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Optimal Mollifiers for Spherical Deconvolution

Ralf Hielscher Michael Quellmalz

This paper deals with the inversion of the spherical Funk–Radon transform,
and, more generally, with the inversion of spherical convolution operators from
the point of view of statistical inverse problems. This means we consider discrete
data perturbed by white noise and aim at estimators with optimal mean square
error for functions out of a Sobolev ball. To this end we analyze a specific class of
estimators built upon the spherical hyperinterpolation operator, spherical designs
and the mollifier approach. Eventually, we determine optimal mollifier functions
with respect to the noise level, the number of data points and the smoothness of
the original function. We complete this paper by providing a fast algorithm for
the numerical computation of the estimator, which is based on the fast spheri-
cal Fourier transform, and by illustrating our theoretical results with numerical
experiments.

Math Subject Classifications. 65T40, 45Q05, 65N21, 44A12, 44A35, 62G05.
Keywords and Phrases. Spherical Radon transform, spherical deconvolution,

statistical inverse problems, minimax risk, asymptotic bounds, fast algorithms.

1 Introduction

Reconstructing functions defined on the two-sphere S2 = {ξ ∈ R3 | ‖ξ‖ = 1} from integrals
along great circles has been investigated at least since the work of Funk [8], who proved that
the so-called Funk–Radon transform

F : C(S2)→ C(S2), F(ξ) =

∫
η·ξ=0

f(η) dη (1.1)

restricted to the space of even, continuous functions on the sphere is injective. Explicit
inversion formulas can be found e.g. in [14, Section III.1.A]. For the reconstruction from
discrete data gm = Ff(ξm) + εm at points ξm ∈ S2, m = 1, . . . ,M , corrupted by white
noise εm, Louis et. al. [23] proposed a mollifier-based approach. Explicit mollifiers were also
discussed in [28]. An approach based on variational splines was suggested by Pesenson [25].

In this paper we aim at optimal mollifiers which take into account the number and the
alignment of the evaluation points ξm ∈ S2, the smoothness of the function f as well as the
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noise level. To impose a condition on the smoothness of f , we consider Sobolev balls which are
sets of even functions f ∈ Hs

e (S2) with bounded Sobolev norm ‖f‖Hs ≤ S for some s, S > 0.
As measure of optimality of a fixed mollifier ψ, we use the maximum risk

sup
f∈Hs

e (S2)
‖f‖Hs≤S

E ‖f − Eψ(Ff + ε)‖2L2 , (1.2)

where Eψ(Ff+ε) denotes the reconstruction of f using the mollifier ψ and where the expected
value E is with respect to the white noise ε.

The approach taken in this paper is entirely based on Fourier series with respect to spher-
ical harmonics. We make use of the fact that the Funk–Radon transform is a multiplication
operator in Fourier space and that it suffices to specify the mollifier by its Fourier coefficients.
The advantages of this approach are as follows. Firstly, we are not restricted to specific mol-
lifiers which are Funk–Radon transforms of approximating identities. Secondly, the estimator
Eψ(Ff+ε), the Sobolev norm ‖f‖Hs and the maximum risk (1.2) can be easily expressed with
respect to the Fourier coefficients of f . Lastly, this representation leads to a fast inversion
algorithm, i.e. an algorithm that scales like O(M logM), by applying the nonequispaced fast
spherical Fourier transform [16, 21].

Similarly to the work of Kim and Koo [18], who investigated the maximum risk for density
estimation on the sphere from random samples, we formulate our results directly for spherical
Fourier multiplication operators, which are a generalization of spherical convolution opera-
tors. Besides the Funk–Radon transform, which is important e.g. for Q–ball imaging [33],
radar imaging [34] and geometric tomography [10, Chap. 4]; spherical Fourier multiplication
operators also include the spherical cosine transform [27]

C : C(S2)→ C(S2), Cf(ξ) =

∫
S2
|ξ · η| f(η) dη, (1.3)

whose inversion is important for the analysis of fiber systems [17] and was subject of the papers
[32, 23, 28], and the hemispherical transform [9] (see also [3, 31]), which has applications for
discrete choice models [11].

This paper is organized as follows. In Section 2 we set up notation for harmonic analysis
on the sphere and cite results about hyperinterpolation on the sphere from [15]. In Section 3,
Equation (3.1), we define a family of estimators Eψ, which use hyperinterpolation to estimate
Fourier coefficients out of the data gm and then utilize the Funk–Hecke formula for the
convolution with the mollifier ψ. In Definition 3.3 we define a special class of mollifiers ψs

Ñ
,

adapted to the Sobolev space Hs(S2), and show in Lemma 3.4 that this class provides a lower
bound of the maximum risk (1.2) amongst all mollifiers. By optimizing with respect to the
parameter Ñ of this class, we obtain in Theorem 3.6 a lower bound of the maximum risk over
Sobolev balls. In Theorem 3.9 we prove an upper bound, which has the same asymptotic rate
in the number M of data points as the lower bound. Theorem 3.10 gives sufficient conditions
that the upper and lower bounds have the same constants. In Corollary 3.11 we specialize our
findings for the case of the Funk–Radon and the cosine transform, for which we give explicit
error rates and formulas for optimal mollifiers.

Section 4 is devoted to numerical experiments in order to illustrate the theoretical findings
of the previous sections. First we present in Section 4.1 fast algorithms for the forward
transform as well as for the inverse transform which make use of spherical quadrature rules
[13] and the nonequispaced fast spherical Fourier transform [16, 20]. In Sections 4.3 and
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4.4 we analyze the mean reconstruction error for a specific test function with respect to the
number of sampling points. The numerical results fit well with the asymptotic rates obtained
in Corollary 3.11. In our test, the optimal mollifier achieves half the reconstruction error
compared to the Dirichlet kernel.

2 Approximation on the Sphere

2.1 Spherical Harmonics

In this section we are going to summarize some basic facts on harmonic analysis on the sphere
as it can be found, e.g., in [7, 5]. We define the two–dimensional sphere S2 = {ξ ∈ R3 | |ξ| =
1} as the set of unit vectors in the three-dimensional Euclidean space and make use of its
parametrization in terms of polar angles

ξ(θ, ρ) = (cos ρ sin θ, sin ρ sin θ, cos θ)t, θ ∈ [0, π], ρ ∈ [0, 2π).

With respect to polar angles, the surface measure dξ on the sphere reads as∫
S2
f(ξ) dξ =

∫ π

0

∫ 2π

0
f(ξ(θ, ρ)) dρ sin θ dθ,

where f : S2 → C is some measurable function. The Hilbert space L2(S2) is the space of all

measurable functions f : S2 → C, whose norm ‖f‖L2 =
√∫

S2 |f(ξ)|2 dξ is finite.

We define the associated Legendre polynomials

P kn (t) =
(−1)k

2kk!

(
1− t2

)k/2 dn+k

dtn+k

(
t2 − 1

)k
, t ∈ [−1, 1],

for all
(n, k) ∈ I := {(n, k) | n ∈ N, k = −n, . . . , n}.

For k = 0, they are equal to the Legendre polynomials Pn = P 0
n . An orthonormal basis in the

Hilbert space L2(S2) of square integrable functions on the sphere is formed by the so-called
spherical harmonics

Y k
n (ξ(θ, ρ)) =

√
2n+ 1

4π

(n− k)!

(n+ k)!
P kn (cos θ)eikρ, (n, k) ∈ I.

Accordingly, a function f ∈ L2(S2) can be expressed by its Fourier series

f =
∑

(n,k)∈I

f̂(n, k)Y k
n

with Fourier coefficients

f̂(n, k) =

∫
S2
f(ξ)Y k

n (ξ) dξ, (n, k) ∈ I.

