Shielding Design Methods for Linear Accelerators

Melissa Martin, MS, FACR, FAAPM, FACMP

Therapy Physics Inc., Gardena, CA 90248
Melissa@TherapyPhysics.com
AAPM 51st Annual Meeting
Anaheim, CA July 27, 2009

Key Messages in This Presentation

- Each linear accelerator vault is unique
- Challenges in generating a shielding report

Identifying the locations around the vault that require a calculation
Appropriately calculating the shielded dose rate for these locations
Communicating the calculation implications to the architect and contractor

- Do not expect to generate a report simply by filling numbers in a spreadsheet
- Assumptions implicit in spreadsheet may not match vault

Especially true if you do not understand the calculations in the spreadsheet
» Including how to adapt the calculations to the vault

Required Information for Shielding Designs

- Architectural drawings of equipment layout in room
- Architectural drawings of surrounding areas indicating usage of these areas - offices, restrooms, corridor, exterior, etc.
- Elevation view of room or construction of floor and ceiling and distance between floors

Therapy Shielding Calculations Are Primarily Based on NCRP Report No. 151

- Report Title: "Structural Shielding Design and Evaluation for Megavoltage X- and Gamma-Ray Radiotherapy Facilities"

Released December 31, 2005

- Calculations here illustrate the NCRP 151 recommendations
- Previous NCRP reports are also cited in some cases

```
        e.g., NCRP }51\mathrm{ and NCRP }7
```


Linear Accelerator Energy

- BJR \#11 megavoltage (MV) definition used here - British Journal of Radiology (BJR) Supplement No. 11
- Comparison of BJR \#11 and BJR \#17 MV definitions

BJR \#11 MV	4	6	10	15	18	20	24
BJR \#17 MV	4	6	10	16	23	25	30

- Vault entrances
- Mazes (five examples with five different layouts)
- Direct-shielded doors
- Skyshine
- Photon and neutron skyshine for lightly-shielded ceiling
- Generally not recommended for new construction
- May be appropriate for cost-effective retrofit to existing vault
- Primary and Secondary Barriers
- Simple primary barrier calculations, including required width
- Secondary barrier calculations

》 Photon leakage, neutron leakage, scatter, and IMRT impact

- Tapered ceilings
- Lightly shielded wall for vault below ground level

NCRP 151 Recommended Workload [1 of 2]

- Workload (W)
"Time integral of the absorbed-dose rate determined at the depth of the maximum absorbed dose, 1 m from the source"
- 450 Gylwk maximum weekly workload cited in NCRP 151 Kleck (1994)
» Maximum 350 Gy/wk for 6 MV
» Maximum 250 Gylwk at high MV for dual energy
- Mechalakos (2004)
» Maximum 450 Gylwk for 6 MV single-energy
》 Maximum 400 Gy/wk for dual energy
- NCRP 151 Section 7 examples assume 450 Gy/wk at high MV

450 Gy / wk absorbed dose is the default weekly workload

NCRP 151 Recommended Workload [2 of 2]

- 30 patients treated per day is default assumption
- NCRP 151 default recommendation for busy facility
- Can also base on a conservative estimate influenced by factors such as historical workload and demographics
» e.g. lower patient workload for facility in small town
- 3 Gy absorbed dose per patient treatment default
- Assumption used in NCRP 151 Section 7 examples
- Consistent with 450 Gylwk with 30 patients treated per day » 450 Gy/wk $=5$ treatments/wk/patient $\times 3$ Gy/treatment $\times 30$ patients
- Equivalent to 219 cGy treatment fraction (0.73 tissue maximum ratio) » Intentionally somewhat conservative (compared to ~200 cGy fraction) since no specific allowance for quality or maintenance workload
- Can be based on direct knowledge of accelerator use instead » But preferable to stick with the NCRP 151 default
450 Gy/wk is consistent with 30 patients \& 3 Gyltreatment

Workload Assumptions for Dual Energy Linear Accelerators

- Preferable to assume full 450 Gy/wk workload is at the higher energy
- Simpler, more conservative calculation
- Appropriate for new construction
- For existing construction, dual-energy calculation may be appropriate
- If modifications to existing vault are difficult and size constrained
- Split 30 patient workload to ensure at least 250 Gylwk at higher MV
» With 17 patients, 255 Gy/wk at higher MV

Mode	Gy/wk/patient	Patients/day	W (Gy/wk)
Single x-ray mode	15	30	450
Dual x-ray mode	15	30	450
High-X mode	15	17	255
Low-X mode	15	13	195

At least 250 Gy/wk at high MV mode

Radiation Protection Limits

- Shielding Design Goal (P)
- Level of dose equivalent (H) used in the design calculations
- Applies to barriers designed to limit exposure to people
» Limiting exposure to unoccupied locations is not the goal
- Stated in terms of mSv at the point of nearest occupancy
- Recommended values for shielding design goal
- 0.10 mSv week for controlled areas
$0.02 \mathrm{mSv} /$ week for uncontrolled areas
- Typical international shielding design goals
- $0.12 \mathrm{mSv} /$ week for controlled areas
- $0.004 \mathrm{mSv} / \mathrm{wee}$ for uncontrolled areas oal
=
-

Controlled Areas

- Limited-access area in which the occupational exposure of personnel to radiation or radioactive material is under the supervision of an individual in charge of radiation protection
- Access, occupancy and working conditions are controlled for radiation protection purposes
- Areas are usually in the immediate areas where radiation is used, such as treatment rooms and control booths, or other areas that require control of access, occupancy, and working conditions for radiation protection purposes
- The workers in these areas are those individuals who are specifically trained in the use of ionizing radiation and whose radiation exposure is usually individually monitored

Uncontrolled Areas

- All other areas in the hospital or clinic and the surrounding environs
- Trained radiation oncology personnel and other trained workers, as well as members of the public, frequent many areas near controlled areas such as examination rooms or restrooms
- Choice of appropriate occupancy factors ensures the protection of both those who are occupationally exposed as well as others who might be exposed in these areas
\square
\square \square

Radiation Protection Limits for Locations

- Protected location

Walls: 1 ft beyond the barrier

- Ceilings: 1.5 ft above the floor of the room above the vault Floors: 5.5 ft above the floor of the room below
- Permissible dose at protected location depends on occupancy
- Occupancy factor (T):

Fraction of time a particular location may be occupied

- Maximum shielded dose rate at protected location: P/T - Assuming occupancy factor T for protected location

Max shielded dose rate traditionally referred to as P/T

Occupancy Factor Selection

- For interior locations, T=1 and T=0.2 are most common
- T=1 for work locations
- T=0.2 for locations not occupied continuously
- For exterior locations, $T=0.05$ is most common
- $\mathrm{T}<1$ now appropriate for some controlled locations
- Use with $\mathrm{T}=0.125$ for vault entrance with caution: any higher occupancy location further away must also be protected - T = 0.5 for adjacent vault appears to be reasonable assumption
- Select $T=0.05$ for interior locations with caution - Should be very unlikely to be occupied (storage, attic, closets)
- T = 0.025 for exterior locations with restricted access - NRC hourly limit is more constraining for unrestricted locations

NCRP 151 Recommended Occupancy

- T=1: Areas occupied full-time by an individual) e.g. administrative or clerical offices; treatment planning areas, treatment control rooms, nurse stations, receptionist areas, attended waiting rooms, occupied space in nearby building
- $\mathrm{T}=0.5$: Adjacent treatment room, patient examination room adjacent to shielded vault
- $T=0.2$: Corridors, employee lounges, staff rest rooms
- $\mathrm{T}=0.125$: Treatment vault doors
- $\mathrm{T}=0.05$: Public toilets, unattended vending rooms, storage areas, outdoor areas with seating, unattended waiting rooms, patient holding areas, attics, janitor's closets
- T=0.025: Outdoor areas with only transient pedestrian or vehicular traffic, unattended parking

Use Factor

- Use Factor (U) is the fraction of the workload for which the primary beam is directed at the barrier in question
- Traditionally $\mathrm{U}=0.25$ for lateral barriers, ceiling, \& floor
- $\mathrm{U}=0.1$ for tapered portions of ceiling barrier (Example 11)
- Applies to primary barrier calculations, usually not secondary
- NCRP 151 Table 3.1 below consistent with these values - TBI may require deviation from these values
90° gantry angle intervals

Angle Interval Center	U (percent)	Standard Deviation (percent)	
0° (down)	31.0	3.7	
90° and 270°	21.3 (each)	4.7	
180° (up)	26.3	3.7	

45° gantry angle intervals		
Angle Interval Center	$\underset{\text { (percent) }}{\mathrm{U}}$	Standard Deviation (percent)
0° (down)	25.6	4.2
45° and 315°	5.8 (each)	3.0
90° and 270°	15.9 (each)	5.6
135° and 225°	4.0 (each)	3.3
180° (up)	23.0	4.4

Hourly Limit for Uncontrolled Areas: Recommended Approach

- Max patients / hour at highest energy: Six
- Maximum in any one hour estimated as one each 10 minutes
- Max workload per hour $\left(W_{h}\right)$ is 6 patients $x 3$ Gy/patient $=18$ Gy
- Max weekly P/T $(\mathrm{mSv} / \mathrm{wk})=0.02$ ($\mathrm{mSv} / \mathrm{hr}$) W (Gy/wk) / W_{h} (Gy/hr) where $\mathrm{W}=450$ Gylwk (single/dual) or $\mathrm{W}=255$ Gy/wk (at high MV)

Mode	Patients per day	$\left.\begin{array}{c} \mathrm{G} / \mathrm{w} \mathrm{k} \end{array}\right)$	$\begin{array}{\|c\|} \hline \text { Max } \\ \text { Patients } \\ \text { per hour } \end{array}$	$\begin{array}{\|c\|} \hline \text { Gy per } \\ \text { Patient } \\ \text { Treatment } \\ \hline \end{array}$	$\begin{aligned} & \text { Max } \\ & \text { Gylhr } \\ & \text { (}{ }^{\left(W_{n}\right)} \\ & \hline \end{aligned}$	$\begin{array}{\|c\|} \hline \text { Weekly } \\ \text { Max P/T } \\ (\mathrm{mSV} / \mathrm{wk}) \\ \hline \end{array}$	Equiv. Min T	Max P/T applies to
Single MV mode	30	450	6	3	18	0.500	0.0	both primary
al M	30	450	6	3	18	. 500	0.040	\& secondary barriers
High MV mode	17	255	$\begin{gathered} 6 \\ \text { (High MV) } \\ \hline \hline \end{gathered}$	3	18	0.283	0.071	
Low MV mode	13	195						

- Minimum occupancy $(T)=W_{h}$ (Gy/hr) $/ \mathrm{W}$ (Gy/wk)
- Hourly NCR limit and weekly NCRP 151 limit are both 0.02 mSv
- Implies full benefit of $\mathrm{T}=0.025$ applies only to restricted locations

