PATTERN FORMATION IN A CELLULAR SLIME MOLD
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Abstract. Stream formation is a prominent feature of aggregation in the cellular
slime mold Dictyostelium discoideum, but there is no commonly-accepted explanation
for this and existing models make different predictions as to how it originates. In this
paper we discuss the relationship between cell-based and continuum descriptions of ag-
gregation and the origin of streaming in these two types of models.
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1. Introduction. The social amoeba Dictyostelium discoideum (Dd)
is a model developmental system that employs many of the basic processes
used during the development of higher organisms at various stages of its life
cycle. These include detection of extracellular signals and their transduc-
tion into an intracellular signal that activates processes such as signal relay
and gene expression, oriented cell movement toward a signal, movement
either as a single cell or as part of a tissue-like aggregate, differentiation
of a genetically-identical population into several distinct cell types, and
regulation of the proportions of these cell types over a wide range of total
cell number. These cells normally feed on bacteria [2], but upon starva-
tion they express surface receptors for detecting the messenger molecule
cyclic adenosine monophosphate (cAMP) and develop the ability to relay
cAMP signals [9]. After about eight hours, randomly-located cells called
pacemakers start to emit cAMP periodically [27], and surrounding cells
move towards the cAMP source and relay the cAMP signal to more dis-
tant cells. Eventually the entire population collects into mound-shaped
aggregates containing up to 10° cells. The mound then elongates into a
cylindrical shape, which topples over and migrates as a cigar-shaped slug
for up to twenty four hours. During the late mound stage and the migra-
tion period the cells start to differentiate into prestalk and prespore cells.
Differentiation initially occurs in randomly-located cells in the late mound
stage, but later a combination of cell sorting and signaling by cells in the
tip results in the spatial separation of cell types, with prestalk cells in the
anterior fourth of the slug and prespore cells in the posterior three fourths
of the slug. When conditions are favorable, the tip of the slug is extended
upwards and a fruiting body comprising a spherical cap of spore cells sup-
ported by a stalk is formed. The spores remain dormant until conditions
for germination are favorable, whereupon they are dispersed and the cycle
begins anew.
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The autonomous production and relay of cAMP pulses by individual
cells organizes chemotactic aggregation, the transformation of mounds into
slugs, the migration of slugs over the substratum, and the culmination
into fruiting bodies. The regulation of the enzyme adenylyl cyclase, which
produces intracellular cAMP, and the degradation of cAMP by intra- and
extracellular cAMP phosphodiesterases (PDEs) are the major components
of oscillatory signaling. Experimental progress in understanding the reg-
ulation of both enzymes at the biochemical level has been accompanied
by the formulation of theoretical models describing the dynamics of the
system. Adaptation of cAMP production, by which we mean that it even-
tually returns to basal level in the presence of constant cAMP stimuli, is
essential for oscillatory signaling and for relay during aggregation. The
observables during the relay response are the intracellular cAMP, the se-
cretion rate, and the morphology of the cell. Early studies showed that
the relay response adapts, but this response is the end result of numerous
intracellular steps. However, if PDE is not regulated then termination of
the relay response requires that the rate of cAMP production returns to
the basal level, and hence that either the activity of adenylyl cyclase or a
component upstream of it adapts. The current state of our experimental
and theoretical understanding of cAMP signaling in Dd is reviewed in Oth-
mer and Schaap [22], which is referred to as OS hereafter. In the following
section we briefly describe a theoretical model that captures much of the
known behavior of this system and in subsequent sections we turn to the
main topics, which are the relationship between continuum and cell-based
models, and how streaming during aggregation is initiated.

2. A theoretical model for signal transduction, relay and os-
cillations in Dd. Experimental results reviewed in OS show that models
of the transduction/relay system in which the rates of change of intracel-
lular state variables depend only on the present state of the system must
incorporate at least two intracellular variables, one of which adapts in the
sense used previously, and one which effects the adaptation but itself does
not return to its pre-stimulation level. Certainly the primary intracellular
variable should be cAMP, but the second intracellular variable in such a
minimal model is not easily determined. At present a model developed
by Tang and Othmer [34, 35] incorporates the most biochemical detail of
the signal transduction process and reproduces the input-output behavior
of cells most accurately, although there are details that it does not cap-
ture. The model incorporates three major pathways in the transduction of
and adaptation to an extracellular cAMP signal. First, there is a stimulus
pathway in which cAMP binds to surface receptors which then catalyze
the activation of an intracellular stimulatory G-protein. This in turn binds
with the inactive form of adenylyl cyclase and produces the activated form
of the enzyme. Second there is a pathway in which an inhibitory G-protein
is produced by analogous steps, and this G-protein inhibits the first path-
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way. Finally, in the pathway for the production and secretion of cAMP, the
activated enzyme catalyzes the production of intracellular cAMP (cAM P;),
which is then either hydrolyzed by intracellular phosphodiesterase (iPDE)
or secreted into the extracellular medium (cAM P,).