A function p : S2 → C that has a finite representation

p =
∑

(n,k)∈IN

p̂(n, k)Y k
n , IN = {(n, k) ∈ I | n ≤ N},

3



with respect to spherical harmonics is called a spherical polynomial of degree N ∈ N provided
that p̂(N, k) 6= 0 for some k. We denote by ΠN (S2) the space of all spherical polynomials of
degree up to N . For a spherical polynomial p ∈ ΠN (S2) and some s ∈ R we introduce the
Sobolev norm

‖p‖2Hs =
∑

(n,k)∈IN

(n+ 1
2)2s |p̂(n, k)|2 .

As usual the spherical Sobolev spaces Hs(S2), cf. [7], are defined as the completion of the
space of all spherical polynomials with respect to the Sobolev norm ‖·‖Hs .

2.2 Spherical convolution and Fourier multiplication operators

It is well known that the Legendre polynomials Pn of degree n ∈ N form a system of orthogonal
polynomials in L2 ([−1, 1]). They satisfy the three-term recurrence relation

Pn(t) =
2n− 1

n
tPn−1(t)− n− 1

n
Pn−2(t), t ∈ [−1, 1], (2.1)

for n ≥ 1 with the initialization P0(t) ≡ 1 and P−1(t) ≡ 0. For a function ψ ∈ L2 ([−1, 1]),
we consider its expansion into a Legendre series

ψ =
∞∑
n=0

2n+ 1

4π
ψ̂(n)Pn

with the Legendre coefficients

ψ̂(n) = 2π

∫ 1

−1
ψ(t)Pn(t) dt.

The convolution of ψ ∈ L2([−1, 1]) with a spherical function f ∈ L2(S2) is defined as

ψ ? f(ξ) =

∫
S2
f(η)ψ(ξ · η) dη.

Using the addition Theorem, cf. [24],

(2n+ 1)Pn(ξ · η) = 4π
n∑

k=−n
Y k
n (ξ)Y k

n (η), (2.2)

we obtain the spherical convolution theorem

ψ̂ ? f(n, k) = ψ̂(n)f̂(n, k). (2.3)

As a generalization of spherical convolution operators Mψ : C(S2) → C(S2), f 7→ ψ ? f ,
we define Fourier multiplication operators.
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Definition 2.1. Let β ∈ R and let M̂(n) ∈ R, n = 0, . . . ,∞, be a sequence such that
nβM̂(n) is bounded uniformly for all n ∈ N. Then the Fourier multiplication operator M
with symbol M̂ is defined as the operator

M : H0(S2)→ Hβ(S2), Mf =
∑

(n,k)∈I

M̂(n)f̂(n, k)Y k
n .

The generalized inverse M+ of M is defined as the Fourier multiplication operator with
symbol M̂ given by

M̂+(n) =

{
0, if M̂(n) = 0,

M̂(n)−1, otherwise.

Since we have assumed that the symbol only contains of real numbers, M is a self-adjoint
operator. Obviously, M : H0(S2)→ Hβ(S2) is bounded with norm

‖M‖H0→Hβ = sup
n∈N

(n+ 1
2)β
∣∣∣M̂(n)

∣∣∣ .
If M : H0(S2) → Hβ(S2) is also open, then it is invertible with M−1 =M+ and its symbol
M̂(n) is bounded for all n ∈ N by

‖M+‖−1
Hβ→H0 ≤ (n+ 1

2)β
∣∣∣M̂(n)

∣∣∣ ≤ ‖M‖H0→Hβ . (2.4)

Important examples of Fourier multiplication operators are the Funk–Radon transform
as defined in (1.1) as well as the spherical cosine transform from (1.3). The corresponding
symbols are well-known, cf. e.g. [8] and [30], respectively.

Lemma 2.2. Let s ∈ R. The Funk–Radon transform F : Hs(S2) → Hs+ 1
2 (S2) is a bounded

Fourier multiplication operator with symbol

F̂(n) =

{
(−1)n/2 (n−1)!!

n!! , n even

0, n odd,

which satisfies ∣∣∣F̂(n)
∣∣∣ =

√
2

π
n−

1
2

(
1 +O

(
1

n

))
, n→∞, n even.

The spherical cosine transform C : Hs(S2) → Hs+ 5
2 (S2) is a bounded Fourier multiplication

operator with symbol

Ĉ(0) = 2π, Ĉ(1) = 0, Ĉ(n) =
4π

(n− 1)(n+ 2)
F̂(n), n ≥ 2, (2.5)

which satisfies ∣∣∣Ĉ(n)
∣∣∣ = 4

√
2πn−

5
2

(
1 +O

(
1

n

))
, n→∞, n even.

Proof. First of all we note that by the Funk–Hecke formula FY k
n (ξ) = Pn(0)Y k

n (ξ). Using
the three-term recurrence relation (2.1) of the Legendre polynomials Pn, we obtain for n ≥ 1,

F̂(n) = Pn(0) =
−(n− 1)Pn−2(0)

n
=

{
(−1)n/2 (n−1)!!

n!! , n even

0, n odd.
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For a polynomial bound of
∣∣∣F̂(n)

∣∣∣, n ∈ 2N, we make use of the following version of Stirling’s

formula, cf. [29], √
2πnn+ 1

2 e−n+ 1
12n+1 < n! <

√
2πnn+ 1

2 e−n+ 1
12n ,

and we find out that |Pn(0)| = n!
2n(n

2
!)2

can be bounded from above and below by

√
2πnn+ 1

2 e−n+ 1
12n+1

2n2π(n2 )n+1e−n+ 4
12n

<
∣∣∣F̂(n)

∣∣∣ < √
2πnn+ 1

2 e−n+ 1
12n

2n2π(n2 )n+1e
−n+ 2

12n/2+1

√
2√
πn

e
1

12n+1
− 1

3n <
∣∣∣F̂(n)

∣∣∣ < √
2√
πn

e
1

12n
− 1

12n+1/2

√
2√
πn

e
1−9n

(12n+1)3n <
∣∣∣F̂(n)

∣∣∣ < √
2√
πn

e
1

24n(12n+1/2) .

Using the Taylor expansion of the exponential function we conclude for n→∞ and n even,∣∣∣F̂(n)
∣∣∣ =

√
2√
πn

(
1 +O

(
1

n

))
,

which proves that the Funk–Radon transform extends to a bounded operator F : Hs(S2) →
Hs+ 1

2 (S2).
In the second part of the proof, we compute the symbol Ĉ of the cosine transform. The

Funk–Radon and cosine transform are related via the equation [12]

F =
∆0 + 2

4π
C,

where ∆0 denotes the Laplace-Beltrami operator. Making use of the fact that the spherical
harmonics Y k

n are eigenfunctions of the Laplace-Beltrami operator, i.e. ∆0Y
k
n = −n(n+1)Y k

n

for all (n, k) ∈ I, we observe that

∆0 + 2

4π
Y k
n =

−n(n+ 1) + 2

4π
Y k
n =

−(n+ 2)(n− 1)

4π
Y k
n , (n, k) ∈ I.

This shows the second part of (2.5). The symbol for n = 0, 1 can be simply calculated.

