracted by PDD have a temporal resolution (e.g., period-level) that causes them to be
excluded from the macroevolutionary quantities shown in Fig. 1. Including low-resolution occurrences causes
the diversity curves (Fig. 1c) to more closely converge (Fig. S7).

Errors and limitations in the current PDD system also account for some divergence in Fig. 1. For
example, OCR failures, often involving data-rich tables, are among the leading causes of data omissions
(Table S6). The current version of PDD also has elements of design that cause some facts to be omitted. For
example, PDD currently places great importance on formal geologic units, which means that no occurrences
are recognized in references that do not have well defined geologic units. This commonly occurs when a
study is taxonomically focused, when it covers regions with informally resolved stratigraphy, or when deep
sea drilling cores are the source of data. Because these situations are more prevalent in recent time intervals,
the lower total diversity recovered by PDD towards the recent (Fig. 1) is in part attributable to this design
decision. Data omissions also occur when a fact is correctly extracted by PDD, but with a probability that
is <0.95, the threshold used to generate the results. This type of confidence-related error can be overcome
by examining the subset of facts that are correctly extracted by PDD, but that fall below the threshold
probability, and then defining relevant features or rules that can be used to distinguish them.

Despite errors in both the human- and machine-generated databases, these results demonstrate that PDD
performs comparably to humans in many data extraction tasks and that the aggregate macroevolutionary
results are consistent between compilations. However, it is also the case that macroevolutionary quantities
are robust to random errors (40-42). Thus, PDD’s synthetic results (Fig. 1) could be interpreted as evidence
for the presence of a strong signal in the paleontological literature that is easily recovered. The narrow
distribution of range offsets on a per-genus basis (Fig. 2) suggests that PDD’s precision is nonetheless high,
even at the level of individual genus ranges.

2.2 Training Data Requirements

The human-constructed database was used as both a source of training data and as a benchmark for eval-
uating system quality. Therefore, an obvious and important question is, how big would the PBDB have to
be in order for there to be sufficient training data to obtain a high quality result?

To assess the effect of training data volume on the quality of PDD extractions, we randomly sampled
the PBDB to produce a series of smaller databases. We then re-ran the entire system in exactly the same
way, but using only the subsampled data for training purposes. As expected, both the amount of data
extracted by PDD (with a probability ≥ 0.95) and the accuracy of those data, summarized in aggregate
as the Spearman rank-order correlation between first differences in genus-level diversity (as in Fig. 1C),
increases with the amount of training data. However, rather little data is required in order to achieve a

4



500 400 300 200 100 0

0
.0

0
.5

1
.0

1
.5

rho = 0.81 , p < 1e-14

O
ri
g
in

a
ti
o
n
 r

a
te

NgPgKJTrPCDSOCm

500 400 300 200 100 0

0
.0

0
.5

1
.0

1
.5

rho = 0.73 , p= 2.3e-08

E
x
ti
n
c
ti
o
n
 r

a
te

NgPgKJTrPCDSOCm

500 400 300 200 100 0

0
5
0
0

1
0
0
0

1
5
0
0

2
0
0
0

2
5
0
0

3
0
0
0

rho = 0.83 , p= 3.1e-14

Geologic time (Ma)

G
e
n
u
s
 d

iv
e
rs

it
y

NgPgKJTrPCDSOCm

A

B

C

Fig. 1. Macroevolutionary results for the overlapping document set. PBDB-generated (red), machine-generated (black). Spearman
rank order correlations for first differences shown. (A) Per capita per interval origination rate (37). (B) Per capita per interval
extinction rate. (C) Total range-through diversity.

high-quality result (Fig. 3). If humans had gatehered data from just 1,000 references, or approximately 2%
of the total number of references entered over nearly two decades, there would be sufficient training data
to obtain a comparable result. This is true despite errors introduced during the training data entry process
because PDD does not assume that any data are 100% accurate.

2.3 Whole Document Set (WDS)

Scaling PDD up to extract data from every paper ever published in paleontology poses little technical chal-
lenge and would offer a statistical advantage that could improve the overall quality of PDD. However, access
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and last occurrence. Mean is +1.7 Myr for last occurrence, -0.3 Myr for first occurrence.

to the scientific literature for the purpose of automated text and data mining is currently arbitrarily limited
(43). This is true even for documents that the human operators of machines are otherwise free to download
and extract data from manually. Because of this external limitation on our ability to access the published
scientific literature, PDD’s entire document set currently consists of only 294,463 documents (Table S8).
Notably for this study, many of these documents were obtained from the open-access Biodiversity Heritage
Library, which contains a large number of valuable but older and taxonomically-focused publications, most
of which do not contain fossil occurrence data and therefore do not contribute to the synthetic results that
we focus on herein.

Despite limitations on our ability to access much of the most relevant paleontological literature, the PDD-
generated Phanerozoic diversity curve for the whole set of documents (Fig. 4) yields a face-value empirical
genus diversity history that is highly congruent with Sepkoski’s classical estimates based on different sources
of data (4,5,21). First differences in Phanerozoic diversity extracted from the WDS are also significantly
positively correlated with first differences in diversity for the whole PBDB database (Table 1). Genus-level
rates of extinction and origination are also similar in both compilations (for first differences, p < 0.0004).
Moreover, the diversity histories of major groups of organisms (mostly Linnaean classes) comprising this
total diversity are significantly positively correlated (Table 1). These similarities hold even though fewer
than 25% of the references in the PBDB were also read and processed by PDD (a total of 22,250 valid genera
with resolved stratigraphic ranges are common to both compilations).

3 Discussion

The results of the PDD-PBDB comparisions presented here have three important implications. First, we
have demonstrated that our machine reading system is capable of building a structured database from
a heterogeneous scientific literature with quality that is comparable to, and in some cases possibly even
exceeding, that produced by human readers (at least in the dimensions addressed here). This is a notable
result because current benchmarks in machine reading and knowledge base construction, such as the Text
Analysis Conference Knowledge Base Population competition, achieve less than 50% accuracy (albeit in
the broader domain of general web text). Second, we have tested the reproducibility of the PBDB at a
large scale, and in so doing we have identified sources of error and inconsistency that are not unexpected in
manual data compilations. We have, however, also shown that the macroevolutionary patterns produced by
the PBDB are robust. Third, we have shown that literature-based macroevolutionary patterns are similarly
expressed, even when they derive from different (but sufficiently large) bodies of literature. This indicates
that the paleontological literature, and presumably the underlying sampled fossil record, contains strong
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Fig. 3. Effect of changing PBDB training database size on PDD quality. Spearman rho is correlation between human- and machine-
generated time series of diversity, as in Fig. 1c.

macroevolutionary signals that are readily recovered. This type of reproducibility and consistency does
not mean that our understanding of the global fossil record is uniform taxonomically or in time and space
(Fig. S8), that our understanding of the true history of global biodiversity in the Phanerozoic, as opposed to
the face-value fossil record, is accurate (21,22, 44-46), or even that the literature contains the data that are
required to reconstruct an accurate macroevolutionary history for every clade (e.g., 42). It does, however,
indicate that our literature compilation-based knowledge of major Phanerozoic macroevolutionary patterns
is mature and unlikely to change substantially simply by increasing the number of existing publications that
are included in the PBDB.

