The Scientific Program of SESAME

Hafeez R. Hoorani Scientific Director, SESAME

Hafeez Hoorani, Vienna - 2009

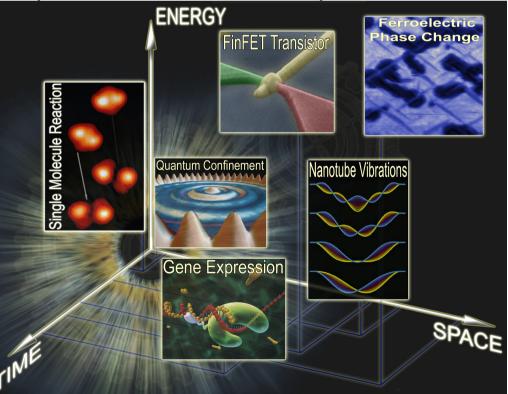
OVERVIEW

- This talk gives:
 - Introduction
 - Machine Status
 - Beamline Planning
 - Donation of Equipment
 - Summary

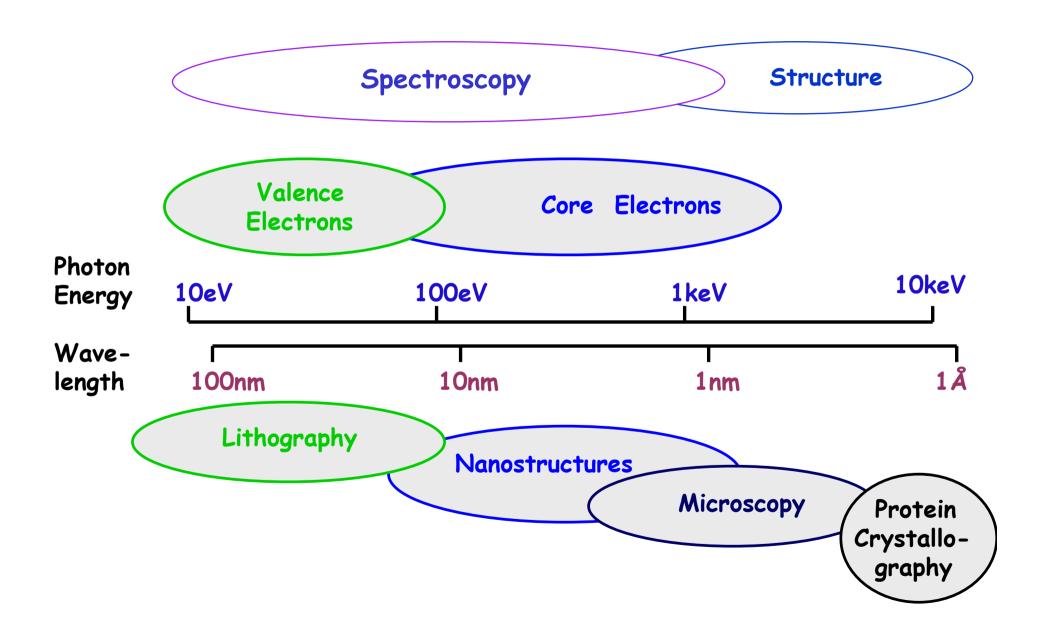
Five Grand Challenges for Science

- How do we control materials and processes at the level of electrons?
- How do we design and perfect atom-and energyefficient synthesis of new forms of matter with tailored properties?
- How do remarkable properties of matter emerge from complex correlations of atomic and electronic constituents and how can we control these properties?
- Can we master energy and information on the nanoscale to create new technologies with capabilities rivaling those of living systems?
- How do we characterize and control matter away especially very far away—from equilibrium?