This kinetic scheme leads to a large system of differential equations,
but by scaling and singular perturbation arguments the network and equa-
tions can be reduced to five primary variables. The major steps are shown
in Figure 1. Details of how this reduction is done can be found in the
original papers, where the reduction was done in two steps, first to eight
variables [34] and then to five [35]. In the reduced scheme shown in this
figure there are four internal variables and one extracellular variable. The
components of primary interest in the following equations are the intra-
and extracellular cAMP, and these are denoted by C; and C,, respectively.
The variables w;, i = 1,2,3 represent intermediate species in the signal
transduction pathway, as shown in Figure 1. In the following equations
Greek letters and lower case ¢’s represent biochemical parameters, many
of which can be obtained from the literature, but the remainder must be
estimated [34].
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Fi1Gc. 1. The reduced network for the five primary variables in the Tang-Othmer
scheme. L denotes the ligand (cAMP,) and Rs denotes the receptor in the stimulatory
pathway. The symbol beside a species corresponds to the symbol used in (2.1).
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In these equations the quantities u;, which arise from singular perturbation
of the full equations, are given by
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A qualitative description of how an extracellular change in cAMP leads to
both stimulation of the enzyme and production of cAMP, as well as adap-
tation to a constant extracellular stimulus, can be found in OS. Simulations
of these equations show that the model can reproduce the experimentally-
observed behavior, both when extracellular cAMP is a prescribed function
of time, as in perfusion experiments, and when it is one of the system vari-
ables, as in the above equations. In essence the model can reproduce the
input-output behavior of individual cells quite well, and thus it can be used
to study questions that only depend on biochemical fidelity at this level.
Most of these concern aspects of aggregation and later development.

Aggregation following starvation begins when individual cells or groups
of cells begin signaling by releasing cAMP periodically. Nearby cells sense
this signal and respond to it either by moving toward the source of the sig-
nal, or by both relaying the signal and moving toward its source, depending
on whether they are only competent for chemotaxis or competent for both
relay and chemotaxis. If relay-competent Dd cells are spread over an agar
surface, two-dimensional waves of cAMP can be observed [36, 18, 8]. The
waves of extracellular cAMP travel across the field in the form of either tar-
get patterns (expanding concentric waves), or spiral waves with rotating
cores. Different types of interacting wave patterns are observed experi-
mentally, one example of which is shown in Figure 2. The extracellular
cAMP wave rises from a level of less than ~ 107°M to a peak value of
107" —107%M in a medium with a cell density of 108 cells/cm?. In either a
spiral wave or a concentric wave, the distance between two traveling fronts
is 1—4mm. The speed of these waves is ~ 300—600 pm/min , and the time
between two successive wave fronts is 6-10 minutes [36, 30]. The traveling
cAMP waves serve as the chemotactic signal to induce aggregation of the
cells, which move toward the center at about 10 — 15 pm/min [40, 39, 6].

Important questions that must be answered to understand the macro-
scopic behavior of the system include the following.

1. Can individual cells be pacemakers and initiate traveling waves
under normal conditions of early aggregation, or is it necessary for
two or more cells to come into close proximity in order to initiate
a wave?
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F1G. 2. An ezample of the wave patterns observed during the aggregation of Dd.
The light bands represent cells that are moving while the dark bands represent stationary
cells. From Newell [18].

2. What determines whether the traveling waves of cAMP,, are axi-
symmetric target patterns or spiral waves?

3. What are the details of the signal seen by a cell (front-to-back
cAMP ratio, etc.), how do cells orient themselves in a traveling
wave, and how do they solve the ‘back-of-the-wave’ problem? Do
cells measure spatial gradients, temporal gradients, both, or nei-
ther in determining how to move?

4. How accurately must cells determine the optimal direction of move-
ment, or said otherwise, how sloppy can they be in the choice of
direction and still aggregate effectively?

5. How should the rules for individual movement, primarily the choice
of direction and speed of movement, be incorporated in a contin-
uum description of aggregation?

A review of what is presently known about these questions is given in OS;
in the remainder of this paper we focus on two aspects: (i) the connection
between continuum and cell-based models, and (ii) the origin of streaming
in aggregation.

3. Continuum and cell-based descriptions of wave propaga-
tion, cell motion and aggregation.

3.1. Continuum descriptions. Two main approaches are used for
describing aggregation and the spatio-temporal patterns that wave prop-
agation and cell movement produce: those in which the cell distribution
is treated as a continuum and described by a density function, and those
in which the discrete nature of cells is incorporated. Both must use some
description of cell motion, and therefore we describe this briefly.
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In the absence of cAMP stimuli, Dd cells extend pseudopods in random
directions, but aggregation-competent cells respond to cAMP stimuli with
characteristic changes in their morphology. Under uniform elevation of
the ambient cAMP the early ‘cringe’ response is followed by extension of
pseudopods in various directions, and an increase in the motility [39, 42].
A localized application of cAMP elicits the cringe response followed by
a localized extension of a pseudopod near the point of application of the
stimulus [33]. This type of stimulus is similar to what a cell experiences in
a cAMP wave, but cells also respond to static gradients of cAMP. Fisheret
al. [6] show that cells move faster up a cAMP gradient than down, and
that the majority of turns made by a cell are spontaneous. However, the
magnitude and direction of a turn is strongly influenced by the gradient in
that there is a strong tendency to lock onto the gradient.