The ability to expand literature-based databases and more rapidly create other synthetic data resources,
with quality that meets or exceeds human standards, is a notable achievement. However, a much greater
advantage of our system is that the type of database it produces is fundamentally different from classical
databases. In the probabilistic database (25) produced by PDD, every fact is associated with an estimated
probability of being correct and each fact remains tightly coupled to its full and original context. Thus, the
quality of the entire database can be systematically improved whenever feedback is given on any one fact
or when additional rules or data is added to the system. More importantly, PDD’s data acquisition process
is based on the visual and textual analysis of entire documents, not the extraction of snippets of text that
contain a specified string or set of predetermined facts. PDD is, therefore, able to recognize and analyze
data that are not currently part of the database but that are related to it by virtue of taxonomy, geology,
or geography.

For example, the illustration of specimens is central to biological systematics and there are consequently
millions of images of fossils and living organisms in the full document set. Among the features conveyed
by biological illustrations and their associated textual descriptions are morphological attributes, such as
body size, a fundamental property of organisms that determines many aspects of their ecology (e.g., 47,48).
Several studies have examined the evolution of body size in individual lineages (e.g., 9,49,50), and a new
effort to manually extract size measurements from the Treatise of Invertebrate Paleontology is now coming
to fruition (51). However, like the PBDB, such database initiatives cover only a small portion of the available
data and yield similar traditional databases that are decoupled from primary sources and therefore difficult
to assess or extend.

To test the ability of our machine reading and learning system to rapidly incorporate new types of data
in illustrations, we extended PDD to identify images of specimens, locate and measure their major and
minor axes, and read associated figure labels, captions, and text in order to determine magnification, the
portion of the organism being imaged, and its taxonomic identity (SI Materials and Methods). The PDD-
estimated body sizes for taxonomically classified brachiopod genera (Fig. S9) are congruent with body sizes
estimated measured manually with calipers in the same volumes of the Treatise of Invertebrate Paleontology
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Fig. 4. Genus-level diversity generated by PDD for the whole document set. (A) Total genus diversity calculated as in Fig. 1. For
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resolved to select classes by PDD.

(51,52). Leveraging PDD’s capacity to quantitatively analyze the entire body of biological illustrations,
in the full context of their textual descriptions morphology and taxonomy, may allow new approaches to
biological systematics and collection curation and brings within reach questions that require a combination
of morphological, geologic, and taxonomic data. However, before PDD can be deployed in this fashion, the
current barriers to automated access and processing of published scientific documents, for the purpose of
extracting data that can be used to facilitate and advance science, must be removed.

Although we have focused here on validating our machine reading and learning system and on testing the
robustness of literature-derived macroevolutionary patterns in the PBDB and the paleontological literature,
our approach has much broader applicability. A large, manually constructed database, like the PBDB, is
not required in order for our machine reading approach to achieve high quality, though it is always the case
that statistical power increases with the amount of data available. Thus, this machine reading and learning
system has the capacity to tackle many questions that have been posed before, but that have been deemed
too difficult to address because of the prohibitively time consuming data collection efforts they require. More
importantly, this approach to data synthesis yields a fundamentally different type of probabilistic database,
one that remains tightly coupled to primary sources and that is capable of rapidly discovering and integrating
voluminous and complex data in ways that are likely to stimulate entirely new modes of questioning.
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Table 1. Genus-level diversity in the whole document set and the entire PBDB. Spearman rank-order correlation coefficients and
p-values for detrended diversity time series (from Fig. 4) shown.

Taxonomic group Spearman rho P-value
All genera 0.72 3.6x10−9

Bivalvia 0.67 6.2x10−8

Bryozoa 0.64 3.6x10−7

Gastropoda 0.59 5.3x10−6

Anthozoa 0.53 6.6x10−5

Brachiopoda 0.52 0.0001
Reptilia 0.50 0.0002
Trilobita 0.49 0.0003
Cephalopoda 0.41 0.003
Mammalia 0.40 0.004
Crinoidea 0.39 0.004

4 Materials and Methods

4.1 System

Features that relate facts in PDD are encoded in a relational database. These features derive from two
sources: a set of functions written in the DeepDive framework and a set of existing tools developed by other
researchers, including Tesseract and Cuneiform for text, Abbyy Fine Reader for tables, and StanfordCoreNLP
for linguistic context. The list of features and rules used in this version of PDD are summarized in (Tables
S1, S2).

After extracting features in documents, the next step is to generate a factor graph (Fig. S3), which is a
compact way of specifying exponential family probability models (28, 53). The factor graph is defined by
a hypergraph (V,E) where V is a set of random variables and E ⊆ 2V define groups of variables (factors)
that are correlated. In addition, each random variable is associated with a domain (for simplicity, consider
a Boolean random variable). Each factor (edge) e = (v1, ..., vk) is associated with a scalar function called
a potential (weight) φe : {0, 1}k 7→ R. For example, the tuple (Tsingyuan Fm, Namurian) corresponds to
a random variable, which assumes the value 1 if true. To specify a correlation, for example, if (Tsingyuan
Fm, Carboniferous) is true, then it is likely that (Tsingyuan Fm, Namurian) is also true, a factor can be
encoded to relate the variables. This factor is only a statistical implication; PDD will estimate the strength
of this implication on data.

The factor graph in PDD can be conceived of as existing in three layers (Fig. S3). The first layer
corresponds to the set of entities detected as individual mentions in documents. The second layer corresponds
to a set of relation candidates between mentions, and the third layer corresponds to a set of relation candidates
between distinct entities. One can think of the second layer as a per document layer and the third layer
as the “aggregation” across all documents, but all information is used simultaneously at the inference and
learning stages.

Given a factor graph, PDD next learns the weight for each factor and then runs inference tasks to estimate
the probability of each random variable. One key challenge of machine reading approaches is how to generate
training data (i.e., a set of random variables that have been assessed for accuracy). Traditional approaches
include human expert annotation of results and crowd-sourcing (54). The human-constructed PBDB allows
PDD to make extensive use of a generalization of Hearst patterns called distant supervision (55-56). Even
simple lists of facts, such as the location and general geological age of geological formations, can be used
during distant supervision to improve the quality of more complex inferences.

Factor graphs are a convenient way to define random variables and their correlations, but they can be
large. In PDD, the factor graph contains more than 200 million random variables and 300 million factors
with 12 million distinct weights (Table S9). PDD uses recent research in both theory (31, 32) and systems
(33) to address this computational challenge. Further details are given the SI Materials and Methods.
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4.2 Documents

Tables S1 and S8 list the serial publications used in the ODS and WDS. Some of the serials in the top-50
PBDB sources were not accessible. We were also not able to able to recover all references in the PBDB, due
primarily to incomplete bibliographic information (Tables S10, S11) and document processing failures (see
Assessment, below). To match retrieved documents to specific PBDB references, we first used the TokenSet
Cosine similarity approach (57) and then created an Amazon Mechanical Turk job, in which 64 human
workers combined for 30,182 match evaluations. To obtain the WDS, we extended the ODS to include all
available documents in the top-50 serials and the whole Biodiversity Heritage Library.