mer Pumpe & Values


Overall Challenge: *Making the Leap from Observation Science to Control Science*

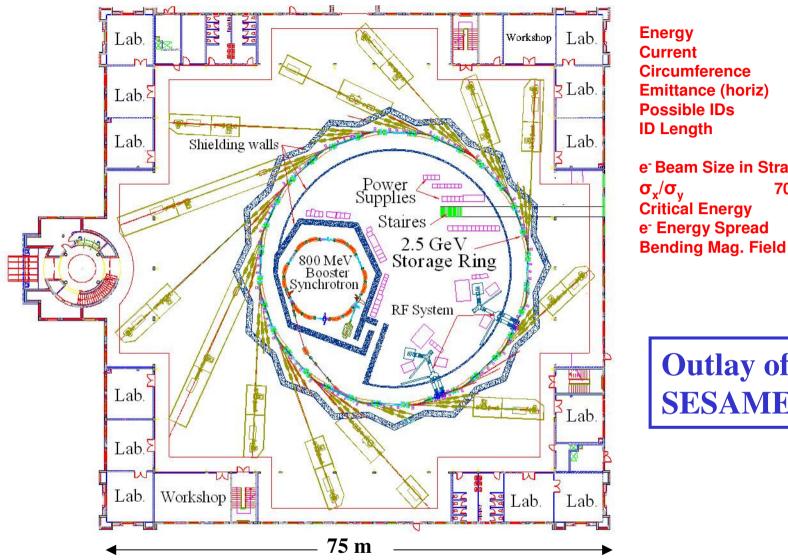
The things we want to do (i.e. designing materials to have the properties we want & directing synthesis to achieve them) require the ability to see functionality at the relevant <u>time, length & energy</u> <u>scales.</u>


We will need <u>to develop & disseminate new tools</u> capable of viewing the inner workings of matter—transport, fields, reactivity,

excitations & motion

This new generation of instruments will naturally lead to devices capable of directing matter at the level of electrons, atoms, or molecules.

Science with Light Sources



Machine Status

SESAME - STORAGE RING Main Parameters

Parameter	Unit	Value
Energy	GeV	2.5
Circumference	m	133.2
Maximum Current	mA	400
Bending Dipole field; gradient	T; T/m	1.45545 ; -2.794
Emittance x / z	nm.rad	26 / 0.26
RF frequency ; peak voltage	MHz ; kV	499.564 ; 2.4
Natural bunch length	cm	1.16
Expected Beam Lifetime	h	18

Energy	2.5 GeV
Current	400 mA
Circumference	128.4m
Emittance (horiz)	26.4 nm-rad
Possible IDs	12
D Length	2.75 m
e ⁻ Beam Size in S	traight Sections
σ _x /σ _y	700µm/35µm
Critical Energy	5.9 KeV
e ⁻ Energy Spread	0.1%

1.425 T

Parameters: 2.5 GeV ring with 12 possible insertion device beam lines. Beam lines can also come from the 16 bend magnets.

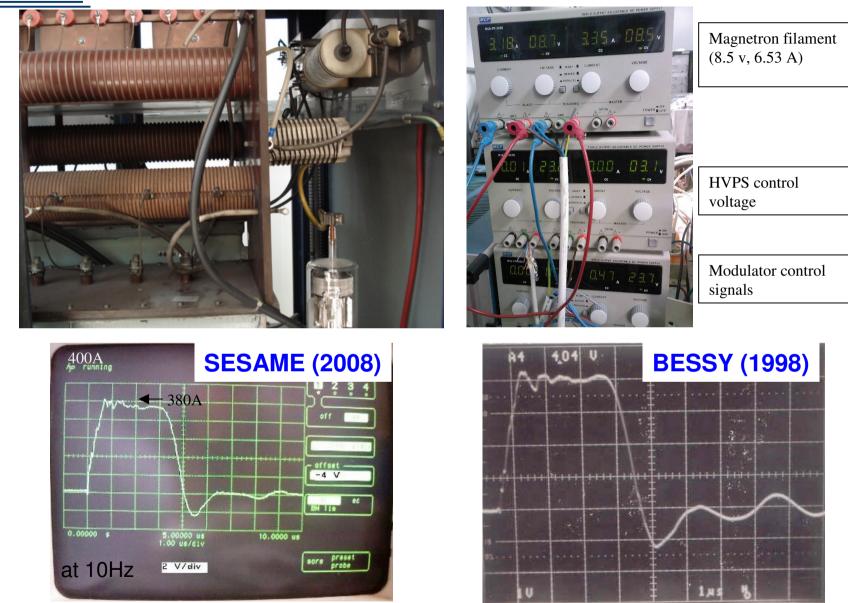
MICROTRON Parameters

Extractable energy	5.3 - 22.5Me
Magnetic field	0.112T
Magnet diameter	2.22m
Pole diameter	1.8m
Gap	0.11m
Magnet Weight	11Tons
Microwave frequency	3GHz
Microwave peak power	c 2MW
Pulse duration	2µs


Emittance for 100% of the beam At 21MeV:

Horizontal	3.8π mm.mrad
Vertical	12.8π mm.mrad

The Installed MICROTRON System

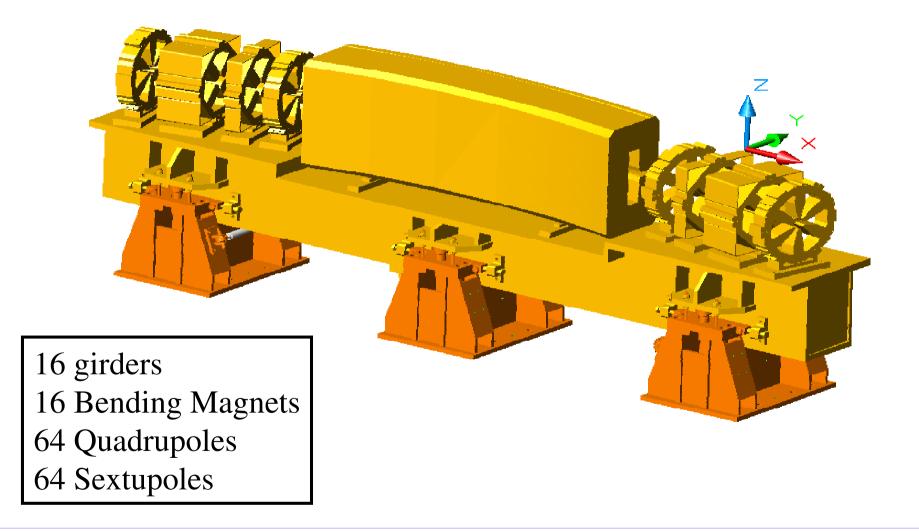


at SESAME (2008)

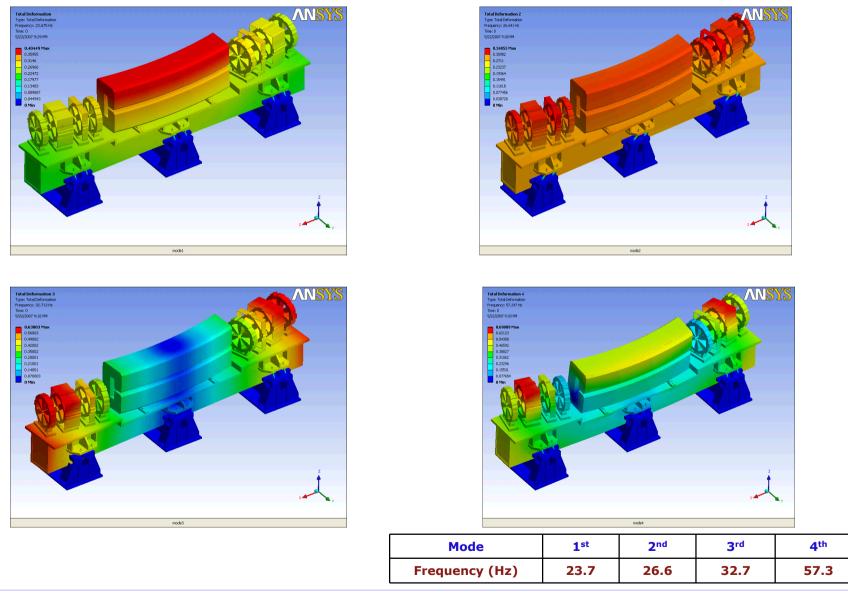
Test of the Modulator

Booster Parameters

Maximum energy, MeV	800	
Injection energy, MeV	20	
Circumference, <i>m</i>	38.4	
Super periodicity	6	
Number of bending magnets	12	
No. of focusing quadrupoles	12	
No. of defocusing quadrupoles	6	
Repetition rate, <i>Hz</i>	1	
Horizontal tune, Q_x	2.22	
Vertical tune, Q_{y}	1.30	
Momentum compaction factor α	0.18	
Harmonic number	64	
RF-frequency, MHz	500	
RF-output power, kW	2	
Cavity shunt impedance , $M\Omega$	3	
Current @maximum energy, mA	7	
Vertical emittance, mm-mrad	0.016	
Horizontal emittance, mm-mrad	0.155	