In a continuum description of cell motion, movement in the absence of
a cAMP stimulus is usually described as an uncorrelated, unbiased random
walk of noninteracting particles, and thus this component of motion is
described by a diffusion process. In the presence of cAMP gradients such
as exist in a passing wave, the simplest description of cell motion is obtained
by adding to the diffusive flux a directed component to obtain

(3.1) i=-D.Vp+ pu,

where u, is the macroscopic chemotactic velocity. Patlak [24] was the first
to relate the chemotactic velocity to properties of individual cells using
kinetic theory arguments to express u. in terms of averages of the veloci-
ties and run times of individual cells. Alt [1] also used the kinetic theory
approach and showed that the flux is approximately given by

(3.2) i=-D:Vp+px(c)Ve
(3.3) = —D.Vp+ pV®(c)

where ¢ denotes the concentration of the chemotactic substance and ® is a
primitive of x. The function x(c) is called the chemotactic sensitivity, and
the chemotactic velocity is given by

(3.4) u, = x(c)Ve = V®(c).

When x > 0 the tactic component of the flux is in the direction of V¢ and
the taxis is positive.

The earliest continuum description of Dd aggregation was proposed
by Keller and Segel [12]. Since little was known about signal transduction
at that time, their model involved only two variables, the cell density and
the cAMP concentration. In this model the cell flux was described by (3.2)
and the parameters were tuned to produce a chemotaxis-driven instability
of the uniform cell density. This can produce aggregation, but it is now
known that aggregation is organized by pacemaker cells that are randomly-
distributed in the aggregation field, as was mentioned earlier.
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Models based on (3.2) for the cell flux also ignore another key fea-
ture of Dd aggregation. It is observed experimentally that wild-type cells
only move in the rising phase of the cAMP wave, but if cells predicate
motion solely on the cAMP gradient they would move forward as a wave
approaches, but then turn around as the wave passes. Continuum de-
scriptions can be modified to incorporate this observation by incorporating
adaption to the extracellular cAMP in such a way that cells only move
in response to rising concentrations. A detailed scheme for accomplishing
this will be described later, but one could simply postulate that the flux
relation takes the form

(3.5) i=-D:Vp+ px(c)Ve

where ¢; denotes the time derivative of ¢. If x(¢;) = 0 when ¢; < 0, then
this relation predicts that the chemotactic component of the flux vanishes
when the attractant field is locally non-increasing, as it should.

A generalization of this in which ¢; is replaced by an intermediate
variable has been used by Hofer et al. [11]. These authors propose the
following simplified model for the aggregation process

(3.6) % =V - (uVn — x(v)nVu)
61 o Mo A v) — (6() + ) )] + T
(3.8) % = —g1(u)v + ga(u)(1 — v).

Here n, u and v denote cell density, extracellular cAMP concentration and
fraction of active cAMP receptors, respectively. The authors postulate that
the magnitude of the chemotactic response depends on the sensitivity of a
cell to cAMP, as measured by the fraction of active cAMP receptors, and
thus assume that the chemotactic sensitivity has the form

Um

x(v) = xo —, m> 1.

Nm 4 ym
They also use simplified versions of the kinetic terms in the Martiel &
Goldbeter model [16], and assume that the dependence of the rates of
synthesis and degradation on the cell density takes the form ¢(n) =n/(1—
pnf (K +m)).

When simulated numerically, this continuum model yields aggregation
patterns like those observed experimentally (see Figure 3). As will be
discussed later, a linear stability analysis of steady planar wave propagation
through a uniform cell distribution in this model predicts that the waves are
unstable to perturbations in the direction transverse to that of propagation.
The authors interpret this as incipient stream formation.
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F1g. 3. Two examples of the aggregation patterns produced by the model of Hdfer
et al. [11]. (From [10], with permission.). The computational scheme is based on an
ADI splitting for diffusion, first-order ezplicit upwinding for the chemotazis terms, and
an explicit Euler step for the reaction terms. The results shown are at t = 80 minutes
(left) and t= 140 minutes (right).

A major problem concerning flux equations such as (3.2), (3.5), or the
form used to obtain (3.6), is how one incorporates the microscopic responses
of individual cells into the continuum level description of taxis contained
in the chemotactic sensitivity. The analogous problem has been solved in
simple cases in fluid mechanics, but to date little progress has been made on
this problem in the biological context. One approach to this problem that
incorporates more of the microscopic details builds on the kinetic theory
approach used earlier [24, 1, 21]. This approach will be described later, but
first we discuss a discrete cell description of aggregation in which movement
is governed by internal variables.

3.2. A cell-based model for aggregation. The alternative to the
continuum approach is to base a model on discrete cells with internal dy-
namics that describe signal transduction, the choice of direction, and move-
ment in response to stimuli. Enough is known about the first two compo-
nents to formulate detailed models, such as the one for signal transduction
described earlier, but our knowledge of the biochemical control of move-
ment is still too sketchy to warrant detailed models, and thus this step must
be described by formal rules rather than mechanistically. Of course other
steps such as cAMP secretion could also be described by formal rules, and
the early models developed by Parnas and Segel [23] and by MacKay [15]
are examples of this approach. These models are similar in that in each
the cells are treated as black boxes which output a fixed amount of cAMP
when stimulated. Diffusion of cAMP is taken into account, but there is
no description of signal transduction, cAMP production, or adaptation in
these models. The model of Parnas and Segel is in one space dimension
and can effectively only address the question of how the cell decides when



PATTERN FORMATION IN A CELLULAR SLIME MOLD 367

to move. MacKay’s model is formulated in two space dimensions and it can
reproduce the observed streaming patterns and the effect of two competing
pacemakers, and it produces spiral waves for suitable initial cell distribu-
tions. These models represent a first step in the modeling of aggregation,
but the rules for cAMP production and secretion are formal and do not
incorporate present experimental knowledge about these processes.

