Shielding Design Methods for Linear Accelerators

Melissa Martin, MS, FACR, FAAPM, FACMP

Therapy Physics Inc., Gardena, CA 90248

Melissa@TherapyPhysics.com

AAPM 51st Annual Meeting

Anaheim, CA July 27, 2009

Key Messages in This Presentation

- Each linear accelerator vault is unique
- Challenges in generating a shielding report
 - Identifying the locations around the vault that require a calculation
 - Appropriately calculating the shielded dose rate for these locations
 - Communicating the calculation implications to the architect and contractor

Page 2

- Do not expect to generate a report simply by filling numbers in a spreadsheet
 - Assumptions implicit in spreadsheet may not match vault
 Especially true if you do not understand the calculations in the spreadsheet
 - » Including how to adapt the calculations to the vault

Required Information for Shielding Designs

 Architectural drawings of equipment layout in room

Page 3

- Architectural drawings of surrounding areas indicating usage of these areas - offices, restrooms, corridor, exterior, etc.
- Elevation view of room or construction of floor and ceiling and distance between floors

Therapy Shielding Calculations Are Primarily Based on NCRP Report No. 151

- Report Title: "Structural Shielding Design and Evaluation for Megavoltage X- and Gamma-Ray Radiotherapy Facilities"

 Released December 31, 2005
- Calculations here illustrate the NCRP 151 recommendations
- Previous NCRP reports are also cited in some cases

 e.g., NCRP 51 and NCRP 79
- NCRP 151 recommendations are addressed throughout this presentation

TRUCTURAL SHIELDING DESIGN AND EVALUATION OR MEGAVOLTAGE I- AND GAMMA-RAY IADIOTHERAPY FACILITIES

NCRP

Page 6

Topics

- Primary and Secondary Barriers
 - Simple primary barrier calculations, including required width
 Secondary barrier calculations
 - » Photon leakage, neutron leakage, scatter, and IMRT impact
 - Laminated primary barrier calculations (i.e., barrier with metal)
 - Tapered ceilings
 Lightly shielded wall for vault below ground level
 - Ŭ,
- Vault entrances
 - Mazes (five examples with five different layouts)
 - Direct-shielded doors
- Skyshine
 - Photon and neutron skyshine for lightly-shielded ceiling
 - Generally not recommended for new construction
 - May be appropriate for cost-effective retrofit to existing vault

Linear Accelerator Energy

- BJR #11 megavoltage (MV) definition used here
 British Journal of Radiology (BJR) Supplement No. 11
- Comparison of BJR #11 and BJR #17 MV definitions

BJR #11 MV	4	6	10	15	18	20	24
BJR #17 MV			10	16	23	25	30

NCRP 151 Recommended Workload [1 of 2]

- Workload (W)
 - "Time integral of the absorbed-dose rate determined at the depth of the maximum absorbed dose, 1 m from the source"
- 450 Gy/wk maximum weekly workload cited in NCRP 151
 - Kleck (1994)
 - » Maximum 350 Gy/wk for 6 MV
 - » Maximum 250 Gy/wk at high MV for dual energy
 - Mechalakos (2004)
 - » Maximum 450 Gy/wk for 6 MV single-energy
 - » Maximum 400 Gy/wk for dual energy
 - NCRP 151 Section 7 examples assume 450 Gy/wk at high MV

450 Gy / wk absorbed dose is the default weekly workload

NCRP 151 Recommended Workload [2 of 2]

- 30 patients treated per day is default assumption
 NCRP 151 default recommendation for busy facility
 - Can also base on a conservative estimate influenced by factors such as historical workload and demographics
 e.g. lower patient workload for facility in small town
- 3 Gy absorbed dose per patient treatment default
 - Assumption used in NCRP 151 Section 7 examples
 Consistent with 450 Gy/wk with 30 patients treated per day
 - » 450 Gy/wk = 5 treatments/wk/patient x 3 Gy/treatment x 30 patients
 - Equivalent to 219 cGy treatment fraction (0.73 tissue maximum ratio)
 Intentionally somewhat conservative (compared to ~200 cGy fraction) since no specific allowance for quality or maintenance workload
 - Can be based on direct knowledge of accelerator use instead
 » But preferable to stick with the NCRP 151 default

450 Gy/wk is consistent with 30 patients & 3 Gy/treatment

Workload Assumptions for Dual Energy Linear Accelerators

- Preferable to assume full 450 Gy/wk workload is at the higher energy
 - Simpler, more conservative calculation
 - Appropriate for new construction
- For existing construction, dual-energy calculation may be appropriate
 - If modifications to existing vault are difficult and size constrained
 Split 30 patient workload to ensure at least 250 Gy/wk at higher MV
 With 17 patients. 255 Gy/wk at higher MV

		S ,		
Mode	Gy/wk/patient	Patients/day	W (Gy/wk)	
Single x-ray mode	15	30	450	
Dual x-ray mode	15	30	450	At least 25
High-X mode	15	17	255	Gy/wk at h
Low-X mode	15	13	195	MV mode

Radiation Protection Limits

Shielding Design Goal (P)

Level of dose equivalent (H) used in the design calculations
 Applies to barriers designed to limit exposure to people
 Limiting exposure to unoccupied locations is not the goal
 Stated in terms of mSv at the point of nearest occupancy

Page 10

Page 12

- Recommended values for shielding design goal
- 0.10 mSv/week for controlled areas
 0.02 mSv/week for uncontrolled areas
- Typical international shielding design goals
 - 0.12 mSv/week for controlled areas
 - 0.004 mSv/week for uncontrolled areas

Controlled Areas

- Limited-access area in which the occupational exposure of personnel to radiation or radioactive material is under the supervision of an individual in charge of radiation protection
- Access, occupancy and working conditions are controlled for radiation protection purposes
- Areas are usually in the immediate areas where radiation is used, such as treatment rooms and control booths, or other areas that require control of access, occupancy, and working conditions for radiation protection purposes
- The workers in these areas are those individuals who are specifically trained in the use of ionizing radiation and whose radiation exposure is usually individually monitored

Uncontrolled Areas

- All other areas in the hospital or clinic and the surrounding environs
- Trained radiation oncology personnel and other trained workers, as well as members of the public, frequent many areas near controlled areas such as examination rooms or restrooms
 - Choice of appropriate occupancy factors ensures the protection of both those who are occupationally exposed as well as others who might be exposed in these areas

Radiation Protection Limits for Locations

- Protected location
 - Walls: 1 ft beyond the barrier
 - Ceilings: 1.5 ft above the floor of the room above the vault
 - Floors: 5.5 ft above the floor of the room below
- Permissible dose at protected location depends on occupancy
- Occupancy factor (T): Fraction of time a particular location may be occupied
- Maximum shielded dose rate at protected location: P/T
 Assuming occupancy factor T for protected location

Max shielded dose rate traditionally referred to as P/T

NCRP 151 Recommended Occupancy

 T=1: Areas occupied full-time by an individual) e.g. administrative or clerical offices; treatment planning areas, treatment control rooms, nurse stations, receptionist areas, attended waiting rooms, occupied space in nearby building Page 14

Page 16

Page 18

- T= 0.5: Adjacent treatment room, patient examination room adjacent to shielded vault
- T = 0.2: Corridors, employee lounges, staff rest rooms
- T = 0.125: Treatment vault doors
- T = 0.05: Public toilets, unattended vending rooms, storage areas, outdoor areas with seating, unattended waiting rooms, patient holding areas, attics, janitor's closets
- T = 0.025: Outdoor areas with only transient pedestrian or vehicular traffic, unattended parking

Occupancy Factor Selection

- For interior locations, T=1 and T=0.2 are most common
 T = 1 for work locations
 - T = 0.2 for locations not occupied continuously
- For exterior locations, T = 0.05 is most common
- T < 1 now appropriate for some controlled locations

 <u>Use with T = 0.125 for vault entrance with caution: any higher occupancy location further away must also be protected</u>
 - T = 0.5 for adjacent vault appears to be reasonable assumption
- Select T = 0.05 for interior locations with caution
 Should be very unlikely to be occupied (storage, attic, closets)
- T = 0.025 for exterior locations with restricted access
 NRC hourly limit is more constraining for unrestricted locations

Use Factor

Page 1

- Use Factor (U) is the fraction of the workload for which the primary beam is directed at the barrier in question
- Traditionally U = 0.25 for lateral barriers, ceiling, & floor
- U = 0.1 for tapered portions of ceiling barrier (Example 11)
- Applies to primary barrier calculations, usually not secondary
- NCRP 151 Table 3.1 below consistent with these values
 TBI may require deviation from these values

90º da	ntry angle i	ntervals		45° gantry angle intervals			
Angle Interval	U (percent)	Standard Deviation	1	Angle Interval Center	U (percent)	Standard Deviation (percent)	
Center	(percent)	(percent)		0º (down)	25.6	4.2	
0º (down)	31.0	3.7		45° and 315°	5.8 (each)	3.0	
90° and 270°	21.3 (each)	4.7		90° and 270°	15.9 (each)	5.6	
180º (up)	26.3	3.7		135° and 225°	4.0 (each)	3.3	
				180º (up)	23.0	4.4	

Hourly Limit for Uncontrolled Areas

- Recommendation is based on maximum Time-Averaged Dose Equivalent Rate (TADR) per hour (NCRP 151, 3.3.2)
 TADR synonymous with shielded dose rate in this presentation
- Calculation adjusts weekly TADR (R_w) to hourly TADR (R_h) $R_h = (M/40) R_w$
 - h (m) (b) i
 - where M = ratio of maximum to average patient treatments per hour
 - Shielding must be sufficient so that $\rm R_h \leq 0.02~mSv/wk~NRC$ limit
- More realistic than traditional U=1 recommendation
 - Several beam orientations are almost always used for each patient
 - Exception: 35 Gy/hr with U=1 for a lateral barrier used for TBI

NCRP 151 eliminates traditional U=1 assumption

Hourly Limit for Uncontrolled Areas: Recommended Approach

- Max patients / hour at highest energy: Six
 - Maximum in any one hour estimated as one each 10 minutes
 Max workload per hour (W_x) is 6 patients x 3 Gy/patient = 18 Gy
- Max weekly P/T (mSv/wk) = 0.02 (mSv/hr) W (Gy/wk) / W_h (Gy/hr)
 where W = 450 Gy/wk (single/dual) or W=255 Gy/wk (at high MV)

Mode	Patients per day	W (Gy/wk)	Max Patients per hour	Gy per Patient Treatment	Max Gy/hr (W _h)	Weekly Max P/T (mSv/wk)	Equiv. Min T	Max P/T applies to
Single MV mode	30	450	6	3	18	0.500	0.040	both primary
Dual MV mode	30	450	6	3	18	0.500	0.040	& secondary
High MV mode	17	255	6	3	18	0.283	0.071	barriers
Low MV mode	13	195	(High MV)	3	10	0.203	0.071	Darriers

- Minimum occupancy (T) = W_h (Gy/hr) / W (Gy/wk)
 Hourly NCR limit and weekly NCRP 151 limit are both 0.02 mSv
 Implies full benefit of T=0.025 applies only to restricted locations
 - implies full benefit of 1=0.020 applies only to restricted location

Linac		ad		crete	St	eel		rth	Borat	
MV	TVL1	TVLe	TVL1	TVLe	TVL1	TVLe	TVL1	TVLe	TVL1	TVL
4	57	57	350	300	99	99	549	470	866	743
6	57	57	370	330	100	100	580	517	916	817
10	57	57	410	370	110	110	643	580	1015	916
15	57		440	410	110	110	690	643	1089	101
18	57		450	430	110	110	705	674	1114	106
20	57	57	460	440	110	110	721	690	1138	108
25	57	57	490	460	110	110	768	721	1213	113
NCRP 151 Table B.2 borated of y = 0.5 borated of y = 0.55										51, p. 6 151, p.

TVLs for Other Material

- High density concrete

- Alternative to lead / steel if wall must have limited thickness
- Generally construction uses blocks instead of poured concrete
 Mixers not designed for use with high density aggregates
- Photon TVL based on density relative normal concrete 147 lb/ft³
 ypically 288 lb/ft³ for primary barriers, 240 lb/ft³ secondary
- Neutron TVL considered to be the same as normal concrete
 With boron added to compensate for lower hydrogen content
- Conventional concrete block
 - Generally less than 147 lb/ft³ density, so adjust TVLs accordingly
- Asphalt may provide ceiling shielding
 - Parking lot placed over top of vault
 - Typical density is 2.0 g/cm³
 - Resulting in TVL 1.18 times concrete TVL

Typical Primary Concrete Barrier

 Primary barrier calculation tends to be relatively accurate
 Unlike secondary barrier calculation, which tends to be conservative

Page 22

Page 24

- Desirable to have factor of 2 or 3 margin for shielded dose rate to account for variation in concrete density
 NCRP 151 factor of 2.7 for primary barriers with metal above 10 MV is reasonable goal for all primary barriers
- Typical concrete primary barrier thickness (ft)
 P/T 6 MV 18 MV

P/T	6 MV	18 MV
0.02	6.5	8
0.1	6	7.5
0.2	5.5	7
0.4	5	6.5 to 7
0.8	4.5 to 5	6

 Shielding report should emphasize that construction contracts specify 147 lb/ft³ concrete density

Factor of 2 to 3 Margin Recommended for Primary Shielded Dose Rate Calculation McGiney & Butter (1941) Data Proton Dese Requirement Ref (1941)

- 2.7 margin recommended for laminated barriers by NCRP 15^o
 Based McGinley & Butker (1994)
 - Attributed to capture gammas
- Safety survey vs. calculated dose rate indicates factor 2 to 3 appropriate for all primary barriers
 - Likely due to variation in concrete density, not capture gammas
 - 2.7 recommended by NCRP
 151 for laminated barriers is appropriate goal for all barriers