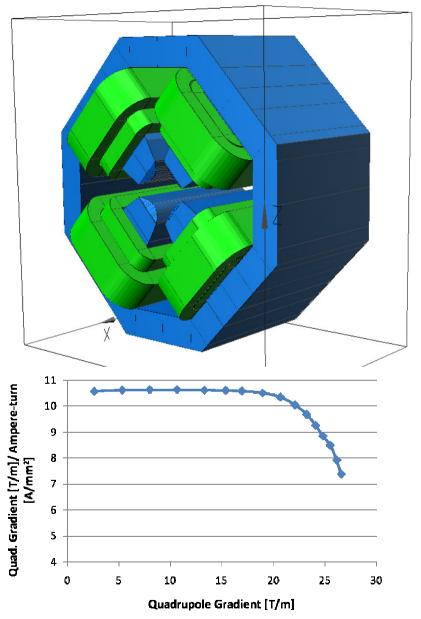


Booster Girders and Magnets Pre-assembly November - 2008



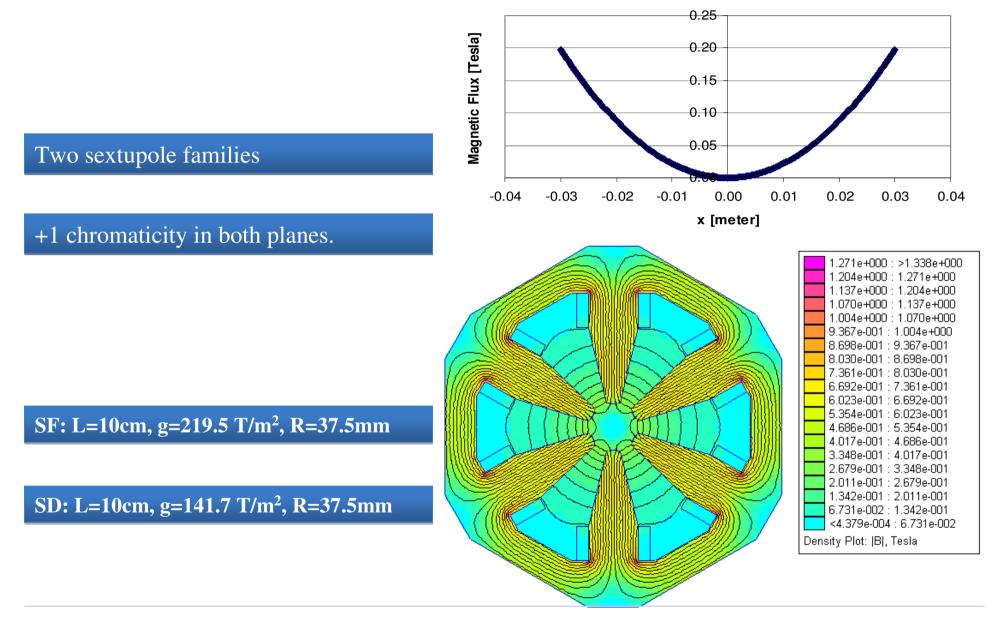
Storage Ring Girder- Magnets Design

Storage Ring Girder- Magnets Design: Modal Analysis

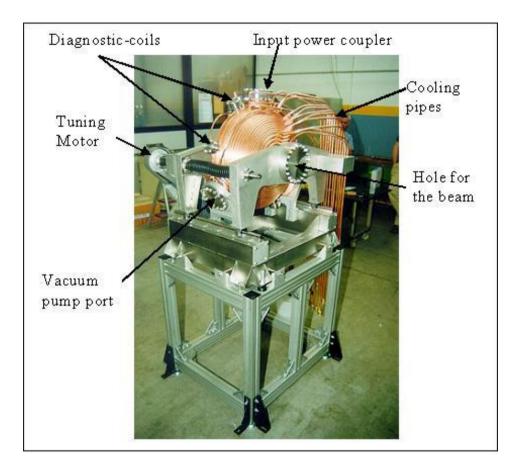

Magnetic Design of the Quadrupole

Two Quadruples families with the same pole profile

QF: Gradient =16.9 T/m Iron Length = 280 mm Magnetic length = 300mm Bore diameter = 70 mm


QD: Gradient = -10.2 T/m, Iron Length = 100 mm Bore diameter = 70 mm

LAYOUT: No cut in the yoke for the passage of beamlines.


Magnetic Design of the Sextupole

STORAGE RING RF

- So far it is based on ELETTRA type cavity
- Donation of 2 RF cavities by ELETTRA (we need 4 for nominal performances)
- Getting rid of HOMs in this cavity is done by means of temperature control and plunger