A model in which cells are treated as discrete units with internal vari-
ables and cAMPy is described by a continuum reaction-diffusion equation
has recently been developed [4]. A detailed description of signal transduc-
tion and cAMP dynamics is incorporated into this model, and movement
rules based on the intracellular dynamics can be explored. The model
comprises two main parts: (i) the mechanism for signal transduction and
cAMP relay response, for which the model described earlier is used, and
(ii) the cell movement rules. The equations for the intracellular dynamics
of the i*" cell are given by the first four equations in (2.1), and these can

be written as the system
dw’
dr

Here w' is a four-component vector wherein ws = C;. Variations of pa-
rameters from cell to cell can be incorporated by changing the G*. The
evolution of the extracellular cAMP is governed by

(3.9) = GY(w',C,).
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The position of the it cell is denoted x;, the first term represents diffusion
of cAMP, the second represents the degradation of cAMP by extracellular
phosphodiesterase, and the summation represents the localized sources and
sinks of cAMP at the cells. The definition of the parameters is given in [4].

The other component of the model involves the cell movement rules,
which determine when motion is initiated, how the direction is determined,
and how long movement persists. It is known that locomotion and orien-
tation are controlled separately in Dd [38], and thus we make the simplest
hypothesis for the directional choice, namely that a cell moves in the di-
rection of the local cAMP gradient when motion ensues. This does not
require that the cell measure the gradient, but only that the orientation is
determined, for example, by an intracellular gradient set up by the extracel-
lular signal. Using the signal transduction scheme described earlier, Dallon
and Othmer [3] show that an intracellular gradient can be established on
the space and time scales that characterize signaling between cells in early
aggregation. The other requirements of the movement model are to deter-
mine when movement is initiated and how long it persists. Various rules
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have been explored in Dallon and Othmer [4], and as is shown there, for-
mal rules based on a fixed duration of movement can produce aggregation.
That is, a sort of ballistic movement in which cells ignore the environment
for the duration of movement can be successful if the time is chosen prop-
erly, but if the duration is too short aggregation does not occur. However,
by adding other mechanisms, such as directional persistence, aggregation
can be restored [4].

However such formal rules are biologically unrealistic, because there is
no coupling between the intra- or extracellular environment and the dura-
tion of movement. For example, if the profile of the cAMP wave is altered
due to changes in the number of pacemakers that initiate a wave, a rule
based on fixed durations could predict that cells continue to move after the
wave has passed. In reality the choice of duration is undoubtedly deter-
mined by one or more intracellular variables, and an outline of a detailed
model of how cells might choose the direction of motion and the length of
a ‘run’ will be described later. Such a model has not been analyzed as yet,
and it would probably be computationally prohibitive to include it in the
simulations described later at present. Instead, more realistic rules based
on internal variables were developed as follows [4]. It is known that in addi-
tion to activating the cAMP production pathway, cAMP also activates the
production of another intracellular messenger, cyclic guanosine monophos-
phate (cGMP), [19]. It is also known that cGMP is near the beginning
of the chemotactic response pathway, and that cGMP production adapts
to the cAMP stimulus on a time scale of about 10-15 seconds. If cGMP
adapts to extracellular cAMP levels then downstream components of the
chemotactic response pathway will also adapt, perhaps on a longer time
scale, except in unusual circumstances. Thus it is assumed in the model
that there is a downstream ‘motion controller’, the identity of which is not
known. This species must control the motion in such a way that the cell
moves only when cAMP is increasing, because, as noted earlier, it is known
that wild-type cells only move in the rising phase of the cAMP wave. In
the model we used as a stand-in a quantity in the cAMP pathway that has
the appropriate time course. This biochemically-based rule is more realistic
than the ad hoc rules.

The algorithm we developed to solve these equations can be summa-
rized as follows [4]. Given an initial cell distribution for 10-80K cells (which
may be uniformly or randomly-istributed in 2D), and the initial distribu-
tion of extracellular cAMP, we perform the following steps.

e Solve for the extracellular cAMP at time ¢"*! on a regular grid,
using ADI for the PDE, but evaluating the secretion term at ¢™.

e Interpolate the cAMP from the grid to the cell positions and up-
date the intracellular variables by an implicit scheme.

e Update cell movement. If a cell is not moving, should it begin to
move? If so, compute the direction and start the motion. If it is
moving, check to see if it should continue moving.



PATTERN FORMATION IN A CELLULAR SLIME MOLD 369

o Transfer the secreted cAMP to the grid and repeat the cycle.

To solve the extracellular equation (3.10), the Laplace operator is
discretized using fourth order centered differences, the reaction term is
lagged in time, and the resulting equations are solved using the Peaceman-
Rachford ADI method [25]. The internal variables are updated using the
trapezoidal method. The interpolation from grid to cell is a tensor product
interpolant using quartic Lagrangian interpolation in each direction [26].
The grid discretization h is equal in the 2 and y directions and therefore
this interpolator has an error proportional to h%. Except for the error in
the interpolation from cell to grid, the scheme has a local truncation error
of O(kh*). The interpolation from the cell to the grid is a tensor prod-
uct interpolation which is continuous, bivariate and piecewise linear. It
was defined to approximate the Dirac distribution as the spatial grid size
approaches zero.