		Line	Calculate	d	Mea	sured	M	eas / Calc	
	1	а	27.5		5	5.6	1	2.0	
D	<u>, 1</u>	b	3.3		3	3.3		1.0	
		с	11.6		3	1.1		2.7	
		d	1.9	1.9		1.9		1.0	
		e	108.3		24	14.0		2.3	
	f 5.9				6	5.7		1.1	
	в	arriers w	ith concrete	• •	nlv	Shie	elde	ed Dose (m	Sv/wk)
ľ	Line	Protect	ed Location	Г	P/T	Calc	;	Meas	Ratio
ĺ	а	1	oilet	1	0.080	0.04	2	0.009	0.2
ĺ	ь	1	oilet	1	0.080	0.03	7	0.069	1.9
ĺ	с	Adjad	Adjacent Vault			0.031		0.024	0.8
ĺ	d	Adjad	Adjacent Vault			0.03	4	0.031	0.9
ĺ	e	Adjad	ent Vault	1	D.100	0.03	1	0.031	1.0
ĺ	f	Adjad	ent Vault		D.100	0.02	2	0.042	1.9
ĺ	g	Adjad	ent Vault	1	D.100	0.03	Э	0.100	2.6
	h	Exte	rior Wall		D.165	0.11	5	0.115	1.0
	i i	Exte	rior Wall	1	D.165	0.03	4	0.069	2.1
	j	Exte	rior Wall	1	D.165	0.03	1	0.076	2.5
ĺ	k	C	eiling	1	0.320	0.13	6	0.122	0.9
ĺ									
Ì		Lamin	ated Barrier	s	1	Shie	elde	ed Dose (m	Sv/wk)
I	Line	Protect	ed Location		P/T	Calc	:	Meas	Ratio
	a	0	Office	1	0.020	0.00	6	0.003	0.5
ĺ	b	C	eiling	1	0.320	0.00	В	0.005	0.7
Ī	с	C	eiling	1	0.320	0.11	в	0.139	1.2

Page 21

Directly Solving for Barrier Thickness

- NCRP 151 typically illustrates calculations by solving for the required thickness instead of directly calculating time-average dose rate
- Transmission factor B_{pri}
 Reciprocal of required attenuation

$$B_{pri} = \frac{P d_{pri}^2}{W U T}$$

- Number of tenth-value layers (TVLs): n = log₁₀(B_{pri})
- Required barrier thickness
 - $t_c = TVL_1 + (n-1)TVL_e$

"Two Source Rule"

Applicable when required thickness is calculated for more than one type of radiation

Page 25

- If thickness required is comparable for two types of radiation, add 1 HVL to the larger thickness
- If the two thicknesses differ by a tenth-value-layer (TVL) or more, the larger barrier thickness is used
- Also sometimes called the "Add HVL Rule"

Examples At End of Presentation Use Time Averaged Dose Rate Instead of Calculating Thickness

- Two Source Rule either over-estimates or under-estimates required shielding for two or more sources of radiation
- Up to three types of radiation for secondary calculations
- TADR must be calculated anyway for primary barriers
 - To determine factor of 2.7 margin - TADR needed for hourly limit
- Potentially multiple layers of dissimilar material in barrier
- No direct way to calculate required thickness for photoneutron generation

Page 27 **Primary Barrier Width** 1 foot margin on each side of beam rotated 45 degrees Barrier width required assuming 40 cm x 40 cm field size w = $0.4\sqrt{2} d_{\rm N} + 0.6 m$ (where $d_{\rm N}$ is in meters) Field typically not perfectly square (corners are clipped) 35 cm x 35 cm field size used to account for this Target Target Target Isocenter Isocenter Isocenter /at-1 ft →\ **∢**1 ft

Primary Barrier Width Typically Calculated Assuming 35 cm x 35 cm Field Size Field typically not perfectly square (corners are clipped) - 35 cm x 35 cm field size used to account for this w = $0.35\sqrt{2} d_{\text{N}} + 0.6 m$ (where d_{N} is in meters) 40 cm x 40 cm field \$ Corners clipped with tungsten block

35 cm effective field size (f)

Secondary Barrier Photon Leakage Leakage unshielded dose rate $H_L = \frac{W \times leakage fraction}{W}$ $d_{\rm sec}^2$ - Assumes H_L in Sv and W in Gy 0.1% leakage fraction is customary Protect Locar Secondary distance d_{sec} in meters ocenter $\hat{\Phi}^{\downarrow d_{sca}}$ arget Calculate shielded dose rate using TVLs in NCRP 151 Table B.7 Plane of Rotation Calculation tends to be

conservative

- Typical leakage 5X or more lower than 0.1% requirement
 - Unlike primary barriers, generally no need for extra margin

Table 2: Leakage TVLs (mm)

Linac	Lead		Con	Concrete		eel	Earth		Borate	ed Poly
MV	TVL1	TVLe	TVL1	TVLe	TVL1	TVLe	TVL1	TVLe	TVL1	TVLe
4	57	57	330	280	96	96	517	439	817	693
6	57	57	340	290	96	96	533	455	842	718
10	57	57	350	310	96	96	549	486	866	767
15	57	57	360	330	96	96	564	517	891	817
18	57	57	360	340	96	96	564	533	891	842
20	57	57	360	340	96	96	564	533	891	842
25	57	57	370	350	96	96	580	549	916	866
	NCRP 151		NCRP 151		Varian		Est. b	y densi	ty vs. co	oncrete
	Primary TVL		Tabl	Table B.7		ratio			cm ³ INC	

earth density =1.5 g / cm^3 [NCRP 151, p. 72 BPE = 0.95 g / cm^3 [NCRP 151, p. 162] concrete

Page 3

Note: NCRP 51 Figure E.14 indicates lead TVL is maximum near 6 MeV, so using primary TVL for leakage is reasonable

No data in NCRP 151 for steel leakage TVL. NCRP 51 Figure E.13 implies steel leakage TVL should be less than primary. Rationale for 96 mm steel TVL based on Varian document #12004 on next chart.

Intensity Modulated Radiation Therapy (IMRT)

Page 33

IMRT requires increased monitor units per cGy at isocenter

<u>IMRT ratio</u> is the ratio of MU with IMRT per cGy at isocenter

- Percent workload with IMRT impacts shielding
 50% typically assumed; 100% if vault is dedicated to IMRT
- Account for IMRT by multiplying workload by IMRT factor

 <u>IMRT Factor</u> = % IMRT x IMRT ratio + (1 % IMRT)
- Leakage Workload: W_L = W × IMRT Factor
 W_L replaces W in leakage unshielded dose calculation with IMRT
- Lower IMRT factor appropriate for neutrons if calculate shielding at the higher MV for a dual MV machine

Table 3: IMRT Ratio Typical Values

Manufacturer	IMRT	Percent	IMRT Factor		
Manufacturer	Ratio	Ratio IMRT		Neutron	
Varian	3	50%	2	1	
Siemens	5	50%	3	1.5	
NOMOS	10	50%	5.5	2.75	
Tomotherapy	16	100%	16	NA	

Page 34

- Typically assume 50% of treatments with IMRT
 Pessimistic assumption for dual energy machine since most IMRT done at lower energy (e.g., >75% at 6 MV, <25% at 18 MV)
- Neutron IMRT factor (applicable to dual energy) assumes IMRT equally at high and low energy
 - Since most IMRT is done at the lower energy, an even lower neutron IMRT factor may be appropriate

Page 3 **IMRT Factor Calculation** Calculation for single MV Parameter Units S MU/cGy Single MV Calculation Line Fraction with IMRT Ratio 0.5 Typical b IMRT Fact Ratio Calculation for dual MV Shielded dose rate calculated separately at each MV » Including appropriate % IMRT at each MV - Total shielded dose rate is total at the separate MVs Generally appropriate only for retrofit » marginal shielding, expensive and difficult to modify

marginal shielding, expensive and difficult to modify Calculation at single (highest) MV recommended for new construction

Secondary Shielding for High Energy Linacs

- May need to consider neutron leakage as well as photons
 - Not necessary if barrier consists solely of concrete
 - Is necessary for thin barrier containing significant metal
 - » e.g., door or laminated barrier
- Calculation is of the same form as photon leakage calculation
 - But with different leakage fraction and TVLs
- Shielding typically calculated only at higher energy for dual energy linacs
 - Easier calculation than performing separate calculations for the two energies

Neutron IMRT Factor Calculation

- IMRT factor lower for neutrons than photons for dual MV
 Typically split between low and high energy for dual MV machine
 Neutrons not produced below 10 MV
- Typical: 50% High-X & 50% Low-X with 50% IMRT at each MV
 Onservative since far more IMRT at 6 MV than at 15 or 18 MV

- Neutron IMRT factor 1 with these conservative assumptions
- Neutron Leakage Workload: W_{Ln} = W × Neutron IMRT Factor

			Pho	Photon		tron	
Line	Parameter	Units	Low-X	High-X	Low-X	High-X	Calculation
а	IMRT Ratio	MU/cGy	3	3	0	3	Varian
b	Fraction with IMRT	Ratio	0.5	0.5	0.5	0.5	Typical
с	IMRT Factor per MV	Ratio	2	2	0	2	a * b + (1 - b)
d	Fraction at each MV	Ratio	0.5	0.5	0.5	0.5	Expected usage
е	IMRT Factor * Fraction	Ratio	1 1		0	1	c*d
f	IMRT Factor	Ratio	2				Sum Line e

Table 4: Neutron Leakage Fraction	on		Page 39
Neutron leakage unshielded dose rate	Vendor	MV	Ho @1 m Sv/Gy
		10	4.0E-05
$H_n = \frac{W_{Ln} \times H_o}{d^2}$		15	7.0E-04
$\Pi_n = \frac{1}{2}$	Varian	18	1.5E-03
$a_{\rm sec}$		20	1.9E-03
 H_n in Sv and W₁ in Gy 		24	2.0E-03 2.0E-05
$= n_n m \text{ or and } n_{Ln} m \text{ or } m$		10	2.0E-05 4.2E-04
 H₀ is neutron leakage dose equivalent 	Siemens	15	4.2E-04 9.9E-04
fraction normalized to 1 m from target	Sielliena	18	9.9E-04
indection normalized to a minom target		24	2.3E-03
- II in Table 4 normalized to 4 m		10	3.0E-04
H _o in Table 4 normalized to 1 m	Elekta	15	7.0E-04
 Varian* and Siemens** values based on 	/	18	1.5E-03
	Philips	20	2.0E-03
manufacturer data		24	3.0E-03
 Elekta data from Site Planning Guide*** 		12	1.8E-04
	GE	15	6.4E-04
 GE data based on NCRP 151 Table B.9 		18	1.1E-03
normalized to 1 m		25	2.7E-03
* Varian: http://www.varian.com/osup/pdf/12000.pdf [Page 12, Av			ns]
** Siemens: Conservative neutron leakage dose rates in patient	plane with C	ຊ=10	
*** Elekta: Nisy Ipe, "Neutron Shielding Design and Evaluations"	, 2007 AAP	M Sumi	ner School

Neutron TVLs for Other Material

- Concrete of varying density
 - Neutron density for high density concrete assumed the same as
 - for normal weight concrete
 - High density concrete has slightly lower hydrogen content than normal concrete

 - High density concrete typically has boron added to maintain same neutron TVL as normal concrete
 - TVL for light concrete adjusted based on density like photon TVL

Page 43

Page 45

0.2 MV in

NCRP 151

ut 0.25 in

0.25 0.25 0.3

» Likely a conservative assumption

Asphalt has high hydrogen content

- Same TVL as borated polyethylene assumed
 - » e.g., McGinley reports 10 cm neutron skyshine TVL due to asphalt, which is comparable to primary BPE TVL

Secondary Barrier Patient Scatter

Patient scatter unshielded dose rate

$$H_{ps} = \frac{a W U (F/400)}{r^2 + r^2}$$

- -a = scatter fraction for 20 x 20 cm
- F is maximum field area in cm²
- » NCRP 151 examples use F=1600 (conservative 40x40 cm field) Effective F is smaller with IMRT
- » F=225 cm² w/ IMRT (15 x 15 cm) $F = (1-\% IMRT) \times 1600 + \% IMRT \times 225$
- Typically use F=1600 even if IMRT is used to add conservatism
- » Safety survey done w/o IMRT
- of MV and scatter angle in NCRP 151 Table 5.4 » IMRT seldom used at higher MV for dual energy machines
 - Scatter energy as function of MV and scatter angle in » Primary beam adds to patient scatter at small scatter angles NCRP 151 Table B.6

Page 4

→ ← t_B 1 ft

Page 46

Page 48

Protect Locat

center $\hat{\Phi}^{\underline{\uparrow d_{sca}}}$ Target 😾

Scatter fraction as function

Plane of Rotation

Use Factor (U) and Scatter

- Use Factor is typically taken as 1 for secondary calculations
 - Invariably true for leakage calculations
- Scatter is significant only for secondary barriers immediately adjacent to primary barriers
 - Scatter is negligible for all other orientations
 - NCRP 151 : However, if the [scatter] calculation is performed with the minimum angle of scatter from the patient to the point of calculation and a use factor of 1 is also used, the barrier thickness will be overestimated due to the conservatively higher scatter fraction from the smaller scattering angles"
- Sometimes appropriate to apply use factor to scatter U = 0.25 appropriate if scatter angle < 35°
 - » i.e., secondary barrier immediately adjacent to primary barrier
 - » U=0.25 best used only for retrofit (to avoid unnecessary
 - modifications) or if there are severe space constraints
 - Otherwise U = 1

Table 5: NCRP 151 Table B.4 Patient Scatter Fraction for 400 cm² Field

- Scatter fraction increases as angle decreases
- Scatter fraction vs MV may increase or decrease Tends to increase with MV at small scatter angles
- Decreases with increasing MV at large scatter angles

Linac	Angle (degrees)										
MV	10	20	30	45	60	90	135	150			
4	1.04E-02	6.73E-03	2.77E-03	2.09E-03	1.24E-03	6.39E-04	4.50E-04	4.31E-04			
6	1.04E-02	6.73E-03	2.77E-03	1.39E-03	8.24E-04	4.26E-04	3.00E-04	2.87E-04			
10	1.66E-02	5.79E-03	3.18E-03	1.35E-03	7.46E-04	3.81E-04	3.02E-04	2.74E-04			
15	1.51E-02	5.54E-03	2.77E-03	1.05E-03	5.45E-04	2.61E-04	1.91E-04	1.78E-04			
18	1.42E-02	5.39E-03	2.53E-03	8.64E-04	4.24E-04	1.89E-04	1.24E-04	1.20E-04			
20	1.52E-02	5.66E-03	2.59E-03	8.54E-04	4.13E-04	1.85E-04	1.23E-04	1.18E-04			
24	1.73E-02	6.19E-03	2.71E-03	8.35E-04	3.91E-04	1.76E-04	1.21E-04	1.14E-04			

from NCRP 151 Concrete TVL: NCRP 151 Table B.5a - Same values in 1976 NCRP 49 report Conservative "Values ... are <u>conservatively safe in nature</u>" Lead scatter TVL: NCRP 151 Table B.5b (Nogueira and Biggs -- 2002) Most accurate scatter TVLs in NCRP 151 » Measurements and simulation in close agreement – For up to 10 MV and scatter angles ≥ 30°

Scatter TVL Recommendations

- All other TVLs: NCRP 151 Figure A.1
 - Curves of equilibrium TVLs of shielding materials Rosetta NCRP 151 recommends using TVL corresponding to Stone mean energy from NCRP 151 Table B6
 - » Modifying the mean energy is recommended here

NCRP 151 Table B.6: **Patient Scatter Energy** Based on simulation by Taylor et.al. (1999)