4.3 Features

All PDD feature extraction tasks were run on Condor and the Open Science Grid (OSG). Ghostscript was
run to convert each document into a set of png images. Next, OCR tools were executed. Each tool was
permitted to run for 24 hours on a document before timeout occurred; a failed document was re-deployed on
OSG up to 10 times before being removed from the set. Document failures were caused by kernels older than
2006 and incompatible software on individual OSG machines, as well as document-specific software bugs,
such as segmentation faults in Cuneiform. All tools had a failure rate of less than 8%, but these errors are
orthogonal to our work and future improvements to them will improve PDD.

The WDS contains 23 times more documents than the ODS, and the number of variables scales approx-
imately linearly. The number of distinct features is only 13 times greater because features can be shared
across documents (Table S12). Distinct taxa are only 10 times more numerous in the WDS because many
taxa are shared between documents. The number of occurrences is only six times greater, reflecting the fact
that most of the additional documents are taxonomically or geologically focused and do not contain fossil
occurrences.

4.4 Extensions

We extended PDD to include the German and Chinese languages. The named entity recognition compo-
nent of PDD has dictionary-based features and NLP-based features. Relevant language-specific dictionaries
were built manually and from external sources (e.g., geonames.org). For NLP-based features, the Stanford
CoreNLP provides models for Chinese and German. Document layout-based features present no change in
function with language.

We also extended PDD to extract body size from biological illustrations. This requires processing im-
ages, linking labels to captions, and mapping captions to text. Explanation of the joint image-text analysis
is presented in the SI Materials and Methods.

4.5 Assessment

The ODS was randomly split into a training set and a testing set. Fifty documents in the testing set were
then randomly sampled for assessment. PDD achieves ≥ 92% human-estimated accuracy in all relations
(Table S13), which is close to the chosen 95% confidence threshold for data output.

The number of facts recovered vs. the number of facts contained in a document (i.e., recall) is more
difficult to assess than precision. Because each extracted relationship consists of a paired object and subject
(e.g., the object formation contains a subject taxon), one basic measure of recall is the fraction of all
subjects in the PBDB that PDD also recovered. This estimate of recall ranges from 21% to 69%, depending
on relation (Table S13). For the lowest recall relations, we randomly sampled 10 documents in order to
compare the PBDB and PDD. We did so for a combination of three binary relations (taxon,formation)
(formation,temporal) (formation,location). When summarizing this 4-part tuple by taxon, approximately
18% of PDDs extractions also appear in PBDB and 11% of PBDB extractions also appear in PDD. This
implies that both PDD and PBDB make recall errors. Further examination of PDD recall errors (Table S6)
shows that they can be attributed to OCR-related errors (56%), table recognition failures (29%), and lack of
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context features (15%). All of these errors correspond to interesting and open-problems for computer science.
The first two are related to data acquisition (i.e., how to correctly recognize the structure and content of a
document), and the latter is an important natural language inference problem (i.e., how to extract relations
by taking advantage of information in the whole document). Continued work in these areas will further
improve the PDD system.
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Fig. S4. Screen shot of web user interface used in blind experiment conducted by 7 human annotators. A unique link and instructions
to complete the form were emailed to each participant. The wording of the instructions was as follows:

1. “in ref” means you can find this *exact* fact in the document somewhere.

2. “not in ref” means you can’t find the exact fact in the document anywhere (can include typos).

3. “incorrect” means it is an incorrect fact (e.g., wrong assignment/relationship, etc.).

4. “?” means you don’t understand the fact in relation to document.

Simply clicking on the box selects it for you. You can change it etc. as you go along. Once you are done,
you can go to another ref by clicking on bottom. You can come back to the ref and inspect it to make sure it
looks good, change things.
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Fig. S6. Summary of results of annotation experiment of occurrence data, or (taxon, geologic unit, temporal interval) tuples in
human-constructed PBDB. Results are for 3 volunteers, one from each of groups in Figure S4.
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(a) Overlapping Corpus

(b) Whole Corpus

Fig. S8. Geographic distribution of PDD-generated database. Top, location of occurrences in overlapping document set (ODS).
Bottom, location of occurrences in whole document set (WDS).
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Layer Features

Name Entities

Dictionary (English dictionary, GeoNames, PaleoDB, Species2000, Microstrat, MySQL stop words)
Part-of-speech tag from StanfordCoreNLP
Name-entity tag from StanfordCoreNLP
Name entity mentions in the same sentences (paragraphs, or documents)

Mention-level Relations

Word sequence between name entities
Dependency path between name entities
Name-entity tag from StanfordCoreNLP
Table caption-content association
Table cell-header association
Section headers (for Taxonomy)

Entity-level Relations
Temporal interval containment (e.g., Namurian ⊆ Carboniferous)
Location containment (e.g., Ningxia, China ⊆ China)
One formation does not likely span > 200 million years

Table S1. List of features and rules used in the current verison of PDD. Finding the right simple features and rules can be difficult.
The PDD system is designed to operate in an iterative fashion, with error analysis occurring after each round of feature and rule
definition.

Relation Tuple in Knowledge Positive Examples Negative Examples
Taxonomy (Taxon, Taxon) (t1, t2) {(t1, t2)} {(t1, t′2) : t′2 6= t2}
Formation (Taxon, Formation) (t, f) {(t, f)} Positive examples of other relations

Formation-Temporal (Mention) (Formation,Interval) (t, i) {(t, i′) : intersect(i, i′)} {(t, i′) : ¬intersect(i, i′)}
Formation-Temporal (Entity) (Formation,Interval) (t, i) {(t, i′) : intersect(i, i′) ∧ ¬contain(i′, i)} {(t, i′) : ¬intersect(i, i′)}
Formation-Location (Mention) (Formation,Location) (t, l) {(t, l′) : intersect(l, l′)} {(t, l′) : ¬intersect(l, l′)}
Formation-Location (Entity) (Formation,Location) (t, l) {(t, l′) : intersect(l, l′) ∧ ¬contain(l′, l)} {(t, l′) : ¬intersect(l, l′)}

Table S2. List of distant supervision rules used in PDD. Function contain(x, y) and intersect(x, y) return True if the interval (or
locations) x contains or intersects with y.
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Journal Name PBDB
PDD