Primary Barrier Photon Shielded Dose Rate

- Photon unshielded dose rate
$H_{\text {pri }}=\frac{W U}{d_{p r i}^{2}} \quad \begin{aligned} & \text { where } \\ & \text { distance is in } \\ & \text { meters }\end{aligned}$
- Transmission by shielding material thickness t

Trans $=0.1 \times 10^{\left[-\left(t-T V L_{1}\right) / T V L_{e}\right]}$

- Where TVL_{1} and $\mathrm{TVL}_{\mathrm{e}}$ are the values for the first and subsequent tenth-value layers, respectively

$$
\text { Assumes } \mathrm{t}>\mathrm{TVL}
$$

- Shielded dose rate is
unshielded dose rate times transmission

Must be less than P/T

Table 1: NCRP 151 Table B. 2 Primary Barrier Photon TVLs (mm)

Linac MV	Lead		Concrete		Steel		Earth		Borated Poly	
	TVL1	TVLe								
4	57	57	350	300	99	99	549	470	866	743
6	57	57	370	330	10	100	580	517	916	817
10	57	57	410	370	110	110	643	580	1015	916
15	57	57	440	410	110	110	690	643	1089	1015
18	57	57	450	430	110	110	705	674	1114	1064
20	57	57	460	440	110	110	721	690	1138	1089
25	57	57	490	460	110	110	768	721	1213	1138

Estimated by density vs. concrete concrete $=2.35 \mathrm{~g} / \mathrm{cm}^{3}$ [NCRP 151, p. 69] earth density $=1.5 \mathrm{~g} / \mathrm{cm}^{3}$ [NCRP 151, p. 72]

Include density in the shielding report and recommend that construction contracts specify the density

Typical Primary Concrete Barrier

- Primary barrier calculation tends to be relatively accurate Unlike secondary barrier calculation, which tends to be conservative
- Desirable to have factor of 2 or 3 margin for shielded dose rate to account for variation in concrete density NCRP 151 factor of 2.7 for primary barriers with metal above 10 MV is reasonable goal for all primary barriers
- Typical concrete primary barrier thickness (ft)

P/T	6 MV	18 MV
0.02	6.5	8
0.1	6	7.5
0.2	5.5	7
0.4	5	6.5 to 7
0.8	4.5 to 5	6

- Shielding report should emphasize that construction contracts specify $147 \mathrm{Jb} / \mathrm{ft}^{3}$ concrete density

Factor of 2 to 3 Margin Recommended for Primary Shielded Dose Rate Calculation

- 2.7 margin recommended for laminated barriers by NCRP 151
- Based McGinley \& Butker (1994) - Attributed to capture gammas
- Safety survey vs. calculated dose rate indicates factor 2 to 3 appropriate for all primary barriers
- Likely due to variation in concrete density, not capture gammas
2.7 recommended by NCRP 151 for laminated barriers is appropriate goal for all barriers

Directly Solving for Barrier Thickness

- NCRP 151 typically illustrates calculations by solving for the required thickness instead of directly calculating time-average dose rate
- Transmission factor $B_{p r i}$

Reciprocal of required attenuation

$$
B_{p r i}=\frac{P d_{p r i}^{2}}{W U T}
$$

- Number of tenth-value layers (TVLs): $n=-\log _{10}\left(B_{p r i}\right)$
- Required barrier thickness

$$
t_{c}=T V L_{1}+(n-1) T V L_{e}
$$

"Two Source Rule"

- Applicable when required thickness is calculated for more than one type of radiation
- If thickness required is comparable for two types of radiation, add 1 HVL to the larger thickness
- If the two thicknesses differ by a tenth-value-layer (TVL) or more, the larger barrier thickness is used
- Also sometimes called the "Add HVL Rule"

Examples At End of Presentation Use Time Averaged Dose Rate Instead of Calculating Thickness

- Two Source Rule either over-estimates or under-estimates required shielding for two or more sources of radiation
- Up to three types of radiation for secondary calculations
- TADR must be calculated anyway for primary barriers
- To determine factor of 2.7 margin
- TADR needed for hourly limit
- Potentially multiple layers of dissimilar material in barrier
- No direct way to calculate required thickness for photoneutron generation

Primary Barrier Width

- 1 foot margin on each side of beam rotated 45 degrees - Barrier width required assuming $40 \mathrm{~cm} \times 40 \mathrm{~cm}$ field size $\mathrm{w}=0.4 \sqrt{2} d_{\mathrm{N}}+0.6 \mathrm{~m} \quad$ (where d_{N} is in meters)
- Field typically not perfectly square (corners are clipped) $35 \mathrm{~cm} \times 35 \mathrm{~cm}$ field size used to account for this

Primary Barrier Width Typically Calculated Assuming $35 \mathrm{~cm} \times 35 \mathrm{~cm}$ Field Size

- Field typically not perfectly square (corners are clipped) - $35 \mathrm{~cm} \times 35 \mathrm{~cm}$ field size used to account for this
$\mathrm{w}=0.35 \sqrt{2} d_{\mathrm{N}}+0.6 \mathrm{~m} \quad$ (where d_{N} is in meters)

Secondary Barrier Photon Leakage

- Leakage unshielded dose rate
$H_{L}=\frac{W \times \text { leakage fraction }}{d_{\mathrm{sec}}^{2}}$
- Assumes H_{L} in Sv and W in Gy
0.1% leakage fraction is customary Secondary distance $\mathrm{d}_{\text {sec }}$ in meters
- Calculate shielded dose rate using TVLs in NCRP 151 Table B. 7
- Calculation tends to be conservative

Typical leakage 5 X or more lower than 0.1\% requirement

Unlike primary barriers, generally no need for extra margin

Table 2: Leakage TVLs (mm)

Linac MV	Lead		Concrete		Steel		Earth		Borated Poly	
	TVL1	TVLe								
4	57	57	330	280	96	96	517	439	817	693
6	57	57	340	290	96	96	533	455	842	718
10	57	57	350	310	96	96	549	486	866	767
15	57	57	360	330	96	96	564	517	891	817
18	57	57	360	340	96	96	564	533	891	842
20	57	57	360	340	96	96	564	533	891	842
25	57	57	370	350	96	96	580	549	916	866
NCRP 151 Primary TVL Table B. 2			NCRP 151 Table B. 7		Varian TVL ratio relative concrete		Est. by density vs. concrete concrete $=2.35 \mathrm{~g} / \mathrm{cm}^{3}$ [NCRP 151, p. 69] earth density $=1.5 \mathrm{~g} / \mathrm{cm}^{3}$ [NCRP 151, p. 72] $\mathrm{BPE}=0.95 \mathrm{~g} / \mathrm{cm}^{3}$ [NCRP 151, p. 162]			

Note: NCRP 51 Figure E. 14 indicates lead TVL is maximum near 6 MeV , so using primary TVL for leakage is reasonable

No data in NCRP 151 for steel leakage TVL.
NCRP 51 Figure E. 13 implies steel leakage TVL should be less than primary. Rationale for $96 \mathbf{m m}$ steel TVL based on Varian document \#12004 on next chart.

Conservative Leakage TVL for Steel: 96 mm

- Leakage TVLs from Varian Document \#12004
- Concrete leakage TVLs slightly less than NCRP 151 Steel TVL calculated from ratio in Varian Document

- Varian ratio applied to NCRP 151 concrete leakage TVLs
- Average TVL = $\left(\mathrm{TVL}_{1}+2 \mathrm{TVL}_{\mathrm{e}}\right) / 3$
» Secondary barrier has at least 3 TVLs

Average TVL between 89 and 96 mm
》 Calculated TVL varies since concrete TVLs rounded to cm

- 96 mm upper bound steel leakage TVL

Intensity Modulated Radiation Therapy (IMRT)

- IMRT requires increased monitor units per cGy at isocenter
- IMRT ratio is the ratio of MU with IMRT per cGy at isocenter
- Percent workload with IMRT impacts shielding 50% typically assumed; 100% if vault is dedicated to IMRT
- Account for IMRT by multiplying workload by IMRT factor - IMRT Factor $=\%$ IMRT \times IMRT ratio $+(1-\%$ IMRT $)$
- Leakage Workload: $\mathrm{W}_{\mathrm{L}}=\mathrm{W} \times$ IMRT Factor W_{L} replaces W in leakage unshielded dose calculation with IMRT
- Lower IMRT factor appropriate for neutrons if calculate shielding at the higher MV for a dual MV machine

Leakage TVLs from 2007 Summer School*

Peter Biggs, Primary \& Secondary Composite Wall Materials, 2007 AAPM Summer School (Slide \# 4)

- Caution: Pat McGinley at 2007 AAPM Summer School used a lead leakage TVL of 6.1 cm for a direct-shielded door example (not the 4.7 cm TVL above)
Table 2 lead \& steel TVLs may be somewhat conservative

Table 3: IMRT Ratio Typical Values

Manufacturer	IMRT Ratio	Percent IMRT	IMRT Factor	
		Photon	Neutron	
Varian	3	50%	2	1
Siemens	5	50%	3	1.5
NOMOS	10	50%	5.5	2.75
Tomotherapy	16	100%	16	NA

- Typically assume 50% of treatments with IMRT

Pessimistic assumption for dual energy machine since most IMRT done at lower energy (e.g., >75\% at $6 \mathrm{MV},<25 \%$ at 18 MV)

- Neutron IMRT factor (applicable to dual energy) assumes IMRT equally at high and low energy

Since most IMRT is done at the lower energy, an even lower neutron IMRT factor may be appropriate

IMRT Factor Calculation

- Calculation for single MV

Line	Parameter	Units	Single MV	Calculation
a	IMRT Ratio	MU/tGy	3	Varian
b	Fraction with IMRT	Ratio	0.5	Typical
c	IMRT Factor	Ratio	2	$\mathrm{a} * \mathrm{~b}+(1-\mathrm{b})$

- Calculation for dual MV
- Shielded dose rate calculated separately at each MV
» Including appropriate \% IMRT at each MV
- Total shielded dose rate is total at the separate MVs
- Generally appropriate only for retrofit
» marginal shielding, expensive and difficult to modify
» Calculation at single (highest) MV recommended for new construction

Secondary Shielding for High Energy Linacs

- May need to consider neutron leakage as well as photons
- Not necessary if barrier consists solely of concrete
- Is necessary for thin barrier containing significant metal » e.g., door or laminated barrier
- Calculation is of the same form as photon leakage calculation
- But with different leakage fraction and TVLs
- Shielding typically calculated only at higher energy for dual energy linacs