30 0.9 1.0 1.3

0.7 0.7 0.9

0 10 20

1.6 2.7 5.0 1.4 2.0 3.2

6 10 18

Table 6a. Concrete Scatter TVLs

- Values directly from NCRP 151 Table B5.a
- Conservative at scatter angles less than 30°
 Compared to lead and steel scatter TVLs

Page 4

			Concrete	Scatter 1	۲VL (mm)
			Scatter	Angle (d	egrees)	
N	IV	15	30	45	60	90
	4	270	250	240	220	180
	6	280	260	240	220	190
1	0	300	270	250	230	190
1	5	320	280	250	230	210
1	8	330	280	260	230	210
2	20	340	290	260	240	210
2	24	350	300	270	250	210

Lead Scatter TVL Recommendations Based on NCRP 151 [1 of 2] NCRP 151 Table B.5b is the most reliable TVL data Lead scatter tenth-value layers (mm) vs. scatter angle 30 45 60 75 90 TVL1 TVL TVL1 TVLe TVL1 TVLe TVL1 TVLe 13 14 15 24 28 31 31 34 36 18 19 21 25 26 27 19 19 19 10 38 First step: reconcile NCRP 151 Figure A.1 (broad beam transmission curves) with Table B.5b TVLs in Table B.5b do not match NCRP 151 Figure A.1 using mean energy from NCRP 151 Table B.6 Equilibrium TVLs match if mean energy is multiplied by following adjustment factors Broad Beam Energy Adjustment Factors MV 30 45 60 75 90 4 1.16 1.41 1.51 1.49 1.66 6 1.53 1.57 1.57 1.49 1.83 10 1.44 1.68 1.63 1.49 1.91

Table 6c. Steel Scatter TVL Recommendations Based on NCRP 151

Steel broad beam TVLs that correspond to the lead TVLs

Patient Scatter Can Be Significant Adjacent to Primary Barrier

- Both scatter fraction and scatter energy increase as scatter angle decreases
- Slant thickness compensates for the increased scatter

 Required barrier thickness reduced by cos(0), where 0 is slant
- angle
- Barrier thickness comparable to lateral barrier is typically adequate for same P/T

Primary Beam Remains Significant at Small Scatter Angles

100.0

10.0

0.1

10 15 20

7

Г

Angle Relative Central Axis

Patient scatter (F=1600)

Edge of field . Primary beam attenuated by

~ No primary

~1 ft beyond edge of fiel

25

30

Page 57

Page 59

Axis

Central

elative

Rate 1.0

% Dose

- Primary beam remains significant 1 ft beyond beam edge
 - 40x40 cm field rotated 45 degrees
 - Primary beam angle measured from target
 - Scatter angle measured from isocenter
- Conservatism in patient scatter shielding (i.e., F=1600) increases confidence edge of primary beam is adequately shielded

Implications

- Laminated primary barriers may need to extend more than 1 ft beyond the edge of beam
- Recommend new primary barriers to be square, not tapered

Scatter Observations

- Scatter is typically negligible for lateral barriers
- Must include scatter calculation for barrier next to primary
 - Particularly if slant factor is used when calculating photon leakage transmission
- General calculation procedure would include wall scatter also
 - Not addressed here since negligible for traditional secondary barriers
 - Vital to include for maze calculation for low energy linac

Maze Calculation

- Specific scatter mechanisms included in maze calculation
 - Wall Scatter and Patient Scatter
 - » Calculated at most stressing gantry orientation Leakage scatter
- Direct leakage
 - Conventional secondary barrier calculation
 - If maze door lies beyond primary barrier, use primary barrier calculation instead
- High Energy accelerator mechanisms
 - Neutrons, capture gammas
 - Dominates the scatter mechanisms for high energy machines

Beam Area at Wall

- Beam area at wall (A₀) depends on distance from target $A_0 = F (d_H / 1 m)^2$ (meters²)
 - F = Maximum field size at isocenter (1 m from target)
 - d_H = Distance from target to wall (also in meters)
- Traditional field size assumption
 - F = 0.40 m x 0.40 m = 0.16 m²
 - NCRP 151 recommends traditional field size
- Alternative field size assumption with IMRT
 - With IMRT, maximum field typically 15 cm x 15 cm, or 0.0225 m²
 - Maximum field size 0.16 m² without IMRT
 - F = (1-% IMRT) × 0.16 + % IMRT × 0.0225

Table 9. Reflection Coefficient for Concrete (NCRP 151 Tables B.8a and B.8b)

NCRP 151 T	able B.8a V	all reflection	coefficient fe	or concrete, t	mendence
	A	ngle of reflect	tion measure	d from norm	al
MV	0°	30°	45°	60°	75°
0.25	0.0320	0.0280	0.0250	0.0220	0.0130
0.5	0.0190	0.0170	0.0150	0.0130	0.0080
4	0.0067	0.0064	0.0058	0.0049	0.0031
6	0.0053	0.0052	0.0047	0.0040	0.0027
10	0.0043	0.0041	0.0038	0.0031	0.0021
18	0.0034	0.0034	0.0030	0.0025	0.0016
			0.0026	0.0022	
30	0.0030	0.0027	0.0026	0.0022	0.0015
		all reflection			
	able B.8b W		coefficient fo	or concrete, 4	5º Incidence
	able B.8b W	all reflection	coefficient fo	or concrete, 4	5º Incidence
NCRP 151 Ta	able B.8b W	all reflection ngle of reflect	coefficient fo	or concrete, 4	5º Incidence al
NCRP 151 Ta	able B.8b W A 0º	all reflection ngle of reflec 30°	coefficient fo tion measure 45°	or concrete, 4 od from norm 60°	5º Incidence al 75º
NCRP 151 Ta MV 0.25	able B.8b W A 0° 0.0360	all reflection ngle of reflec 30° 0.0345	coefficient fo tion measure 45° 0.0310	or concrete, 4 d from norm 60° 0.0250	5º Incidence al 75º 0.0180
NCRP 151 Ta MV 0.25 0.5	able B.8b W A 0° 0.0360 0.0220	all reflection ngle of reflection 30° 0.0345 0.0225	coefficient fo tion measure 45° 0.0310 0.0220	r concrete, 4 d from norm 60° 0.0250 0.0200	5º Incidence al 75º 0.0180 0.0180
NCRP 151 Ta MV 0.25 0.5 4	able B.8b W A 0° 0.0360 0.0220 0.0076	all reflection ngle of reflection 30° 0.0345 0.0225 0.0085	coefficient fo tion measure 45° 0.0310 0.0220 0.0090	or concrete, 4 d from norm 60° 0.0250 0.0200 0.0092	5º Incidence al 75º 0.0180 0.0180 0.0095
NCRP 151 Ta MV 0.25 0.5 4 6	able B.8b W A 0° 0.0360 0.0220 0.0076 0.0064	all reflection ngle of reflec 30° 0.0345 0.0225 0.0085 0.0071	coefficient fo tion measure 45° 0.0310 0.0220 0.0090 0.0073	concrete, 4 d from norm 60° 0.0250 0.0200 0.0092 0.0077	5º Incidence al 0.0180 0.0180 0.0095 0.0080

Reflection coefficient for steel or lead is 2x these values

Broad Beam Equilibrium TVLs (NCRP 151 Figure A.1)

Tenth-Value Layers for Maze Calculation

- Patient and wall scatter TVLs based on 0.2 MV
 - broadbeam transmission TVL read from NCRP 151 Figure A.1

 - Low energy since two bounces
- Leakage scatter TVLs based on 0.3 MV broadbeam transmission
 - 0.3 MV average energy cited in McGinley p. 49
 - » Single bounce vs. two bounces for patient & wall scatter
 - TVL read from NCRP 151 Figure A.1
- Leakage TVL for direct leakage Note that door may not shield direct leakage for short maze

Maze Calculations for High Energy Accelerators

 Neutrons and capture gammas dominate the shielded dose Page 6

- Direct leakage may also be significant
 Particularly with thin maze wall
- Scatter mechanisms continue to apply
 But are invariably negligible for MV > 10

Maze Neutron and Capture Gammas: NCRP 151

- First step: Calculate neutron fluence at point A
- Second step: Calculate unshielded capture gamma dose rate at door
 Uses neutron fluence at point A
- Third step: Calculate unshielded neutron doseequivalent rate at door
- Uses neutron fluence at point A
 Fourth step: Calculate
- attenuation of maze neutrons & capture gammas by the door

Page 68

 $S_r = 2(d_L d_W + h d_L + h d_W)$ where h is vault height

RP 151 n Sourc			Page 1 (Q _n)
Vendor	MV	Qn N/Gy	
	10	6.0E+10	
	15	7.6E+11	
Varian	18	9.6E+11	
	20	9.6E+11	
	24	7.7E+11	
	10	8.0E+10	
	15	2.0E+11	
Siemens	18	8.8E+11	
	20	9.2E+11	
	24	1.5E+12	
	10	1.4E+11	
Elekta	15	3.2E+11	
1	18	6.9E+11	
Philips	20	9.6E+11	
	24	1.4E+12	
	12	2.4E+11	
GE	15	4.7E+11	
GE	18	1.5E+12	
	25	2.4E+12	

Maze Door Neutron Shielding TVL

- 45 mm TVL_n for borated polyethylene
 - maze door shielding, a conservatively safe recommendation is that a TVL of 4.5 cm be used in calculating the borated polyethylene (BPE) thickness requirement" [NCRP 151 p. 46]
- 161 TVL, for concrete wall adjacent to door
 - " the average neutron energy at the maze entrance is reported to be ~100 keV" [also NCRP 151 p. 46]
 - NCRP 79 TVL, for concrete with 0.1 MV neutron energy
 - » $TVL_n = 155 + 56 * 0.1 = 161 \text{ mm}$

Maze Capture Gamma TVL

NCRP 151

Page 73

"for very short mazes ... a lead TVL of 6.1 cm may be required" "mazes longer than 5 m ...TVL of only about 0.6 cm lead"

Page 74

Page 76

Page 78

Reading between the lines

- Use 61 mm TVL for lead (NCRP 79) regardless of maze length "The average energy of neutron capture gamma rays is 3.6 MeV"
- » Assumed to apply to long mazes (d₂ > 5 m) » Use NCRP 151 Figure A.1 TVLs at 3.6 MV for concrete / steel
- "can range as high as 10 MeV" for very short mazes
- » Short maze assumed to be d₂ ≤ 2.5 m Use primary 10 MV TVLs (except 61 mm for lead vs. 57 mm 10 MV TVL)
- "conservatively safe if one assumes that all neutron captures result in 7.2 MeV gamma rays" for direct-shielded doors » Assumed to be conservatively safe for 2.5 m < d_2 ≤ 5 m maze also
 - » Interpolate NCRP 151 Table B.2 TVLs at 7.2 MV for concrete / steel

Table 11. Maze Neutron and Capture Gamma **TVL Summary** Maze Neutron tenth-value lavers (mm) Lead Concrete Steel Borated Poly TVL1 TVL eq TVL1 TVL eq TVL1 TVL eq TVL1 TVL eq MV pture Gamma tenth-value layers (mm)
 Lead
 Concrete
 Steel
 Borated Poly
 Distance Pt. A

 TVL1
 TVLeq
 TVL1
 TVLeq
 TVL1
 TVLeq
 TVL1
 to Door

 61
 61
 330
 330
 95
 95
 817
 817
 d₂ > 5 m
 ΜV 3.6 7.2 61 61 390 350 103 103 965 866 2.5 m < d₂ < 5 410 370 110 1015 916 d₂ < 2.5 m

Direct-Shielded Door

- Neutron Door is simply a secondary barrier
 - Typically more layers and different materials than a wall » Lead to attenuate leakage photons
 - » Borated polyethylene to attenuate leakage neutrons
 - Typically sandwiched between layers of lead » Steel covers
- Specialized shielding procedure adjacent to door Compensates for relatively small slant thickness in this location
 - Vault entry toward isocenter similar to maze
 - Vault entry away from isocenter is secondary barrier
 - » But with specialized geometry

Factor of 2 to 3 Margin Recommended for Direct **Shielded Doors**

- NCRP 151 recommends considering capture gammas for direct-shielded doors (Section 2.4.5.2)
 - Recommendation is to add 1 HVL to leakage calculation for door only, but not for walls
 - » Rationale: Concrete in wall is more effective for capture
 - gammas than material in door
 - Equivalently, factor of 2 margin on shielded dose rate relative P/T
- Dose rate from HVAC duct above door comparable to dose rate through door
 - Additional reason to provide margin on door calculation

Direct-Shielded Door: Far Side of Entrance

- Extra material added to corner
 - Lead to entrance wall Borated polyethylene or concrete beyond wall
- Uses standard secondary
- barrier calculation
- Goal: provide same protection as wall or door for path through corner

- Geometry similar to short maze

 Maze calculation is reasonable
 - to use
- Requires less material than far side of entrance
 - Lower unshielded dose rate
 - Lower energy
- Wall scatter determines shielding for < 10 MV
 Not significant if high energy

Direct-Shielded Door: Near Side of Entrance

- Geometry similar to short maze

 Maze calculation is reasonable to use
- Requires less material than far side of entrance
 Lower unshielded dose rate
 Lower energy

Shielding for Heating, Ventilation, and Air Conditioning (HVAC) Ducts

- HVAC penetration is located at ceiling level in the vault
 - For vaults with maze, typically located immediately above door
 For direct-shielded doors, located in a lateral wall parallel to the plane of gantry rotation as far away from isocenter as possible
- Ducts shielded with material similar to the door at entrance
- For direct-shielded door, thickness 1/2 to 1/3 of the door
 - Path through material is at a very oblique angle due to penetration location with slant factor between 2 and 3
 - Factor of at least 5 reduction in dose at head level (the protected location) vs. at the HVAC duct opening

Page 83

- Even less material is is required for maze duct
 - NCRP 151 example is 3/8" lead plus 1" BPE extending 4 ft

Primary and Secondary Barrier Examples

- 1. Basic primary barrier photon shielded dose rate
- 2. Minimum width of primary barrier
- 3. Secondary barrier photon leakage
- 4. Secondary barrier photon leakage with IMRT
- 5. Secondary barrier photon & neutron leakage with IMRT
- 6. Secondary barrier photon & neutron leakage plus patient scatter with IMRT
- 7,8. Secondary barrier calculation including slant factor

Maze and Direct Shielded Door Calculation Examples

9. Maze with secondary leakage through door, 6 MV 10. Maze with secondary leakage through door, 18 MV

11. Direct shielded door in secondary barrier

Example 1: 18 MV Primary Concrete Barrier

1. Establish P/T for protected location A: P/T = 0.1 mSv/wk (P = 0.1 mSv/wk, T = 1)

- 2. Measure distance from target to protected location (22 ft from target)
- 3. Measure (or read from annotations) the barrier material thickness (7 ft)
- 4. Determine TVLs based on MV (18) and material type (concrete)