CoverageOverlapping
Set

Journal of Paleontology 2,667 2,534 95%
Journal of Vertebrate Paleontology 1,909 1,292 68%
Palaeontology 879 748 85%
Paleontological Journal 849 0 0%
American Museum Novitates 513 433 84%
NULL 509 0 0%
Acta Palaeontologica Polonica 483 433 90%
Nature 452 340 75%
Cretaceous Research 424 421 99%
Gobios 423 296 70%
Ameghiniana 394 21 5%
Canadian Journal of Earth Sciences 336 281 84%
Palaeogeography, Palaeoclimatology, Palaeoecology 325 317 98%
Vertebrata PalAsiatica 322 203 63%
Science 309 184 60%
Bulletin of the American Museum of Natural History 293 214 73%
Geological Magazine 269 24 9%
Alcheringa 268 0 0%
American Journal of Science 257 53 21%
Palaeontologische Zeitschrift 241 0 0%
Journal of Mammalogy 234 147 63%
Acta Palaeontologica Sinica 232 3 1%
United States Geological Survey Professional Paper 231 156 68%
Zoological Journal of the Linnean Society 203 200 99%
Contributions from the Museum of Paleontology, University of Michigan 195 174 89%
Palaeontographica Abteilung A 194 0 0%
Facies 187 0 0%
Lethaia 183 178 97%
Quarterly Journal of the Geological Society of London 180 122 68%
Zootaxa 180 0 0%
Palaios 174 164 94%
Annals of Carnegie Museum 172 25 15%
Proceedings of the United States National Museum 149 0 0%
Neues Jahrbuch fr Geologie und Paleontologie, Abhandlungen 147 0 0%
Review of Palaeobotany and Palynology 147 146 99%
American Journal of Botany 147 87 59%
Proceedings of the Academy of Natural Sciences of Philadelphia 142 40 28%
Journal of Human Evolution 135 122 90%
Proceedings of the National Academy of Sciences 133 51 38%
Journal of Systematic Palaeontology 132 27 20%
Geodiversitas 131 0 0%
Acta Geologica Sinica 130 78 60%
Bulletins of American Paleontology 129 0 0%
Bulletin de la Societe Geologique de France 122 0 0%
Palontologische Zeitschrift 115 0 0%
Rivista Italiana di Paleontologia e Stratigrafia 115 0 0%
Psyche 111 1 1%
Annals of the South African Museum 104 0 0%
Tulane Studies in Geology and Paleontology 103 0 0%
Paleontological Research 102 92 90%
Other Sources 30,851 2,175 7%
Total 47,632 11,782 25%

Table S3. Distribution of documents in the overlapping document set. ”NULL” corresponds to a NULL title document type field in
the PBDB.
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Taxon Name Rank Not Found on Google (Error Candidate)
Cirquella espinata species

Echinophyllia orpheensis species
Fenestella huascatayana species
Epigondolella primitia species

Palaeospheniscus gracilis. species
Pygurus carinatus species ×

Arionellus tripunctatus species
Phacostylus amphistylus species
Circotheca multisulcatus species
Aulotortus praegaschei species

Leptaena demissa species
Xinjiangchelys laticentralis species

Conotreta lanensis species ×
Martellia ichangensis species

Procavia antiqua species
Chermidae family

Monophyllus cubanus species
Gazella soemmeringi species
Pinna subspatulata species

Polacanthus faxi species ×
Homotherium latidens species

Platanus primaeva species
Rhopalocanium satelles species

Cryptobairdia forakerensis species
Naiadites elongata species

Staurocephalus murchisoni species
Serpula anguinus species

Glycymeris angusticostata species
Eomunidopsis eutecta species
Actinocrinites gibsoni species

Zhelestes tes species ×
Spinocyrtia ascendens species
Belemnopsis alexandri species

Agaricocrinus nodulosus species
Oreochromis shiranus species

Atrichornithidae family
Neltneria jaqueti species
Eurydice affinis species

Nummulites burdi species
Diacalymene marginata species
Scapteriscus didactylus species
Enhydriodon campanii species

Offneria nicoli species ×
Propetrosia pristina species

Podocarpus campbelli species
Graffhamicrinus aristatus species

Productina sampsoni species
Bufina bicornuta species

Coccolithus staurion species
Ernanodon vas species ×

Table S4. Error Analysis of Taxon Entity Extractions in PDD
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Reference No. Genus Correct Extracted by PBDB

28945

Acrodenta X
Mastodonsaurus X

Mesodapedon X
Rhynchosaurus X X

Scaphonyx X
Spirorbis X

Stenaulorhynchus X
34109
28146

38697
Hazelia X X

Leptomitus X X
32675
33994 Gastropoda

Heterostropha X
Mathilda X
Mollusca X

Stenoglossa X
27115

41374

Archaeopterodactyloidea X
Beipiaopterus X
Boreopteridae X
Boreopterus X

Eopteranodon X
Eosipterus X
Feilongus X

Gegepterus X
Moganopterus X X

Ningchengopterus X
Ornithocheiroidea X
Zhenyuanopterus X

12054

13061

Bactrosaurus X
Dyoplosaurus X
Gorgosaurus X

Hypacrosaurus X
Mandschurosaurus X X

Nodosauridae X X
Tanius X

Human Recall 18%

Table S5. Error Analysis: PDD Extractions
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Reference No. Genus Correct Extracted by PDD Error Reason
28945 Rhynchosaurus X X

34109
Austromola X Not enough context features
Odontoceti X Not enough context features

28146 Cerapoda X Not enough context features

38697
Hazelia X X

Leptomitus X X
Protospongia X Not enough context features

32675 Tommotia X Not enough context features

33994

Anticonulus X

Table recognition failure

Ataphrus X
Austriacopsis X

Discohelix X
Emarginula X
Eucyclidae X
Eucyclus X
Guidonia X
Neritopsis X

Plectotrochus X
Proacirsa X

Pseudorhytidopilus X

27115

Astreptodictya X

OCR error

Athrophragma X
Batostoma X

Bryozoa X
Bythopora X
Calopora X

Coeloclema X
Constellaria X

Contexta X
Diploclema X

Echinodermata X
Graptodictya X

Helopora X
Nicholsonella X
Ottoseetaxis X
Pachydictya X
Phylloporina X

Porifera X
Prasopora X

Spongiostroma X
Stictopora X

Stictoporella X
Trilobita X

41374 Moganopterus X X
12054 Neosaurus X Not enough context features

13061
Mandschurosaurus X X

Nodosauridae X X
PDD Recall 11%

Table S6. Error Analysis: PBDB Extractions

Relation PBDB PDD p = 0.05

Taxonomy 92% 97% 0
Temporal 89% 96% +
Location 90% 92% 0

Formation 84% 94% +

Table S7. Comparison of Accuracies of PDD and PBDB. The column p = 0.05 is the significant test of one-tail Welch’s t-test,
where “+” means significant given the corresponding p-value, and “0” otherwise. The value 0.05 is picked by following the default
setting of R.
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Journal Name
1845- 1960- 1970- 1980- 1990- 2000- 2010

Total
-1959 -1969 -1979 -1989 -1999 -2009 -2013

American Journal of Science 2489 727 41 245 138 3640
American Midland Naturalist 2893 1022 1149 989 852 842 189 7936
American Museum Novitates 1974 413 288 272 320 388 98 3753