Remark 2.3. Let Ψ: [−1, 1] → R be a polynomial of degree N and let ξ ∈ S2. Then
Ψξ(η) = Ψ(ξ ·η), η ∈ S2, defines a radially symmetric function on the sphere with the center
ξ. The application of a Fourier multiplication operator M yields

MΨ(η · ◦) =

N∑
n=0

2n+ 1

4π
Ψ̂(n)MPn(η · ◦) =

N∑
n=0

Ψ̂(n)

n∑
k=−n

Y k
n (η)MY k

n (◦)

=

N∑
n=0

M̂(n)Ψ̂(n)

n∑
k=−n

Y k
n (η)Y k

n (◦) =
N∑
n=0

2n+ 1

4π
M̂(n)Ψ̂(n)Pn(η · ◦) =: ψ(η · ◦),

which is again a radially symmetric spherical polynomial of degree N . The so-defined poly-
nomial ψ has the Legendre coefficients ψ̂(n) = M̂(n)Ψ̂(n), n ∈ N. We shall write ψ = MΨ
whenever it does not cause confusion.
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2.3 Quadrature and Hyperinterpolation

In this section, we introduce a spherical analogue to the discrete Fourier transform on the
torus. To this end, we consider for a finite sequence Ξ = (ξ1, . . . , ξM ) of sampling points
ξm ∈ S2, m = 1, . . . ,M , and positive quadrature weights Ω = (ω1, . . . , ωM ) ∈ RM+ the
quadrature rule

QΞ,Ωf =
M∑
m=1

ωmf(ξm), f ∈ C
(
S2
)
. (2.6)

We call the quadrature rule QΞ,Ω exact of degree N ∈ N if for all polynomials p ∈ ΠN (S2) we
have

QΞ,Ωp =

∫
S2
p(ξ) dξ. (2.7)

In the particular case of constant quadrature weights ωm = 4π/M , an exact quadrature rule
of degree N is called a spherical N -design. The existence of spherical N -designs for arbitrary
polynomial degree with M ∼ N2 quadrature points has been proven in [2]. The numerical
computation of spherical N -designs has been analyzed in [13]. The algorithm presented in this
paper allows for the stable and efficient computation of spherical N -designs up to polynomial
degree N ≈ 1000 and requires a very small oversampling factor, i.e., 2M ≈ 1.04N2.

For arbitrary quadrature nodes ξ1, . . . , ξM ∈ S2 satisfying for some sufficiently small ρ > 0

• |ξm − ξl| ≥ ρ for any m, l ∈ {1, . . . ,M} with m 6= l, and

• for every ξ ∈ S2, there exists an m ∈ {1, . . . ,M} such that |ξ − ξm| ≤ 2ρ,

one can ensure the existence of positive quadrature weights ωm with

δ1
4π

M
≤ ωm ≤ δ2

4π

M
(2.8)

for all m ∈ {1, . . . ,M} such that the corresponding quadrature rule is exact of degree N ∼
cM1/2, where the positive constants δ1, δ2, and c are independent of M , cf. [6, 26].

For a quadrature rule QΞ,Ω that is exact for polynomials of degree at most 2N , we define
a spherical analogue to the trigonometric interpolation operator, namely

LNf =
∑

(n,k)∈IN

(
M∑
m=1

ωmf(ξm)Yn,k(ξm)

)
Yn,k, f ∈ C(S2). (2.9)

Obviously, LN is a projection operator, i.e., LNp = p for all p ∈ ΠN (S2). But in contrast to
the trigonometric case, it is not an interpolation operator for N ≥ 3. In [15] this operator is
called hyperinterpolation and the following approximation result is shown.

Theorem 2.4. Let QΞ,Ω be a quadrature formula on the sphere, which is exact for polynomial
degree 2N and let LN denote the respective hyperinterpolation. Then, for t ≥ s ≥ 0 with
t > 1, there is a constant c > 0 independent of N such that for any f ∈ Ht(S2) we have the
following estimate(

N +
1

2

)t−s−1

‖LNf − f‖Hs ≤ c min
p∈ΠN (S2)

‖f − p‖Ht ≤ c ‖f‖Ht . (2.10)
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3 Spherical Deconvolution

3.1 The mollifier approach

Let s+ β > 1, f ∈ Hs(S2) andM : Hs(S2)→ Hs+β(S2) be a spherical Fourier multiplication
operator. We are concerned with the reconstruction of f from sampling values

gεm =Mf(ξm) + εm, m = 1, . . . , M,

of the function g =Mf at sampling points ξ1, . . . , ξM ∈ S2 at the presence of white noise εm,
m = 1, . . . ,M with variance σ2. We assume this random vector to be derived from a white
noise random field ε defined on the sphere, i.e. εm = ε(ξm).

Following the mollifier idea, cf. [22], we consider polynomials ψ,Ψ: [−1, 1] → R of degree
N with MΨ = ψ as in Remark 2.3, and aim at computing the convolution

ψ ? f(ξ) =

∫
S2
f(η)ψ(η · ξ) dη =

∫
S2
f(η)MΨ(η · ξ) dη =

∫
S2
Mf(η) Ψ(η · ξ) dη

for ξ ∈ S2. For the last equality, we have used the self-adjointness of M. Replacing the
integral by a quadrature rule QΞ,Ω, with sampling points Ξ = {ξ1, . . . , ξM} and weights
Ω = (ω1, . . . , ωM ) ∈ RM+ , that is exact for polynomials of degree at most 2N , we end up with
the estimator

EN,ψ(Mf) :=
M∑
m=1

ωmMf(ξm)Ψ(ξm · ◦). (3.1)

Next we rewrite the estimator EN,ψ by using the hyperinterpolation operator LN , which
was defined in (2.9).

Lemma 3.1. Let g : S2 → C be a function on the sphere. Then

EN,ψg = ψ ?M+LNg.

Proof. For any ξ ∈ S2 we obtain

EN,ψg(ξ) =

M∑
m=1

ωmg(ξm)Ψ(ξm · ξ)

=

M∑
m=1

ωmg(ξm)
N∑
n=0

M̂+(n)ψ̂(n)
n∑

k=−n
Y k
n (ξm)Y k

n (ξ)

=
N∑
n=0

M̂+(n)ψ̂(n)

n∑
k=−n

(
M∑
m=1

ωmg(ξm)Y k
n (ξm)

)
Y k
n (ξ)

= ψ ?M+LN g(ξ),

where the second equality follows from Remark 2.3.
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The minimax error. As a measure for the accuracy of the estimator EN,ψ, we consider the
mean integrated squared error (MISE)

E ‖f − EN,ψ(Mf + ε)‖2L2 = E
∫
S2
|f(η)− EN,ψ(Mf + ε)(η)|2 dη, (3.2)

or, more specifically, the maximum risk of the MISE over Sobolev balls with degree s and
radius S, i.e.

sup
f∈Hs(S2)
‖f‖Hs≤S

E ‖f − EN,ψ(Mf + ε)‖2L2 .

Note that this definition of the maximum risk only makes sense if the operator M is open.
Otherwise, if the nullspace ofM is non-trivial, we have to restrict the supremum to functions
f that are orthogonal to the nullspace of M.

Minimizing the maximum risk with respect to the mollifier kernel ψ, we end up with the
minimax error

inf
ψ∈L2([−1,1])

sup
f∈Hs(S2)
‖f‖Hs≤S

E ‖f − EN,ψ(Mf + ε)‖2L2 . (3.3)

Looking at the minimax risk for such Sobolev balls is a standard approach in statisti-
cal inverse problems, cf. [4]. We aim at mollifiers for which the minimax risk is attained
asymptotically as N →∞.

3.2 Lower Bounds

In this section, we aim at lower bounds for the minimax error (3.3). Since EN,ψ is a linear
estimator, the MISE it allows for the well known decomposition into a bias and a variance
term

‖f − EN,ψ(Mf + ε)‖2L2 = ‖f − ψ ?M+LNMf‖2L2 + E ‖ψ ?M+LNε‖2L2 . (3.4)

In a first step we bound the variance term E ‖ψ ?M+LNε‖2L2 by multiples of ‖M+ψ‖2L2

provided that the quadrature rule is exact for all polynomials up to a certain degree and that
its weights are sufficiently uniform, cf. (2.8).