Line	Parameter	Units	Value	Calculation		
а	Design Dose Limit (P)	mSv/wk	0.1)	
b	Occupancy Factor (T)		1		Weekly P/T Lin	
с	Weekly Protect P/T Limit	mSv/wk	0.100	a/b	J	
d	Dose Limit Per Hour	mSv/hr	0.02			
е	Dose per Patient Treatment	Gy/pt	3	Default value	Hourly limit	
f	Patients per Day	pt/day	30	Default value	converted to	
g	Workload (W) per Week	Gy/wk	450	5*e*f		
h	Max patient / hr	patient	6		equivalent	
i	Max Workload / Hour (W _h)	Gy/hr	3.6	h*e/5	weekly P/T	
j	Hourly Protect P/T Limit	mSv/wk	2.500	0.02 * g / i	limit	
k	P/T	P/T mSv/wk 0.100 min{c, j}				

Hourly protection limit does not impact P/T for high occupancy location

Hourly protection limit may impact P/T for low occupancy locations in uncontrolled areas

а				Value	Calculation	
a	Machin	e X-ray Energy	/ MV	(18)		
b	Wo	orkload (W)	Gy/Wk	450		
с	U	se Factor		0.25		
d			ft	22		
е	Poi	nt Distance	m	6.71	d * 0.3048	
f	Unst	nielded Dose	mŞv/wl	2.50E+03	1000 * b * c / e^2	
g	Total Pho	ton Transmiss	ion	1.22E-05	see below	0
h	Shielde	d Photon Dose	e mSv/wi	0.030		0.1 mSv
	<u> </u>		he calcı			
-				. /	TVLe (mm)	
	84	2134	Concrete	450		
Layer						
		rough concr	ato	18 MV	Total: (1.22E-05)	
		c UU d Targe Pol f Unst g Total Pho h Shielde er Inches g2 Layer	c Use Pactor d Target to Protected e Point Distance f Unshielded Dose g Total Photon Transmiss h Shielded Photon Dos- key inputs to f Material Thickness er inches mm ayer 84 2134 g2 Layer	c Use Factor ft d Target to Protected fi e Point Distance m f Unshielded Dose set g Total Photon Transmission h Shielded Photon Dose mSvivy Key inputs to the calcut Material Thickness er inches mm Material ayer 64 2134 Concrete #2	C Use Factor 0.25 d Target to Protected 0.25 e Point Distance m f Unshielded Dose m\$//wk g Total Photon Transmission 6.27 h Shielded Photon Dess m\$//wk Key inputs to the calculation .338 Material Thickness X-Ray F er inches mm g2 124 Concrete 450 Layer 18.84/ 19.44 19.44	C Use Factor 0.25 d Target to Protected 1 0.25 e Point Distance m 6.71 d * 0.3048 f Unshielded Dose m 6.71 d * 0.3048 f Unshielded Dose m 6.22 0.000 * b * c / c*2 g Total Proton Transmission 6.22 0.030 f * g h Shielded Photon Des MSWW 0.030 f * g Material Thickness X.Ray Primer Photon Trans. er inches mm Material TVL1 (mm) TVL6 (mm) ag 2134 Concreal 4.50 1.000-roo 1.000-roo ag 1.124 1.126-roo 1.000-roo 1.000-roo 1.000-roo ag 1.134 1.000-roo 1.000-roo 1.000-roo 1.000-roo ag 1.100-roo 1.100-roo 1.100-roo 1.100-roo 1.000-roo

Vidth	Line	Parameter	Units	Value	Calculation
	а	Target to Narrow Point	ft	18	
	b	Target to Narrow Point	m	5.49	a * 0.3048
	с	Effective field size (corners)	cm	35	
	d	Max Field Diameter	m	2.72	b * sqrt(2) * c / 100
	е	Max Field Diameter	ft	8.9	d / 0.3048
	f g	Minimum Barrier Width Recommended Width	ft ft	10.9 11	e + 2 ft
18 ft					

Example 2b. Recommended Primary Barrier Minimum Width in NCRP 151

- NCRP 151 recommends calculating barrier width at top of primary barrier
 - Requires ~ 1 ft increase in primary barrier width compared to traditional calculation in Example 2a.
 - Appropriate for new construction
 - Perhaps inappropriate for retrofit to existing vault
 - » Especially for ceiling or exterior wall with no occupancy above ceiling

	Line	Parameter	Units	Value	Calculation
	а	Distance from target to narrow	ft	18	
	b point		m	5.49	a*0.3048
	с	Effective field size (corners)	cm	35	
1 Im	d	Distance from isocenter to		7	
7 ft 2.13m $\sqrt{2.13^2 + (5.49 - 1)^2} + 1$	e	ceiling	m	2.13	d * 0.3048
2.13m $\sqrt{2.13^2 + (5.49 - 1)^2 + 1}$	f	Target to top of narrow point	m	5.97	sqrt(e^2+(b-1)^2) +1
	g	Maximum Field Diameter		2.95	f * sqrt(2) * c / 100
18ft 5.49m	h	maximum Pielo Diameter	ft	9.7	g / 0.3048
	i	Minimum Barrier Width	ft	11.7	h + 2 ft
	j	Recommended Width	ft	12	

25 patients per day at 3 Gyltreatment Yields 375 Gylwk vs. 450 Gylwk typical 5. assumption 5. Calculate unshielded dose rate, transmission, & shielded dose rate shielded dose rate < P/T)

(르자	19qu		nstruc	nion)				
	Line	Pa	rameter	Units		Value	Calcu	lation
	а	Workloa	d / Treatmen	t Gy/pt		3	Defaul	it value
	b	Patie	nts per Day	pt/day	'	25	Antic	ipated
	с	Wor	kload (W)	Gy/wi	ç	375	5*;	a*b
	d	Us	e Factor	Ratio		1		
	е	Leaka	ge Fraction	Ratio		1.0E-0	3	
	f	Isocente	r to Protecte	d ft		13.5		
	g	Poin	Point Distance			4.11	f*0.	3048
	h	Unshi			k	2.21E+0	01 1000 °c *	d *e / g^2
	i	Trar	nsmission			7.86E-0	3 see l	pelow
	j	Shie	Ided Dose	mSv/w	k	0.174	h	•i 0.174 mSv is le P/T = 0.400 m
		Material 1	Thickness			X-Ray L	.eakage	Photon
В	arrier	inches	mm	Material	т٧	′L1 (mm)	TVLe (mm)	Trans.
Insid	le Layer	26	660	Concrete		340	290	7.86E-03
La	yer #2							1.00E+00
La	yer #3							1.00E+00
La	yer #4							1.00E+00
Outsi	de Layer							1.00E+00
						6 MV	Total:	7.86E-03

Example 4: 6 MV Additional Shielding with IMRT

- 1. Establish P/T for protected location Dressing room uncontrolled with partial occupancy (T=0.2) P/T = 0.10 mSv/wk
- Measure distance from target to protected location 14 ft from target to 1 ft beyond wall
- 3. Measure (or read from annotations) the barrier material thickness (26 in)
- IMRT factor 2
- 50% IMRT workload with IMRT ratio 3 Facility expects increased usage
- Add additional lead to barrier until
- shielded dose rate is less than P/T Can be either inside or outside wall for secondary barrier

Page 9

a Workload / Treatment Gy/pt 3 Default value b Patients per Day pt/day 30 Default value c Workload (W) Gy/wk 450 a * b d Use Factor Ratio 1 - e Leakage Fraction Ratio 1.0E-03 - f IMRT Factor 2 - - g Isocenter to Protected ft 1.35 - - h Pointo Totance m 4.1 g* 0.3046 - - i Unshielded Dose mSv/wk 5.32E+01 1000°c*d*d*fm2 - - j Transmission 1.28E-03 see below - - - Barrier Inches mm Material TVL1 (mm) TVL1 - 1.5* additional lead Layer #2 26 660 Concrete 340 240 6.02E-31 - Outside Layer 26 60 Concrete </th <th></th> <th>L</th> <th>ine</th> <th></th> <th>Parameter</th> <th></th> <th>U</th> <th>nits</th> <th>Va</th> <th>alue</th> <th>Ca</th> <th>lculation</th>		L	ine		Parameter		U	nits	Va	alue	Ca	lculation
c Workload (W) Gylwk 450 a * b d Use Factor Ratio 1 - - e Laekage Fraction Ratio 1 - - - f IMRT Factor 2 - </td <td></td> <td></td> <td>a</td> <td>Wor</td> <td>kload / Treat</td> <td>ment</td> <td>G</td> <td>y/pt</td> <td></td> <td>3</td> <td>Def</td> <td>ault value</td>			a	Wor	kload / Treat	ment	G	y/pt		3	Def	ault value
d Use Factor Ratio 1 e Laskage Fraction Ratio 1.0E-03 f IMRT Factor 2 g Isocener to Protected ft 1.3.5 h Point Distance m 4.1 g* 0.3048 i Unshielded Dose mSv/wk 5.32E-01 000°C'd*e*t/h-2 j Transmission 1.29E-03 see below 0.000 mSvi is less than k Shielded Dose mSv/wk 0.609 i* j Photon Inside Layer 1.5 38 Lead 57 57 2.15E-01 Layer #2 26 660 Concrete 340 290 6.02E-03 Outside Layer 1.5 38 Lead 57 57 2.15E-01 1.5° additional lead Layer #2 26 660 Concrete 340 290 6.02E-03 Outside Layer 6 6 MV Total: 1.29E-33 1.5° additional lead			b	Р	atients per D	ay	pt	/day	30		Def	ault value
e Leakage Fraction Ratio 1.0E-03 f IMRT Factor 2			c		Workload (W	0	G	y/wk	450			a*b
Image: Construction of the second s			d		Use Factor				1			
g Isocener to Protected h ft 13.5 g 0.3048 i Unshielded Dose m 4.1 g 0.3048 i Unshielded Dose mSv/wk 5.32E-01 1000°c'd'e'16^+2 j Transmission 1.28E-03 see below 0.059 mSv is its tes than P/T = 0.10 mSv/wk Barrier Material Thickness mM aterial TVL1 (mm) TVL2 (mm) Photon TVL2 (mm) 1.5' additional lead Layer #2 26 660 Concrete 340 290 6.02E-03 Outside Layer 6 MV Total: 1.29E-03 1.5''''''''''''''''''''''''''''''''''''			e	Le	eakage Fract	ion	R	atio	1.0E-03			
B Operation of the listance m 4.1 g* 0.3048 i Unshielded Dose mSv/wk 5.32E+01 1000r:d*eTM*2 j Transmission 1.22E+03 soebown 0.068 mSv is less than k Shielded Dose mSv/wk 0.069 i*j 0.068 mSv is less than Barrier Material Thickness mAterial TVL1 (mm) Photon Transmission Inside Layer 1.5 3 Lead 57 57 2.15E-01 Outside Layer 0 6 MV Total: 1.22E-03			f		IMRT Factor	r				-		
In Control of the second			-					ft				
j Transmission 1.29E-03 see below k Shielded Dose mSv/wk 0.069 i*j Barrier inches mM material Thickness X-Ray Leakage Photon Inside Layer 1.5 38 Lead 57 57 2.15E-01 Layer #2 26 660 Concrete 340 290 6.02E-03 Outside Layer 6 MV Total: 1.29E-03 1.25E-01				-		-						
k Shielded Dose mSv/wk 0.069 1°1 0.068 mSv is less than PT = 0.10 mSv/wk Barrier Material Thickness mm Material Till (mm) TVL1 (mm) PT = 0.10 mSv/wk Inside Layer 1.5 38 Lead 57 57 2.156-01 1.5° additional lead Layer #2 26 660 Concrete 340 280 6.022-03 1.005-00 Outside Layer 6 6 MV Total: 1.226-03 1.226-03								Sv/wk				
Material Thickness X-Ray Leakage Photon Inches mm Material TVL1 (mm) TvLe (mm) Inside Layer 1.5 38 Lead 57 57 2.15E-01 1.5* additional lead Layer #2 26 660 Concrete 340 290 6.02E-03 1.5* additional lead Outside Layer 6 MV Total: 1.29E-03 1.25*		j									se	0.069 mSv is loss that
Barrier inches mm Material TVL1 (mm) TVLe (mm) Trans. Inside Layer 1.5 38 Lead 57 57 2.15E-01 1.5* additional lead Layer #2 2.6 660 Concrete 340 290 6.02E-03 1.5* additional lead Outside Layer 6 MV Total: 1.29E-03 1.25*	l			Shielded Dose			mS	6v/wk	0.	.069		P/T = 0.10 mSv/wk
Darma Inclus Innin Material IVL (mm) VLC (mm) VLC (mm) Losd Inside Layer 1.5 38 Lead 57 57 2.156-01 1.5* additional lead Layer #2 26 660 Concrete 340 290 6.02E-03 Outside Layer 1.00E-00 1.00E-00 6 MV Total: 1.22E-03			Mat	erial Thickness			x		-Ray L	eakage		Photon
Layer #2 26 660 Concrete 340 290 6.02E-03 Outside Layer 1.00E+00 6< MV	Barrie	r	inch	es	mm	Mate	erial TVL1		mm) TVLe (m		(mm)	
Outside Layer 6 MV Total: 1.29E-03	Inside La	yer	1.3	5	38	Le	ad	57	7	57		2.15E-01 1.5" additional lea
6 MV Total: 1.29E-03	Layer #	2	26	5	660	Cond	crete	34	0	29	0	6.02E-03
	Outside L	ayer										
Photon transmission through lead = 10^(-38 / 57) = 0.215 340° (1 - 38/57) = 113												
	Ph	oton	transn	nissio	on through	lead	= 10	^(-38 /	57)=	0.215		340* (1 - 38/57) = 113

Example 5: 15 MV Secondary Barrier Photon & Neutron Leakage (Additional Shielding)

- 1. Establish P/T (0.10 mSv/wk)
- Isocenter to protected location distance _ 14 ft from target to 1 ft beyond wall
- 3. Existing barrier 26 in concrete
- 4. IMRT factor 2 for photons, 1 neutrons Most IMRT is performed at 6 MV energy
- 5. Default 450 Gy/wk workload Calculate unshielded dose rate, transmission, and shielded dose rate 6.
- Add additional lead to barrier until Shielded dose rate is less than P/T
 2" lead added to inside of barrier
 Can be outside if space inadequate inside
 No photoneutron generation for lead in secondary barriers

Calculate transmission and shielded dose rate (add or increase material until shielded dose rate < P/T)