Annales de Palontologie 29 206 73 308
Annals of Carnegie Museum 82 38 120

Bulletin of the American Museum of Natural History 1318 93 105 72 52 196 65 1901
Comptes Rendus Palevol 679 270 949

Cretaceous Research 287 457 732 393 1869
Geological Journal 136 418 338 1116 680 662 423 3773

Geological Society America Bulletin 276 796 788 1158 1089 486 4593
Geology 1177 2675 2990 3024 1261 11127

Global and Planetary Change 20 469 1070 376 1935
Gobios 13 442 1072 1294 753 167 3741

International Geology Review 87 1482 1780 1541 724 635 353 6602
Journal of Asian Earth Sciences 149 1162 1123 2434

Journal of Geology 5782 736 929 754 671 516 153 9541
Journal of Human Evolution 859 890 759 1067 597 4172

Journal of Mammalogy 3023 1633 1509 1452 1336 1506 438 10897
Journal of Paleontology 2552 1500 1438 1297 1172 2224 643 10826

Journal of South American Earth Sciences 79 423 666 414 1582
Journal of Systematic Palaeontology 113 110 223

Journal of Vertebrate Paleontology 365 636 2152 934 4087
Journal of the Geological Society 329 946 346 1621

Lethaia 104 830 978 992 738 371 4013
Mammalian Species 1 122 224 284 216 847

Marine Micropaleontology 85 262 469 646 156 1618
Micropaleontology 202 375 302 264 270 316 1729

New Zealand Journal of Geology and Geophysics 121 733 730 519 484 403 115 3105
PALAIOS 290 567 677 237 1771

Palaeogeography, Palaeoclimatology, Palaeoecology 191 600 1108 1812 3221 1191 8123
Palaeontology 48 461 477 446 493 1470 560 3955

Palaios 620 287 907
Paleobiology 184 422 337 866 260 2069

Paleontological Research 192 88 280
Palynology 45 140 132 232 119 668

Proc. of AASP 79 79
Proceedings of the Geologists’ Association 3514 430 415 416 404 394 273 5846

Quarterly Journal of the Geological Society of London 3063 177 19 3259
Review of Palaeobotany and Palynology 241 427 705 1031 887 406 3697

Revue de Micropaleontologie 104 262 72 438
Rocky 88 118 77 96 33 412

The Micropaleontologist 163 163
Transactions of the Kansas Academy of Science 2107 611 307 263 236 293 48 3865

USGS Open-File Report 403 466 2399 6480 5060 726 243 15777
United States Geological Survey Bulletin 2302 626 320 614 454 1 1 4318

United States Geological Survey Professional Paper 596 721 733 465 227 71 54 2867
Zoological Journal of the Linnean Society 1165 121 363 483 487 638 392 3649

Acta Palaeontologica Polonica 50 118 180 196 242 564 272 1622
Canadian Journal of Earth Sciences 530 1865 1981 1643 1077 377 7473

Oklahoma Geology Notes 15 58 60 56 39 3 231
Vertebrata Palasiatica 136 237 225 333 262 272 119 1584

Biodiversity Heritage Library 97129
Total 277309

Table S8. Statistics of Whole Document Set (WDS).

ODS WDS Ratio (WDS/ODS)
# Variables 13,138,987 292,314,985 22×

# Evidence Variables 980,023 2,066,272 2×
# Factors 15,694,556 308,943,168 20×

# Distinct Features (Weight) 945,117 12,393,865 13×
Documents 11,782 280,280 23×

Table S9. Factor graph statistics in the overlapping and whole document sets. Evidence variables are those variables for which distant
supervision has contributed an expectation. The scaling of evidence variables from the ODS to the WDS reflects the fact that most
of the training data used by PDD derives from the PBDB data in the ODS.
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ODS WDS Ratio (WDS/ODS)

Mention-level Candidates

Taxon 6,049,257 133,236,518 22×
Formation 523,143 23,250,673 44×

Interval 1,009,208 16,222,767 16×
Location 1,096,079 76,688,898 76×
Opinions 1,868,195 27,741,202 15×

Taxon-Formation 545,628 4,332,132 8×
Formation-Temporal 208,821 3,049,749 14×
Formation-Location 239,014 5,577,546 23×

Entity-level Result

Authorities 163,595 1,710,652 10×
Opinions 192,365 6,605,921 34×

Collections 23,368 125,118 5×
Occurrences 93,445 539,382 6×
Documents 11,782 280,280 23×

Table S12. Extraction statistics for the overlapping and whole document sets. Authorities refers to distinct taxa (identified by name
and, optionally, ranks and authors).

Relation # Annotations Precision Recall
Taxonomy 933 97% 39%
Temporal 478 96% 69%
Location 655 92% 36%

Formation 2,271 94% 21%

Table S13. Statistics of Annotations Collected and Quality Score for Each Relation
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6 Extensions

6.1 Body Size Extraction

In order to extract body size estimates from biological illustrations, we need to extract the relation:

(Taxon, F igureName, F igureLabel,Magnification, ImageArea)

where ImageArea is a region on the PDF with known DPI so that the actual size of the image on a
printed document is known. The following table is an example of the target extracted relation.

Vediproductus wedberensis Fig. 381 2a X1 

Compressoproductus compressus Fig. 382 1a X0.8 

Devonoproductus walcotti Fig. 383 1b X2.0 

There were two steps in the process: (1) Image processing, and (2) text extraction. In PDD, these two
components are done jointly in the same factor graph.

Image Processing. The goal of the image processing component is to associate each image area with a
figure label. To achieve this, PDD needs to (1) detect image areas and figure labels from PDF documents,
and (2) associate image areas with figure labels. Figure S10 illustrates these two steps.

Detection of Image Areas and Figure Labels. The following steps were taken: (1) Edge detection;
(2) Watershed Segmentation; (3) Image Dilation; and (4) Connected-component Detection (Figure S10).
Standard online-tutorials were followed, with one variant for Image Dilation. In this step, one needs to
specify a parameter for dilation. Instead of specifying one value for the parameter, we tried a range of
parameters and generate different versions of segmentations. PDD then trained a logistic regression classifier
to choose between these segments trained on a human-labeled corpus.

Association of Image Areas with Figure Labels. After recognizing a set of image regions and their
corresponding OCR results, PDD attempted to predict the association of figure labels and image areas, as
shown in Figure S10. Similar to relation extraction, PDD introduces a Boolean random variable for each
label and image area pair. It then builds a logistic regression model using features such as the distance
between label and image areas, and whether a label is nearest to an image area and vice versa.

Text Extraction. PDD also extracts information from text, as shown in Figure S11. This extraction phase
is similar to what was used when extracting fossil occurrence-related relations. In the name entity recognition
component, PDD extracts different types of mentions, including Figure name (e.g., “Fig. 3”), Figure labels
(e.g., “3a-c”), Taxon (e.g., “B. rara”), and magnitude (e.g., “X1”). Figure S11 shows an example of these
mentions (raw text with OCR errors). PDD then extracts relations between these mentions using the same
set of features as other diversity-related relations.
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Fig. S10. Image Processing Component for Body Size Extraction. Note that this examples contains the illustration of a partial body.