Scientific Programme

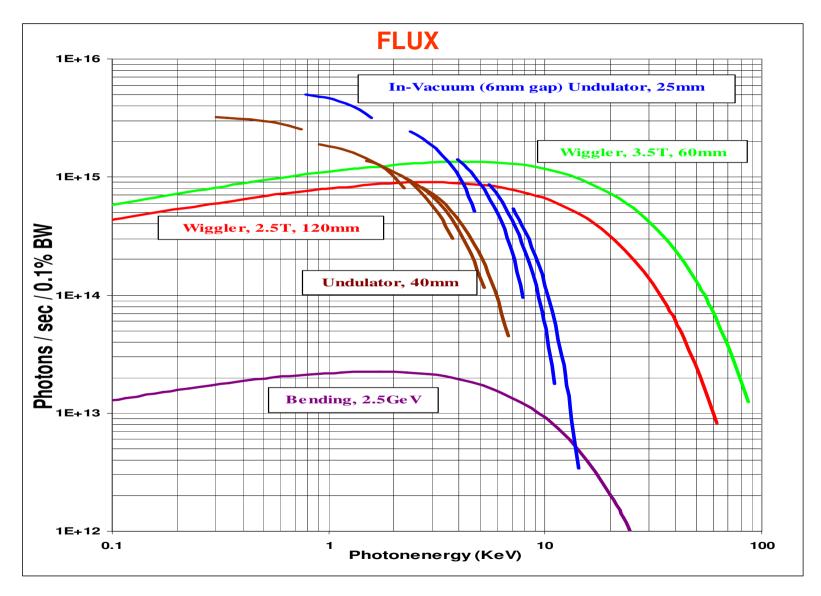
- Research in the domains :
 - Atomic and Molecular Physics
 - Material science
 - Nanotechnology
 - Molecular biology
 - Archaeology
 - Environmental studies
 - Medical research

Radiation Sources

Bending magnets

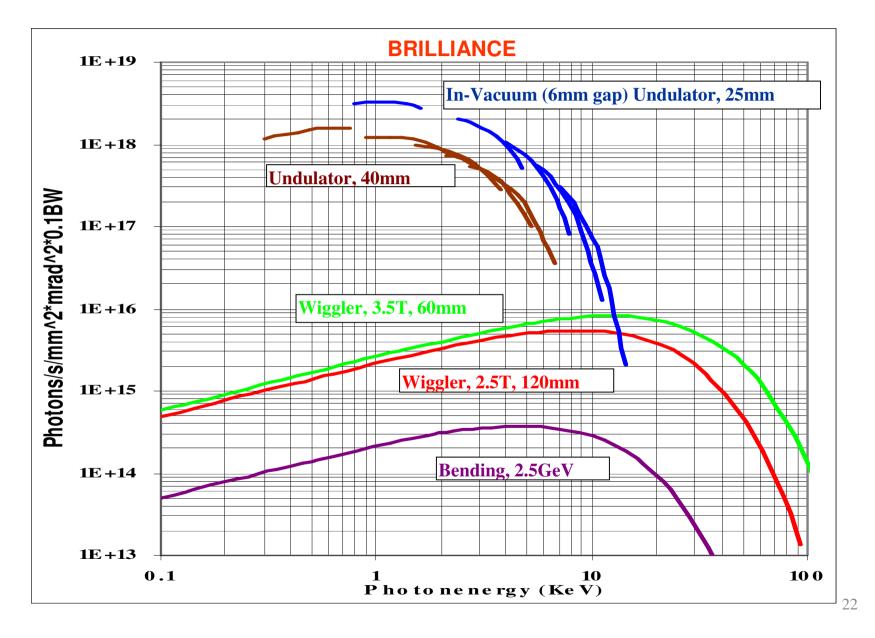
• Radiation emitted tangentially to the orbit $1 mc^2$