	Line	Par	ameter	Units	Photon Leakage	Neutron Leakage	Calcul	ation		
	а	Workload	d / Treatment	Gy/pt	3	3	Default	value		
	b	Patien	ts per Day	pt/day	30	30	Default	value		
	с	Worl	doad (W)	Gy/wk	450	450	5*a	* b		
	d	Use	Factor	Ratio	1	1				
	е	Leakaş	ge Fraction	Ratio	1.0E-03	7.0E-04	15 MV v	ralues		
	f	IMR	T Factor		2	1				
	g		to Protected	ft	13.5	13.5				
	h	Point	Distance	m	4.1	4.1	g * 0.3	3048		
	i		Ided Dose	mSv/wk		1.86E+01	1000*c*d			
	j	Tran	smission		1.31E-03	7.42E-04	see b	elow	1	
	k		ded Dose	mSv/wk		0.014	1*			
	L	Total Sh	ielded Dose	mSv/wk	0.	083	Sum r		083 mSv is k /T = 0.100 n	
		Material	Thickness		X-Ray L	eakage	Photon	Neutron	Neutron	
	Barrier	inches	mm	Material	TVL1 (mm)	TVLe (mm)	Trans.	TVL (mm)	Trans.	
Ins	ide Layer	2	51	Lead	57	57	1.28E-01	N/A	1.00E+00	
L	ayer #2	26	660 /	Concrete	360	330	1.02E-02	211	7.42E-04	
Out	side Layer	2" (additional lea	d			1.00E+00		1.00E+00	
					15 MV	Total:	1.31E-03	Total:	7.42E-04	

Page 9 Example 6: 15 MV Secondary Barrier Including Leakage and Scatter Follow same first steps of Example 5 leakage calculation (establish P/T, distances, material thickness & type, IMRT factors) 4 26 Determine scatter fraction per 400 \mbox{cm}^2 by interpolating scatter fraction as a function of MV and scatter angle (Table 6) in Dressing Room 14 ft 韦 Calculate effective field size l 0-111-0 в Determine scatter fraction by adjusting scatter per 400 cm² with effective field size 7 Calculate unshielded dose rate 3 in t Interpolate TVL using Table 7 as a function of machine MV, material type and scatter angle lead

Example 6: Secondary Barrier Scatter Fraction Calculation Line Parameter Units Value a Design Dose Limit (P) mSv/wk 0.02 b Occupancy Factor (T) 0.2 Line Calculation

	e	Э	Vendor					Varian			
						Value					
Li	ne		Parameter	Un	nits	w/o	o IMRT with IMRT		Calculation		
â	1	Parameter Max Field Size Fraction of Workload Effective Field Area	cm		4	0	15				
ł	,	Frac	Max Field Size Fraction of Workload Effective Field Area	cm^2		50	1%	50)%		
(Effe				912.5				b ₁ * a ₁ ^2 + b	2 * a2^2
c	i	Eff	ective Field Size	c	m		30).2		sqrt (c	:)
6)	:	Effective Field Area Effective Field Size Scatter Angle	deg		90					
1	F	Mac	hine X-ray Energy	м	MV		1	5			
ç	3	Sca	atter / 400 cm^2				2.61	E-04		Function o	fe&f
ł	ı	S	catter Fraction				0.00	0060		g*c/4	00

															ed D	ose	Ra	ate	Page 9	7
(ion l	ncl	_		_		_	<u> </u>	ĕ	s Sc	a						
	Line	-		Parameter		_	nits	_	kage	_	atter	Le	akage		Calculati					
	a	_		oad / Trea			//pt		3	-	3	_	3		CRP 151 D					
	b	_		ients per [· · · ·	_	day		80	-	30	-	30	N	CRP 151 D	efault				
	c	_		orkload (V			/wk		50	-	50	_	450		a*b					
	d	_		Jse Factor		_	atio		1	-	1	_	1							
	e	-		Fraction		Ra	atio		E-03		E-04	7.	0E-04	-	15 MV val	ues				
	1	-		MRT Facto					2	_	1	-	1							
	9 b	-		ter to Prot			m		13.5		3.5 L1	13.5		g * 0.3048						
	i	-			-	<u> </u>	v/wk 5.32			-	E+01	_			g - 0.30					
	i Unshielded Dos					1113	*/WK		E-04	-	IE-08		2E-04	-	see belo					
	, , , , , , , , , , , , , , , , , , , ,						v/wk		024		000		014	-	1*1	·····	4			
			Shielded			v/wk	0.	024		038		.014		Sum rov	/ K			s less thar) mSv/wk	1	
		Ma	terial 1	hickness					Photon Lea		eakage				Scatter		Ń	Neu	tron	ſ
Bar	rier	in	ches	mm	Mate	erial	TVL1	(mm)	TVLe(mm)	Trar	15.	TVL1(r	nm)	TVLe(mm)	Trans.	τv	/L (mm)	Trans.	
Inside			3	76	Le	ad	5	7	51	r	4.60E	_	21	_	21	2.35E-0		N/A	1.00E+00	l
Laye			26	660	Cond	rete	N	A	33	0	9.97E		180)	180	2.14E-0		211	7.42E-04	I
	Layer #3	_				_		_			1.00E			_		1.00E+0	-		1.00E+00	I
Outside	tside Layer					-	15	M1/	-	atalı	1.00E			_	Total:	1.00E+0 5.04E-0	-	Total	1.00E+00 7.42E-04	I
	S	ca	itter				ne	gli	gibl	le f	or	at			econd	ary k			7.42E-04	

	Li	ne	Parameter		U	nits	Val	ue		Calculation	
		а	Design Dose Lin	nit (P)	mS	v/wk	0.	1			
	1	b	Occupancy Fact	or (T)			1				
		c	P/T		mS	v/wk	0.1	00		a/b	
		d	Machine X-ray E	nergy	N	IV	1	8			
		e	Vendor		-		Var	ian			
_							Val				
	ine		Parameter	Un				with IM	107		
_	a		Parameter	CI		40	_	40		Calculation	
	a b		tion of Workload		<u>.</u>	50		50%			
	с с		ctive Field Area	cm	A2	30.	160		•	b ₁ *a ₁ ^2 + b ₂ *a	A2
	d		ctive Field Size	CIII			40			sort(c)	2. 4
	e		cuve Field Size	de			40			aqrt (c)	
	f		ine X-ray Energy	M							
	ч я	<u> </u>	tter / 400 cm^2		·		3.69			Function of e	8 6
	9 h	_	catter Fraction				0.01			a*c/400	

-																	Page 100
	Ex	an	npl	e 7: S	Sec	0	nda	irv	' Ba	rrie	er C	Calcu	ula	ation	Incl	uding	
				e, Sc													
		SIV	ay	3, 00	2155	<u>, 1</u>	<u> </u>	91	2000	1111	GN	1699					
				_					oton	Photo		leutron					
	Lin	-	_	Parameter		_	nits	Lea	kage	Scatte	r L	eakage		Calculati			
	a			oad / Treat			y/pt	_	3	3	_	3		CRP 151 d			
	b		Pat	lients per D	ay		day		30	30	_	30	N	CRP 151 d	efault		
	с		W	orkload (W)	Gy	/wk	4	150	450		450		a*b			
	d			Use Factor		Ra	atio		1	1		1	adja	icent to pr	i barrier		
	e			Fraction		Ra	atio	1.0	E-03	1.5E-0	2 1	1.5E-03	٧	/arian at 1	8 MV		
	1		1	MRT Facto					2	1		1					
	9		Isocer	ter to Prot	ected		ft	2	1.0	21.0		21.0					
	h		Po	oint Distanc	e		m		5.4	6.4		6.4	-	g * 0.30	48		
	1		Uns	shielded Do	se	mS	v/wk	2.20	DE+01	1.62E+	02 1.	.65E+01	1	000*c*d*e*	ť/h^2		
	j		т	ransmissio	1			3.7	2E-04	4.66E-0	14 1	.65E-05	-	see belo	w	4	
	k		SI	ielded Dos	e	mS	v/wk	0.	008	0.076		0.000		1*1			
	L		Total	Shielded	Dose	mS	v/wk			0.084				Sum rov		084 mSv is	
																/T = 0.100	mSv/wk
			terial kness	Slant Thickness				Pł	noton Le	akage				Scatter		Neu	tron
Ban	rier	ine	ches	mm	Mate	erial	TVL1	(mm)	TVLe (m	חm) T	rans.	TVL1 (m	nm) 1	TVLe (mm)	Trans.	TVL (mm)	Trans.
Inside	Layer		1	28	Les	ad	57	,	57	3.1	22E-01	53		53	2.96E-01	N/A	1.00E+00
Laye	r#2		36	1009	Conc	rete	36	0	340		5E-03	360		360	1.58E-03	211	1.65E-05
Laye											0E+00				1.00E+00		1.00E+00
Laye								_			10E+00	-			1.00E+00		1.00E+00
Outside	,										10E+00	_	_		1.00E+00		1.00E+00
Sla	nt Angle	e (deg	rees):	25			18 1	٨V	To	tal: 3.7	72E-04			Total:	4.66E-04	Total:	1.65E-05

Example 8: Scatter Adjacent t	o Primary Barrier
Establish P/T for location D: P = 0.02 mSv, T = 0.2, P/T = 0.10 mSv/wk Distance from isocenter to protected	
location: 14.5 ft Secondary barrier 2" lead and 30" concrete, 15° slant angle Determine scatter fraction per 400	
cm ² by interpolating scatter fraction table as a function of MV (18) and scatter angle (30°) Calculate effective field size, scatter	30
fraction	
Calculate shielded dose rate comprised of photon leakage, neutron leakage and scatter using slant thickness for transmission	

Example 8: Calculation	Secondary Barrier Scatter Fraction	Page 1

	Line	Parameter	·	Units	Va	lue	Calculation	
	а	Design Dose Lin	nit (P)	mSv/wi	k 0.	02		
	b	Occupancy Fac	tor (T)		0	.2		
	с	P/T		mSv/wl	k 0.1	00	a/b	
	d	Machine X-ray E	inergy	MV	1	8		
	e	Vendor			Var	ian		
			1		Va	lue		
Li	ne	Parameter	Uni	its w/	o IMRT	with IMRT	Calculation	n
÷	a	Max Field Size	cn	n	40	40		

b	Fraction of Workload		50%	50%	
c	Effective Field Area	cm^2	160	0.0	b1*a1*2 + b2*a2*2
d	Effective Field Size	cm	40	0.0	sqrt (c)
е	Scatter Angle	deg	3	0	
f	Machine X-ray Energy	MV	1	8	
g	Scatter / 400 cm^2		2.53	E-03	Function of e & f
h	Scatter Fraction		0.0	1012	g * c / 400

																	Page 103
	Ex	ampl	e 8:	Se	COL	nda	iry	r Ba	ILL	ier	S	hiel	de	d De	ose R	late	
	Ca	leula	tion	Ind	elur	din	۳Ì	ea	ka	ane	8	Sea	affi	ər			
	04	il O cilic			5151		ື			.90	č						
							Phe	oton	Ph	oton	N	leutron					
	Line		arameter		Un	its	Lea	kage	Sc	atter	Ŀ	eakage		Calcula			
	а	Workloa	ad / Treatm	ent	Gy	/pt		3		3		3	NCRP 151 default				
	b	Patie	nts per Da	/	pt/c	lay	3	0		30		30	NCRP 151 default				
	с	Wo	rkload (W)		Gy/	wk	4	50		450		450	5*a*b				
	d	Us	e Factor		Rat	tio		1	0	1.25		1	adjacent to pri barrier				
	е	F	raction		Rat	tio	1.0	E-03	1.0)E-02	1	.5E-03	Varian at 18 MV				
	f	IM	RT Factor					2		1		1					
	g	Isocente	er to Prote	ted	f	1	14	4.5	1	4.5		14.5					
	h	Poir	t Distance		п	1	4	.4		4.4		4.4		g * 0.3	048		
	1	Unsh	ielded Dos	е	mSv	/wk	4.61	E+01	5.8	3E+01	3.	46E+01	10	000*c*d*	e*f/h^2		
	J	Tra	nsmission				5.78	E-04	3.1	9E-04	1.	82E-04		see be	low		
	k	Shie	Ided Dose		mSv	/wk	0.0	027	0	.019		0.006		1*1	/		
	L	Total S	hielded Do	se	mSv	/wk			0	.052				Sum ro		052 mSv is P/T = 0.10	
																P/T = 0.10	mSV/WK
		Material Thickness	Slant Thickness				Pł	noton Le	aka	ge			5	Scatter		Neu	tron
	Barrier	inches	mm	Ma	terial	TVL1	(mm)	TVLe (r	nm)	Trans	s.	TVL1 (m	m) TV	Le (mm)	Trans.	TVL (mm)	Trans.
Ins	ide Layer	2	53	L	.ead	5	7	57		1.19E-	01	51		51	9.31E-02	N/A	1.00E+00
-	ayer #2									1.00E+					1.00E+00		1.00E+00
	ayer #3									1.00E4					1.00E+00		1.00E+00
	side Layer	30	789	Co	ncrete	36		340	_	4.83E-		320	_	320	3.43E-03	211	1.82E-04
	Slant Angle	e (degrees):	15			18	VN	To	otal:	5.78E-	04			Total:	3.19E-04	Total:	1.82E-04