Easier calculation than performing separate calculations for the two energies

Neutron IMRT Factor Calculation

- IMRT factor lower for neutrons than photons for dual MV Typically split between low and high energy for dual MV machine - Neutrons not produced below 10 MV
- Typical: 50% High-X \& 50\% Low-X with 50\% IMRT at each MV - Conservative since far more IMRT at 6 MV than at 15 or 18 MV - Neutron IMRT factor 1 with these conservative assumptions
- Neutron Leakage Workload: $W_{\text {Ln }}=W \times$ Neutron IMRT Factor

Line	Parameter	Units	Photon		Neutron		Calculation
			Low-x	High-x	Low-x	High-X	
a	IMRT Ratio	MUlcGy	3	3	0	3	Varian
b	Fraction with IMRT	Ratio	0.5	0.5	0.5	0.5	Typical
c	IMRT Factor per MV	Ratio	2	2	0	2	a*b+(1-b)
d	Fraction at each MV	Ratio	0.5	0.5	0.5	0.5	Expected usage
e	IMRT Factor * Fraction	Ratio	1	1	0	1	c*d
f	IMRT Factor	Ratio	2		1		Sum Line e

Table 4: Neutron Leakage Fraction

- Neutron leakage unshielded dose rate

$$
H_{n}=\frac{W_{L n} \times H_{o}}{d_{\mathrm{sec}}^{2}}
$$

H_{n} in Sv and W_{Ln} in Gy
H_{0} is neutron leakage dose equivalent fraction normalized to 1 m from target

- H_{0} in Table 4 normalized to 1 m Varian* and Siemens** values based on manufacturer data
Elekta data from Site Planning Guide ${ }^{* * *}$ GE data based on NCRP 151 Table B. 9 normalized to 1 m

Vendor	MV	$\begin{gathered} \hline \text { Ho @1 m } \\ \text { Sv/Gy } \\ \hline \end{gathered}$
Varian	10	4.0E-05
	15	7.0E-04
	18	1.5E-03
	20	1.9E-03
	24	2.0E-03
Siemens	10	2.0E-05
	15	4.2E-04
	18	9.9E-04
	20	1.4E-03
	24	2.3E-03
$\begin{aligned} & \text { Elekta } \\ & \quad \text { ! } \\ & \text { Philips } \end{aligned}$	10	3.0E-04
	15	7.0E-04
	18	1.5E-03
	20	2.0E-03
	24	3.0E-03
GE	12	1.8E-04
	15	6.4E-04
	18	1.1E-03
	25	2.7E-03

*Varian: http:/lwww.varian.com/osup/pdf/12000.pdf [Page 12, Average of 4 positions]
** Siemens: Conservative neutron leakage dose rates in patient plane with $\mathrm{Q}=10$
${ }^{* * *}$ Elekta: Nisy Ipe, "Neutron Shielding Design and Evaluations", 2007 AAPM Summer School

NCRP 151 Neutron Leakage

- Neutron leakage unshielded dose rate

$$
H_{n}=\frac{W_{\mathrm{Ln}} \times H_{o}}{\left(d_{\mathrm{sec}} / 1.41\right)^{2}}
$$

H_{n} in Sv and W_{Ln} in Gy
dsec is secondary distance from isocenter to protection location (in meters)

- H_{o} from Table B. 9 of NCRP 151 Normalized at 1.41 meters from isocenter
Leakage data in NCRP 151 is for older machines

Best to use manufacturers' data for newer machines (next chart)

Vendor	Model	mV	$\begin{array}{\|c} \hline \begin{array}{c} \text { Ho @1.41 m } \\ \text { mSv/Gy } \end{array} \\ \hline \end{array}$
Varian	1800	18	1.02 to 1.6
	1800	15	0.79 to 1.3
	1800	10	0.04
	2100 C	18	
	2300CD	18	
	2500	24	
Siemens	KD	20	1.1 to 1.24
	KD	18	
	MD	15	0.17
	MD2	10	
	Primus	10	
	Primus	15	
Philips Elekta	SL25	25	2
	sL20	20	0.44
	SL20	18	
	SL25	18	
GE	Saturne 41	12	0.09
	Saturne 41	15	0.32
	Saturne 43	18	0.55
	Saturne43	25	1.38

NCRP 151 Cites Figure A. 2
(from NCRP 51) as Basis for Neutron TVL

NCRP 151 Figure A. 2
Normalized to Maximum Fluence

Neutron Leakage TVL Recommendation

- TVLs based on Figure A. 2 are somewhat inconsistent

$$
\text { Curves originally in NCRP } 51
$$

- NCRP 151 recommends 250

	Cummulative Concrete Neutron TVLS				
VL\#	Thermal				2.7 M
1	277	337	176	246	367
2	288	307	193	226	312
3	298	304	217	232	295
4	301	305	232	243	286
5	307	312	243	256	286

Recommendation for laminated

- TVL recommendation based on NCRP 79
$\mathrm{TVL}_{n}=155+56$ * Neutron MV for concrete
» 211 mm at 1 MV is traditional neutron leakage TVL for concrete
$\mathrm{TVL}_{\mathrm{n}}=62+34$ * Neutron MV for borated polyethylene (BPE)

» 96 mm at 1 MV is traditional neutron leakage TVL for BPE Estimate other material from concrete or BPE based on hydrogen content Lead and steel provide negligible neutron attenuation | MV | Concrete | | Earth | | Borated Poly | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | TVL1 | TVLe | TVL1 | TVLe | TVL1 | TVLe |
| | Application | | | | | |
| 1 | 211 | 211 | 331 | 331 | 96 | Leakage | Continuing to use the NCRP 79 neutron leakage TVLs is recommended

Neutron TVLs for Other Material

－Concrete of varying density
Neutron density for high density concrete assumed the same as for normal weight concrete
－High density concrete has slightly lower hydrogen content than normal concrete
－High density concrete typically has boron added to maintain same neutron TVL as normal concrete
－TVL for light concrete adjusted based on density like photon TVL » Likely a conservative assumption
－Asphalt has high hydrogen content Same TVL as borated polyethylene assumed

》 e．g．，McGinley reports 10 cm neutron skyshine TVL due to asphalt，which is comparable to primary BPE TVL

Secondary Barrier Patient Scatter

－Patient scatter unshielded dose rate
$H_{p s}=\frac{a W U(F / 400)}{d_{\mathrm{sca}}^{2} d_{\mathrm{sec}}^{2}}$
$-a=$ scatter fraction for $20 \times 20 \mathrm{~cm}$
－F is maximum field area in cm^{2}
，NCRP 151 examples use $F=1600$ （conservative $40 \times 40 \mathrm{~cm}$ field）
Effective F is smaller with IMRT
》 $\mathrm{F}=225 \mathrm{~cm}^{2}$ w／IMRT（ $15 \times 15 \mathrm{~cm}$ ）
$\mathrm{F}=(1-\%$ IMRT $) \times 1600+\%$ IMRT $\times 225$

Typically use $F=1600$ even if IMRT is used to add conservatism
» Safety survey done w／o IMRT
» IMRT seldom used at higher MV for dual energy machines
》 Primary beam adds to patient scatter at small scatter angles

－Scatter fraction as function of MV and scatter angle in NCRP 151 Table 5.4
－Scatter energy as function of MV and scatter angle in NCRP 151 Table B． 6

Use Factor（U）and Scatter

－Use Factor is typically taken as 1 for secondary calculations
－Invariably true for leakage calculations
－Scatter is significant only for secondary barriers immediately adjacent to primary barriers
－Scatter is negligible for all other orientations
NCRP 151 ：＂However，if the［scatter］calculation is performed with the minimum angle of scatter from the patient to the point of calculation and a use factor of 1 is also used，the barrier thickness will be overestimated due to the conservatively
higher scatter fraction from the smaller scattering angles＂
－Sometimes appropriate to apply use factor to scatter － $\mathrm{U}=0.25$ appropriate if scatter angle $<35^{\circ}$
» i．e．，secondary barrier immediately adjacent to primary barrier
》 $\mathrm{U}=0.25$ best used only for retrofit（to avoid unnecessary modifications）or if there are severe space constraints Otherwise U＝ 1

Table 5：NCRP 151 Table B． 4 Patient Scatter Fraction for $400 \mathrm{~cm}^{2}$ Field

－Scatter fraction increases as angle decreases
－Scatter fraction vs MV may increase or decrease
－Tends to increase with MV at small scatter angles
－Decreases with increasing MV at large scatter angles

Linac	Angle（degrees）								
	10	20	30	45	60	90	135	150	
4	$1.04 \mathrm{E}-02$	$6.73 \mathrm{E}-03$	$2.77 \mathrm{E}-03$	$2.09 \mathrm{E}-03$	$1.24 \mathrm{E}-03$	$6.39 \mathrm{E}-04$	$4.50 \mathrm{E}-04$	$4.31 \mathrm{E}-04$	
6	$1.04 \mathrm{E}-02$	$6.73 \mathrm{E}-03$	$2.77 \mathrm{E}-03$	$1.39 \mathrm{E}-03$	$8.24 \mathrm{E}-04$	$4.26 \mathrm{E}-04$	$3.00 \mathrm{E}-04$	$2.87 \mathrm{E}-04$	
10	$1.66 \mathrm{E}-02$	$5.79 \mathrm{E}-03$	$3.18 \mathrm{E}-03$	$1.35 \mathrm{E}-03$	$7.46 \mathrm{E}-04$	$3.81 \mathrm{E}-04$	$3.02 \mathrm{E}-04$	$2.74 \mathrm{E}-04$	
15	$1.51 \mathrm{E}-02$	$5.54 \mathrm{E}-03$	$2.77 \mathrm{E}-03$	$1.05 \mathrm{E}-03$	$5.45 \mathrm{E}-04$	$2.61 \mathrm{E}-04$	$1.91 \mathrm{E}-04$	$1.78 \mathrm{E}-04$	
18	$1.42 \mathrm{E}-02$	$5.39 \mathrm{E}-03$	$2.53 \mathrm{E}-03$	$8.64 \mathrm{E}-04$	$4.24 \mathrm{E}-04$	$1.89 \mathrm{E}-04$	$1.24 \mathrm{E}-04$	$1.20 \mathrm{E}-04$	
20	$1.52 \mathrm{E}-02$	$5.66 \mathrm{E}-03$	$2.59 \mathrm{E}-03$	$8.54 \mathrm{E}-04$	$4.13 \mathrm{E}-04$	$1.85 \mathrm{E}-04$	$1.23 \mathrm{E}-04$	$1.18 \mathrm{E}-04$	
24	$1.73 \mathrm{E}-02$	$6.19 \mathrm{E}-03$	$2.71 \mathrm{E}-03$	$8.35 \mathrm{E}-04$	$3.91 \mathrm{E}-04$	$1.76 \mathrm{E}-04$	$1.21 \mathrm{E}-04$	$1.14 \mathrm{E}-04$	

NCRP 151 Table B．6：
Patient Scatter Energy
－Based on simulation by Taylor et．al．（1999）