$$\mathcal{E}_c[\text{keV}] = 0.665 E^2[\text{GeV}^2]B[\text{T}]$$


 $\frac{1}{\gamma} = \frac{1}{E}$

• For SESAME $\varepsilon_c = 5.73 \text{ keV}$

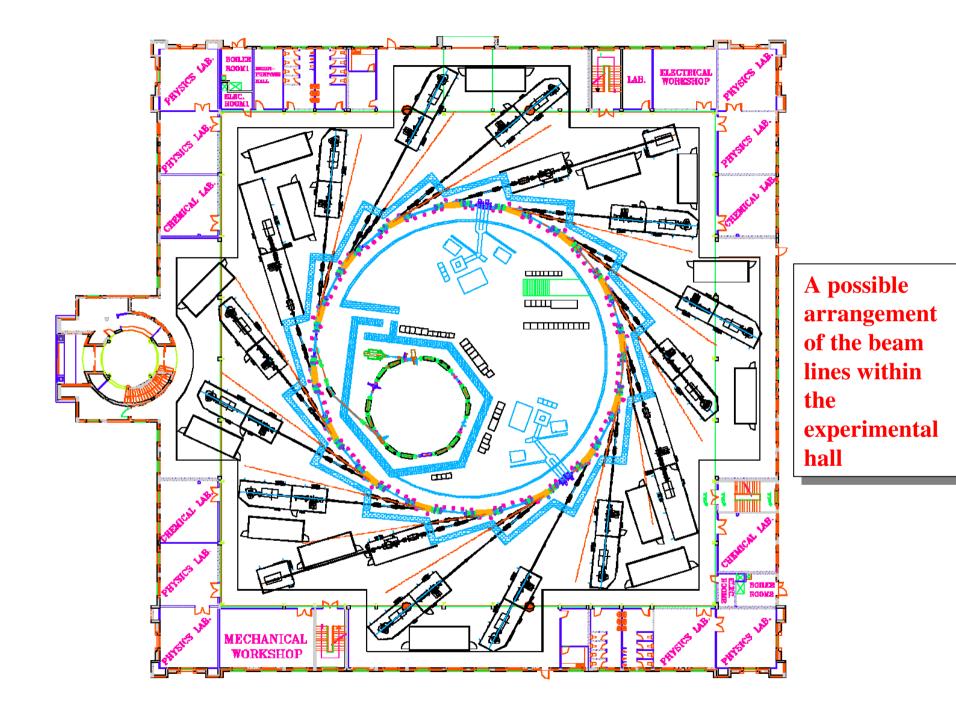
Insertion devices

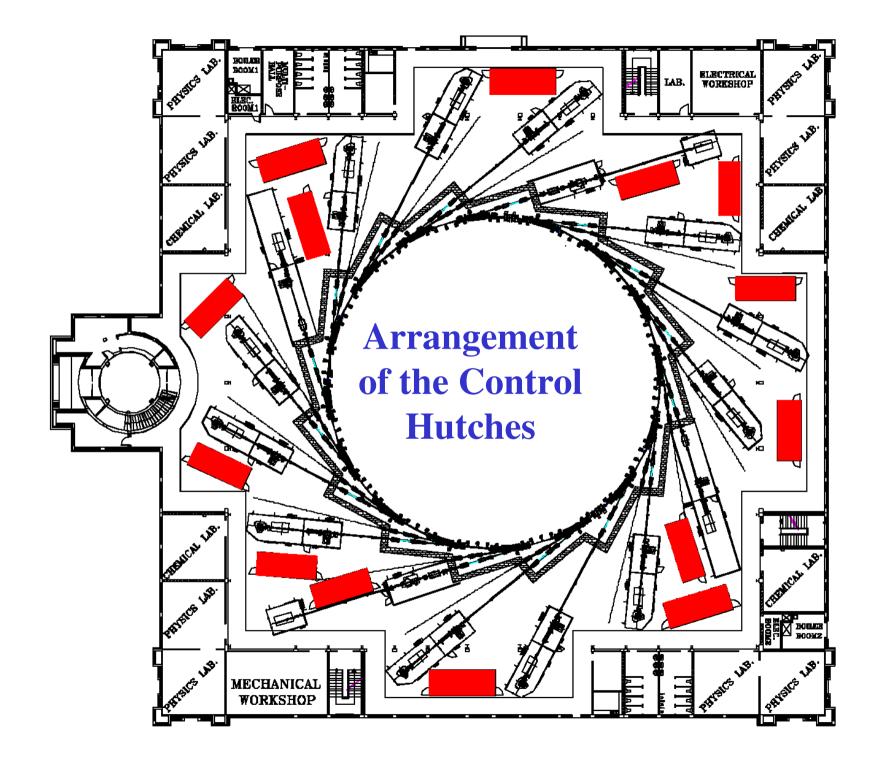

- Multipole Wigglers
- Undulators

Radiation from BM & IDs

21

Radiation from BM & IDs




Scientific Programme

- SESAME has the capacity for ~ 28 beamlines
 - Straight Sections = 16 (8 long 4.44 m, 8 short 2.38 m): Beamline Length 21 - 36.7 m
- Storage ring energy = 2.5 GeV
 - Photon energies from IR to soft x-rays to hard x-rays
- Mission for beamline development is to ensure appropriate capabilities are present that:
 - Meet needs of very diverse user community (novice to experienced in many different areas of science)
 - Develop state-of-the-art user-friendly capabilities
 - Provide user support for carrying out outstanding science,
 - Clear and transparent policy that provide equal opportunities for access of beamtimes, and
 - Reward facility partners for their contributions