Theorem 3.2. Let ψ be a polynomial of degree N ∈ N and let QΞ,Ω be a spherical quadrature
rule which is exact for polynomials of degree at most 2N and has positive weights ω1, . . . , ωM
satisfying

δ1
4π

M
≤ ωm ≤ δ2

4π

M
, m = 1, . . . ,M. (3.5)

Furthermore, let ε be a white noise random field on the sphere with variance σ2. Then the
variance term in (3.4) satisfies

δ1
4πσ2

M
‖M+ψ‖2L2 ≤ E ‖ψ ?M+LNε‖2L2 ≤ δ2

4πσ2

M
‖M+ψ‖2L2 .
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Proof. By Parseval’s identity, the convolution formula (2.3) and the stochastic independence
of the noise εm = ε(ξm), m = 1, . . . ,M we have

E ‖ψ ?M+LNε‖2L2 = E
∑

(n,k)∈IN

∣∣∣M̂+(n)
∣∣∣2 |ψ̂(n)|2

∣∣∣∣∣
M∑
m=0

εmωmY k
n (ξm)

∣∣∣∣∣
2

=
∑

(n,k)∈IN

∣∣∣M̂+(n)
∣∣∣2 |ψ̂(n)|2

M∑
m,m′=0

ωmωm′Y k
n (ξm)Y k

n (ξm′)Eεmεm′

= σ2
∑

(n,k)∈IN

∣∣∣M̂+(n)
∣∣∣2 |ψ̂(n)|2

M∑
m=0

ω2
m

∣∣∣Y k
n (ξm)

∣∣∣2 .
Next we make use of the estimate (3.5) and the fact that the quadrature rule is exact for
polynomials of degree at most 2N and obtain

‖ψ ?M+LN ε‖2L2 ≤ δ2
4πσ2

M

∑
(n,k)∈IN

|M̂+(n)|2 |ψ̂(n)|2
M∑
m=0

ωm

∣∣∣Y k
n (ξm)

∣∣∣2
= δ2σ

2 4π

M
‖M+ψ‖2L2 .

For the lower bound of the minimax error (3.3), we consider the following family of kernel
functions with polynomially decreasing Legendre coefficients.

Definition 3.3. For s, Ñ > 0 the mollifier ψs
Ñ
∈ ΠbÑc[−1, 1]) is defined as

ψs
Ñ

=

bÑc∑
n=0

(2n+ 1)

(
1−

(
n+ 1

2

Ñ + 1
2

)s )
Pn, (3.6)

where bÑc is the largest integer not greater than Ñ , see Figure 1.

With these mollifiers we obtain a lower bound of the MISE for any mollifier ψ ∈ L2([−1, 1]).

Lemma 3.4. Let N ∈ N, s > 1, S > 0, ψ ∈ L2([−1, 1]) be an arbitrary mollifier and let the
quadrature Q be a quadrature formula which is exact for polynomials of degree at most 2N .
Then there is a polynomial degree 0 ≤ Ñ ≤ N , such that the mollifier ψs

Ñ
gives the following

lower bound of the maximum risk

sup
‖f‖Hs≤S

E ‖f − EN,ψ(Mf + ε)‖2L2 ≥
4πσ2

M
δ1 ‖M+ψs

Ñ
‖2L2 + (Ñ + 1

2)−2sS2.

Proof. Let Ñ > 0 be the maximum value such that all Legendre coefficients of ψs
Ñ

are smaller
or equal to the Legendre coefficients of ψ, i.e.

Ñ = max
{
N ≥ 0 | ψ̂sN (n) ≤ |ψ̂(n)| , n ∈ N, M̂(n) 6= 0

}
.
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Figure 1: The mollifiers ψs
Ñ

from Definition 3.3 are illustrated for s = 2 and Ñ ∈ {8, 16}. The
left image shows their Fourier coefficients, and the right one shows their function
values depending on the polar angle θ.

Furthermore, we denote by ñ ∈ N the polynomial degree such that ψ̂Ñs (ñ) = |ψ̂(ñ)| and
consider the function

f̃(ξ) =
S

(ñ+ 1
2)s

Yñ,0(ξ), ξ ∈ S2.

Obviously, we have f̃ ∈ Hs(S2) and ‖f̃‖Hs = S. Since, f̃ is a spherical polynomial of degree
ñ ≤ Ñ so is Mf , and we have M+LNMf̃ = f̃ . Hence, the bias term consists only of the
smoothing error. The spherical convolution theorem (2.3) gives

‖f̃ − ψ ?M+LNMf̃‖2L2 = ‖f̃ − ψ ? f̃‖2L2 =
|1− ψ̂(ñ)|2

(ñ+ 1
2)2s

S2 =

(
Ñ +

1

2

)−2s

S2.

Since by construction ψ̂s
Ñ

(n) ≤ |ψ̂(n)| we conclude ‖ψs
Ñ
‖L2 ≤ ‖ψ‖L2 . In conjunction with

(3.4) and Theorem 3.2 we obtain

sup
‖f‖Hs≤S

E ‖f − EN,ψ(Mf + ε)‖2L2 ≥ E ‖f̃ − EN,ψ(Mf̃ + ε)‖2L2

≥ 4πσ2

M
δ1 ‖M+ψ‖2 + ‖f̃ − ψ ? f̃‖2L2

≥ 4πσ2

M
δ1 ‖M+ψÑ‖

2
L2 +

(
Ñ +

1

2

)−2s

S2.

In order to obtain exact constants, we have to evaluate ‖M+ψs
Ñ
‖L2 . In the following lemma,

we do this for Fourier multiplication operators M whose symbols satisfy
∣∣∣M̂(n)

∣∣∣ ∼ n−β for
n→∞.

Lemma 3.5. For s, β > 0, letM : Hs → Hs+β be a bounded and open Fourier multiplication
operator, i.e, its symbol satisfies

‖M+‖Hs+β→Hs (n+ 1
2)−β ≤

∣∣∣M̂(n)
∣∣∣ ≤ ‖M‖Hs→Hs+β (n+ 1

2)−β

11



for all n ∈ N, and let

C1 =
s2

(β + 1)(s+ β + 1)(s+ 2β + 2)
. (3.7)

Then we have

C1 ‖M‖−2
Hs→Hs+β Ñ

2β+2 ≤ ‖M+ψs
Ñ
‖2L2 + o(Ñ2β+2) ≤ C1 ‖M+‖2Hs+β→Hs Ñ

2β+2 (3.8)

for Ñ →∞.

Proof. The first inequality of (3.8) follows from

‖M+ψs
Ñ
‖2L2 =

Ñ∑
n=0

(2n+ 1) |M̂+(n)|2 |ψ̂(n)|2

≤ 2 ‖M+‖2Hs+β→Hs

Ñ∑
n=0

(n+ 1
2)2β+1

(
1−

(
n+ 1

2

Ñ + 1
2

)s)2

≤ 2 ‖M+‖2Hs+β→Hs

∫ Ñ

0
n2β+1

(
1−

(
n

Ñ

)s)2

dn+ o(Ñ2β+1)

=
s2 ‖M+‖2Hs+β→Hs

(β + 1)(s+ β + 1)(s+ 2β + 2)
Ñ2β+2 + o(Ñ2β+1).

The second inequality can be obtained analogously.

Combining the last two lemmas, we obtain a lower bound for the minimax risk.

Theorem 3.6. Let s > 1, S, β > 0 and M : Hs(S2) → Hs+β(S2) be a bounded and open
Fourier multiplication operator. Let, furthermore, QΞ,Ω be a quadrature rule that is exact
for polynomials of degree at most 2N and consists of M points. Then the minimax risk for
Sobolev balls in Hs(S2) and the family of estimators EN,ψ, ψ ∈ L2([−1, 1]) is bounded from
below by

inf
ψ∈L2([−1,1])

sup
‖f‖Hs≤S

E ‖f − EN,ψ(Mf + ε)‖2L2 ≥ C2

(
4πσ2δ1C1

‖M‖2Hs→Hs+β

) s
s+β+1

S
2β+2
s+β+1M

− s
s+β+1 ,

(3.9)
where

C2 =

(
s

β + 1

) β+1
s+β+1

+

(
β + 1

s

) s
s+β+1

.