	Scatter Angle（degrees）							
MV	0	10	20	30	40	50	70	90
6	1.6	1.4	1.2	0.9	0.7	0.5	0.4	0.25
10	2.7	2.0	1.3	1.0	0.7	0.5	0.4	0.25
18	5.0	3.2	2.1	1.3	0.9	0.6	0.4	0.3
24	5.6	3.9	2.7	1.7	1.1	0.8	0.5	0.3

Scatter TVL Recommendations from NCRP 151

－Concrete TVL：NCRP 151 Table B．5a
－Same values in 1976 NCRP 49 report Conservative
－Lead scatter TVL：NCRP 151 Table B．5b （Nogueira and Biggs－－2002）
－Most accurate scatter TVLs in NCRP 151
Accurate » Measurements and simulation in close agreement but
－For up to 10 MV and scatter angles $\geq 30^{\circ}$
limited
－All other TVLs：NCRP 151 Figure A． 1
－Curves of equilibrium TVLs of shielding materials Rosetta NCRP 151 recommends using TVL corresponding to Stone mean energy from NCRP 151 Table B6
» Modifying the mean energy is recommended here

Table 6a. Concrete Scatter TVLs

- Values directly from NCRP 151 Table B5.a
- Conservative at scatter angles less than 30° Compared to lead and steel scatter TVLs

	Concrete Scatter TVL (mm)				
MV	Scatter Angle (degrees)				
	15	30	45	60	90
4	270	250	240	220	180
6	280	260	20	220	190
10	300	270	250	230	190
15	320	280	250	230	210
18	330	280	260	230	210
20	340	290	260	240	210
24	350	300	270	250	210

Broad Beam Equilibrium TVLs (NCRP 151 Figure A.1)

Lead Scatter TVL Recommendations Based on NCRP 151 [1 of 2]

- NCRP 151 Table B.5b is the most reliable TVL data

Lead scatter tenth-value layers (mm) vs. scatter angle										
mV	30		45		60		75		90	
	TVL1	TVLe								
4	33	37	24	31	18	25	13	19	9	13
6	38	44	28	34	19	26	14	19	10	15
10	43	45	31	36	21	27	15	19	12	16

- First step: reconcile NCRP 151 Figure A. 1 (broad beam transmission curves) with Table B.5b
- TVLs in Table B.5b do not match NCRP 151 Figure A. 1 using mean energy from NCRP 151 Table B. 6
Equilibrium TVLs match if mean energy is multiplied by following adjustment factors

Broad Beam Energy Adjustment Factors					
MV	30	45	60	75	
4	1.16	1.41	1.51	1.49	1.66
6	1.53	1.57	1.57	1.49	1.83
10	1.44	1.68	1.63	1.49	1.91

Table 6c. Steel Scatter TVL Recommendations Based on NCRP 151

- Steel broad beam TVLs that correspond to the lead TVLs

MV	Recommended Steel Scatter TVL (mm)					
	Scatter Angle (degrees)					
	20	30	45	60	75	90
4	78	72	68	63	58	50
6	83	78	70	64	58	53
10	84	78	71	65	58	54
15	89	82	74	67	62	59
18	92	84	76	68	62	61
20	93	86	78	70	63	61
24	95	88	81	73	66	61

Lead Scatter TVL Recommendations Based on NCRP 151 [2 of 2]

- Step 2: Select appropriate broad beam energy adjustments for other MVs

pad Beam Energy Adjustment Factors							Adjusted Broad Beam Energy (MV)						
MV	20	30	45	60	75	90	Mv	20	30	45	60	75	
4	1.2	1.16	1.41	1.51	1.49	66	4	144	104	0.85	0.68	0.54	0.4
6	1.5	1.53	1.57	1.57	1.49	1.83	6	180	138	0.94	0.71	0.54	0.4
10	1.5	1.44	1.68	1.63	1.49	1.91	10	1.95	144	101	0.73	0.54	0.48
15	1.5	1.5	1.7	1.7	1.7	2.0	15	270	178	1.18	0.82	0.63	0.5
18	1.5	1.5	1.7	1.7	1.7	2.0	18	3.15	1.95	1.28	0.85	0.64	0.6
20	1.5	1.5	1.7	1.7	1.7	2.0	20	3.45	215	139	0.94	0.68	0.6
5	1.5	1.5	1.7	1.7	1.7	2.0	25	4.05	255	1.6	111	0.71	

- Step 3: Read equilibrium lead TVLs From NCRP 151 Figure A. 1 (conservatively use TVLe for TVL1) Table 6b: Lead Scatter TVLs

Mv	Lead Scatter tenth-value layers (mm)											
	$\frac{20}{\text { TVL1 }}$ TVLe		TVL1 ${ }^{\text {TVLe }}$		$$		$$		$$		$$	
4	${ }^{46}$	${ }^{46}$	${ }^{33}$	37	${ }^{24}$	${ }^{34}$	${ }^{18}$	${ }^{25}$	${ }_{14}^{13}$	19	9	${ }_{15}^{13}$
6	50	50	38	44	${ }^{28}$	34	19	26	14	19	10	15
10	51	51	43	45	31	36	21	27	15	19	12	16
15	54	54	50	50	${ }^{41}$	41	31	31	24	24	21	21
18	55	55	51	51	${ }^{43}$	43	32	32	24		22	22
20	56	56	52	52	45	45	34	34	${ }^{26}$	26	22	22
25	57	57	54	54	48	48	39	39	29	29	22	22

Patient Scatter Can Be Significant Adjacent to Primary Barrier

- Both scatter fraction and scatter energy increase as scatter angle decreases
- Slant thickness compensates for the increased scatter

Required barrier thickness reduced by $\cos (\theta)$, where θ is slant angle

- Barrier thickness comparable to lateral barrier is typically adequate for same P/T

Primary Beam Remains Significant at Small Scatter Angles

- Primary beam remains significant 1 ft beyond beam edge
$40 \times 40 \mathrm{~cm}$ field rotated 45 degrees Primary beam angle measured from target
scatter angle measured from isocenter
- Conservatism in patient scatter shielding (i.e., F=1600) increases confidence edge of primary beam is adequately shielded
- Implications Laminated primary barriers may
need to extend more than 1 ft beyond the edge of beam
 Recommend new primary barriers to be square, not tapered

Scatter Observations

- Scatter is typically negligible for lateral barriers
- Must include scatter calculation for barrier next to primary

Particularly if slant factor is used when calculating photon leakage transmission

- General calculation procedure would include wall scatter also

Not addressed here since negligible for traditional secondary barriers
Vital to include for maze calculation for low energy linac

Wall Scatter

- Unshielded dose rate
$f H_{S}=f \frac{W U \alpha_{0} A_{0} \alpha_{\mathrm{z}} A_{\mathrm{z}}}{d_{H}^{2} d_{r}^{2} d_{z}^{2}}$
- where
$t=$ patient transmission (0.25
$\alpha_{0}=$ first reflection coefficient
» NCRP 151 Table B.8a vs. MV
》 75° angle of reflection typical
$A_{0}=$ beam area $\left(m^{2}\right)$ at wall
$\alpha_{2}=2$ nd reflection coefficient
» 0.5 MV at 75° in Table B.8a
$\mathrm{A}_{\mathrm{z}}=$ Maze cross section $\left(\mathrm{m}^{2}\right)$
» $\mathrm{w}_{\mathrm{M}} \times$ maze height

- High Energy accelerator mechanisms
- Neutrons, capture gammas
- Dominates the scatter mechanisms for high energy machines
- Use factor adjustment
$\mathrm{U}=0.25$ applicable for above gantry orientation with highest dose rate rate for this gantry angle

Beam Area at Wall

- Beam area at wall $\left(A_{0}\right)$ depends on distance from target
- $A_{0}=F\left(d_{H} / 1 \mathrm{~m}\right)^{2} \quad$ (meters ${ }^{2}$)
- F = Maximum field size at isocenter (1 m from target)
$\mathrm{d}_{\mathrm{H}}=$ Distance from target to wall (also in meters)
- Traditional field size assumption
- $F=0.40 \mathrm{~m} \times 0.40 \mathrm{~m}=0.16 \mathrm{~m}^{2}$
- NCRP 151 recommends traditional field size
- Alternative field size assumption with IMRT
- With IMRT, maximum field typically $15 \mathrm{~cm} \times 15 \mathrm{~cm}$, or $0.0225 \mathrm{~m}^{2}$
- Maximum field size $0.16 \mathrm{~m}^{2}$ without IMRT
$-F=(1-\%$ IMRT $) \times 0.16+\%$ IMRT $\times 0.0225$

Table 9. Reflection Coefficient for Concrete (NCRP 151 Tables B.8a and B.8b)

	Angle of reflection measured from normal				
MV	0.0320	0.0280	0.0250	0.0220	0.0130
0.5	0.0190	0.0170	0.0150	0.0130	0.0080
4	0.0067	0.0064	0.0058	0.0049	0.0031
	0.0053	0.0052	0.0047	0.0040	0.0027
10	0.0043	0.0041	0.0038	0.0031	0.0021
18	0.0034	0.0034	0.0030	0.0025	0.0016
30	0.0030	0.0027	0.0026	0.0022	0.0015
NCRP 151 Table B.8b Wall reflection coefficient for concrete, 45° Incidence					
MV	Angle of reflection measured from normal				
	0°	30°	45°	60°	75°
0.25	0.0360	0.0345	0.0310	0.0250	0.0180
0.5	0.0220	0.0225	0.0220	0.0200	0.0180
	0.0076	0.0085	0.0090	0.0092	0.0095
4	0.0064	0.0071	0.0073	0.0077	0.0080
10	0.0051	0.0057	0.0058	0.0060	0.0060
18	0.0045	0.0046	0.0046	0.0043	0.0040
30	0.0048	0.0050	0.0049	0.0040	0.0030

- Reflection coefficient for steel or lead is $2 x$ these values

Table 5: NCRP 151 Table B. 4 Patient Scatter Fraction for $400 \mathrm{~cm}^{2}$ Field

- Scatter fraction increases as angle decreases
- Scatter fraction vs MV may increase or decrease
- Tends to increase with MV at small scatter angles