Fig. 38 7,la-c. *B. rara, Serpukhovian, Kazakhstan, Dzhezgazgan 
district; a,b, holotype, viewed ventrally, laterally, MGU 31/342, XI 
(Litvinovich, 1967); c, incomplete ventral valve internal mold, XI 
(Litvinovich & Vorontsova, 1991). 

Fig. 38 7,la-c. *B. rara, Serpukhovian, Kazakhstan, Dzhezgazgan 
district; a,b, holotype, viewed ventrally, laterally, MGU 31/342, XI 
(Litvinovich, 1967); c, incomplete ventral valve internal mold, XI 
(Litvinovich & Vorontsova, 1991). 

Figure Name Mention Figure Label Mention Taxon Mention 

Magnitude Mention 

Fig. 387 1a B. rara X1 
Fig. 387 1b B. rara X1 
Fig. 387 1c B. rara X1 
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Fig. S11. Relation Extraction Component for Body Size Extraction.

Joint Inference. Both the image processing component and the text extraction component results in a
factor graph populating two relations with schema

(FigureLabel, ImageArea)

and
(Taxon, F igureName, F igureLabel,Magnitude).

PDD joins these two intermediate relations to form a large factor graph to populate the target relation.
Joint inference on the whole factor graph is then executed.
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6.2 Body Size Extraction Validation

Corpus. Other researchers [18] recently compiled body size measurements by manually measuring illustra-
tions and reading captions in the Treatise on Invertebrate Paleontology. Of the 55 volumes now accessible,
humans have made measurements from part H, I, K, L, N, O, P, Q, R, S, T, U. We created from these
documents the following three sets:

1. Testing Corpus (With Ground Truth). Part H.

2. Testing Corpus (Without Ground Truth). Part A, B, C, D, E, F, G, W, V.

3. Training Corpus. Part I, K, L, N, O, P, Q, R, S, T, U.

We used the Training Corpus to generate training data for distant supervision. We compared our results
with those of human annotators using the Testing Corpus (With Ground Truth). The Testing Corpus
(Without Ground Truth) shows that PDD helps to extend the body size database with new extractions that
are not provided by human annotators.

Results on Testing Corpus (With Ground Truth). PDD is able to to achieve high precision and
slightly higher recall than human when extracting body size measurements and their relations.

Precision. We measured the precision of PDD by randomly sampling 100 extracted instances of the
target relation and manually annotate those extractions. We find that the accuracy is more than 92%.

Recall. We next counted the number of distinct (genus, figure name, figure label) tuples that are
extracted by humans and PDD on the same set of documents. We find that human extracted 4,837 distinct
tuples, and PDD extracted 5,783 distinct tuples, or 20% more. The primary reason for the increase is the
complete extraction of meaurements for all parts of a figure (e.g., “1a-f”). Humans typically extract only
one part.

Although selective data extraction is often a decision made for the sake of expediency and because not all
images provide optimal orientations for the dimensions being targeted by a given investigation, extracting
complete measurements and associated textual descriptions establishes the foundation for more complete
morphometric analyses.

Results on Testing Corpus (Without Ground Truth). PDD is able to extract facts on documents
that have not yet been processed by humans. PDD processed Parts A, B, C, D, E, F, G, V, W of the Treatise
on Invertebrate Paleontology, which have not yet been processed for body size by [18]. PDD extracts 7K
distinct (genus, figure name, figure label) tuples from these documents.

6.3 Multi-linguistic Extraction

Corpus. We followed a similar protocol as we used to collect the overlapping corpus for English documents.
We identified the top-20 journals ranked by the number of journal articles in PBDB, and attempted to
download articles from their web site. Access was limited to Vertebrata Palasiatica (Chinese), Stuttgarter
Beitrage zur Naturkunde (German), and Eclogae Geologicae Helvetiae (German). A total of 1,583 Chinese
journal articles and 4,393 German journal articles were obtained in this way. We used the same protocol to
map these journal articles to articles in PBDB. Of these, there were 47 articles in Chinese and 56 German
articles that overlapped with the PBDB.
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English Chinese German Dictionary Source 

Rock Formation 
Formation 组  Formation 

Manual 
Clay 石 Ton  

Temporal Interval 
Late Cretaceous  晚白垩世 Oberkreide  

Manual 
Cretaceous  白垩世 Kreide  

Location United States  美国  Vereinigte Staaten  geonames.org 

Taxon Aeschnidium densum  Aeschnidium densum  Aeschnidium densum  All in Latin 

Protocol. We compared the extractions of PDD in the overlapping set with the PBDB extractions on
the same set of documents. Our way of assessing quality is recall for the tuple

(Taxon, T imeInterval)

This tuple is language-independent because (1) taxon has unified Latin-representation in all English, Chi-
nese, and German articles; and (2) time Intervals and their hierarchical relationships are known by PDD
for all languages. To extract this tuple, PDD requires the information in all other tuples, including
(Taxon, Formation), (Formation, T imeInterval), and (Formation, Location). We selected taxa common
to both PDD and PBDB, and label PDD’s extraction as correct if the taxon temporal ranges overlap.

Recall. From the overlapping corpus, PBDB extracts (Taxon, T imeInterval) tuples for 85 distinct
genera in Chinese and 242 distinct genera in German. We find that PDD correctly extracts (Taxon, T imeInterval)
for 24 genera (28%) in Chinese and 82 (33%) genera in German. The difference between Chinese and German
is caused primarily by OCR quality, even though we used commercial OCR tools for both. Chinese has lower
OCR quality because of the large vocabulary in East-Asian languages.

Precision. Out of all 24 distinct genera in Chinese and 82 distinct genera in German articles, we find
that all of them overlap with PBDB extractions in terms of their temporal interval, indicating high precision.

7 Specific Technical Validation

Here we describe DeepDive, the underlying system that powers PDD [23, 33–35,44,45].

7.1 Probabilistic Framework

7.1.1 Related Work

Knowledge Base Construction (KBC) has been an area of intense study over the last decade [3, 4, 7, 12, 21,
22,32,36,38,40,43,46]. Within this space, there are a number of approaches.

Rule-based Systems. The earliest KBC systems used pattern matching to extract relationships from
text. The most well known example is the “Hearst Pattern” proposed by Hearst [17] in 1992. In her
seminal work, Hearst observed that a large amount of hyponyms can be discovered by simple patterns,
e.g., “X, such as Y”. Hearst’s technique forms the basis of many further techniques that attempt to extract
high quality patterns from text. In industry, rule-based (pattern-matching-based) KBC systems, such as
IBM’s SystemT [22,25], have been built to develop high quality patterns. These systems provide the user a
(usually declarative) interface to specify a set of rules and patterns to derive relationships. These systems
have achieved state-of-the-art quality after carefully engineering effort as shown by Li et al. [25].
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Statistical Approaches. One limitation of rule-based systems is that the developer needs to ensure that
all rules provided to the system are high precision rules. For the last decade, probabilistic (or machine
learning) approaches have been proposed to allow the system select between a range of a priori features
automatically. In these approaches, the extracted tuple is associated with a marginal probability that it is
true (i.e., that it appears in the KB). DeepDive, Google’s knowledge graph, and IBM’s Watson are built
on this approach. Within this space there are three styles of systems:

• Classification-based Frameworks Here, traditional classifiers assign each tuple a probability score,
e.g., näıve Bayes classifier, and logistic regression classifier. For example, KnowItAll [12] and Tex-
tRunner [3, 43] uses näıve Bayes classifier, and CMUs NELL [4, 7] uses logistic regression. Large-scale
systems typically use these types of approaches in sophisticated combinations, e.g., NELL or Watson.