Two additional modifications, cell stacking and cell adhesion, are in-
cluded in the algorithm in order to improve computational efficiency. A
typical aggregation field is 1 cm?, and cell densities range from 2.5 x 10*
cells/cm? to 10% cells/cm?. In the first modification we allow each cell
to represent an integer number of cells, typically between 2 and 16. This
means that the reaction contribution in (3.10) is multiplied by the number
of stacked cells and the input-output characteristics of the model are main-
tained; the effect is that there are fewer but stronger sources of cAMP. One
argument which suggests that this should not affect the results significantly
is that the interpolation from cells to the grid for four evenly-spaced cells
within one grid square is the same as four stacked cells located at the cen-
ter of the grid. Computational experiments verify that stacking the cells
does not significantly alter the results [4]. As may be expected, for larger
cell stacking the simulations show that the aggregation patterns are more
compact, but qualitatively the results remain similar.

The addition of cell adhesion improves the computational efficiency,
but also has a biological motivation. When cells come in contact with one
another they adhere via membrane binding proteins [31], and to incorporate
this in the model, when the centers of two or more cells lie within 5 microns
of each other they are all combined to form one cell. The new cell is at
the location of one of the combined cells and its contribution to the cAMP
concentration is multiplied by the number of cells combined. This only
changes the results of the model in minor ways.

Simulations of the model produce results which match very well with
experimental results (cf. Figure 4(a)). The biochemically-based rule shows
how a cell can respond to temporally-increasing cAMP levels by predicat-
ing motion on a threshold of an intracellular variable, and it also solves the
‘back-of-the-wave’ problem, in that a cell does not respond to the receding
cAMP wave after it passes, even though it sees a positive gradient on the
back side of the wave. These simulation results support the conclusion
reached by Soll et al. [32], that cells seem to orient during the beginning
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of the cAMP wave of and then maintain their direction. When there are
many pacemakers the aggregation field breaks up into a number of smaller
fields, although certainly not equal in number to the number of pacemakers
present (cf. Figure 4(b)), as is observed experimentally. These computa-
tions show that single cells can be pacemakers, in agreement with earlier
theoretical analysis [5], but they also show that many of these pacemakers
will be entrained by others. Whether or not an individual pacemaker can
continue to oscillate in the face of periodic signals from other sources is a
function of how large an aggregate it has recruited, and hence how strong a
signal it emits, differences between its frequency and that of other sources,
and the initial distribution of cells. As yet there is no theoretical analysis
that enables one to predict when it will survive, but it is an important
question because the answer would shed light on the breakup of waves by
pacemakers and hence on the origin of spirals.

Fi1Gc. 4. Two examples of the aggregation patterns produced by the discrete cell
model. In (a) cell movement is governed by an internal variable that adapts and in
(b) there are 0.1% pacemakers randomly-placed in the aggregation field initially and
cells move according to the rules in (a). Both patterns are shown at 150 minutes, the
domain is 1 centimeter by 1 centimeter with 200 grid points in each direction, and the
number of cells used corresponds to a volumetric density of about 0.2. (After Dallon
and Othmer [4].)

3.3. Continuum descriptions from microscopic rules. A ques-
tion raised earlier is how one can incorporate detailed microscopic descrip-
tions of movement such as were described in the previous section into a
macroscopic quantity such as the chemotactic sensitivity. A general de-
scription of a random walk governed by a semi-Markov process in which
the walker executes jumps in space leads to a renewal equation of the form

t
(3.11) P(x,t]0) = ®(¢)d(x) + /0 . o(t — 7)T(x,y)P(y, 7/0) dy dr.
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for the probability P(x,|0) that a walker beginning at the origin at t =0
is at position x at time ¢ [21]. It is shown in [21] that the evolution of
P(x,t|0) is governed by a diffusion equation for suitable choices of the
waiting time distribution ¢ (which determines the distribution ®(t)) and
the jump kernel T'(x,y). Chemotaxis can be incorporated in this approach,
but an alternative stochastic process that may be more appropriate for
describing the motion of Dd cells than the space jump process that leads
to (3.11) is called the velocity-jump process [1, 21]. In this process the
velocity, rather than the position changes at random times, which is more
appropriate for describing the motion of amoeboid cells such as Dd because
they change their direction and speed in the presence of stimuli [6], but
do not make instantaneous jumps in space. As we indicated earlier, the
directional changes are not randomly chosen, but rather, are chosen so
as to align the cell with the direction of the stimulus. In the following
paragraphs we sketch a formulation that is sufficiently general to include
these behaviors, as well as the involvement of internal cell variables, in the
description of motion. Details are given elsewhere [21, 20].

We suppose that in the absence of noise due to molecular fluctuations,
the internal variables involved in signal detection, transduction, processing
and response are described by the deterministic system

dc
dt
where ¢ is a vector of m internal variables and Cj is the chemotactic sub-
stance. In the model described earlier (cf 2.1), there are four internal
concentration variables in the cAMP transduction pathway, and Cy is ex-
tracellular cAMP. However, as we indicated earlier, to describe control of
motion in chemotaxis one would have to use a model such as that devel-
oped in [37] for the cGMP pathway. The form of this system can be very
general but it should always have the ‘adaptive’ property that the steady-
state value of the appropriate internal variable (the ‘motion controller’) is
independent of the stimulus, and that the steady state is globally attracting
with respect to the positive cone of R™. A simple model which captures
some of the essential features of an adaptive system is given in OS.