Decreases with increasing MV at large scatter angles

Linac	Angle (degrees)								
	10	20	30	45	60	90	135	150	
4	$1.04 \mathrm{E}-02$	$6.73 \mathrm{E}-03$	$2.77 \mathrm{E}-03$	$2.09 \mathrm{E}-03$	$1.24 \mathrm{E}-03$	$6.39 \mathrm{E}-04$	$4.50 \mathrm{E}-04$	$4.31 \mathrm{E}-04$	
6	$1.04 \mathrm{E}-02$	$6.73 \mathrm{E}-03$	$2.77 \mathrm{E}-03$	$1.39 \mathrm{E}-03$	$8.24 \mathrm{E}-04$	$4.26 \mathrm{E}-04$	$3.00 \mathrm{E}-04$	$2.87 \mathrm{E}-04$	
10	$1.66 \mathrm{E}-02$	$5.79 \mathrm{E}-03$	$3.18 \mathrm{E}-03$	$1.35 \mathrm{E}-03$	$7.46 \mathrm{E}-04$	$3.81 \mathrm{E}-04$	$3.02 \mathrm{E}-04$	$2.74 \mathrm{E}-04$	
15	$1.51 \mathrm{E}-02$	$5.54 \mathrm{E}-03$	$2.77 \mathrm{E}-03$	$1.05 \mathrm{E}-03$	$5.45 \mathrm{E}-04$	$2.61 \mathrm{E}-04$	$1.91 \mathrm{E}-04$	$1.78 \mathrm{E}-04$	
18	$1.42 \mathrm{E}-02$	$5.39 \mathrm{E}-03$	$2.53 \mathrm{E}-03$	$8.64 \mathrm{E}-04$	$4.24 \mathrm{E}-04$	$1.89 \mathrm{E}-04$	$1.24 \mathrm{E}-04$	$1.20 \mathrm{E}-04$	
20	$1.52 \mathrm{E}-02$	$5.66 \mathrm{E}-03$	$2.59 \mathrm{E}-03$	$8.54 \mathrm{E}-04$	$4.13 \mathrm{E}-04$	$1.85 \mathrm{E}-04$	$1.23 \mathrm{E}-04$	$1.18 \mathrm{E}-04$	
24	$1.73 \mathrm{E}-02$	$6.19 \mathrm{E}-03$	$2.71 \mathrm{E}-03$	$8.35 \mathrm{E}-04$	$3.91 \mathrm{E}-04$	$1.76 \mathrm{E}-04$	$1.21 \mathrm{E}-04$	$1.14 \mathrm{E}-04$	

Repeat of Table 5 Used for Secondary Barrier Calculations

Direct Leakage

- Unshielded dose rate $H_{L T}=\frac{10^{-3} W_{L} U B}{d_{L}^{2}}$
- Same as standard secondary photon leakage calculation

B is leakage transmission through wall

- Use factor adjustment

NCRP 151 recommends the same adjustment as patient and wall scatter
$\mathrm{U}=1$ with no adjustment is assumed in the example calculations here

Tenth-Value Layers for Maze Calculation

- Patient and wall scatter TVLs based on 0.2 MV broadbeam transmission
- TVL read from NCRP 151 Figure A. 1
- Low energy since two bounces
- Leakage scatter TVLs based on 0.3 MV broadbeam transmission
- 0.3 MV average energy cited in McGinley p. 49
» Single bounce vs. two bounces for patient \& wall scatter - TVL read from NCRP 151 Figure A. 1
- Leakage TVL for direct leakage Note that door may not shield direct leakage for short maze

Broad Beam Equilibrium TVLs (NCRP 151 Figure A.1)


```
Maze Calculations for High Energy
Accelerators
```

- Neutrons and capture gammas dominate the shielded dose
- Direct leakage may also be significant - Particularly with thin maze wall
- Scatter mechanisms continue to apply
- But are invariably negligible for MV >10

Maze Neutron and Capture Gammas: NCRP 151

- First step: Calculate neutron fluence at point A
- Second step: Calculate unshielded capture gamma dose rate at door

Uses neutron fluence at point A

- Third step: Calculate unshielded neutron doseequivalent rate at door

Uses neutron fluence at point A

- Fourth step: Calculate attenuation of maze neutrons \& capture gammas by the door

Neutron Fluence Calculation

- Neutrons / m² / Gy workload
$\varphi_{A}=\frac{\beta Q_{n}}{4 \pi d_{1}^{2}}+\frac{5.4 \beta Q_{n}}{2 \pi S_{\mathrm{r}}}+\frac{1.3 Q_{n}}{2 \pi S_{\mathrm{r}}}$
- 1st term: Direct neutrons
- 2nd term: Scattered neutrons
- 3rd Term: Thermal neutrons
- where

- $\beta=$ head shielding transmission factor
$=1.0$ for lead, 0.85 for tungsten
$-d_{1}=$ Distance from isocenter to point A
- $Q_{n}=$ Neutron source strength (Table 10)
- $\mathrm{S}_{\mathrm{r}}=$ Treatment room surface area $\left(\mathrm{m}^{2}\right)$
$S_{\mathrm{r}}=2\left(d_{L} d_{W}+h d_{L}+h d_{W}\right) \quad$ where h is vault height

Table 10: NCRP 151 Table B. 9
Total Neutron Source Strength $\left(\mathrm{Q}_{n}\right)$

Vendor	MV	Qn N / Gy
	10	$6.0 \mathrm{E}+10$
Varian	15	$7.6 \mathrm{E}+11$
	18	$9.6 \mathrm{E}+11$
	20	$9.6 \mathrm{E}+11$
	24	$7.7 \mathrm{E}+11$
	10	$8.0 \mathrm{E}+10$
Siemens	15	$2.0 \mathrm{E}+11$
	18	$8.8 \mathrm{E}+11$
	20	$9.2 \mathrm{E}+11$
	24	$1.5 \mathrm{E}+12$
Elekta	10	$1.4 \mathrm{E}+11$
	15	$3.2 \mathrm{E}+11$
	18	$6.9 \mathrm{E}+11$
	20	$9.6 \mathrm{E}+11$
	24	$1.4 \mathrm{E}+12$
	12	$2.4 \mathrm{E}+11$
GE	15	$4.7 \mathrm{E}+11$
	18	$1.5 \mathrm{E}+12$
	25	$2.4 \mathrm{E}+12$

Maze Capture Gamma Unshielded Dose

 Rate Calculation- Capture gamma dose at door per workload at isocenter (Sv/Gy)

$$
h_{\varphi}=K \varphi_{A} 10^{\left(-d_{2} / T V D\right)}
$$

- where
$\mathrm{K}=$ ratio of capture gamma dose at point A to neutron fluence $=6.9 \times 10^{-16} \mathrm{~m}^{2} \mathrm{~Sv} /$ neutron
$-d_{2}=$ distance from point A to doo
- TVD = tenth-value distance (m) $=5.4$ for $18-24 \mathrm{MV}$, 3.9 for 15 MV

- Weekly capture gamma dose rate at door

$$
H_{c g}=W_{L n} h_{\varphi}
$$

$$
\mathrm{W}_{\mathrm{Ln}} \text { is neutron leakage }
$$ workload

Maze Neutron Unshielded Dose Rate Calculation

- Maze neutron dose-equivalent at door per neutron leakage workload at isocenter (Sv/Gy)
$H_{n, D}=2.4 \times 10^{-15} \varphi_{A}\left[\frac{S_{0}}{S}\right]^{1 / 2}\left[1.64 \times 10^{\left(-d_{2} / 1.9\right)}+10^{\left(-d_{2} / T V D\right)}\right]$ - where
$\mathrm{S}_{0} / \mathrm{S}=$ ratio of inner maze entrance cross-section area ($S_{0}=d_{0} h$) to maze cross-section area ($S=d_{M} h$)
$-d_{2}=$ distance from point A to door TVD $=$ tenth-value dist. $=2.06 \mathrm{~S}^{1 / 2}$
- Weekly neutron dose-equivalent at door

$$
H_{\mathrm{n}}=W_{L n} H_{n, D}
$$

Maze Door Neutron Shielding TVL

- 45 mm TVL m_{n} for borated polyethylene
"maze door shielding, a conservatively safe recommendation is that a TVL of 4.5 cm be used in calculating the borated
polyethylene (BPE) thickness requirement" [NCRP 151 p. 46]
- $161 \mathrm{TVL}_{n}$ for concrete wall adjacent to door
- " the average neutron energy at the maze entrance is reported to be $\sim 100 \mathrm{keV}$ " [also NCRP 151 p . 46]
- NCRP 79 TVL ${ }_{n}$ for concrete with 0.1 MV neutron energy

$$
\gg \mathrm{TVL}_{n}=155+56 * 0.1=161 \mathrm{~mm}
$$

Maze Capture Gamma TVL

- NCRP 151
"for very short mazes ... a lead TVL of 6.1 cm may be required" "mazes longer than 5 m ...TVL of only about 0.6 cm lead"
- Reading between the lines

Use 61 mm TVL for lead (NCRP 79) regardless of maze length
"The average energy of neutron capture gamma rays is 3.6 MeV "
» Assumed to apply to long mazes ($\mathrm{d}_{2}>5 \mathrm{~m}$)
» Use NCRP 151 Figure A. 1 TVLs at 3.6 MV for concrete / steel
"can range as high as 10 MeV " for very short mazes
» Short maze assumed to be $\mathrm{d}_{2} \leq 2.5 \mathrm{~m}$
» Use primary 10 MV TVLs (except 61 mm for lead vs. 57 mm 10 MV TVL)
"conservatively safe if one assumes that all neutron captures result in 7.2 MeV gamma rays" for direct-shielded doors
» Assumed to be conservatively safe for $2.5 \mathrm{~m}<\mathrm{d}_{2} \leq 5 \mathrm{~m}$ maze also » Interpolate NCRP 151 Table B.2 TVLs at 7.2 MV for concrete / steel

Table 11. Maze Neutron and Capture Gamma TVL Summary

Maze Neutron tenth-value layers (mm)
\because Lead \quad Concrete \quad Steel \quad Borated Poly

0.1	N/A	N/A	161	161	N/A	N/A	45

Capture Gamma tenth-value layers (mm)

MV							Borated Poly		Distance Pt. A to Door
	TVL1	TVLeq	TVL1	TVLeq	TVL1	TVL eq	TVL1	TVLeq	
3.6	61	61	330	330	95	95	817	817	$\mathrm{d}_{2}>5 \mathrm{~m}$

3.6	61	61	330	330	95	95	817	817
7.2	61	61	390	350	103	103	965	866
250	$\mathrm{~d}_{2}>5 \mathrm{~m}$							

10	61	61
10	61	61

Direct-Shielded Door

- Neutron Door is simply a secondary barrier

Typically more layers and different materials than a wall
» Lead to attenuate leakage photons
» Borated polyethylene to attenuate leakage neutrons

- Typically sandwiched between layers of lead » Steel covers
- Specialized shielding procedure adjacent to door
- Compensates for relatively small slant thickness in this location
- Vault entry toward isocenter similar to maze
- Vault entry away from isocenter is secondary barrier » But with specialized geometry

Factor of 2 to 3 Margin Recommended for Direct Shielded Doors

- NCRP 151 recommends considering capture gammas for direct-shielded doors (Section 2.4.5.2)

