IAEA International Conference "Opportunities and Challenges for Water Cooled Reactors in the 21st Century" 27-30 October 2009, Vienna, Austria

The Enhanced CANDU 6[™] Reactor by S. Azeez, P. Dick, and J. Hopwood

Saleem Azeez
Director, CANDU Product Development

Presented by Nik Popov Director, Licensing and Safety Assurance

© Copyright Atomic Energy of Canada Limited

EC6[™] - CANDU[™] Medium Size Global Reactor

The Enhanced CANDU 6 (EC6) is AECL's 740 MWe class heavy water moderated pressure tube reactor designed to provide safe, reliable nuclear power

Proven, Strong Foundation

- The EC6 design benefits from the proven principles and characteristics of the very successful CANDU 6 reactor. The EC6 offers reliability, flexibility in operation to load follow and the ability to be connected to most grids of most countries
- Proven CANDU reactor strengths include:
 - Powered by natural Uranium
 - Ease of installation with modular, horizontal fuel channel core
 - Separate low temperature and pressure moderator
 - Reactor vault filled with light water which surrounds the core
 - ✓On-power refuelling
 - ✓Two independent, passive, safety shutdown systems
 - Reactor building access for on-power maintenance

© Copyright Atomic Energy of Canada Limited IAEA, Vienna, Austria, 27-30 Oct, 2009

A AFCL FACE

CANDU 6 Plants Around the Globe

EC6 is based on AECL's extremely successful CANDU 6 design

© Copyright Atomic Energy of Canada Limited

CANDU 6 Performance Excellence

 There are 11 CANDU 6 reactors operating worldwide with an average lifetime capacity factor of over 88% and with over 150 years of safe operation

EC6 Highlights

- Major improvements incorporated in the EC6 design include:
 - ✓Improved power plant output of up to 740 MWe gross
 - 60 year plant life with replacement of major components at around midlife
 - ✓ Natural uranium & flexible fuel capabilities
 - ✓ Target capacity factor of 90%
 - Reduced project schedule of 57 months from 1st concrete to in-service
 - More robust containment and increased passive safety features
 - Enhanced severe accident management with additional emergency heat removal systems

Fuel Cycle Flexibility

The EC6 can accommodate a variety of fuel types and cycles

© Copyright Atomic Energy of Canada Limited IAEA, Vienna, Austr

IAEA, Vienna, Austria, 27-30 Oct, 2009

A AECL EACL

Design Enhancement Basis Principles

- New design enhancements based on direct feedback and interaction with operating CANDU utilities and current Safety/Licensing requirements:
 - Improved shutdown performance for improved Large LOCA margins
 - Improved fire protection systems (e.g. upgraded firewalls and penetrations, detectors, etc)
 - ✓ Additional reactor trip coverage
 - Automated and unitized back-up standby power and water systems
 - Additional design features to address severe accidents and aircraft crashes through provision of steel lined containment and ticker containment walls
 - Simple Plant Operability and Maintainability
 - ✓Optimized Plant Maintenance Outages
 - Modern Computers and Control/Display Systems

Gen III Criteria

The EC6 reactor has been studied against the following criteria

- ✓Simplification
- ✓ Design Margin
- Human Factors
- ✓Safety
- Design Basis vs. Safety Margin
- Regulatory Stabilization
- ✓ Standardization
- Proven Technology
- ✓Maintainability

- ✓Constructability
- Quality Assurance
- ✓Economics
- ✓Sabotage Protection
- ✓Good Neighbour

© Copyright Atomic Energy of Canada Limited

Safety

- Passive Autocatalytic Recombiners (PARs) for long-term hydrogen control
- Calandria inlet nozzle/outlet port configuration reconfigured to improve flow distribution inside the Calandria to increase moderator subcooling
- Improved feeder material to increase operating life
- Emergency Heat Removal system for operation in case of severe accidents and provide additional heat sink capacity
- Structures designed to protect against external threats
- Automated Emergency Power Supply(EPS) Diesels
- Emergency Control Centre (EmCC) and expanded Safety Parameter Display System (SPDS)

Containment and Severe Accidents

Emergency Heat Removal System

A AECL EACL

© Copyright Atomic Energy of Canada Limited

Operation & Maintenance

- 18 month maintenance outage frequency (target)
 - -Electrical, water, & air supplies for on-power maintenance
 - -Improved on-power testing
 - -Reduced testing requirements by
 - providing redundant equipment
- Enhanced shielding
 - <50 mSv/yr to any individual
- Equipment & systems design optimized to meet revised maintenance cycles

Constructability

- 57-month schedule from first concrete to in-service
- Second unit in-service 6 months later

- Advanced construction methods
 - -Open-top using VHL crane
 - -Modularization
 - -Prefabrication
 - -Concurrent / parallel work
 - -Advanced work management tools

© Copyright Atomic Energy of Canada Limited

Comparison of Key Enhancements

	CANDU 6*	EC6
Containment/Liner	1.07m epoxy-lined pre- stressed concrete	1.8m steel-lined with stronger concrete
Control Systems	DCC & traditional control layout	DCS with human factors engineering
Computer Maintenance	Digital computer based	60% cost reduction
Pressure Tubes	4.2mm	~12.5% Thicker
Feeders	Carbon Steel	Improved corrosion resistance (> Cr %)
Performance Factor	88.8% LCF fleet average	90% (target)
Power	680 MWe	Up to 740 MWe**

*Based on CANDU 6 at Point Lepreau

**Dependant on site conditions

© Copyright Atomic Energy of Canada Limited

- The Enhanced CANDU 6 (EC6) Reactor:
 - Is based on proven CANDU 6 design & technology
 - Incorporates extensive utility feedback
 - Improved maintenance & operability
 - Delivers enhanced safety
 - Uses natural uranium fuel & is flexible to alternatives
 - Offers up to 90% capacity factor & 60 year design life
 - Is economical and competitive
 - Meets current International & Canadian standards
 - Available for deployment readily