Exam	ole 9: P/T and A	Verag	e Field	l Size (Calculation
Prote	cted location is	in a co	ntrolled	d area (P= 0.1 msv/wk)
– NC	RP 151 occupancy	T=1/8 fo	r extrem	ely low t	raffic location
– Hig	gher occupancy app	propriate	if close	proximit	y to control area
	e.g., T=0.5 or T=1 (· · · · · · · · · · · · · · · · · · ·
	ximum shielded do				
	eighted average field e.g., especially use	eful for e	xisting	ault doo	r calculations
				lue	
Line	Parameter Max Field Size	Units	w/o IMRT 40	with IMRT 40	Calculation
a b	Fraction of Workload	cm	40	40	
-	Effective Field Area	cm^2		500	b ₁ * a ₁ ^2 + b ₂ * a ₂ ^2
С	Effective Field Size			0.0	sqrt (c)

	ample : Iculatio	9a: Patient Scatter Un on	nshiel	ded Do	Page 10 DSE Rate
Line	Symbol	Parameter	Units	Value	Calculation
а	MV	Machine X-ray Energy	MV	6	
b	w	Workload	Gy/wk	450	
с	d _{sca}	Distance from target to isocenter	m	1.00	
d	dsec	Distance from isocenter to wall at maze	ft	27.5	measured
е	usec	end	m	8.38	d * 0.3048
f	d,,,	Distance from wall at maze end to door	ft	28	measured
g	uzz	Distance from wair at maze end to door	m	8.53	f * 0.3048
h	W1	Wall width seen from door	ft	10	measured
i	w ₁	wall width seen from door	m	3.05	h * 0.3048
j	h	Room height	ft	10	measured
k	n	Room neight	m	3.05	j * 0.3048
L	A ₁	Scatter area	m²	9.3	i*k
m	а	Patient scatter fraction (400 cm ² field)		1.39E-03	See Table 5 (45°) Function of MV
n	α,	Reflection Coefficient		2.20E-02	Table 8a, 0.5 MV, 45°
0	F	Average field area	cm ²	1600	See above
р	U	Use Factor		0.25	Orientation with highest dose rate
q	H _{PS}	Patient scatter unshielded dose rate	mSv/wk	2.50E-02	1000*m*b*p*(o/400)*L / (c^2 * e^2 * g^2)

	nple 9 ulatior	b: Wall Scatter Uns	hielde	ed Dos	se Rate
Line	Symbol	Parameter	Units	Value	Calculation
a	MV	Machine X-ray Energy	MV	6	outoution
b	w	Workload	Gy/wk	450	
c	f	Patient transmission	-);	0.25	0.25 if MV ≤ 10
d		Distance from target to primary barrier	ft	13	measured
e	d ₀	wall	m	3.96	d * 0.3048
f		Distance from primary barrier wall to	ft	26	measured
g	d,	maze inside opening	m	7.92	f * 0.3048
h		Distance from maze inside opening to	ft	19	measured
i i	dz	door	m	5.79	h * 0.3048
1 I			ft	7	measured
k	d _m	Maze width	m	2.13	j* 0.3048
L	h	Room height	ft	10	measured
m	h	Room neight	m	3.05	L * 0.3048
n	α.	1sr reflection coefficient	1 / m ²	0.0027	Table 8a with 6 MV 75° scatter angle
0		Effective field size	cm	40.0	see above
р	A ₀	Beam area at first reflection	m²	2.51	(e * o/100)^2
q	α _z	2nd bounce scatter fraction / m ²		0.0080	Table 8a with 0.5 MV 75° scatter angle
r	A _z	Maze cross section	m²	6.5	j*L
s	U	Use Factor		0.25	Orientation with highest dose rate
t	f H _s	Wall scatter unshielded dose rate	mSv/wk	3.00E-04	1000*m*b*s*(o/400)* L / (e^2 * g^2 * i^2)

	ample Iculatio	9c: Leakage Scatter on	Unshie	elded [Dose Rate
Line	Symbol	Parameter	Units	Value	Calculation
а	MV	Machine X-ray Energy	MV	6	
b	w	Workload	Gy/wk	450	
с		Leakage Fraction	%	0.10%	
d		IMRT Factor		2	
е	dsec	Distance from target to wall at maze end	ft	27	measured
f	usec	Distance from target to wall at maze end	m	8.23	d * 0.3048
g	d,,,	Distance from wall at maze end to door	ft	28	measured
h	uzz	Distance from wail at maze end to door	m	8.53	f * 0.3048
i	W1	Wall width seen from door	ft	10	measured
j	••1	Wall Width seen from door	m	3.05	h * 0.3048
k	h	Room height	ft	10	measured
L		Köön neigik	m	3.05	j * 0.3048
m	α	1sr reflection coefficient	1 / m ²	0.0183	Table 8b with 1.4 MV 0° Reflection angle
n	A ₁	Scatter area	m²	9.3	i*k
o	U	Use Factor		1	Calculation does not depend on orientation
р	HLS	Leakage scatter unshielded dose rate	mSv/wk	3.10E-02	1000 * b * o * c * d * m * n / (f^2 * h^2)

			-				
Line	Param	eter	Units		Value	Calculatio	on
а	Machine X-r	ay Energy	MV		6		
b	Workloa	id (W)	Gy/Wk	450			
с	Use Fa	ictor	Ratio		1		
d	Leakage F	raction	%		0.10%		
e	IMRT F	actor			2		
f	Isocenter to	Isocenter to Protected			31.0		
g	Point Dis	stance	m		9.4	f * 0.304	в
h	Unshielded	Dose Rate	mSv/wk	1.	01E+01	1000*b*c*d*e	/ g^2
i	Wall Trans	mission		7.	86E-05	see belo	w
j	Inside of Doo	r Dose Rate	mSv/wk	7.	92E-04	h*i	
			-				_
	Material Thickness	Slant Thickness			Patie	nt Scatter	Photon
Barrier	inches	mm	Material		TVL1 (mr	m) TVLe (mm)	Trans.
Inside Layer	40	1240	Concrete	•	340	290	7.86E-05
Layer #2							1.00E+00
Outside Laye	er						1.00E+00
Slant	Angle (degrees):	35			6 MV	Total:	7.86E-05

ole 9: Maz	e Doo	r Tran	smissio	on Cal	culatio	on	
Maze Patient Scat							
	Material Thickness	Slant Thickness		Patient	Scatter	Photon	
Barrier	inches	mm	Material	TVL1 (mm)	TVLe (mm)	Trans.	
Inside Layer	0.25	6	Lead	5	5	5.37E-02	
Layer #2						1.00E+00	
Outside Layer						1.00E+00	
Slant Ang	le (degrees):	0		0.2 MV	Total:	5.37E-02	
			-				
Maze Wall Scatter							
	Material Thickness	Slant Thickness		Wall Scatter		Photon	
Barrier	inches	mm	Material	TVL1 (mm)	TVLe (mm)	Trans.	
Inside Layer	0.25	6	Lead	5	5	5.37E-02	
Layer #2						1.00E+00	
Outside Layer						1.00E+00	
Slant Ang	le (degrees):	0		0.2 MV	Total:	5.37E-02	
Maze Leakage Sca							
	Material Thickness	Slant Thickness		Leakage	Scatter	Photon	
Barrier	inches	mm	Material	TVL1 (mm)	TVLe (mm)	Trans.	
Inside Layer	0.25	6	Lead	8	8	1.61E-01	
Layer #2						1.00E+00	
Outside Layer						1.00E+00	
Slant Ang	le (degrees):	0		0.3 MV	Total:	1.61E-01	

	Maze Direct Leaka	ge Tran: Mate		or Door						
		Thick		kness			Direct L	.eakage	Photon	
	Barrier	inch	es	nm	N	laterial	TVL1 (mm)	TVLe (mm)	Trans.	
	Inside Layer	0.2	5	6		Lead	57	57	7.74E-01	
	Layer #2								1.00E+00	
	Outside Layer								1.00E+00	
	Slant Ang	le (degr	ees):	0			6 MV	Total:	7.74E-01	
		Parameter							-	alculation
ine	Parameter	Parameter			ient	Wall Scatter	Leakage			alculation
а	Calc. Unshielded Dos		mSv/wk		E-02	3.00E-04				
b	Total / Calc. Dose				64	2.64	1	1		IcGinley
с	Total Unshielded Dos		mSv/wk		E-02	7.92E-04			4	a*b
d	Energy for TVL		MV		.2	0.2	0.3	6.0	_	
e	Transmission				E-02	5.37E-02				ee above
f	Shielded Dose R		mSv/wk	0.00	0354	0.00004	-	0.0006		c*e
g	Total Shielded Dose	Rate	mSv/wk		_		0.0092		SL	m Row f
					0		/wk is less			
							100 mSv/w			

Ide 9: Wall Adjacent to Maze Door nission Calculation Marce Patient Scatter Transmission for Wall Adjacent to Door Marcell Striker Thickness Inches mm Material Tui, (mm) TyLa (mm) Tuiside Lyer 6 152 Concrete 130 130 6.736- Lyer 7 0 152 Concrete 130 130 6.736- Uutside Lyer 6 152 Concrete 130 130 6.736- Uutside Lyer 6 152 Concrete 130 130 6.736- Uutside Lyer 6 0 deg 0.24 W Toela 6.736- Marcell Stater Transmission for Wall Adjacent to Door Material Stater Photon	E-02 E+00 E+00
Material Stort Patterial Photon Barrier inchess mm Material TVL1 (mm) Photon Inches mm Material TVL1 (mm) TVL6 (mm) Photon Inches mm Material TVL1 (mm) TVL6 (mm) Photon Layer #2 0 Size Concrete 130 130 0.6 7.866 Unside Layer 6 52 Concrete 0.2 MV TodeL6 7.866 Unside Layer 0 0.2 MV TodeL6 7.866 6 6 Material Graph (min Kinkers) Fibric Min Adjectori to Door 0.2 MV TodeL6 7.86 Material Excent Transmission for Min Adjectori to Door Faitering Scatter Photon Photon	E-02 E+00 E+00
Thickness Thickness Patent Scatter Photom Barrier inches mm Matrial Scatter Photom Inside Layer 6 152 Concrete 130 0.72.6 Layer 2 0 0 1.00E-rd 1.00E-rd 0.00E-rd Dutside Layer 0 0.2.0V 0.02.0V 0.00E-rd Material 0.40E 0.2.0V Total 0.72E-rd Material 0.60E-rd 0.2.0V Total 0.72E-rd Material 0.56E-rd 1.00E-rd Dots/de 0.00E-rd Material 0.56E-rd 0.02.0V Total 0.72E-rd	E-02 E+00 E+00
Barrier Inches Immere Material TVL1 (mm) TVLm Inside Layer 6 152 Concrete 130 6.732-6 Layer 82 130 130 6.732-6 1.002-67 Outside Layer 0 1.002-67 1.002-67 Outside Layer 0 0.2 MV Total 6.732-6 Material 1.002-67 0.2 MV Total 6.732-6 Mazerial 0.2 MV Total 6.732-6 1.002-67 Material 1.0141 Adjacent to Door Total 5.736-7 Patient Scatter Proton	E-02 E+00 E+00
Inside Layer 6 152 Concrete 130 130 6.72-6-72 Layer B 0 1.00E-rd 1.00E-rd 1.00E-rd 1.00E-rd Constails Layer 0 0.2 MV Total e.72-6 7.50E-rd Maxe Wall Scatter 0 deg 0.2 MV Total e.72-6 7.50E-rd Maxe Wall Scatter Trainisticole for Wall Adjacent to Door Patternt Scatter Photon	E+00 E+00
Layer #2 1.60E-40 Outside Layer 2 1.60E-40 Stant Angle: 0 deg 0.2 MV Total 6.75-00 Marce Wall Scatter Transmission for Wall Adjacent to Door Material Slatet Thickness Thickness Patient Scatter Photon	E+00 E+00
Dutside Layer 0 1.08E+0 Stant Angle: 0 0.2 MV Total: 4.726-0 Max Wall Scatter Transmission for Wall Adjacent to Door 0 Patient Scatter Photon Material State State Patient Scatter Photon	
Stant Angle: 0 deg 0.2 MV Total: 6.73E-0 Maze Wall Scatter Transmission for Wall Adjacent to Door Material Slant Thickness Patient Scatter Photon	
Material Slant Thickness Thickness Patient Scatter Photon	_
Material Slant Thickness Thickness Patient Scatter Photon	
Thickness Thickness Patient Scatter Photon	
Barrier inches mm Material TVL1 (mm) TVLe (mm) Trans.	
Inside Layer 6 152 Concrete 130 130 6.73E-0	E-02
Layer #2 1.00E+0	E+00
Outside Layer 1.00E+0	E+00
Slant Angle: 0 deg 0.2 MV Total: 6.73E-0	E-02
Maze Leakage Scatter Transmission for Wall Adjacent to Door	
Material Slant Patient Scatter Photon	oton
Barrier inches mm Material TVL1 (mm) TVLe (mm) Trans.	ins.
Inside Layer 6 152 Concrete 160 160 1.12E-0	E-01
Layer #2 1.00E+0	E+00
Outside Layer 1.00E+0	E+00
Slant Angle: 0 deg 0.3 MV Total: 1.12E-0	E-01

	late								
	Maze Direct Leaka	re Transmi	ssion for Wa	II Adiacent t	n Door				
		Material	Slant	1		Patient	Conttor		1
		Thicknes						Photon Trans.	
	Barrier	inches	mm	Mat		TVL1 (mm)	TVLe (mm)		
	Inside Layer	6	152	Con	crete	340	290	2.98E-01	
	Layer #2							1.00E+00	
	Outside Layer							1.00E+00	
		Slant Ang	le: 0 deg			6 MV	Total:	2.98E-01	
				Patient	Wall				
Line	Paramete		Units	Scatter	Scatte				alculation
а	Calc. Unshielded		mSv/wk	2.50E-02	3.00E-				
b	Total / Calc. Do			2.64	2.64		1		lcGinley
c	Total Unshielded		mSv/wk	6.60E-02	7.92E-				a*b
d	Energy for		MV	0.2	0.2	0.3			
e	Transmiss	ion		6.73E-02	6.73E-	02 1.12E	-01 2.98E-	-01 si	ee above
-	Shielded Dos	ed Dose Rate mSv/wk		0.0044	0.000	1 0.003	35 0.000	02	c*e
ť	Total Shielded Dose Rate					0.0082			m Row f

Same maze layout as Example 1	
 Conventional maze similar to examples in NCRP 151 	
Mechanisms included in door calculation	
 Neutron mechanisms dominate shielded dose 	len di " (<u>Handrich de La company</u>
2	
 With door also contributing to attenuation 	of direct leakage
Scatter mechanisms need not be a - Calculations are included to illustrate that	

ampie	10e: Maze Neutron F		e Galo				
Symbol	Parameter	Units	Value	Calculation			
MV	Machine X-ray Energy	MV	18				
	Vendor		Varian				
	Neutron IMRT Factor		1				
β	Head Transmission Factor		1	1 for lead, 0.85 for tungster head shield			
4	Distance from Isocenter to maze	ft	25	measured			
u ₁	opening (Point A)	m	7.62	e * 0.3048			
dL	March Assessed Langel	ft	32	measured			
	vauit Average Length	m	9.75	g * 0.3048			
		ft	23	measured			
aw	Vault Average Width	m	7.01	i * 0.3048			
	Walk America Halada	ft	10	measured			
n	vault Average Height	m	m 3.05 k*0				
S,	Vault Surface Area	m ²	238.9	2 * (h*j + h*L + j*L)			
Qn	Neutron Source Strenth	n/Gy	9.60E+11	Function of a & b			
φ	Neutron Fluence at Point A per Gy	n /m²/Gy	5.60E+09	c*n* [d/(4*** f^2) + (5.4*d+1.3)/(2***m)]			
	Symbol MV β d ₁ d ₂ d ₃ s, r Q _n	Symbol Parameter MV Machine X-ray Energy Vendor Neutron IMKT Factor β Head Transmission Factor d1 Distance from Isocenter to maze opening (Point A) dL Vault Average Length dw Vault Average Length fh Vault Average Height Sr, Vault Surface Area Qn Neutron Source Strenth	Symbol Parameter Units MV Michine X-ray Energy MV Vendor Vendor Vendor B Head Transmission Factor Image: Comparison Factor d1 Distance from Isconters to maze opening (Point A) ft dL Vauit Average Length ft dw Vauit Average Length ft m Vauit Average Height ft h Vauit Average Height ft m Austi Surface Area m ² Qn Neutron Source Strenth n/Gy	Symbol Parameter Units Value MV Machine X-ray Energy MV 18 Vendor Varian Varian Neutron IMRT Factor 1 1 β Head Transmission Factor 1 d1 Distance from Isocontre to maze opening (Point A) ft 25 dL Vauit Average Length ft 325 dW Vauit Average Width ft 23 h Vauit Average Height ft 10 h Vauit Average Height ft 10 g, Vauit Average Height ft 10 m 3.05 32.8.9 9, Neutron Source Strenth n/ Gy			