Hafeez Hoorani, Vienna - 2009

Name	Max Length (m)	Name	Max Length (m)	Section Type
D1 - IR		NA		
D2 - IR		NA		
D3 - DP	26.9	NA		
D4 - DP	21.2	I4 - ID	23.6	SHORT
D5 - DP	24.7	I5 - ID	28.2	LONG
D6 - DP	28.0	I6 - ID	32.9	SHORT
D7 - DP	31.9	I7 - ID	36.5	LONG
D8 - DP	34.7	I8 - ID	36.6	SHORT
D9 - DP	34.3	I9 - ID	35.3	LONG
D10 - DP	29.6	I10 - ID	33.0	SHORT
D11 - DP	26.9	I11 - ID	31.3	LONG
D12 - DP	29.2	I12 - ID	31.3	SHORT
D13 - DP	27.2	I13 - ID	28.8	LONG
D14 - DP	20.7	I14 - ID	21.2	SHORT
D15 - DP	21.9	I15 - ID	26.3	LONG
D16 - IR		NA		

Beamline Development: Strategy

- **SESAME is committed for developing facility-wide plan that is:**
- Responsive to the needs of the various communities with input from users
- Coherent and in line with competing facilities,
- User access policy will ensure that the facility is as scientifically productive as possible
- Reviewed by beamline and science committees to maintain state-of-the-art performance

SESAME PHASE - I

No.	Beamline	Energy NE Range	Source Type	Research Area	Champions
1.	Mad Protein Crystallography	4 - 14 keV	In-vacuum undulator	Biology	S. Hasnain, M. Yousef
2.	Soft X-ray - VUV	0.05 - 2 keV	Elliptically Polarizing	Atomic Molecular	B. Suleman , Aslam Baig
3.	SAXS/WAXS	8 - 12 keV	Undulator	Material Science	M. Al-Hussein , Zehra Seyers
4.	XAFS/XRF	3 - 30 keV	2.0 Tesla MPW	Material, Arch.	Awni Hallak , Abu Samak
5.	Powder Diffraction	3 - 25 keV	2.1 Tesla MPW	Material, Arch.,Env.	E. Ozdas
6.	IR Spectro- microscopy	0.01 - 1 eV	Bending Magnet*	Material, Arch.,Env.	Z. El Bayyari , I. Sagi
7.	AMO - Zero BL	5 - 250 eV	Bending Magenet	Atomic Molecular	M. Gharaibeh , Rami Ali

Phase I Beamlines at SESAME & Other Facilities

SESAME: Phase I	
-----------------	--

1) PX (und)

- 2) Soft X-ray
- 3) SAXS/WAXS
- 4) EXAFS/XRF

<u>N</u> .	<u>SLS-II</u>
1)	Inelastic

- 2) Nanoprobe
- 3) Soft Coherent
- 4) Hard Coherent

<u>A(ustralian)SP</u>
1) IR
2) PX (BM)
3) Soft X-ray

4) EXAFS

5) Powder

- C(anadian)LS
- 1) IR
- 2) XAS
- 3) STXM
- 4) MAD
- 5) XAFS

- 5) Powder Diffraction 5) EXAFS
- 6) IR6) Powder

7) AMO

Donation of Equipment

Equipment from LURE

SU6 undulator (beam axis 1240 mm, spectral range 30
110 eV, peak field 0.25 T, min. gap 39 mm)

Hutches (100 walls 80 x 320 cm, 90 walls 115 x 235 cm, 35 walls 100 x 235 cm)

– SA31 beamline (Refocusing mirror, monochromator)

Equipment from SLAC and ALS

- Equipment from SLAC:
 - PEP Undulator (period length 77 mm, overall length 223 cm, Max. K value: 1.58)
 - Hower-Brown double-crystal monochromator (size 26 in. dia. 36 in., weight ~ 500 lbs)

Equipment from ALS:

 Wiggler W16 (Peak Field 2.0 T, Period length 16 cm, No. of periods 19)

Equipment from Daresbury

5 Beamlines:

- **DL** 14.1: Protein Crystallography, non-crystalline diffraction.
- ✤ DL 14.2: High throughput protein crystallography
- DL 4.1: XUV Spectroscopy
- ✤ DL 4.2: Near edge X-ray Absorption Fine Structure
- DL 16.1:Small and Wide Angle X-ray Diffraction (SAXS/WAXS)

Equipment from Daresbury

Beamline 14.1

- Protein Crystallography, non-crystalline diffraction.
- This station provides a focused X-ray beam at either 1.488 Å or 0.977 Å. The station is designed for protein crystallography data collection from crystals as small as 50 microns.
- The station can be used for Multi-wavelength Anomalous Diffraction (MAD) data collection near the two wavelengths listed.
- The station is also used for non-crystalline diffraction experiments on samples as diverse as corneal tissue and archaeological samples.