To introduce the phase-space description of motion, let p(x,v,c,t) be
the density function for individuals in a 2n + m-dimensional phase space
with coordinates (x, v, ¢) where v, which takes values in R™, is the velocity.
Then p(x, v, ¢, t) dx dv dc is the number density of individuals with position
between x and x + dx, velocity between v and v + dv, and internal state
between ¢ and ¢ + dc. The quantity

(3.12) g(c, Co),

(3.13) p(x,t) = /p(x,v,c,t) dv dc

is the density of individuals at x, whatever their velocity and internal state.
If we neglect external forces such as gravity then the evolution of p is
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governed by the partial differential equation

0 .
(3.14) 6—I:+Vx-vp+vc-cp=7€,
where R is the rate of change of p due to the random choice of velocity.
Since Dd amoeba modify the chemotactic field when they relay the
signal, one has to augment (3.12) by an evolution equation for Cy. If
transport is only via diffusion then this equation takes the form

(3.15) % = DACy + f(p(x,1),c,Co).

In general R can contain both a diffusive and a jump component, but
here we only include the latter, and we assume that the jump contribution
arises from a Poisson process that generates random velocity changes. In
the absence of noise the internal state evolves according to (3.12), and
consequently (3.14) becomes

9p
5t TVx vP+g Vep=

(3.16) —Ap—(Ve-g)p+ A / T(v,v)p(x,v',t)dv'.

Here ) is the intensity of the Poisson process, A~! is the mean run length
time between the random choices of direction, and the kernel T'(v,v')
gives the probability of a change in velocity from v’ to v, given that
a reorientation occurs. T'(v,v') is non-negative and normalized so that
JT(v,v)dv =1.

This equation shows that the dependence on the internal state adds
both a drift term with velocity g and a source or sink of strength V. - g.
Since g depends on the stimulus C,(x), this velocity and source strength
depend explicitly on the spatial position, but this phase-space description
is still too simple to describe the motion of Dd. Firstly, it is convenient
to distinguish between moving and stationary cells, . e. , between v = 0
and v # 0 in (3.16), since otherwise the intensity A depends explicitly on
the velocity. After this splitting we suppose that A is independent of the
velocity, but for Dd A decreases slightly when the cell moves upgradient
[6]'. Under this hypothesis one can show that the resulting jump process
is a Markov process.

A second simplification is to assume that there are only two speeds,
which can be taken as 0 and s, and that the motion is restricted to two

1Recent data suggest that this is an oversimplification; cells do not choose new
directions via a Poisson process. Instead there appears to be an intrinsic periodicity to
the extension of pseudopods, at least in unstimulated amoeba [13, 29]. Such behaviors
can be taken into account by introducing other state variables, but we do not pursue
this here.
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space dimensions. Let p;(x,¢,c,t) be the density of cells moving in the
direction ¢, and let po(x, ¢, c,t) be the density of stationary cells whose
direction was ¢ when they stopped. Further, let \jq denote the rate at
which moving cells stop, let Ag; denote the rate at which cells begin to
move, and let A;; denote the rate of direction changes amongst moving
cells. The resulting equations have the form

0
% + 8§ - Vxp1 + Ve - gp1 = —A10p1 + Aox /T0(¢, ¢ )po(x,¢',t) do’

(3.17) —Aupr + A / Ty (6,8 )pr(x, &, 8) o).

0
(318) % + VC - 8Ppo = )\10171 - )\01 /T0(¢a ¢,)p0 (X, ¢Ia t) d¢la

One objective in studying these equations is to determine whether
there is an asymptotic regime in which the flux of cells reduces to an equa-
tion of the form (3.2). For this purpose one must postulate how the coef-
ficients A\;; and the kernels T; depend on the internal state, and through
them, on the external cAMP field. The choice which leads to the rules used
in [4] is A11 = 0 (cells maintain the direction they choose when movement
begins), Ao and Ag1 either zero or infinity, depending on the level of the
motion controller, and the kernel Ty a Dirac distribution with mass at the
angle corresponding to the local cAMP gradient. Work on the analysis of
the more general form of the equations is in progress.

4. The origin of streaming. The formation of streams is a promi-
nent feature of aggregation in low-density fields, and in this section we dis-
cuss the mechanisms suggested by different models to explain their origin.
In Figure 5 we show the distribution of cells at two times. It is clear in the
right panel that the streams first develop close to the pacemaker and then
grow outward. Also noteworthy is the branching pattern of the streams,
and in particular, that there is no dominant length scale in the pattern:
it contains a broad spectrum of length scales and may be approximately
fractal over a limited range of scales.