Proof. Combining Lemma 3.4 and Lemma 3.5 we have for any function ψ ∈ L2 ([−1, 1]),

sup
‖f‖Hs≤S

E ‖f − EN,ψ(Mf + ε)‖2L2 ≥ inf
0≤Ñ≤N

4πσ2

M
δ1 ‖M+ψs

Ñ
‖2L2 + (Ñ + 1

2)−2sS2

≈ inf
0≤Ñ≤N

4πσ2δ1C1

M ‖M‖2Hs→Hs+β

Ñ2β+2 + Ñ−2sS2.

where we have ignored lower order terms of Ñ . Minimizing the last term with respect to Ñ
we obtain

Ñ2s+2β+2 =
2sS2M ‖M‖2Hs→Hs+β

4πσ2δ1C1(2β + 2)
(3.10)
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and

sup
‖f‖Hs≤S

E ‖f − EN,ψ(Mf + ε)‖2L2 ≥ C2

(
4πσ2δ1C1

‖M‖2Hs→Hs+β

) 2s
2s+2β+2

S
4β+4

2s+2β+2M
− 2s

2s+2β+2

with C2 as in (3.6). Since M ∼ N2, we have Ñ < N for sufficiently large N .

3.3 Upper Bounds

Having found lower bounds for the minimax risk using the family of mollifiers ψsN , we aim
at upper bounds using the same mollifiers and show that upper and lower bounds have the
same asymptotic rate with respect to the number of sampling points.

Our upper bound is based on splitting the bias error

‖f − ψ ?M+LNMf‖L2 ≤ ‖f − ψ ? f‖L2 + ‖ψ ? (f −M+LNMf)‖L2 (3.11)

into a smoothing error ‖f − ψ ? f‖L2 and an aliasing error ‖ψ ? (f −M+LNMf)‖L2 . For
the smoothing error we have the following upper bound.

Lemma 3.7. Let ψ ∈ L2([−1, 1]). Provided that f ∈ Hs(S2) for some s > 0, the smoothing
error is bounded by

‖f − ψ ? f‖L2 ≤ ‖f‖Hs sup
n∈N

|1− ψ̂(n)|
(n+ 1

2)s
.

For the mollifier ψs
Ñ

as defined in (3.6), the upper bound becomes

‖f − ψs
Ñ
? f‖ ≤ ‖f‖Hs (Ñ + 1

2)−s

Proof. This lemma is a direct consequence of Parseval’s identity and the convolution formula
(2.3).

For the aliasing error we obtain the following bound.

Lemma 3.8. Let M : Hs(S2) → Hs+β be a bounded Fourier multiplication operator, s > 1
and f ∈ M+Hs+β(S2). Then for any mollifier ψ ∈ L2 ([−1, 1]) that satisfies ψ̂(n) ∈ [0, 1] for
all n ∈ N, the aliasing error is bounded by

‖ψ ? (f −M+LNMf)‖L2 ≤ C3(N + 1
2)1−s ‖M+‖Hs+β→Hs ‖M‖Hs→Hs+β ‖f‖Hs ,

where the constant C3 is independent of N and f .

Proof. By Theorem 2.4 we have

‖ψ ? (f −M+LNMf)‖L2 ≤ ‖M+Mf −M+LNMf‖L2 ≤ ‖M+‖Hs+β→Hs ‖Mf − LNMf‖L2

≤ C (N + 1
2)1−s ‖M+‖Hs+β→Hs ‖M‖‖f‖Hs .

Combining Lemma 3.7, 3.8 and 3.5 with the optimal parameter Ñ found in Theorem 3.6,
eq. (3.10), we end up with the following upper bound for the MISE.
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Theorem 3.9. For some β > 0, s > 1−β
2 + 1

2

√
β2 + 2β + 5, S > 0 and σ > 0, let

M : Hs(S2) → Hs+β be a bounded Fourier multiplication operator. Assume, further, that
the quadrature rule QN,Ξ is exact for spherical polynomials of degree 2N and consists of
|Ξ| = M ∼ N2 quadrature points. Then an asymptotic upper bound for the minimax risk of
the estimator EN,ψg = ψ ?M+LNg is given by

inf
ψ∈L2([−1,1])

sup
f∈Hs(S2)
‖f‖Hs≤S

E ‖f − EN,ψ(Mf + ε)‖2L2 ≤ C2

(
4πσ2δ2C1 ‖M+‖2Hs+β→Hs

) s
s+β+1

S
2β+2
s+β+1M

− s
s+β+1 ,

with the constants C1 and C2 as defined in Theorem 3.6.

Proof. By the decomposition of the MISE (3.11) in combination with Lemma 3.7 and 3.8, we
have for any 0 ≤ Ñ ≤ N

inf
ψ∈L2([−1,1])

sup
f∈Hs(S2)
‖f‖Hs≤S

E ‖f − EN,ψ(Mf + ε)‖2L2

≤ sup
f∈Hs(S2)
‖f‖Hs≤S

E ‖f − EN,ψs
Ñ

(Mf + ε)‖2L2

≤
(
‖f − ψs

Ñ
? f‖L2 + ‖ψs

Ñ
? (f −M+LNMf)‖L2

)2
+

4πσ2δ2

M
‖M+ψs

Ñ
‖2L2

≤
(

(Ñ + 1
2)−s + C̃3

(
N + 1

2

)1−s)2
S2 +

4πσ2δ2C1 ‖M+‖2Hs+β→Hs

M
Ñ2β+2. (3.12)

where C1 is the constant defined in Lemma 3.5 and C̃3 = C3 ‖M‖Hs→Hs+β ‖M+‖Hs+β→Hs is
defined upon Lemma 3.8.

Recall from the proof of Theorem 3.6, eq. (3.10), that the sum Ñ−2s+M−1Ñ2β+2 is minimal

for Ñ ∼ M
1

2s+2β+2 . With the assumption N ∼ M1/2 ∼ Ñ s+β+1, we observe that, when we
suppress all constants, the right side of (3.12) becomes(

Ñ−s + Ñ (1−s)(s+β+1)
)2

+ Ñ−2s.

Thus the aliasing error Ñ (1−s)(s+β+1) is asymptotically negligible compared to the smoothing
error Ñ−2s for M →∞, whenever (1−s)(s+β+1) < −s, which is equivalent to the condition
on s. Within this setting, minimizing the smoothing error and the variance term with respect
to Ñ we obtain analogously to (3.10) in Theorem 3.6

Ñ2s+2β+2 =
sS2M

4πσ2δ2C1(β + 1) ‖M+‖2Hs+β→Hs

and

inf
0≤Ñ≤N

sup
f∈Hs(S2)
‖f‖Hs≤S

E ‖f − EN,ψs
Ñ

(Mf + ε)‖2L2

≤C2

(
4πσ2δ2C1 ‖M+‖2Hs+β→Hs

) s
s+β+1

S
2β+2
s+β+1M

− s
s+β+1 ,

(3.13)

with C2 as defined in Theorem 3.6.
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3.4 Asymptotically sharp bounds

In the previous two sections, we have derived lower and upper bounds of the minimax error.
These two bounds from (3.9) and (3.13) only differ in two points, namely the constants δ1

and δ2 of the quadrature as well as the norms ofM and its inverse. Now we take a look at a
situation in which these two bounds become sharp.