• Maximum a Posteriori (MAP) Here, the probabilistic approach is used but the MAP or Most likely
world (which do differ slightly) is selected. Notable examples include the YAGO system [21],which uses
a PageRank-based approach to assign a confidence score. Other examples include the SOFIE [40] and
Prospera [32], which use an approach based on constraint satisfication.

• Graphical Model Approaches The classification-based methods ignore the interaction among pre-
dictions, and there is a hypothesis that modeling these correlations yields higher quality systems more
quickly. A generic graphical model has been used to model the probabilistic distribution among all
possible extractions. For example, Poon et al. [36] used Markov logic networks (MLN) [11] for informa-
tion extraction. Microsoft’s StatisticalSnowBall/EntityCube [46] also uses an MLN-based approach. A
key challenge with these systems is scalability. For example, Poon et al. was limited to 1.5K citations.
Our relational database driven algorithms for MLN-based systems are dramatically more scalable [33].

7.1.2 Calibrated Probabilities

DeepDive takes a Bayesian probabilistic approach to KBC by treating OCR, NLP, image processing, and
feature recognition as one joint probabilistic inference problem in which all predictions are modeled as a
factor graph (Fig. S3). This probabilistic framework ensures all facts that are produced by DeepDive are
associated with a marginal probability.1 These marginal probabilities are meaningful in DeepDive (i.e.,
they should correspond to the actual probabilities of a fact beig correct), which provides a mehcanism for
evaluation and an aid to improving the system.

Calibration. In DeepDive, calibration plots are used as a way to summarize the overall quality of the
KBC results. Ideally, the probability associated with a given fact in DeepDive should equal the empirical
probability that this fact is correct (i.e., an extraction with a probability 0.95 should be correct with a 95%
of the time when inspected in the original source). Because DeepDive uses a joint probability model, any
set of predictions can be assigned a marginal probability. Queries can then be against the model to help
determine where a model needs improvement.

Figure S12 and Figure S13 show calibration plots for the ODS and the WDS presented in the main text.
We will use Figure S12(1) as an example, which is the target relation Taxonomy in the ODS. A calibration
plot contains three components: (a) Accuracy, which measures the test-set accuracy of a prediction with a
certain probability; (b) # Predictions (Testing Set), which measures the number of extractions in the test
set with a certain probability; and (c) # Predictions (Whole Set), which measures the number of extractions
in the whole set with certain probability. The difference between test set and whole set is that the former
has training labels for each random variable. Results are summarized as histograms, and empirically we find
that a bin of size of 0.1 is usually sufficient to understand the behavior of the system.

1Cox’s theorem asserts (roughly) that if one uses numbers as degrees of belief, then one must either use probabilistic
reasoning or risk contradictions in a reasoning system, i.e., probabilistic reasoning is the only sound system for reasoning in
this manner [20].
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Fig. S12. Calibration Plots for All Relations on Overlapping Corpus

Using Calibration Plots

(a) Accuracy. If the accuracy curve is similar to the ideal (0,0)-(1,1) line, it means that a probability
produced by the system matches the test-set accuracy. For example, Figure S12(1) shows a reasonably
good curve for calibration. Differnces in these two lines can be caused by (1) inefficient training data or a
small testing corpus, and/or (2) bad mixing behavior of the sampler or other software bugs. For example,
Figure S13(2,3,4) shows a much better calibration behavior than Figure S12(2,3,4), primarily because the
former is based on the whole corpus, which has more training data and a larger testing set.
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Fig. S13. Calibration Plots for All Relations on Whole Corpus

(b) # Predictions (Testing Set). Ideally, the # Predictions histogram should have a “U” shape.
That is, most of the data are concentrate at high probability (where we are confident it is correct) and
low probability (where we are confident it is incorrect). Large numbers of predictions with a probability
approximately 0.5 means that the system has little information about how to classify these extractions. This
implies that more features could be defined to resolve uncertainty. For example, Figure S12(2) shows a
U-shape curve with some masses around 0.5-0.6. The shape of the histogram relies on the ratio between
the number of positive examples and negative examples. When the number of positive examples dominates
negative examples and there is a bias term, it is possible that there are very small amount extractions with
a probability near 0. Figure S12(1,3,4) illustrate this phenomenon.
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(c) # Predictions (Whole Set). This histogram is similar to (b), but illustrates the behavior of
scaling the system to a set of documents for which we do not have any training examples. Usually we hope
that (c) has a similar shape to (b).

Usage. The above techniques have proven critical to debugging and improving the quality of PDD. In
response to low confidence, a user can provide labeled examples, which allows the system to learn weights
that yield higher confidence. Additionally, a user may write logical inference rules that provide ways of
improving quality, which is a key component of all statistical relational approaches.

7.2 Declarative Interface for Joint Inference and Rich Features

7.2.1 Related Work

Here we survey recent efforts that focus on how to improve the quality of a KBC system.

Rich Features. Different researchers have recently noted the importance of combining and using a rich set
of features and signals to improve the quality of a KBC system. Two famous efforts, the Netflix challenge [6],
and IBM’s Watson [13], which won the Jeopardy gameshow, have identified the importance of features and
signals:

Ferrucci et al. [13]: For the Jeopardy Challenge, we use more than 100 different techniques
for analyzing natural language, identifying sources, finding and generating hypotheses, finding
and scoring evidence, and merging and ranking hypotheses. What is far more important than any
particular technique we use is how we combine them in DeepQA such that overlapping approaches
can bring their strengths to bear and contribute to improvements in accuracy, confidence, or speed.

Buskirk [6]: The top two teams beat the challenge by combining teams and their algorithms into
more complex algorithms incorporating everybody’s work. The more people joined, the more the
resulting team’s score would increase.

In both efforts, the rich set of features and signals contributed to the high-quality of the corresponding system.
Other researches have found similar phenomena. For example, Mintz et al. [30] finds that although both
surface features and deep NLP features have similar quality for relation extraction tasks, combining them
achieves a significant improvement over using either one in isolation. Similar “feature-based” approaches are
also used in other domains (e.g., Finkel et al. [14] uses a diverse set of features to build a NLP parser with
state-of-the-art quality). In our own work [16], we have also found that integrating a diverse set of deep
NLP features can improve a table extraction system significantly.