Recommendation is to add 1 HVL to leakage calculation for door only, but not for walls
» Rationale: Concrete in wall is more effective for capture gammas than material in door

- Equivalently, factor of 2 margin on shielded dose rate relative P/T
- Dose rate from HVAC duct above door comparable to dose rate through door

Additional reason to provide margin on door calculation

Direct-Shielded Door: Far Side of Entrance

- Extra material added to corner
- Lead to entrance wall
- Borated polyethylene or concrete beyond wall
- Uses standard secondary barrier calculation
- Goal: provide same protection as wall or door for path through corner

Direct-Shielded Door: Near Side of Entrance Wall Scatter

- Geometry similar to short maze

Maze calculation is reasonable to use

- Requires less material than far side of entrance

Lower unshielded dose rate Lower energy

- Wall scatter determines shielding for < 10 MV
- Not significant if high energy

Direct-Shielded Door: Near Side of Entrance Neutrons / Capture Gammas

- Geometry similar to short maze to use
- Requires less material than far side of entrance

Lower unshielded dose rate
Lower energy

Shielding for Heating, Ventilation, and Air Conditioning (HVAC) Ducts

- HVAC penetration is located at ceiling level in the vault
- For vaults with maze, typically located immediately above door
- For direct-shielded doors, located in a lateral wall parallel to the plane of gantry rotation as far away from isocenter as possible
- Ducts shielded with material similar to the door at entrance
- For direct-shielded door, thickness $1 / 2$ to $1 / 3$ of the door - Path through material is at a very oblique angle due to penetration location with slant factor between 2 and 3
Factor of at least 5 reduction in dose at head level (the protected location) vs, at the HVAC duct opening
- Even less material is is required for maze duct NCRP 151 example is $3 / 8^{\prime \prime}$ lead plus 1 " BPE extending 4 ft

[^0]Maze and Direct Shielded Door Calculation Examples
9. Maze with secondary leakage through door, 6 MV
10. Maze with secondary leakage through door, 18 MV
11. Direct shielded door in secondary barrier

Example 1: 18 MV Primary Concrete Barrier

1. Establish P/T for protected location $\mathrm{A}: \mathrm{P} / \mathrm{T}=0.1 \mathrm{mSv} / \mathrm{wk}$ ($\mathrm{P}=0.1 \mathrm{mSv} / \mathrm{wk}, \mathrm{T}=1$)
2. Measure distance from target to protected location (22 ft from target)
3. Measure (or read from annotations) the barrier material thickness (7 ft)
4. Determine TVLs based on MV (18) and material type (concrete)
5. Calculate unshielded dose rate, transmission, and shielded dose rate (add or increase material until shielded dose rate $<\mathrm{P} / \mathrm{T}$)

Example 1: P/T Calculation for Primary Barrier

Line	Parameter	Units	Value	Calculation
a	Design Dose Limit (P)	mSv/wk	0.1	
b	Occupancy Factor (T)		1	
c	Weekly Protect P/T Limit	mSv/wk	0.100	a/b
d	Dose Limit Per Hour	mSv/hr	0.02	
e	Dose per Patient Treatment	Gylpt	3	Default value
f	Patients per Day	pttday	30	Default value
g	Workload (W) per Week	Gy/wk	450	5*e*f
h	Max patient / hr	patient	6	
i	Max Workload / Hour (W_{n})	Gy/hr	3.6	h*e/5
j	Hourly Protect PIT Limit	mSv/wk	2.500	0.02 *g/i
k	P/T	mSv/wk	0.100	$\min \{\mathrm{c}, \mathrm{j}\}$

- Hourly protection limit does not impact P/T for high occupancy location
- Hourly protection limit may impact P/T for low occupancy locations in uncontrolled areas

Example 1: Shielded Photon Dose Calculation

Line	Parameter	Units	Value	Calculation
a	Machine X-ray Energy	MV	(18)	
b	Workload (W)	Gywk	450	
c	Use Factor		0.25	
d	Target to Protected	ft	(22)	
e	Point Distance	m	46.71	d*0.3048
f	Unshielded Dose	ms/lwk	$2.50 \mathrm{E}+03$	$1000 * \mathrm{~b} * \mathrm{c} / \mathrm{e}^{\wedge} 2$
9	Total Photon Transmission	,	(1.22E-05	see below
h	Shielded Photon Dose	mSv/w/	0.030	f*g

Photon transmission through concrete
$=0.1 * 10 \wedge[-(2134-450) / 430)]=1.22 \mathrm{E}-5$

TVLs are function of MV and Concrete

Example 2b. Recommended Primary Barrier Minimum Width in NCRP 151

- NCRP 151 recommends calculating barrier width at top of primary barrier

Requires ~ 1 ft increase in primary barrier width compared to traditional calculation in Example 2a.
Appropriate for new construction
Perhaps inappropriate for retrofit to existing vault
Especially for ceiling or exterior wall with no occupancy above ceiling

Example 4: 6 MV Additional Shielding with IMRT
Establish P/T for protected location Dressing room uncontrolled with partial occupancy ($\mathrm{T}=0.2$)
$\mathrm{P} / \mathrm{T}=0.10 \mathrm{mSv} / \mathrm{wk}$
Measure distance from target to protected location

14 ft from target to 1 ft beyond wall
3. Measure (or read from annotations) the barrier material thickness (26 in)
4. IMRT factor 2
50% IMRT workload with IMRT ratio 3
5. Facility expects increased usage Default 30 patients per day assumed vs. 2
6. Add additional lead to barrier until
 shielded dose rate is less than P/T Can be either inside or outside wall for
secondary barrier

Example 5: 15 MV Secondary Barrier Photon \& Neutron Leakage (Additional Shielding)

1. Establish P/T ($0.10 \mathrm{mSv} / \mathrm{wk}$)
2. Isocenter to protected location distance
Existing barrier 26 in concrete
3. Existing barrier 26 in concrete
4. IMRT factor 2 for photons, 1 neutrons Most IMRT is performed at 6 MV energy
5. Default 450 Gylwk workload
6. Calculate unshielded dose rate, transmission, and shielded dose rate
Add additional lead to barrier until shielded dose rate is less than P/T $2^{\prime \prime}$ lead added to inside of barrier No photoneutron generation for lead in secondary barriers

Example 5: 15 MV Secondary Barrier Photon and Neutron Leakage Calculation

Example 6: Secondary Barrier Scatter Fraction Calculation

Line	Parameter	Units	Value		Calculation
			w/o IMRT	with IMRT	
a	Max Field Size	cm	40	15	
b	Fraction of Workload		50\%	50\%	
c	Effective Field Area	$\mathrm{cm}^{\wedge} 2$	912.5		$\mathrm{b}_{1} * \mathrm{a}_{1} \wedge 2+\mathrm{b}_{2} * \mathrm{a}_{2} \wedge 2$
d	Effective Field Size	cm	30.2		sqrt(c)
e	Scatter Angle	deg	90		
f	Machine X-ray Energy	MV	15		
9	Scatter $/ 400 \mathrm{~cm}{ }^{\wedge} 2$		2.61E-04		Function of e \& f
h	Scatter Fraction		0.00060		g* $/ 400$

Illustrates using effective field size with $15 \times 15 \mathrm{~cm}$ IMRT field

Example 7: Secondary Barrier Adjacent to Primary
Establish P/T for protected location C: P/T $=0.1 \mathrm{mSv} / \mathrm{wk}$
Distance from isocenter to protected location: 22 ft
Secondary barrier 3 ft concrete, slant thickness $3 \mathrm{ft} / \cos \left(25^{\circ}\right)$
Calculate scatter fraction based on scatter angle and average field size
Calculate shielded dose rate comprised of photon leakage, neutron leakage and scatter using slant thickness for transmission (add material or increase thickness
until < P/T)

Example 7: Secondary Barrier Scatter Fraction Calculation

Line	Parameter	Units	Value	Calculation
a	Design Dose Limit (P)	mSv/wk	0.1	
b	Occupancy Factor (T)		1	
c	P/T	mSv/wk	0.100	a/b
d	Machine X-ray Energy	mv	18	
e	Vendor		Varian	

Line	Parameter	Units	Value		Calculation
			w/o IMRT	with IMRT	
a	Max Field Size	cm	40	40	
b	Fraction of Workload		50\%	50\%	
c	Effective Field Area	cm^2	1600.0		$\mathrm{b}_{1}{ }^{*} \mathrm{a}_{1} \wedge 2+\mathrm{b}_{2} \mathrm{a}_{2} \wedge 2$
d	Effective Field Size	cm	40.0		sqri(c)
e	Scatter Angle	deg	25		
f	Machine X-ray Energy	mv	18		
9	Scatter $/ 400 \mathrm{~cm} \wedge 2$		3.69E-03		Function of e \& f
h	Scatter Fraction		0.01477		$\mathrm{g} * \mathrm{c} / 400$

Illustrates using conservative $F=1600 \mathrm{~cm}^{2}$ field area assumption

Example 8: Scatter Adjacent to Primary Barrier
Establish P/T for location D: $P=0.02 \mathrm{mSv}, \mathrm{T}=0.2, \mathrm{P} / \mathrm{T}=0.10$ mSv/wk
Distance from isocenter to protected location: 14.5 ft
Secondary barrier $\mathbf{2 "}^{\prime \prime}$ lead and $30^{\prime \prime}$ concrete, 15° slant angle
4. Determine scatter fraction per 400 cm^{2} by interpolating scatter fraction table as a function of MV (18) and scatter angle $\left(30^{\circ}\right)$
5. Calculate effective field size, scatter fraction
6. Calculate shielded dose rate comprised of photon leakage, neutron leakage and scatter using
 slant thickness for transmission

Example 9: Conventional Maze, 6 MV

- Conventional maze similar to NCRP 151 examples

Axis of rotation is parallel to maze; maze extends full length of vault

- Machine energy is 6 MV

All scatter mechanisms must be calculated

Example 9: P/T and Average Field Size Calculation

- Protected location is in a controlled area (P=0.1 msv/wk) - NCRP 151 occupancy T=1/8 for extremely low traffic location Higher occupancy appropriate if close proximity to control area » e.g., $\mathrm{T}=0.5$ or $\mathrm{T}=1$ ($\mathrm{T}=1$ is assumed in example) Maximum shielded dose rate (P/T) is $0.1 \mathrm{mSv} / \mathrm{wk}$ for $\mathrm{T}=1$
- NCRP 151 examples uses $40 \times 40 \mathrm{~cm}^{2}$ field area for scatter

Weighted average field area with / without IMRT also valid » e.g., especially useful for existing vault door calculations》 Caution: Safety survey often performed without IMRT