Theorem 3.10. Let the conditions from Theorem 3.9 hold. Assume, further, that the hy-
perinterpolation operator LN is based on a spherical 2N -design that has cardinality M ∼ N2

and the symbol of the Fourier multiplication operator M : Hs(S2)→ Hs+β(S2) satisfies

lim
n→∞

(
n+

1

2

)β ∣∣∣M̂(n)
∣∣∣ = α > 0. (3.14)

Then the lower and upper bound of the asymptotic minimax error from Theorems 3.6 and
3.9, respectively, coincide for the regularization parameter

Ñ∗ =

(
sS2Mα2

4πσ2C1(β + 1)

) 1
2s+2β+2

, (3.15)

and thus we have the minimax error

inf
ψ∈L2([−1,1])

sup
f∈Hs(S2)
‖f‖Hs≤S

E ‖f − EN,ψ(Mf + ε)‖2L2 ' sup
f∈Hs(S2)
‖f‖Hs≤S

E ‖f − EN,ψs
Ñ∗

(Mf + ε)‖2L2

for M →∞, where “'” means that the limit of the quotient of the two terms equals one.

Proof. This follows from the proofs of Theorems 3.6 and 3.9. Firstly, we see that δ1 = δ2 due
to the spherical designs. Secondly, we can replace ‖M‖Hs→Hs+β and ‖M+‖−1

Hs+β→Hs with α

for the respective bounds of the symbol
∣∣∣M̂(n)

∣∣∣ for n→∞. Therefore, the lower and upper

bounds (3.9) and (3.13) coincide.

The first condition of this theorem, to use a spherical design, is quite some restriction on
the quadrature rule, but such spherical designs are known to exist and can be computed
numerically up to a certain degree, see Section 2.3. The second one, that the limit in (3.14)
exists, is a little more natural. If M is an open operator, we already have by (2.4) that the

term
(
n+ 1

2

)β ∣∣∣M̂(n)
∣∣∣ is bounded away from zero.

Theorem 3.10 gives an asymptotically exact expression of the minimax error. The minimax
error is asymptotically achieved with the mollifier ψs

Ñ∗
. Therefore, the family of mollifiers ψs

Ñ
from Definition 3.3 is asymptotically optimal, so we do not have to minimize the MISE over
all mollifiers ψ ∈ L2([−1, 1]). Instead, it suffices to look at those mollifiers from this family
and we can be sure that we still asymptotically achieve the minimax error. This fact also
comes in handy in practical situations. Since the Sobolev norm of the solution f is usually
unknown, we cannot compute Ñ∗ as in (3.15). However, there are various methods described
in literature to choose the parameter Ñ in order to minimize the error, cf. [1].
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Application to the Funk–Radon and cosine transform. We want to apply our previous
results to the Funk–Radon transform F and the cosine transform C, which were defined in (1.1)
and (1.3), respectively. Even though these two transforms are Fourier multiplication operators
by Lemma 2.2, we cannot use Theorem 3.10 immediately, because these two transforms have
nonempty nullspaces consisting of all odd functions. So it makes sense to reconstruct only even
functions. We denote by L2

e(S2) and Hs
e (S2) the respective subspaces of the Lebesgue space

L2(S2) and the Sobolev space Hs(S2) that contain only the even functions, i.e. f(ξ) = f(−ξ)
for all ξ ∈ S2.

To reconstruct even functions, we assume the mollifiers ψ to be even functions, too, i.e.
ψ(t) = ψ(−t) for all t ∈ [−1, 1]. As mollifiers we can take the even parts of those from
Definition 3.3. For Ñ > 0, we define

ψs,e
Ñ

=

bÑ/2c∑
n=0

(4n+ 1)

(
1−

(
2n+ 1

2

Ñ + 1
2

)s)
P2n. (3.16)

Lemma 2.2 implies formulas similar to (3.14) for the Funk–Radon and cosine transform,
namely

lim
n→∞

∣∣∣F̂(2n)
∣∣∣ · (2n+

1

2

)1/2

=

√
2

π

and

lim
n→∞

∣∣∣Ĉ(2n)
∣∣∣ · (2n+

1

2

)5/2

= 4
√

2π,

respectively. Now we look at what happens to our computations in Sections 3.2 and 3.3 if
the mollifier ψ is assumed to be an even function. In Lemma 3.5, it is easy to see that the
norm of the even mollifier is just the half of that from (3.8). Thus, the constant C1 is now
half of the value from (3.7) in this situation. The rest of these sections remains the same
as before with the only exception of C1. So we replace C1 by C1

2 whenever it appears. The
following corollary is a rewritten version of Theorem 3.10 adapted to the Funk–Radon and
the spherical cosine transform.

Corollary 3.11. We denote by M either the Funk–Radon transform or the spherical cosine

transform. Let s > smin
M , S > 0 and σ > 0, where smin

F = 3
2 and smin

C = −3
4 +

√
65
4 . For every

N ∈ N, let LN be a hyperinterpolation operator on the sphere that is based on a spherical
2N -design with M ∼ N2 nodes, cf. Section 2.3. Then the minimax risk for Sobolev balls of
radius S in Hs

e (S2) and the family of estimators EN,ψ, ψ ∈ L2
e([−1, 1]), for the inversion of

the Funk–Radon or spherical cosine transform is asymptotically for N →∞ achieved by the
mollifiers ψs,e

Ñ∗M
from (3.16) with the parameters

Ñ∗F =
S2M(3 + s)(3

2 + s)

π2σ2s
or Ñ∗C =

16S2M(7 + s)(7
2 + s)

σ2s
, (3.17)

respectively. Furthermore, we have the asymptotic minimax error for M →∞

inf
ψ∈L2

e([−1,1])
sup

f∈Hs
e (S2)

‖f‖Hs≤S

E ‖f − EN,ψ(Mf + ε)‖2L2 ' sup
f∈Hs

e (S2)
‖f‖Hs≤S

E ‖f − EN,ψs
Ñ∗M

(Mf + ε)‖2L2 .
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For the Funk–Radon transform M = F , the minimax error is asymptotically equal to((
2s

3

) 3
2s+3

+

(
3

2s

) 2s
2s+3

)(
2π2σ2s2

3
(
s+ 3

2

)
(s+ 3)

) 2s
2s+7

S
3

2s+3M−
2s

2s+3 , (3.18)

and for the cosine transform M = C, the minimax error reads((
2s

7

) 7
2s+7

+

(
7

2s

) 2s
2s+7

)(
σ2s2

56
(
s+ 7

2

)
(s+ 7)

) 2s
2s+7

S
7

2s+7M−
2s

2s+7 . (3.19)

4 Numerical Experiments

In this section we give fast algorithms for the forward transformM as well as for the inverse
transform, i.e., for the computation of the estimator EN,ψ(Mf + ε). Those algorithms will be
applied to illustrate the numerical findings of the previous sections, i.e. the asymptotic decay
of the MISE as well as the optimality of the mollifiers defined in Definition 3.3.