Joint Inference. Another recent trend in building KBC system is to take advantage of joint inference [9,
10,16,28,29,35–37]. Different from traditional models [31], such as logistic regression or SVM, joint inference
approaches emphasize learning multiple targets simultaneously. For example, Poon et al. [36, 37] find that
learning segmentation and extraction in the same Markov logic network significantly improves the quality
of information extraction. Similar observations have been made by Min et al. [29] and McCallum [28]. Our
recent work also show the empirical improvement of joint inference on the diverse set of tasks, including
relation extraction [35] and table extraction [16].

Deep Learning and Joint Inference. A recent emerging effort in the machine learning community
is to build a fully-joint model for NLP tasks [9,10]. The goal is to build a single joint model from the lowest
level (e.g., POS tagging) to the highest level (e.g., semantic role labeling). The PDD system is built in a
similar spirit that attempts to build a joint model for low-level tasks (e.g., OCR), to high-level tasks (e.g.,
cross-document inference of relation extraction).
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Fig. S15. Lesion Study of Joint Inference

7.2.2 The DeepDive Approach and the Impact of Rich Features and Joint Rules

DeepDive uses joint inference rules and rich features. In this section, we test that these features and rules
are important to PDD’s quality by conducting a lesion study.

Protocol. All experiments were run on the overlapping corpus as described in the main text. We produced
variants of PDD by removing features/rules and all components that rely on the output of the removed
feature/rule. We summarize the quality of PDD by computing Spearman’s rho for first differences in genus-
level biodiversity (as in Fig. 1).

Features. The PDD feature extraction phase extracts a set of features, including deep linguistic features,
e.g., dependency parsing results, and vision-based features (e.g., a simple table extractor based on Hough
Transform). To study their impact, we conduct lesion study by sequentiallydisabling these features.

Deep NLP Features. Figure S14(a) shows the impact of removing NLP features (e.g., dependency
path). If we use the whole PBDB is used, dropping these Deep NLP features does not have a significant
effect on Spearman’s rho. However, if the knowledge base used for training is reduced to 1% of it s size, then
dropping NLP features results in a decrease of Spearman’s rho from 0.72 from 0.82.

Vision-based Table Recognition. PDD contains a table recognition component to detect tables
using vision-based features (e.g., Hough Transform). When disabling this component and using the 1%
PBDB for distant supervision, PDD achieves a Spearman’s rho of 0.69. This drop is the effect of decreased
recall of data in tables.

Joint Inference Rules. PDD contains a set of factors for joint inference among random variables, as
shown in Fig S3. We study their impact on two types of joint inference rules: (1) joint inference within one
relation; and (2) joint inference across different relations (Figure S15).
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Joint Inference for Same Relations. Disabling all joint inference rules results in a Spearman’s rho
of 0.64, even when using the whole PBDB knowledge base. This is a marked decline from the Spearman’s
rho of 0.82 obtained when these rules are enabled. This large decline in quality is caused by the fact that
jointly infering the values of random variable results in much higher-quality predictions. For example, assume
that we have three candidate facts that Tsingyuan Formation has the age (1) Carboniferous ,(2) Namurian,
and (3) Kungurian. In the current PDD system, the higher confidence for Carboniferous will also boost
its confidence for Namurian (because of containment), and decrease its confidence for Kungurian (because
Kungurian is so much younger than Carboniferous). This type of joint inference between random variables
help PDD to produce result with higher recall (by boosting confidence to cross the imposed 0.95 threshold)
and precision (by eliminating wrong predictions).

Joint Inference across Relations. The current PDD system has three joint inference rules across
different relations (e.g., one geologic formation entity mention cannot be concurrently a location mention).
We disable these rules and show in Figure S15 that it does not have a large impact to the overall quality.
This implies that the current PDD system is quite modular across different relations. This means that
different types of relations can be decoupled and applied to other related applications (e.g., for biology or
geology).

7.3 Scalability and High Performance Statistical Inference and Learning

7.3.1 Related Work

There is an emerging trend in both industry and academia to support statistical inference and learning, and
we survey these efforts in this section.

Hardware Efficiency. One line of research tries to speed-up statistical inference and learning by better
taking advantage of modern hardware and clusters. For example, many industrial database vendors have
integrated statistical analytics components into their product. For example, Oracle’s ORE [2], Pivotal’s
MADlib [19], and IBM’s SystemML [15]. These systems provide functionalities like logistic regression and
collapsed Gibbs sampling for topic modeling on their data management systems. There are also efforts to
design new data processing framework instead of relying on the traditional database systems. Indeed, most
data processing frameworks developed in the last few years are designed to support statistical analytics
including Mahout [1] for Hadoop, MLI for Spark [39], GraphLab [27], GraphChi [24], and Delite [8, 41].
These systems have been shown to increase the performance of corresponding statistical analytics tasks
significantly.

Statistical Efficiency. One key difference between statistical inference and learning with traditional SQL-
like analytics is that different ways of executing the same tasks usually lead to different speed when converging
to the same quality. Therefore, another line of related work, mainly contributed by the mathematical
optimization and machine learning community, is to design more efficient algorithms for statistical inference
tasks. One of the recent trends is to design lock-free algorithms that can be executed on the emerging
multi-socket multi-core machines with high parallelism [5, 26, 33, 42, 47]. For example, Tsitsiklis et al. [42]
proves asymptotic convergence for a parallel coordinate descent algorithm, and Bradley et al. [5] proves the
convergence rate and theoretical speedups for parallel stochastic coordinate descent. Our own work [26,
33] proves the convergence of lock-free execution for stochastic gradient descent and stochastic coordinate
descent.

7.3.2 The DeepDive Approach and The Performance of PDD

The DeepDive Approach. The statistical inference and learning engine in DeepDive [44] is built upon
the challenge of designing a high-performance statistical inference and learning engine on a single machine [26,
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34,44,45]. Compared to traditional work, the main novelty of DeepDive is that it considers both hardware
efficiency and statistical efficiency for executing an inference and learning task.

Hardware Efficiency. DeepDive takes into consideration the architecture of modern non-uniform
memory access (NUMA) machines. A NUMA machine usually contains multiple nodes (sockets), where
each sockets contains multiple CPU cores. To achieve high hardware efficiency, it is useful to decrease the
communication across different NUMA nodes.

Statistical Efficiency Pushing hardware efficiency to the extreme might cause statistical efficiency to
suffer because the lack of communication between nodes could decrease the rate of convergence of a statistical
inference and learning algorithm. DeepDive takes advantage of theoretical results of model averaging [47]
and lock-free execution [26,34].

Performance of Statistical Inference and Learning. DeepDive enables PDD’s ability to run sta-
tistical inference and learning efficiently. For example, on the whole corpus, the factor graph contains more
than 0.2 billion random variables and 0.3 billion factors. On this factor graph, DeepDive is able to run
Gibbs sampling on a machine with 4 sockets (10 core per sockets), and we find that we can generate 1,000
samples for all 0.2 billion random variables in 28 minutes.
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