Example 9b: Maze with Secondary Leakage Through Door - Wall Scatter

Example 9b: Wall Scatter Unshielded Dose Rate Calculation						Page 109
Line	Symbol	Parameter	Units	value	Calculation	
a	MV	Machine X -ray Energy	mv	6		
b	w	Workload	Gylwk	450		
c	f	Patient transmission		0.25	0.25 if MV ≤ 10	
d	d_{0}	Distance from target to primary barrier	${ }^{\text {ft }}$	13	measured	
e			m	3.96	d*0.3048	
f	$\mathrm{d}_{\text {c }}$	Distance from primary barrier wall to	${ }^{\text {ft }}$	26	measured	
g		maze inside opening	m	7.92	${ }^{\text {* }} 0.3048$	
h	d_{2}	Distance from maze inside opening to	${ }^{\text {ft }}$	19	measured	
i	d_{2}		m	5.79	$h^{*} 0.3048$	
j	d_{m}	Maze width	${ }^{\text {f }}$	7	measured	
k			m	2.13	$\mathrm{j} * 0.3048$	
L	h	Room height	t	10	measured	
m	h	Room height	m	3.05	L*0.3048	
n	α_{0}	1ss reflection coefficient	$1 / \mathrm{m}^{2}$	${ }^{0.0027}$	Table 8 a with 6 MV 75° scatter angle	
。		Effective field size	cm	40.0	see above	
p	A_{0}	Beam area at first reflection	m^{2}	2.51	($\left.\mathrm{e}^{*} \mathrm{ol} 100\right)^{\wedge 2}$	
q	α_{2}	2nd bounce scatter fraction $/ \mathrm{m}^{2}$		${ }^{0.0080}$	Table 8 with 0.5 MV 75° scatter angle	
r	A_{2}	Maze cross section	m^{2}	6.5	j*L	
s	u	Use Factor		0.25	Orientation with highest dose rate	
t	fH_{s}	Wall scatter unshielded dose rate	mSviwk	3.00E-04		

Example 9c: Maze with Secondary Leakage Through Door - Leakage Scatter

Example 9c: Leakage Scatter Unshielded Dose Rate Calculation					
Line	Symbol	Parameter	Units	Value	Calculation
a	MV	Machine X-ray Energy	MV	6	
b	w	Workload	Gylwk	450	
c		Leakage Fraction	\%	0.10\%	
d		IMRT Factor		2	
e		Distance from target to wall at maze end	ft	27	measured
f	$\mathrm{d}_{\text {sec }}$	Distance from target to wall at maze end	m	8.23	$\mathrm{d} * 0.3048$
9			$\mathrm{ft}^{\text {f }}$	28	measured
h	d_{22}	Distance from wall at maze end to door	m	8.53	f*0.3048
i	w_{1}	Wall width seen from door	ft	10	measured
j	w_{1}	Wall widh seen from door	m	3.05	h*0.3048
k	h		ft	10	measured
L	h	Room height	m	3.05	$\mathrm{j} \times 0.3048$
m	α_{1}	1sr reflection coefficient	1/m m^{2}	0.0183	Table 8b with 1.4 MV 0° Reflection angle
n	A_{1}	Scatter area	m^{2}	9.3	i*k
-	U	Use Factor		1	Calculation does not depend on orientation
p	$\mathrm{H}_{\text {Ls }}$	Leakage scatter unshielded dose rate	mSv/wk	3.10E-02	

Example 9d: Maze with Secondary Leakage Through Door - Direct Leakage

Example 10: Conventional Maze, 18 MV

- Same maze layout as Example 1 Conventional maze similar to examples in NCRP 151
- Mechanisms included in door calculation

Neutron mechanisms dominate
 shielded dose

- Direct leakage must be calculated With door also contributing to attenuation of direct leakage
- Scatter mechanisms need not be calculated Calculations are included to illustrate that scatter is negligible

Door: 1" lead, 3 " borated polyethylene with 0.25 " steel covers

Example 10e: Capture Gamma Unshielded Dose Rate Calculation

Line	Symbol	Parameter	Units	Value	Calculation
a	MV	Machine X-ray Energy	MV	18	
a	w	Workload	Gylwk	450	
c	$\varphi_{\text {A }}$	Neutron Fluence at Point A per Gy	$\mathrm{n} / \mathrm{m}^{2} / \mathrm{Gy}$	5.60E+09	see above
d	d_{2}	Distance from maze opening (Point A)	ft	19	measured
e		to door	m	5.79	$\mathrm{d} * 0.3048$
f	TVD	Tenth-Value Distance	m	5.4	3.9 if a $<18,5.4$ otherwise
9	K	Ratio Capture Gamma Dose-Equivalent to Neutron Fluence		6.9E-16	Constant
h	h_{φ}	Capture Gamma Unshielded Dose at Door per Dose at Isocenter	Sv/Gy	3.27E-07	g*c*10^(-e/f)
i	$\mathrm{H}_{\text {cg }}$	Capture Gamma Unshielded Dose Rate	mSv/wk	1.47E-01	1000*a*h

Example 10e: Maze Neutron Unshielded Dose Rate Calculation

Line	Symbol	Parameter	Units	Value	Calculation
a	w	Workload	Gy/wk	450	
b	φ_{A}	Neutron Fluence at Point A per Gy	$\mathrm{n} / \mathrm{m}^{2} / \mathrm{Gy}$	$5.60 \mathrm{E}+09$	See above
c	d_{2}	Distance from maze opening (Point A)	ft	19	measured
d		to door	m	5.79	c*0.3048
e			ft	9	measured
f	d_{0}	Inner Maze Entrance Width	m	2.74	e*0.3048
g	h	Height	${ }^{\text {H }}$	10	measured
h	h	Inner Maze Entrance Height	m	3.05	g*0.3048
i	S_{0}	Inner Maze Cross-Sectional Area	m^{2}	8.36	f*h
j		Maze Width	ft	7	measured
k	d_{m}		m	2.13	$\mathrm{j} * 0.3048$
L		Average Height Along Maze	H	10	measured
m	h_{m}	Average Height Along Maze	m	3.05	L*0.3048
n	S	Maze Cross-Sectional Area	m^{2}	6.50	i*m
-	TVD ${ }_{\text {n }}$	Maze Neutron Tenth-Value Distance	m	5.25	$2.06 * \operatorname{sqrin}(\mathrm{n})$
p	$\mathrm{H}_{\mathrm{n}, \mathrm{D}}$	Neutron Unshielded Dose-Equivalent at Door per Dose at Isocenter	SviGy	1.23E-06	$\underset{\left[1.64 * 10^{\wedge}(-\mathrm{d} / 1.9)+10^{\wedge}(-\mathrm{d} / 0)\right]}{2.4 \mathrm{~s})}$
q	H_{n}	Neutron Unshielded Dose-Equivalent Rate at Door	Sv/wk	5.52E-01	1000 * $*^{\text {p }}$

Example 10 P/T and Average Field Size Calculation

Line	Parameter	Units	Value	Calculation
a	Machine X-ray Energy	mSv/wk	18	
b	Workload / Treatment	Gy/pt	3	NCRP 151 Default
c	Patients per Day	ptday	30	NCRP 151 Default
d	Workload (W)	Gylwk	450	5*
e	Design Dose Limit (P)	mSv/wk	0.1	
f	Occupancy Factor (T)		1	
g	P/T	mSv/wk	0.100	e/f

Example 10a: Maze with Secondary Leakage
Through Door - Patient Scatter

Example 10a: Patient Scatter Unshielded Dose Rate Calculation

Line	Symbol	Parameter	Units	Value	Calculation
a	MV	Machine X-ray Energy	mv	18	
b	w	Workload	Gylwk	450	
c	$\mathrm{d}_{\text {sca }}$	Distance from target to isocenter	m	1.00	
d	$\mathrm{d}_{\text {sec }}$	Distance from isocenter to wall at maze	ft	27.5	measured
e		end	m	8.38	d*0.3048
f		Distance from wall at maze end to door	ft	28	measured
9	dzz^{2}	Distance from wall at maze end to door	m	8.53	f*0.3048
h		Wall width seen from door	ft	10	measured
i	w_{1}	Wall wheen from door	m	3.05	$\mathrm{h} * 0.3048$
j	h	Room height	ft	10	measured
k		Room height	m	3.05	j*0.3048
L	A_{1}	Scatter area	m^{2}	9.3	i*k
m	a	Patient scatter fraction ($400 \mathrm{~cm}^{2}$ field)		8.64E-04	See Table $5\left(45^{\circ}\right)$ Function of MV
n	α_{1}	2nd bounce scatter fraction/m ${ }^{2}$		$2.20 \mathrm{E}-02$	Table 8a, $0.5 \mathrm{MV}, 45^{\circ}$
o	F	Average field area	cm^{2}	1600	See above
p	u	Use Factor		0.25	Orientation with highest dose rate
9	$\mathrm{H}_{\text {ps }}$	Patient scatter unshielded dose rate	mSv/wk	1.55E-02	

Example 10b: Maze with Secondary Leakage
Through Door - Wall Scatter

Example 10c: Leakage Scatter Unshielded Dose Rate Calculation					
Line	Symbol	Parameter	Units	Value	Calculation
a	MV	Machine X-ray Energy	mv	18	
b	w	Workload	Gy/wk	450	
c		Leakage Fraction	\%	0.10\%	
d		IMRT Factor		2	
e	d	Distance from target to wall at maze end	ft	27	measured
f		Distance from targeto wall ar maze end	m	8.23	d*0.3048
g	d_{2}	Distance from wall at maze end to door	th	28	measured
h	a_{27}	Distance from wall at maze end to door	m	8.53	f*0.3048
i		Wall width seen from door	ft	10	measured
j	w_{1}	Warl widh seen from door	m	3.05	h*0.3048
k			ft	10	measured
L	h	Room height	m	3.05	$\mathrm{j} * 0.3048$
m	α_{1}	1sr reflection coefficient	1/m ${ }^{2}$	0.0179	Table 8b with 1.4 MV 0° Reflection angle
n	A_{1}	Scatter area	m^{2}	9.3	i*k
-	U	Use Factor		1	Calculation does not depend on orientation
p	$\mathrm{H}_{\text {LS }}$	Leakage scatter unshielded dose rate	mSv/wk	3.03E-02	$\begin{gathered} 1000 * b * o *_{c} * d * m * n \\ l(f \wedge 2 * h \wedge 2) \end{gathered}$

Example 11b: Direct Shielded Door - Additional Shielding for Far Side of Door

Example 11a: Direct Shielded Door Thickness Calculation [2 of 2]