A heuristic argument which suggests that the spatially-uniform cell
distribution should be unstable to sufficiently large disturbances goes as
follows. Cells move in the direction of higher cAMP and produce it as
well; therefore a disturbance that creates a large enough density or cAMP
nonuniformity will induce cell movement and this will in turn reinforce the
nonuniformity. Moreover, the variations in density or concentration will be
reinforced with each passing cAMP wave. Thus there is little doubt that
large variations in density can lead to streaming; where current theories
differ is whether the uniform density distribution is stable or unstable to
small disturbances, and whether or not the streams first originate near
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F1G. 5. The evolution of streams during aggregation. The left panel shows an early,
relatively-uniform field with a pacemaker at the center, and the right panel shows the
development of streams at a later stage. Note that the streams are most pronounced
near the pacemaker, and that there is little stream formation near the boundary of the
dish. (From Raper [28].)

the center or near the outer boundary. The experimental evidence clearly
suggests that they originate near the center.

Computational evidence that a perfectly uniform initial distribution
of identical cells will not develop significant streams is given in [4]. There
it was shown that when edge effects are eliminated by identifying two sides
of the domain and signaling is via a plane wave, no instabilities trans-
verse to the direction of propagation develop during the first 100-150 min-
utes. This lead to the conjecture that streaming on the observed time scale
requires a sufficiently large initial variation in either the cell density or
cAMP, i.e., it is due to a finite-amplitude instability. Here we provide
further evidence in support of this conjecture by comparing the evolution
of an initially-uniform field driven by a central pacemaker with that for an
initially-random density distribution. In Figure 6 we show the cell density
at two fixed times on two distinct circles centered at the pacemaker?. In
the top left panel one sees that at r = 0.2 the dominant fluctuations are of
amplitude 1.0 unit around a mean of 10, and a much smaller fluctuation
about a lower mean at r = 0.4 (the mean is lower at r = 0.4 than at r = 0.2,

2Details of how the simulations are done can be found in [4]: suffice it to say here
that for this figure we begin with all cells distributed uniformly on the grid points and
we allow the system to evolve according to the algorithm described earlier. We record
the entire state (intracellular variables, cell positions and extracellular cAMP) at fixed
intervals. To obtain the densities shown in Figure 6 we interpolate the cell densities to
the uniform grid, and then to equally-spaced points on the desired circle. We use an
FFT algorithm to obtain the power spectrum shown in Figure 7. We use 100 points
on each circle, which on the inner circle gives roughly one half the largest meaningful
frequency for the underlying computational grid. One could use twice as many points
on the outer circle, but we have not done this.
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but higher than the initial mean of 8, which reflects the fact that cells are
moving inward.)® At a later time (bottom panel) the variation around the
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F1Gg. 6. Cell densities around a circle of radius 0.20 (left) and radius 0.40 (right) at
100 minutes (top) and 280 minutes (bottom). The initial cell distribution was uniform
and equal to 8.

circle is larger, indicating that some streaming has developed, particularly
near the center. Further insight can be gotten from the power spectrum on
the circles, as is shown in Figure 7. The #-independent component, which
is of order 10, is not shown in this figure, but one sees that the amplitudes
of all the variable components (which initially are all O(107'3)) are rela-
tively small compared to the constant component. The largest amplitude

3The larger-amplitude peaks lie along the diagonals centered at the pacemaker. The
movement toward the diagonals results from the fact that the central pacemaker, which
in the continuum formulation is a disk of radius 0.05 centimeters, is approximated by
a square region that is rotated by 45° from the coordinate directions. This asymmetry
can be reduced by using finer grids, but it cannot be eliminated on a Cartesian grid.
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in the left panel corresponds to the peaks and sidebands associated with
streams along the diagonal. In Figure 8 we show the cell tracks of cells that
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Fi1G. 7. The power spectrum of the density distributions at t = 100 for v = 0.2
(left) and r = 0.4 (right), represented by the sum of the squares of the amplitudes of
the sine and cosine terms corresponding to the mode number on the abscissa.

begin on either of two circles: one sees there that the cells move essentially
straight inward until they are close to the pacemaker. Near the boundary
of the pacemaker there is a slight rotary motion.
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Fi1c. 8. The tracks of 8 cells initially on a circle of radius 0.05 (left) and 0.20
(right), for an initially-uniform cell distribution.

Next let us examine the evolution for an initially-random distribution.
In Figure 9 we show the two-dimensional cell distributions at two fixed
times for a random initial distribution of cells, and in Figures 10-12 we show
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results analogous to those in Figures 6-8. Several conclusions emerge from
these figures. Firstly it is clear that the small density variations that arise

F1G. 9. The two-dimensional cell distribution at t= 100 (left) and t= 280 (right).
The conditions are the same as in Figure 4, except that here y2 = 0.35 at the pacemaker,
rather than 0.4.

from a random initial cell distribution lead to much faster development
of streams than in the case of uniform initial conditions. A comparison
of Figure 10 with Figure 6 at comparable times and distances from the
pacemaker shows that the deviations from the average initial density under
random initial conditions are much larger than those under uniform initial
conditions. Perhaps more significant vis a vis stream formation is that
there are significant regions of very low density in the case of random initial
conditions, in contrast to the situation for uniform initial conditions. The
power spectra shown in Figure 11 confirm the fact that streams grow more
rapidly starting from a random initial density, and the cell tracks shown in
Figure 12 confirm that streams are more pronounced at equal times.