4.1 Fast algorithms for the direct and the inverse transform

The forward transform. Let M be a Fourier multiplication operator and f ∈ L2(S2) such
that Mf : S2 → C is a continous function. Then

Mf(η) =
∑

(n,k)∈I

M̂(n)

(∫
S2
f(ξ)Y k

n (ξ) dξ

)
Y k
n (η), η ∈ S2. (4.1)

In order to compute this formula numerically, we make two modifications. Firstly, the sum
is truncated at a certain degree N ∈ N. Secondly, the integral over the sphere is replaced
by a quadrature rule with nodes ξm ∈ S2 and weights ωm, m = 1, . . . ,M . Let LN be the
corresponding hyperinterpolation operator on the sphere, cf. Section 2.3. The modifications
yield

MLNf(η) =
∑

(n,k)∈IN

M̂(n)

(
M∑
m=1

ωmf(ξm)Y k
n (ξm)

)
Y k
n (η), η ∈ S2. (4.2)

In order evaluate MLNf at points ηj ∈ S2, j = 1, . . . , J , we decompose the computation of
(4.2) into a three-step process:

i) Compute

L̂Nf(n, k) =
M∑
m=1

ωmf(ξm)Y k
n (ξm), (n, k) ∈ IN .

ii) Multiply

[MLNf ]∧ (n, k) = M̂(n)L̂Nf(n, k), (n, k) ∈ IN .

iii) Compute

MLNf(ηj) =
∑

(n,k)∈IN

[MLNf ]∧ (n, k)Y k
n (ηj), j = 1, . . . , J.
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If the hyperinterpolation LN is exact the above algorithm is exact for polynomials up to
degree N . In order to analyze the arithmetic complexity of the algorithm, we examine the
three steps separately and assume that the number M of quadrature nodes and the number J
of evaluation points are proportional to the dimension of the space of spherical polynomials of
degree N , i.e., J,M ∈ O(N2), which holds for sufficiently good quadrature rules, cf. Section
2.3. The third step is essentially a spherical Fourier transform while the first step is an
adjoint spherical Fourier transform. Computing these transforms directly would need O(N4)
operations. Fortunately, there is a fast approximative algorithm known as the nonequispaced
fast spherical Fourier transform (NFSFT) which has the numerical complexity O(N2 log2N),
see [16] for the NFSFT and [20] for the adjoint NFSFT. These algorithms are available as
part of the open source NFFT software library [19]. Since the second step of our algorithm
consists of O(N2) multiplications in Fourier space, the overall complexity is O(N2 log2N).

This algorithm is considerably faster than the direct computation of Mf via quadrature:
Suppose that Mh is a convolution operator with some function h : [−1, 1]→ C and we want
to compute Mhf = h ? f at M points ηj ∈ S2 by a quadrature rule. Then we have

Mhf(ηj) =

∫
S2
h(ξ · ηj)f(ξ)dξ ≈

M∑
m=0

ωmh(ξm · ηj)f(ξm), j = 1, . . . ,M,

which requires O(M2) = O(N4) numerical operations.

The inverse transform. Starting point for an algorithm implementing the inverse transform
is the Fourier space representation of the estimator EN,ψg,

EN,ψg(η) = ψ ?M+LN g(η) =

N∑
n=0

M̂+(n)ψ̂(n)

n∑
k=−n

(
M∑
m=1

ωmg(ξm)Y k
n (ξm)

)
Y k
n (η),

where LN is the hyperinterpolation operator with respect to a quadrature rule with nodes
ξm ∈ S2 and weights ωm, m = 1, . . . ,M . The computation of function values EN,ψg(ηj) at
points ηj ∈ S2, j = 1, . . . , J given point evaluations g(ξm), m = 1, . . . ,M can be decomposed
into the following three steps:

i) Compute the adjoint spherical Fourier transform

L̂Ng(n, k) =
M∑
m=1

ωmg(ξm)Y k
n (ξm), (n, k) ∈ IN .

ii) Multiply

ÊN,ψg(n, k) = ψ̂(n)M̂+(n)L̂Ng(n, k), (n, k) ∈ IN .

iii) Compute the spherical Fourier transform

EN,ψg(ηj) =
∑

(n,k)∈IN

ÊN,ψg(n, k)Y k
n (ηj), j = 1, . . . , J.

Analogously to the forward algorithm, the algorithm for the inverse transform consists of
one spherical Fourier transform in step iii), one adjoint spherical Fourier transform in step i)
and O(N2) multiplications in Fourier space in step ii). Hence, the arithmetic complexity of
this algorithm is again O(N2 log2N) operations provided that the NFSFT is used.

18



4.2 Some test function

As a test function we consider a linear combination of radial splines. The following lemma
gives an explicit formula for the Funk–Radon transform of radial splines of order two.

Lemma 4.1. For h ∈ (0, 1) and ζ ∈ S2, we define the radially symmetric and even function
fh = f̃h (◦ · ζ) ∈ C(S2) by

f̃h (z) = (|z| − h)2 1[h,1] (|z|) , z ∈ [−1, 1], (4.3)

where 1[h,1] denotes the indicator function of the interval [h, 1]. Then fh is continuously
differentiable and its Funk–Radon transform Ffh = g̃h(◦ · ζ) is given by

g̃h(z) =

{
1
π

(
−3h
√

1− z2 − h2 +
(
1− z2 + 2h2

)
arccos h√

1−z2

)
: |z| <

√
1− h2

0 : orherwise.

Proof. Let f = f̃(◦ · e3) ∈ C
(
S2
)

be some arbitrary radially symmetric function with respect
to the north pole e3 of the sphere. Then we have for its Funk–Radon transform

Ff (ξ) =
1

2π

∫
η·ξ=0

f̃ (η · e3) dη =
1

2π

∫
η·e3=0

f̃ (η · ξ) dη.

Writing the vectors ξ (θ, ρ) and η
(
π
2 , ϕ

)
, ϕ ∈ [0, 2π], in spherical coordinates, we have ξ ·η =

sin(θ) cos(ρ− ϕ) and, therefore,

Ff (ξ(θ, ρ)) =
1

2π

∫ 2π

0
f̃ (sin(θ) cos(ρ− ϕ)) dϕ =

1

2π

∫ 2π

0
f̃
(√

1− (ξ · e3)2 cos (ϕ)
)

dϕ.

(4.4)

The above formula generalizes to radial function f = f̃(◦·ζ) ∈ C
(
S2
)

with arbitrary symmetry
axis. In particular, the Funk–Radon transform Ff of a radial function is again a radial
function.

Equation (4.4) applied to the even function fh yields

g̃h (z) =
1

2π

∫ π

−π

(∣∣∣√1− z2 cos (ϕ)
∣∣∣− h)2

1[h,1]

(∣∣∣√1− z2 cos (ϕ)
∣∣∣) dϕ,

where we have used that fh is even. We see that g̃h (z) vanishes for
√

1− z2 < h. Otherwise,
we compute

g̃h (z) =
1

π

(
−3h

√
1− z2 − h2 +

(
1− z2 + 2h2

)
arccos

h√
1− z2

)
.

It remains to show that fh has a continuous derivative. As before, we assume, without
loss of generality, ζ = e3 and observe that the derivative of fh (ξ(θ, ρ)) with respect to the
azimuth ρ vanishes for every ξ ∈ S2\ {±e3}. With respect to the polar angle θ, we have

∂

∂θ
fh (ξ(θ, ρ)) =

∂

∂θ
(cos θ − h)2 = −2 (cos θ − h) sin(θ)

for θ ∈ (0, arccosh) and ∂
∂θfh (ξ(θ, ρ)) = 0 otherwise. In particular, the derivative of fh

vanishes at the north pole θ = 0 and south pole θ = π, which shows the continuity of the
derivative.
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(a) The test function f (b) Funk–Radon transform of the test function Ff

Figure 2: The test function f is a weighted sum of radially symmetric spline functions fh from
(4.3) with different centers ζ.

Figure 2a shows a superposition of quadratic splines as defined in Lemma 4.1. This test
function will be used throughout the next two sections to illustrate the performance of our
reconstruction method for the Funk–Radon as well as for the cosine transform. The reasoning
behind the choice of this test function is the following: Firstly, it is not a polynomial. With
a polynomial as test function, the aliasing error from (3.11) would vanish if N is sufficiently
large, thereby leading to unrealistically good results. Secondly, this test function is an element
of the Sobolev space H2(S2), but its second derivative is not continuous. Thirdly, to avoid
any possible error caused by a forward algorithm, we have a closed analytic formula for its
Funk–Radon transform, which is given in the previous lemma and illustrated in Figure 2b.
Note that all spherical plots in this section show even functions, so no information is lost
because the backside of the sphere is not visible.