		10e: Capture Gamma culation	a Unsł	nieldec	Page 12
Line	Symbol	Parameter	Units	Value	Calculation
а	MV	Machine X-ray Energy	MV	18	
а	w	Workload	Gy/wk	450	
с	φ	Neutron Fluence at Point A per Gy	n /m ² /Gy	5.60E+09	see above
d	d ₂	Distance from maze opening (Point A)	ft	19	measured
е	3 2	to door	m	5.79	d * 0.3048
f	TVD	Tenth-Value Distance	m	5.4	3.9 if a<18, 5.4 otherwise
g	к	Ratio Capture Gamma Dose-Equivalent to Neutron Fluence		6.9E-16	Constant
h	h _e	Capture Gamma Unshielded Dose at Door per Dose at Isocenter	Sv/Gy	3.27E-07	g * c * 10^(-e / f)
i	H _{cg}	Capture Gamma Unshielded Dose Rate	mSv/wk	1.47E-01	1000 * a * h

		e 10e: Maze Neutr ate Calculation	on Ui	nshie	Page (
Line	Symbol	Parameter	Units	Value	Calculation
а	w	Workload	Gy/wk	450	
b	φ	Neutron Fluence at Point A per Gy	n /m²/Gy	5.60E+09	See above
c	d ₂ Distance from maze opening (Point		ft	19	measured
d	u ₂	to door	m	5.79	c * 0.3048
е	d,	Inner Maze Entrance Width	ft	9	measured
f	u ₀		m	2.74	e * 0.3048
g	h	Inner Maze Entrance Height	ft	10	measured
h	n	inner maze Entrance Height	m	3.05	g * 0.3048
i	S ₀	Inner Maze Cross-Sectional Area	m ²	8.36	f*h
j	d _m	dMaze Width		7	measured
k	um	maze width	m	2.13	j* 0.3048
L	h	Average Height Along Maze	ft	10	measured
m	h _m	Average neight Along Maze	m	3.05	L * 0.3048
n	S	Maze Cross-Sectional Area	m ²	6.50	i*m
0	TVD _n	Maze Neutron Tenth-Value Distance	m	5.25	2.06 * sqrt(n)
р	H _{n,D}	Neutron Unshielded Dose-Equivalent at Door per Dose at Isocenter	Sv/Gy	1.23E-06	2.4E-15 * b * sqrt(i / n) * [1.64*10^(-d/1.9)+10^(-d/o)
q	Hn	Neutron Unshielded Dose-Equivalent Rate at Door	Sv/wk	5.52E-01	1000 * a * p

ſ	Lin	e	Parameter		U	nits	Va	alue		Calculation	
	а		Machine X-ray Ene	ergy	mS	v/wk		18			
	b		Workload / Treatm	nent	G	y/pt		3	NCRP 151 Default		
	С		Patients per Da	у	pt	day		30	N	NCRP 151 Default	
	d		Workload (W)		Gy		4	450		5*b*c	
	e		Design Dose Limit	t (P)	mS	v/wk	().1			
f			Occupancy Factor					1			
	g		P/T		mS	v/wk	c 0.100			e/f	
							Va	lue			
Lin	е		Parameter	Un	its	w/o II		with I		Calculation	
a			Max Field Size	CI	n	40		40	-		
b			ction of Workload			50'		50' 00	%	b ₁ * a ₁ *2 + b ₂ * a ₂	42
د د	_		fective Field Area	cm							
d		Ef	fective Field Size	CI	n		40	0.0		sqrt (c)	

	ample Iculati	10a: Patient Scatter on	Unshi	elded I	Dose Rate
Line	Symbol	Parameter	Units	Value	Calculation
а	MV	Machine X-ray Energy	MV	18	
b	w	Workload	Gy/wk	450	
с	d _{sca}	Distance from target to isocenter	m	1.00	
d	dsec	Distance from isocenter to wall at maze	ft 27.5		measured
е	usec	end	m	8.38	d * 0.3048
f	d,,	Distance from wall at maze end to door	ft	28	measured
g	uzz	Distance from wail at maze end to door	m	8.53	f * 0.3048
h	W1	Wall width seen from door	ft	10	measured
i	W1	waii widdi seen from door	m	3.05	h * 0.3048
j	h	Room height	ft	10	measured
k	n	Room neight	m	3.05	j* 0.3048
L	A ₁	Scatter area	m ²	9.3	i*k
m	а	Patient scatter fraction (400 cm ² field)		8.64E-04	See Table 5 (45°) Function of MV
n	α,	2nd bounce scatter fraction / m ²		2.20E-02	Table 8a, 0.5 MV, 45°
0	F	Average field area	cm ²	1600	See above
р	U	Use Factor		0.25	Orientation with highest dose rate
q	H _{PS}	Patient scatter unshielded dose rate	mSv/wk	1.55E-02	1000*m*b*p*(o/400)*L / (c^2 * e^2 * g^2)

	nple 1 ulatio	0b: Wall Scatter Ur	shiel	ded D	ose Rate
Line	Symbol	Parameter	Units	Value	Calculation
а	MV	Machine X-ray Energy	MV	18	
b	w	Workload	Gy/wk	450	
с	f	Patient transmission		0.27	0.27 if MV > 10
d	do	Distance from target to primary barrier	ft	13	measured
е	u ₀	wall	m	3.96	d * 0.3048
f	d,	Distance from primary barrier wall to	ft	26	measured
g	a,	maze inside opening	m	7.92	f * 0.3048
h	d.	Distance from maze inside opening to	ft	19	measured
1	u _z			5.79	h * 0.3048
J	d_	Maze width	ft	7	measured
k	um	waze width	m	2.13	j* 0.3048
L	h	Room height	ft	10	measured
m	1 ⁿ	Room neight	m	3.05	L * 0.3048
n	α.,	1sr reflection coefficient	1 / m ²	0.0016	Table 8a with 6 MV 75° scatter angle
0		Effective field size	cm	40.0	see above
р	A ₀	Beam area at first reflection	m²	2.51	(e * o/100)^2
q	αε	2nd bounce scatter fraction / m ²		0.0080	Table 8a with 0.5 MV 75° scatter angle
r	A _z	Maze cross section	m²	6.5	j*L
s	U	Use Factor		0.25	Orientation with highest dose rate
s	f H _s	Wall scatter unshielded dose rate	mSv/wk	1.92E-04	1000*m*b*s*(o/400)* L / (e^2 * g^2 * i^2)

		10c: Leakage Scatte culation	r Unsł	nielded	Page 12
Line	Symbol	Parameter	Units	Value	Calculation
а	MV	Machine X-ray Energy	MV	18	
b	w	Workload	Gy/wk	450	
с		Leakage Fraction	%	0.10%	
d		IMRT Factor		2	
е	dsec	Distance from target to wall at maze end	ft	27	measured
f	usec	Distance from target to wair at maze end	m	8.23	d * 0.3048
g	dzz	Distance from wall at maze end to door	ft	28	measured
h		bistance from wail at maze end to door	m	8.53	f * 0.3048
i	W ₁	Wall width seen from door	ft	10	measured
j	••1	Wall Width Seen from door	m	3.05	h * 0.3048
k	h	Room height	ft	10	measured
L	1	Noom Height	m	3.05	j * 0.3048
m	α,	1sr reflection coefficient	1 / m²	0.0179	Table 8b with 1.4 MV 0° Reflection angle
n	A ₁	Scatter area	m²	9.3	i*k
0	U	Use Factor		1	Calculation does not depend on orientation
р	HLS	Leakage scatter unshielded dose rate	mSv/wk	3.03E-02	1000 *b *o *c *d *m *n / (f^2 * h^2)

Iculatio	11						
Line	Parame	ter	Units	,	Value	Calculatio	n
a	Machine X-ra	v Energy	MV		18		
b	Workload	1 (W)	Gv/Wk		450		
с	Use Fac	tor	Ratio		1		
d	Leakage Fi	raction	%	0	0.10%		
е	IMRT Fa	ctor			2		
f	Isocenter to F	Protected	ft		31.0		
g	Point Distance		m		9.4	f * 0.3048	5
h	Unshielde	d Dose	mSv/wk	1.0	01E+01	1000*b*c*d*e	/ g^2
i	Wall Transr	nission		2.	58E-04	see below	v
j	Dose at Insid	e of Door	mSv/wk	2.	60E-03	h*i	
	Material	Slant	1		r		
	Thickness	Thickness			Direct	Leakage	Photon
Barrier	inches	mm	Materia		TVL1 (mm) TVLe (mm)	Trans.
Inside Layer	40	1240	Concret	э	360	340	2.58E-04
Layer #2							1.00E+00
Outside Layer	•						1.00E+00
Slant A	nale (dearees):	35			18 MV	Total:	2.58E-04

Example	10: Maze	e Doo	r Trai	nsmiss	ion C	alcul	ation	Page
1 of 2]	Maze Patient Scat	ter Transmiss	sion for Door					
		Material Thickness	Slant Thickness		Patient	Scatter	Photon	
	Barrier	inches	mm	Material	TVL1 (mm) TVLe (mm)		Trans.	
	Inside Layer	0.25	6	Steel	26	26	5.70E-01	
	Layer #2	3	76	Borated Poly	322	322	5.80E-01	
	Layer #3	1	25	Lead	5	5	8.32E-06	
	Outside Layer	0.25	6	Steel	26	26	5.70E-01	
	Slant Ang	le (degrees):	0		0.2 MV	Total:	1.57E-06	
	Maze Wall Scatter							
		Material Thickness	Slant Thickness		Wall S	catter	Photon	
	Barrier	inches	mm	Material	TVL1 (mm)	TVLe (mm)	Trans.	
	Inside Layer	0.25	6	Steel	26	26	5.70E-01	
	Layer #2	3	76	Borated Poly	322	322	5.80E-01	
	Layer #3	1	25	Lead	5	5	8.32E-06	
	Outside Layer	0.25	6	Steel	26	26	5.70E-01	
	Slant Ang	le (degrees):	0		0.2 MV	Total:	1.57E-06	
	Maze Leakage Sca			r				
		Material Thickness	Slant Thickness		Leakage		Photon Trans	
	Barrier	inches	mm	Material	TVL1 (mm)	,		
	Inside Layer	0.25	6	Steel	39	39	6.87E-01	
	Layer #2	3	76	Borated Poly	396	396	6.42E-01	
	Layer #3	1	25	Lead	8	8	6.68E-04	
	Outside Layer	0.25	6	Steel	39	39	6.87E-01	
	Slant Ang	le (degrees):	0		0.3 MV	Total:	2.03E-04	

Example	10: Maze	e Doo	r Trai	nsmiss	ion C	alcul	ation
2 of 2]	Maze Direct Leaka						
	Barrier	Material Thickness inches	Slant Thickness mm	Material	Direct I	eakage	Photon Trans.
	Inside Laver	0.25	6	Steel	96	96	8.59E-01
	Laver #2	3	76	Borated Poly	842	842	8.12E-01
	Laver #3	1	25	Lead	57	57	3.58E-01
	Outside Laver	0.25	6	Steel	96	96	8.59E-01
	Slant Ang	e (degrees):	0		18 MV	Total:	2.15E-01
	Neutron Transmiss						
		Material Thickness	Slant Thickness		Maze N	eutrons	Neutron
	Barrier	inches	mm	Material	TVL1 (mm)	TVLe (mm)	Trans.
	Inside Layer	0.25	6	Steel	N/A	N/A	1.00E+00
	Layer #2	3	76	Borated Poly	45	45	2.03E-02
	Layer #3	1	25	Lead	N/A	N/A	1.00E+00
	Outside Layer	0.25	6	Steel	N/A	N/A	1.00E+00
	Slant Ang	le (degrees):	0		0.1 MV	Total:	2.03E-02
	Capture Gamma Tr						
		Material Thickness	Slant Thickness		Capture	Gamma	Photon
	Barrier	inches	mm	Material	TVL1 (mm)	TVLe (mm)	Trans.
	Inside Layer	0.25	6	Steel	95	95	8.57E-01
	Layer #2	3	76	Borated Poly	817	817	8.07E-01
	Layer #3	1	25	Lead	61	61	3.83E-01
	Outside Layer	0.25	6	Steel	95	95	8.57E-01
	Slant Ang	le (degrees):	0		3.6 MV	Total:	2.27E-01

Line	Parameter	Units	Patient Scatter	Wall Scatter	Leakage Scatter	Direct Leakage	Neutrons	Capture Gammas					
а	Calc. Unshield Dose Rate	mSv/wk	1.55E-02	1.92E-04	3.03E-02	2.60E-03	5.52E-01	1.47E-01					
b	Total / Calc. Dose Rate		2.64	2.64	1	1	1	1					
с	Total Unshield Dose Rate	mSv/wk	4.10E-02	5.07E-04	3.03E-02	2.60E-03	5.52E-01	1.47E-01					
d													
е	Transmission		1.57E-06	1.57E-06	2.03E-04	2.15E-01	2.03E-02	2.27E-01					
f	Shielded Dose Rate	mSv/wk	0.0000 0.0000 0.0000 0.0006 0.0112 0.033										
g	Total Shielded Dose Rate	mSv/wk			0	.0452							
 Shielded dose typically dominated by neutrons and capture gammas Direct leakage may be significant or not, depending on maze wall width (not very large in this case) 													