Figures 10 and 11 also shed light on the evolution of stream devel-
opment in the model. A comparison of the spectra at ¢ = 100 shows
that there is significantly more ‘energy’® in nonuniform modes at r = 0.2
than at r = 0.4. Furthermore, at r = 0.2 the energy is more localized
in the high-frequency modes, which indicates a more rapidly-varying den-
sity distribution, as can also be seen in the density plots. This suggests
that streams are initiated near the center and develop outwardly as time
progresses. Thus the model predictions are in agreement with the experi-
mental results in this regard, but they differ from conclusions reached by
others using continuum models.

These results provide further support for the conjecture that finite-
amplitude disturbances in density or cAMP concentration are needed to

4As measured by the sum of the squares over all modes. Of course the constant
coefficient in the expansion is larger at r = 0.2 than at r = 0.4, which reflects the higher
average density at r = 0.2, but these coefficients are not shown in the figures.
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Fi1G. 10. The cell densities on circles of radius 0.20 (left) and 0.40 (right) at t=
100 (top) and t= 280 (bottom).

initiate streaming. Aside from the higher density along diagonals, which is
due to the asymmetry noted earlier, the density variation of an initially-
uniform field along the circle of radius 0.2 is less than 10% at 100 minutes,
and although there is more variation by 280 minutes, there is no domi-
nant wavelength, as would be expected in a linearly unstable system. By
comparison, when the initial distribution is random the density varies over
an order of magnitude or more at the same time (¢f. Figure 10). In ad-
dition, the cell tracks in an initially uniform field show that cells move
inward essentially along rays until they are close to the pacemaker region,
whereas the tracks are curved significantly for the random initial distribu-
tion. Finally, if there were a linear instability of the cAMP wavefront one
would expect disturbances to grow as the wave propagates outward. This
would lead to the prediction that the amplitude of the azimuthal variation
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Fig. 11. The power spectra corresponding to the density profiles in Figure 10.

in cAMP is greatest at the outer boundary, which in turn would lead to
initiation of streaming at the outer boundary of the domain, contrary to
what is observed.

There are several reasons why the uniform distribution should be stable
to small disturbances. Firstly, it is known that there is a small diffusional
component to cell motion, and this will tend to damp small density distur-
bances. Although diffusion is not explicitly included in the model, it can be
shown that the numerical procedure introduces it via the truncation errors.
It is also known that the transduction pathway to the locomotory machin-
ery adapts to the extracellular cAMP signal, and this fact is included in the
model used here. As a result of adaptation, disturbances that vary slowly
over time will not be amplified by cell movement. Finally, there is a thresh-
old in the cAMP gradient of ~ 10 nM /mm [7] below which the cells do not
chemotact. These three factors, diffusion, adaptation and a threshold, all
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Fi1G. 12. The tracks of 8 cells initially on a circle of radius 0.05 (left) and 0.20
(right) for a random initial cell distribution.

mitigate against amplification of small disturbances, and it is conjectured
in [4] that the streams result from a finite-amplitude instability.

Nanjundiah [17] carries out a stability analysis of the Keller-Segel sys-
tem on a circular domain with a steady signaling center and finds unstable
“azimuthal” modes which he links to the occurrence of cell streaming. How-
ever the central core of cells in Nanjundiah’s analysis is a steady source of
cAMP and there are no propagating waves. While this analysis may apply
in systems that do not use an oscillatory core, it does not apply to Dd.
Levine and Reynolds [14] find that for a different model streaming is due
to a linear instability in the governing equations. These authors use a con-
tinuum description and show that planar traveling waves can be unstable
to perturbations of wavelength greater than approximately 8 mm, but sta-
ble otherwise. They conclude that a streaming instability can occur, but
their results show that it is a very long wavelength instability and thus
would probably not be seen on the scale of normal aggregation patterns.
Moreover, in the mechanism they suggest the growing modes are not sta-
tionary in space, but rather, they propagate outward with the cAMP waves
as their amplitude increases. Thus the largest spatial variations in density
and cAMP will be seen at the outer boundary of the domain, which implies
that streams will grow most rapidly near the outer boundary. However, as
Figure 5 shows, streams are most prominent near the pacemaker in early
aggregation.

Vasiev et al. [41], who also use a continuum model for the cell den-
sity, conclude that a necessary condition for the development of streams is
that the initial density be nonuniform. However, they did not address the
question as to whether or not the uniform distribution is stable to small
amplitude disturbances. These authors suggest that the major factor in
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stream formation is a change in the speed of the cAMP wave as density
varies, and this may be an important factor. Hofer and Maini [10] in-
corporate this idea and the curvature-velocity relationship for nonplanar
waves into a simplified model on which some analysis can be done. They
also conclude that plane cAMP waves can become unstable to transverse
perturbations, but as in the Reynolds-Levine analysis, the disturbances
propagate outward as they grow, and thus the largest amplitude will be
seen on the outer boundary.

In conclusion, the existing simplified continuum models make predic-
tions that are at variance with both the experimental observations and
with the computational results obtained using a discrete cell model. The
discrete-cell model already incorporates details of the individual cell be-
havior, but further work is needed to incorporate into a continuum model
a description of how the onset and duration of motion is controlled and the
cell-cell interactions that occur at higher densities. One approach to this
was sketched out in the previous section. Moreover the continuum analy-
ses cited are based on linearized equations, but nonlinear effects may alter
the conclusions reached from those analyses, and thus a genuinely non-
linear analysis is needed. Analysis of continuum models that incorporate
more internal details might show that there is a finite-amplitude instability,
rather than the linear instabilities found in these models to date.
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