4.3 Numerical results for the inversion of the Funk–Radon transform

First of all we compare the reconstruction with the “optimal” mollifier ψs
Ñ

from Definition
3.3 with the Dirichlet kernel

ψDir
Ñ

=

Ñ∑
n=0

2n+ 1

4π
Pn.

In the case of the optimal mollifier, the parameter Ñ is chosen as in (3.17). For the Dirichlet
kernel, we used an analogue computation. As sampling points we used a spherical 200-design,
which consists of 21 000 data points, and added to function values white noise ε with standard
deviation σ = 0.1, which corresponds to a signal-to-noise ratio of about 2.6 dB.

Figure 3 compares the reconstructions using the optimal mollifier and the Dirichlet kernel.
As seen in the image, using the optimal mollifier results in a smoother reconstruction that is
closer to the original with the exception of the highly-oscillating part (the “blue eyes”). The
maximum error with the Dirichlet kernel is lower, but the L2–error with the optimal mollifier
is lower and the overall impression of the image is better.
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Figures 3e and 3f show the reconstruction and the corresponding error with a spherical
1000-design, which consist of 520 000 data points, with the optimal mollifier. On a standard
PC with an Intel Core i5-3470 CPU and 8 GB RAM, this reconstruction takes about five
seconds not including the pre-computation needed for the NFSFT.

Next we want to examine the MISE in dependency of the polynomial degree N and hence
the number of sampling points M by following the following steps:

i) Choose the function f ∈ Hs(S2), s = 2, as defined in the previous section.

ii) Choose a quadrature rule with nodes ξm ∈ S2, weights ωm ∈ R, m = 1, . . . ,M , and
degree of exactness 2N .

iii) Fix as the mollifier function ψ ∈ L2(S2) either the optimal mollifier ψs
Ñ

or the Dirichlet

kernel ψDir
Ñ

with optimally chosen Ñ as in (3.17).

iv) Generate a set of point evaluations

gm =Mf(ξm) + εm, m = 1, . . . ,M,

of the Funk–Radon transform,M = F , perturbed by Gaussian white noise with variance
σ = 0.1.

v) Compute the estimator EN,ψ(Mf+ε) at the nodes ξm, m = 1, . . . ,M , via the algorithm
from the previous section.

vi) Compute the integrated squared error ‖f − EN,ψ(Mf + ε)‖2L2 via quadrature.

vii) Compute an estimate of the relative MISE by repeating 20 times the steps iv to vi,
taking the mean value of the integrated squared errors and divide it by the L2–norm of
the test function.

In Figure 4, we have plotted the relative MISE in dependency of the polynomial degree
N and the number of sampling points M = M(N), for the optimal mollifier on the one
hand, and for the Dirichlet kernel on the other hand. The diagram shows that the optimal
mollifier outperforms the Dirichlet kernel by a factor of almost two in terms of the MISE.
The asymptotic rate is the same, but the constant is better for the optimal mollifier. This
asymptotic rate is also the same as the one for the theoretically achieved minimax rate. Since
the minimax rate is the maximum risk over all functions in the Sobolev ball, it is of course
much higher than the actual error for our test function.

Next, we want to examine the optimality of the regularization parameter Ñ∗ determined
by (3.17) for our specific test function. To this end, we have plotted in Figure 5 the relative
MISE, as well as the absolute error in the infinity norm

‖f − EN,ψs
Ñ

(Ff + ε)‖L∞ = max
S2

∣∣∣f − EN,ψs
Ñ

(Ff + ε)
∣∣∣ ,

for N = 500 and Ñ = 2, 4, . . . , 100. We observe the typical convex shape with minimum
attained at Ñ ≈ 38, which is quite close to the value Ñ∗ ≈ 39.9146 derived from (3.17).
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(a) M = 21 000, optimal mollifier (b) M = 21 000, optimal mollifier

(c) M = 21 000, Dirichlet kernel (d) M = 21 000, Dirichlet kernel

(e) M = 520 000, optimal mollifier (f) M = 520 000, optimal mollifier

Figure 3: Reconstruction results EN,ψ2
Ñ

(Ff + ε) (left) and the respective errors

|f − EN,ψ2
Ñ

(Ff + ε)| (right) for different amounts M of sampling points and
different mollifiers.
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Figure 4: Log–log plot of the relative MISE ‖f − E (Ff + ε)‖L2/‖f‖L2 for the reconstruction
of the test function f depicted in Figure 2a from its Funk–Radon transform per-
turbed by white noise ε, signal-to-noise ratio 2.6dB, with respect to the number M
of sampling points. The blue circles represent the results using the optimal mollifier
ψs
Ñ

and the orange squares represent the results using the Dirichlet kernel ψDir
Ñ

. The
black line shows the theoretic minimax rate (3.18) for functions within the same
Sobolev ball as the test function f .

4.4 Numerical results for the inversion of the cosine transform

For the spherical cosine transform we apply the same testing procedure as for the Funk–Radon
transform. The cosine transform of the test function from the previous section perturbed by
Gaussian white noise with standard deviation σ = 0.01, which corresponds to a signal-to-
noise ratio of about 21 dB, is depicted in Figure 6a. Figure 6b shows the reconstruction
from M = 520 000 data points and with polynomial degree N = 500. We observe stronger
artifacts compared to the reconstruction from the Funk–Radon transform, which are due to
the higher ill-posedness of the inversion of the cosine transform. Nonlinear estimators with
stronger reference to the smoothness of the test function would probably do a better job here.

A comparision of the achieved relative MISE for the cosine transform with the minimax rate
from (3.19) is illustrated in Figure 7. The MISE has a similar behavior as for the Funk–Radon
transform even though it is on a higher level.
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Figure 5: Error of the reconstruction from M = 520 000 data points (N = 500) with respect
to the regularization parameter Ñ . The green line indicates the computed value Ñ∗

from (3.17). The black line indicates the minimax (3.18) of the relative MISE for
Ñ = Ñ∗.

(a) Cf + ε (b) Reconstruction

Figure 6: Cosine transform of the function from Figure 2a and its reconstruction. The left
image shows the cosine transform with added random noise ε that has a variance
of σ = 0.01 and the right image the reconstruction given from M = 520 000 data
points.

24



312 1200 5200 21000 130000 520000

number of sampling points M

12 25 50 100 250 500

10−1

100

101

polynomial degree N

re
la

ti
ve

M
IS

E
o
f

re
co

n
st

ru
ct

io
n

minimax error
Dirichlet kernel
optimal mollifier

Figure 7: Log–log plot of the relative MISE ‖f − E (Cf + ε)‖L2/‖f‖L2 for the reconstruction
of the test function f depicted in Figure 2a from its cosine transform perturbed by
white noise ε, signal-to-noise ratio 21dB, with respect to the number M of sampling
points. The blue circles represent the results using the optimal mollifier ψs

Ñ
and the

orange squares represent the results using the Dirichlet kernel ψDir
Ñ

. The black line
shows the theoretic minimax rate (3.19) for functions within the same Sobolev ball
as the test function f .
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[9] P. Funk. Über eine geometrische Anwendung der Abelschen Integralgleichung. Mathe-
matische Annalen, 77:129 – 135, 1915.

[10] R. J. Gardner. Geometric tomography. Number 58 in Encyclopedia of Mathematics and
its Applications. Cambridge University Press, Cambridge; New York, second edition,
2006.

[11] E. Gautier and Y. Kitamura. Nonparametric estimation in random coefficients binary
choice models. Econometrica, 81(2):581–607, 2013.

[12] P. Goodey and W. Weil. Centrally symmetric convex bodies and the spherical Radon
transform. J. Differential Geom., 35(3):675–688, 1992.
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