Line	Parameter	Units	Photon Leakage	Photon Scatter	$\begin{aligned} & \text { Neutron } \\ & \text { Leakage } \\ & \hline \end{aligned}$	Calculation
a	Workload / Treatment	Gy/pt	3	3	3	NCRP 151 default
b	Patients per Day	pttday	30	30	30	NCRP 151 default
c	Workload (W)	Gylwk	450	450	450	5*a*b
d	Use Factor	Ratio	1	1	1	
e	Fraction		1.00E-03	1.70E-03	1.5E-03	18 MV values
f	IMRT Factor		2	1	1	
g	Isocenter to Protected	ft	23.0	23.0	23.0	
h	Point Distance	m	7.0	7.0	7.0	g*0.3048
i	Unshielded Dose Rate	mSv/wk	$1.83 \mathrm{E}+01$	1.55E+01	1.37E+01	$1000 *{ }^{*} \mathrm{~d}^{*} \mathrm{*}+\frac{\mathrm{fl}}{}{ }^{\wedge} 2$
j	Transmission		8.44E-04	8.44E-07	8.81E-04	see below
k	Shielded Dose Rate	mSviwk	0.0154	0.0000	0.0121	i*j
L	Total Shielded Dose Rate	mSv/wk		0.0276		Sum row k

Barier	$\begin{array}{\|c\|} \hline \text { Material } \\ \text { Thickness } \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline \text { Slant } \\ \text { Thickness } \\ \hline \mathrm{mm} \\ \hline \end{array}$	Material	Photon Leakage			Scater			Neutron	
				TVL1 (mm)	TVLe (mm)	Trans.	TVL1 (mm)	TVLe (mm)	Trans.	TVL (mm)	Trans.
Inside Layer	0.25	7	steel	${ }^{96}$	${ }^{96}$	${ }^{8.39 E-01}$	${ }^{68}$	${ }^{68}$	7.80E-01	N/A	$1.00 E+00$
Layer +2	2.5	73	Lead	57	57	5.17E-02	32	32	5.11-03	N/A	$1.005+00$
Layer \#3	10	293	Borated Poly	${ }^{891}$	${ }^{842}$	4.48E-01	230	230	5.31E-02	96	${ }^{\text {8.81-04 }}$
Layer ta	2.5	73	Lead	57	57	5.17-02	32	32	5.11E-03	N/A	1.00E+00
Outside Layer	0.25	7	Steel	96	96	8 8.3E-01	68	68	7.80E-01	N/A	$1.00 \mathrm{E}+00$
Slant Angl	grees:	30		18 Mv	Total	8.44-.04		Total	8.44E-07	Total	${ }_{8.81 E-04}$

Example 11b: Direct Shielded Door Far Side of Entrance Shielded Dose Rate Calculation [2 of 3]

Example 11c: Direct Shielded Door Near Side of Entrance Shielded Dose Rate Calculation [1 of 9]

Near Side of Door Material Thickness Calculation

Lin	ame	Units	Value	Calculation
a	Door Overlap	in	7.5	
b	Gap Between Barrier and Door	in	0.5	
c	Angle at Near Side Wall	deg	45.0	
d	Wall Overlap Beyond Entrance	in	7.0	$\left(\mathrm{a}^{+t a n}(\mathrm{c}) \cdot \mathrm{b}\right) / \tan (\mathrm{c})$
e	Thickness of Lead Added to Wall	in	1.5	
f	Remaining Concrete Wall	in	5.5	d-e
g	Material Added beyond Wall	in	3	

- Material added to wall selected as required to make shielded dose rate less than dose limit

Example 11c: Direct Shielded Door Near Side of
Entrance Shielded Dose Rate Calculation [3 of 9]

Example 11c: Direct Shielded Door Near Side of Entrance Shielded Dose Rate Calculation [4 of 9] wall Scatter Transmission for Near Side of Door

Line	Symbol	Parameter			Units	value	Calculation
a	MV	Machine X -ray Energy			mv	18	
b	w	Workload			Gylwk	450	
c	f	Patient transmission				0.27	0.27 if $\mathrm{MV} \geq 10$
d	$\mathrm{d}_{0} \mathrm{D}^{\text {d }}$	Distance from target to primary barrier wall			${ }^{4}$	25	measured
e					m	7.62	$\mathrm{d} * 0.3048$
f	d_{r}	Distance from primary barrier wall to near side of maze entrance			t	9	measured
g					m	2.74	${ }^{*} 0.3048$
h	α_{0}	Reflection coefficient			$1 / \mathrm{m}^{2}$	${ }^{0.0016}$	Table 8 a with 18 MV 85° scatter angle
i		Effective field size			cm	40.0	see above
j	A_{0}	Beam area at far maze wall			m^{2}	9.29	(e ${ }_{\text {i }}$ (1100) ${ }^{2}$
k	U	Use Factor				0.25 Or	tation with highest
L	fH_{s}	Wall scatter unshielded dose			mSviwk 1.0	$1.03 \mathrm{E}+00$	
Near Side of Door Wall Scatter Transmission Calculation							
Barrier		$\begin{array}{\|c\|} \hline \text { Material } \\ \text { Thickness } \\ \hline \end{array}$	$\begin{array}{c\|} \hline \text { Slant } \\ \text { Thickness } \end{array}$	Material	Wall Scatter		$\begin{aligned} & \text { Photon } \\ & \text { Trans. } \end{aligned}$
		inches	mm		TVL1 (mm)) TVLe (mm)	
Inside Layer		er	54	Lead	8	8	1.84E-07
Layer \#2		5.5	198	Concrete	160	160	5.82E-02
Layer \#3		$\underline{\square}$	108	Borated Poly	- 396	396	$5.34 E-01$
Slant Angle (degrees):					0.3 MV	Total:	5.73E-09

Example 11c: Direct Shielded Door Near Side of Entrance Shielded Dose Rate Calculation [6 of 9]

Line	Symbol	Parameter	Units	value	Calculation
a	MV	Machine X-ray Energy	mv	18	
a	W	Workload	Gy/wk	450	
c	$\varphi_{\text {A }}$	Neutron Fluence at Point A per Gy	$\mathrm{n} / \mathrm{m}^{2} / \mathrm{Gy}$	$7.32 \mathrm{E}+09$	see above
d	d_{2}	Distance from maze opening	$\mathrm{tt}^{\text {d }}$	9	measured
e		(Point A) to door	m	2.74	d*0.3048
f	TVD	Tenth-Value Distance	m	5.4	3.9 if a<18, 5.4 otherwise
9	K	Ratio Capture Gamma DoseEquivalent to Neutron Fluence		6.90E-16	Constant
h	h_{φ}	Capture Gamma Unshielded Dose at Door per Dose at Isocenter	Svigy	1.57E-06	$g *{ }^{*} 10^{\wedge}(-e / f)$
i		Capture Gamma Unshielded Dose Rate	mSv/wk	7.06E-01	$1000 * a * h$

Maze Neutron Unshielded Dose-Equivalent Calculation (Modified Kersey Method)					
Line	Symbol	Parameter	Units	Value	Calculation
a	W	Workload	Gy/wk	450	
b	$\varphi_{\text {A }}$	Neutron Fluence at Point A per Gy	$\mathrm{n} / \mathrm{m}^{2} / \mathrm{Gy}$	$7.32 \mathrm{E}+09$	See above
c	d_{2}	Distance from maze opening	ft	9	measured
d		(Point A) to door	m	2.74	c*0.3048
e	d_{0}	Inner Maze Entrance Width	ft	4	measured
f		Wer Maze Enrax Wa	m	1.22	e*0.3048
g		Iner Maze Entrace Heioht	ft	10	measured
h		mner Maze Enrance Heigh	m	3.05	$\mathrm{g} * 0.3048$
i	S_{0}	Inner Maze Cross-Sectional Area	m^{2}	3.72	f*h
j	d_{m}	Maze Width	ft	4	measured
k	d_{m}		m	1.22	j*0.3048
L			ft	10	measured
m	h_{m}	Average Height Along Maze	m	3.05	L*0.3048
n	S	Maze Cross-Sectional Area	m^{2}	3.72	i*m
o	TVD_{n}	Maze Neutron Tenth-Value Distance	m	3.97	2.06 * sqrt(n)
p	$\mathrm{H}_{\mathrm{n}, \mathrm{D}}$	Neutron Unshielded Dose-Equivalent at Door per Dose at Isocenter	Sv/Gy	4.62E-06	
q		Neutron Unshielded Dose-Equivalent Rate at Door	Sv/wk	$2.08 \mathrm{E}+00$	1000 *a*p

Example 11c: Direct Shielded Door Near Side of Entrance Shielded Dose Rate Calculation [8 of 9]

Barrier	Material	Slant	Material	Neutrons		$\begin{gathered} \text { Neutron } \\ \text { Trans. } \end{gathered}$
	inches	mm		TVL1 (mm)	TVLe (mm)	
Inside Layer	1.5	54	Lead	1000000	1000000	1.00E+00
Layer \#2	5.5	198	Concrete	161	161	5.93E-02
Layer \#3	3	108	Borated Poly	45	45	$4.03 \mathrm{E}-03$
Layer \#4						$1.00 \mathrm{E}+00$
Outside Layer						1.00E+00
Slant Angle (degrees):		45		0.1 mV	Total:	2.39E-04
Capture Gamma Transmission for Near Side of Maze Entrance						
Barrier	Material	$\begin{array}{\|c\|} \hline \text { Slant } \\ \text { Thickness } \end{array}$	Material	Capture Gammas		PhotonTrans
	inches	mm		TVL1 (mm)	TVLe (mm)	
Inside Layer	1.5	54	Lead	61	61	1.31E-01
Layer \#2	5.5	198	Concrete	410	370	3.01E-01
Layer \#3	3	108	Borated Poly	1015	916	7.63E-01
Layer \#4						1.00E+00
Outside Layer						1.00E+00
Slant Angle (degrees):		45		10 MV	Total:	3.00E-02

Example 11c: Direct Shielded Door Near Side of
Entrance Shielded Dose Rate Calculation [9 of 9]

Shielded Dose at Door						
Line	Parameter	Units	Wall	Direct	Neutrons	Capture
a	Calc. Unshielded Dose	mSviwk	$1.03 \mathrm{E}+00$	6.36E-03	2.08E+00	7.06E-01
b	Total / Calc. Dose Rate		2.64	1	1	1
c	Unshielded Dose Rate	mSv/wk	$2.73 \mathrm{E}+00$	6.36E-03	2.08E+00	7.06E-01
b	Energy for TVL	MV	0.3	18	0.1	10.0
c	Transmission		5.73E-09	1.00E+00	2.39E-04	3.00E-02
d	Shielded Dose	mSviwk	0.0000	0.0064	0.0005	0.0212
e	otal Shielded Dos	mSv/wk				

[^0]: \{ 1. Basic primary barrier photon shielded dose rate
 2. Minimum width of primary barrier
 (3. Secondary barrier photon leakage
 4. Secondary barrier photon leakage with IMRT
 5. Secondary barrier photon \& neutron leakage with IMRT
 6. Secondary barrier photon \& neutron leakage plus patient scatter with IMRT

 7,8. Secondary barrier calculation including slant factor