BLs 4.1 and 4.2 from Daresbury

Daresbury Double Crystal Monochromator BL 4.2

LURE Grasshopper Monochromator

Phase I Beamlines

No	Beamline	Coordinator	Expert	Donation
1.	Mad Protein Crystallography	M. Yousef, S. Hasnain,	Samar Hasnain	Daresbury DL – 14.1 & 14.2
2.	Soft X-ray – VUV	B. Suleman , Aslam Baig	Zahid Hussain	Daresbury DL – 4.1 & 4.2
3.	SAXS/WAXS	M. Al-Hussein, Zehra Seyers	Wim Bras	Daresbury DL – 16.1
4.	XAFS/XRF,	Awni Hallak , Abu Samak	A. Simionovici	
5.	Powder Diffraction,	E. Ozdas	Fabia Gozzo	SLS
6.	IR Spectro- microscopy	Z. El Bayyari , I. Sagi	Paul Dumas	
7.	Zero beamline,	M. Gharaibeh , Rami Ali		LURE

Proposals Submitted to SESAME

Beamline

A/b and e

A/a and e

B/b, e, c, f

A/a, d, c

A,B/b,d,e

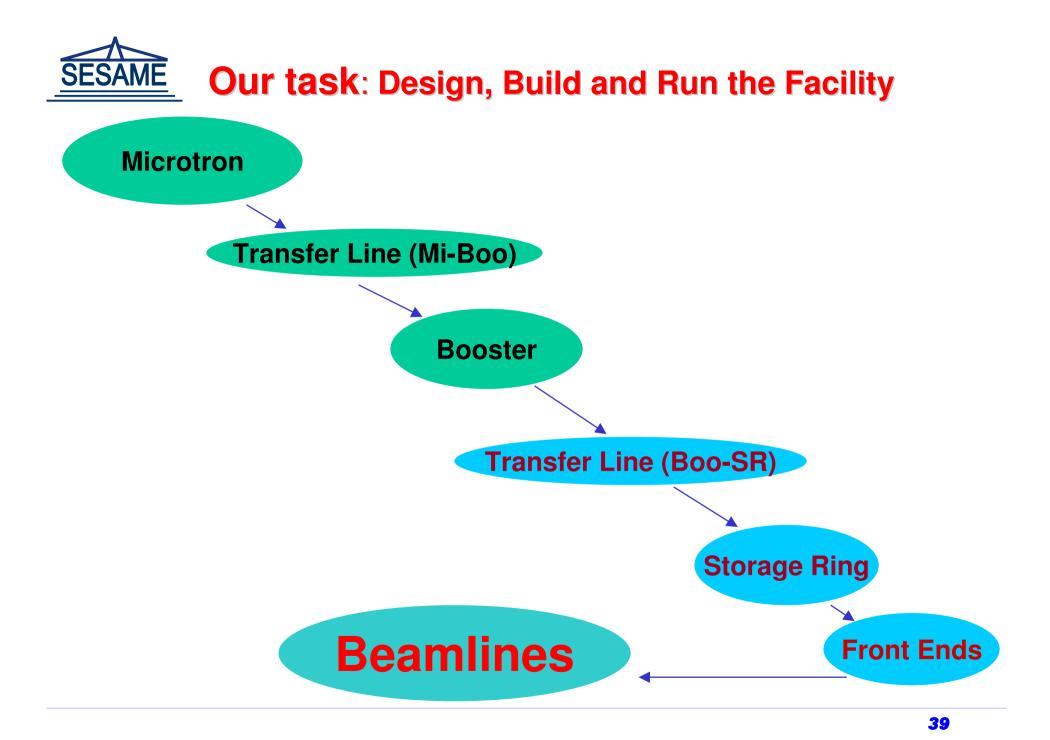
A/d.e

A/d,e

B/b.c

A/e

B/b


61

Originating from

Egypt Iran Israel Jordan Oman Palestinian Authority Saudi Arabia Turkey United Arab Fmirates Canada Greece Japan

Total

Research Area/ Number 4 A: Material Science, 3 B: Structural Molecular Biology 11 C: Environmental Science, A,B,C/a,b,c,d,e,f 16 D: Archaeological Sciences. 4 a: Photoabsorption/ 3 photoemission spectroscopy, 2 b: MAD protein crystallography, 5 4 c: Small/wide angle solution A,B,D/a,b,c,d,eX-ray scattering, d: Powder diffraction, 2 e: X-ray absorption fine 6 structure 1 and X-ray fluorescence spectroscopy, f: infrared spectromicroscopy