Example	10: Wall	Adj. t	o Maz	e Doo	r Trar	nsmis	sion	Page Calc.
[1 of 2]	Maze Patient Scat	er Transmiss	ion for Wall Ad	ljacent to Doo	r			
		Material Thickness	Slant Thickness		Patient	Scatter	Photon	
	Barrier	inches	mm	Material	TVL1 (mm)	TVLe (mm)	Trans.	
	Inside Layer	12	305	Concrete	130	130	4.52E-03	
	Layer #2						1.00E+00	
	Layer #3						1.00E+00	
	Outside Layer						1.00E+00	
	Slant An	gle (degrees):	0		0.2 MV	Total:	4.52E-03	
	Maze Wall Scatter	Transmission	for Wall Adjac	ent to Door				
		Material Thickness	Slant Thickness			Scatter	Photon	
	Barrier	inches	mm	Material	TVL1 (mm)	TVLe (mm)	Trans.	
	Inside Layer	12	305	Concrete	130	130	4.52E-03	
	Layer #2						1.00E+00	
	Layer #3						1.00E+00	
	Outside Layer						1.00E+00	
	Slant An	gle (degrees):	0		0.2 MV	Total:	4.52E-03	
	Maze Leakage Sca			djacent to Doc	N			
		Material Thickness	Slant Thickness			Scatter	Photon	
	Barrier	inches	mm	Material		TVLe (mm)	Trans.	
	Inside Layer	12	305	Concrete	160	160	1.24E-02	
	Layer #2						1.00E+00	
	Layer #3						1.00E+00	
	Outside Layer						1.00E+00	
	Slant An	gle (degrees):	0		0.3 MV	Total:	1.24E-02	

	40- M-II	A -12 - 4		- Dee				Pa
xample	10: Wall	Adj. t	o maz		n nen	ISMIS	sion	Galic.
of 2]	Maze Direct Leakad	ne Transmissi	on for Wall Ac	liacent to Door				
		Material Thickness	Slant Thickness	,		Scatter	Photon	
	Barrier	inches	mm	Material	TVL1 (mm)	TVLe (mm)	Trans.	
	Inside Layer	12	305	Concrete	360	340	1.27E-01	
	Layer #2						1.00E+00	
	Layer #3						1.00E+00	
	Outside Layer						1.00E+00	
		Slant Angle:	0 deg		18 MV	Total:	1.27E-01	
	Neutron Transmiss	ion for Wall A Material	djacent to Do Slant	or				
		Thickness	Thickness		Patient	Scatter	Neutron	
	Barrier	inches	mm	Material	TVL1 (mm)	TVLe (mm)	Trans.	
	Inside Layer	12	305	Concrete	161	161	1.28E-02	
	Layer #2						1.00E+00	
	Layer #3						1.00E+00	
	Outside Layer						1.00E+00	
		Slant Angle:	0 deg		0.1 MV	Total:	1.28E-02	
	Capture Gamma Tr	ansmission fo Material	or Wall Adjace Slant	nt to Door				
		Thickness	Thickness		Patient	Scatter	Photon	
	Barrier	inches	mm	Material	TVL1 (mm)	TVLe (mm)	Trans.	
	Inside Layer	12	305	Concrete	330	330	1.19E-01	
	Layer #2						1.00E+00	
	Layer #3						1.00E+00	
	Outside Layer						1.00E+00	
		Slant Angle:	0 dea		3.6 MV	Total:	1.19E-01	

Е

Exar Dose	Page 137								
Line	Parameter	Units	Patient Scatter	Wall Scatter	Leakage Scatter	Direct Leakage	Neutrons	Capture Gammas	Calculation
a	Calc. Unshield Dose Rate	mSv/wk	1.55E-02	1.92E-04	3.03E-02	2.60E-03	5.52E-01	1.47E-01	Calculation
b	Total / Calc. Dose Rate		2.64	2.64	1	1	1	1	NCRP 151 Eq. 2.14
c	Total Unshield Dose Rate	mSv/wk	4.10E-02	5.07E-04	3.03E-02	2.60E-03	5.52E-01	1.47E-01	a*b
d	Energy for TVL	MV	0.3	0.3	0.5	18.0	0.1	3.6	
e	Transmission		4.52E-03	4.52E-03	1.24E-02	1.27E-01	1.28E-02	1.19E-01	see above
f	Shielded Dose Rate	mSv/wk	0.0002	0.0000	0.0004	0.0003	0.0071	0.0175	c*e
g	Total Shielded Dose Rate	mSv/wk			0.03	255			Sum Row f

	-	ine	Parameter		Un	nits	Va	lue		Calculation	
		a	Design Dose Lim	it (P)	mS	v/wk	0	.1			
		b	Occupancy Facto	or (T)				1			
		c	P/T		mS۱	v/wk	0.1	00		a/b	
		d	Machine X-ray En	ergy	M	IV	1	8			
		е	Vendor				Va	rian			
					_		Value				
	ine		Parameter	Un	ite	w/o IN		with IN	MRT	Calculation	
-	a		ax Field Size	c		40		40	_	Guidalation	
_	b	Fract	ion of Workload			50%	6	50%	6		
	с	Effe	tive Field Area	cm	1^2		160	0.0		b ₁ *a ₁ *2 + b ₂ *a ₂	^2
	d	Effe	ctive Field Size	C	m		40).0		sqrt (c)	
	е	S	catter Angle	de	∋g		6	0			
	f	Machi	ine X-ray Energy	м	v		1	8			
	g	Scat	ter / 400 cm^2				4.24	E-04		Function of e	& f
	h	Sc	atter Fraction				0.00	0170		g*c/400	

				a: Dire Calcul		[<mark>2 o</mark> f	2]						Page	140
	Line		Parame	ter	Units	Photo Leaka			oton atter	Neutron Leakage	Ca	lculation		
	а	Worl	kload / Tr	eatment	Gy/pt	3	-		3	3	NCRP	151 defau	lt	
	b	Pa	atients pe	r Day	pt/day	30		;	30	30	NCRP	151 defau	lt	
	c	1	Workload	(W)	Gy/wk	450		4	50	450	5	*a*b		
	d		Use Fac	tor	Ratio	1			1	1				
	е		Fractio	n		1.00E-	1.00E-03 1		DE-03	1.5E-03	18 MV values			
	f		IMRT Fa	ctor		2			1	1				
	g	Isoce	Isocenter to Protected			23.0)	2	3.0	23.0				
	h	P	Point Distance			7.0		7	7.0	7.0	g	0.3048		
	i	Unsh	ielded D	ose Rate	mSv/wk	1.83E+	+01	1.55	6E+01	1.37E+01	1000*	c*d*e*f/h^:	2	
	j	T	Fransmis	sion		8.44E-	-04	8.44E-07		8.81E-04	see below			
	k	Shie	elded Do	se Rate	mSv/wk	0.015	54	0.0000		0.0121	i*j			
	L	Total S	Shielded	Dose Rate	mSv/wk			0.0	0276		Su	m row k		
		Material Thickness	Slant Thickness		P	hoton Leaka	ge			Scatter		Neu	tron	
	Barrier	inches	mm	Material	TVL1 (mm)		Tran) TVLe (mm)	Trans.	TVL (mm)	Trans	
	ide Layer aver #2	0.25	7	Steel	96 57	96 57	8.39E		68 32	68	7.80E-01 5.11E-03	N/A N/A	1.00E+	
	ayer #2	2.5	73 293	Lead Borated Poly	57 891	57 842	5.17E		32 230	32	5.11E-03 5.31E-02	N/A 96	1.00E+ 8.81E-	
	aver #4	2.5	73	Lead	57	57	5.17E		32	32	5.11E-02	N/A	1.00E+	
Out	side Layer	0.25	7	Steel	96	96	8.39E	-01	68	68	7.80E-01	N/A	1.00E+	+00
	Slant Angle	(degrees):	30		18 MV	Total:	8.44E	-04		Total:	8.44E-07	Total:	8.81E-	-04

vamn	le 11b: Direct Shield	led Do	or Ear	Side of
	ce Shielded Dose R			
Far Side of	Door Distance, Thickness, and Length	Calculations		
Line	Parameter	Units	Value	Calculation
а	Door Overlap	in	7.5	
b	Gap Between Barrier and Door	in	0.5	
с	Distance from Isocenter to	ft	11	
d	Far Side of Entrance	in	132	c * 12
е	Distance from Isocenter to	ft	16.5	
f	Inside Face of Door	in	198	e * 12
g	Slant Angle at Far Side of Entrance	deg	54.8	atan(f / (a + d))
h	Slant Thickness	in	12.4	a/cos(g) - b/sin(g)
i	at Corner	mm	315	25.4 * h
j	Thickness of Lead Added to Wall	in		Selected value
k	Slant Thickness through Lead	mm	132	25.4 * j / cos(g)
L	Slant Thickness through Concrete	in	183	i-k
m	Concrete Thickness	in	4.15	L * cos(g) / 25.4
n	Borated Poly Thickness	in	6	Selected value

 o
 Borated Poly Slant Thickness
 mm
 186
 25.4 * n / sin(g)

 p
 Minimum Desired Slant Thickness
 in
 42
 Dose rate <P/T / 3</td>

 q
 Minimum Lengh of Added Lead
 in
 35
 p * sin(g)

 Thicknesses selected to make shielded dose rate less than dose limit

Value									
Line	Parameter	Units	w/o IMRT	with IMRT	Calculation				
а	Max Field Size	cm	40	40					
b	Fraction of Workload		50%	50%					
c	Effective Field Area	cm^2	160	0.0	b ₁ *a ₁ *2 + b ₂ *a ₂ *2				
d	Effective Field Size	cm	40).0	sqrt (c)				
е	Scatter Angle	deg	54	4.8					
f	Machine X-ray Energy	MV	1	8					
g	Scatter / 400 cm^2		5.42	E-04	Function of e & f				
h	Scatter Fraction		0.0	0217	g * c / 400				

				b: Dire nieldee								3]	Page 146
	Line	T	Parame	tor	Units	Photo				Neutron Leakage	Cal	culation	
	a	Wor	kload / Tr		Gy/pt	3	90		3	3		151 defaul	Ht .
	b		atients pe		pt/day	30			30	30		151 defaul	
	c	_	Workload		Gv/wk	450		_	50	450		*a*b	
	d		Use Fac	. ,	Ratio		-		1	1			
	e		Fractio	n		1.00E-	1.00E-03 2.		7E-03	1.50E-03	18 N	IV values	
	f		IMRT Fa	ctor		2			1	1			
	g	1000			ft	25.0		2	5.0	25.0			_
	h		Isocenter to Protected Point Distance			7.6		-	7.6	7.6 g		0.3048	_
			nshielder	Doro	m mSv/wk	1.55E4	.01	1.68E+01		1.16E+01	5	c*d*e*f/h^2	_
	i	-	Transmis		11134/44K					1.55E-03		e below	
	k	-	Shielded		mSv/wk				000	0.018		i*i	
	L	-	al Shielde		mSv/wk	0.01	3		000			Sum row k	
		100	al Shielde	au Dose	III3V/WK			0.	031		Su	III TOW K	
		Material Thickness	Slant Thickness		Р	hoton Leaka	ge			Scatter		Neu	tron
1	Barrier	inches	mm	Material	TVL1 (mm)	TVLe (mm)	Tran	15.	TVL1 (mm	TVLe (mm)	Trans.	TVL (mm)	Trans.
	ide Layer	3	132	Lead	57	57	4.77E		36	36	2.01E-04	N/A	1.00E+00
	ayer #2	4.1	183	Concrete	360	340	2.90E		244	244	1.78E-01	211	1.36E-01
	ayer #3 aver #4	6	186	Borated Poly	891	842	6.01E		244	244	1.72E-01 1.00E+00	96	1.14E-02
	side Laver						1.00E				1.00E+00		1.00E+00
	Slant Angle	(degrees):	54.8		18 MV	Total:	8.31E	-04		Total:	6.14E-06	Total:	1.55E-03

Example 11c: Direct Shielded Door Near Side of Entrance Shielded Dose Rate Calculation [1 of 9]

Page 15

Page 15

Near Side o	Near Side of Door Material Thickness Calculation									
Line	Parameter	Units	Value	Calculation						
а	Door Overlap	in	7.5							
b	Gap Between Barrier and Door	in	0.5							
с	Angle at Near Side Wall	deg	45.0							
d	Wall Overlap Beyond Entrance	in	7.0	(a*tan(c) - b)/ tan(c)						
е	Thickness of Lead Added to Wall	in	1.5							
f	Remaining Concrete Wall	in	5.5	d-e						
g	Material Added beyond Wall	in	3							

Material added to wall selected as required to make shielded dose rate less than dose limit

Example 11c: Direct Shielded Door Near Side of Entrance Shielded Dose Rate Calculation [2 of 9] Near Side of Door Scatter Fraction Calculation Value w/o IMRT with IMRT 40 40 50% 50% 1600.0 600.0 Units Line Parameter Calculation a b c Max Field Size cm Fraction of Workload Effective Field Area cm^2 b₁*a₁^2 + b₂*a₂^2 Effective Field Size Scatter Angle Machine X-ray Energy Scatter / 400 cm² cm deg MV 40.0 85 d sqrt (c) е f 18 2.16E-04 Function of e & f g h Scatter Fraction 0.00086 g*c/400

Page 152

Page 156

ampl	e 11	c: Dir	ect S	hield	ed D	oor I	Near 9	Side	oi	Page
Near Side of Door Shielded Dose Due to Direct Leakage										
Parameter			Units				Neutron Leakage		Calculatio	n
Worklo	oad / Trea	atment	Gy/pt	3		3	3	NCF	RP 151 det	fault
Pati	ents per	Day	pt/day	30		30	30	NCF	RP 151 det	fault
Wo	orkload (W)	Gy/wk	450		450	450		5*a*b	
U	se Facto	r	Ratio	1		1	1			
1	Fraction			1.00E	03 8.0	5E-04	1.50E-03	11	18 MV values	
IMRT Factor		or		2		1	1			
Isocen	ter to Pro	otected	ft	21.0)	21.0	21.0			
Poi	nt Distar	ice	m	6.4		6.4	6.4		g * 0.3048	
Unsl	nielded D	ose	mSv/wk	2.20E+	2.20E+01 9.50		1.65E+01	100	1000*c*d*e*f/h^2	
Tra	ansmissi	on		2.88E-	88E-04 5.99E-		1.58E-06	see below		,
Shi	ielded Do	ose	mSv/wk	0.00	6 (0.000	0.000		i*j	
Total	Shielded	Dose	mSv/wk			0.006	.006			ĸ
lculation for	Direct Leak	kage at Near :	Side of Door							
Material Thickness	Slant Thickness				ge		Scatter		Neu	tron
inches	mm	Material			Trans.			Trans.	TVL (mm)	Trans.
48	1224	Concrete	360	340	2.88E-04	197	197	5.99E-07	211	1.58E-06
										1.00E+00
e (degrees):	5		18 MV	Total			Total:	1.00E+00 5.99E-07	Total	1.00E+00 1.58E-06
	of Door S F Workle Pati Wo U U Socen Poi Unsl Unsl Tra Shi Total	terance Si of Door Shielded I Paramete Workload / Trei Workload / To Workload / Use Facto Fraction MRT Facto MRT Facto Fraction	Arance Shielded Dose Due Parameter Workload / Treatment Patients per Day Workload (W) Use Factor Fraction IMRT Factor Isocenter to Protected Point Distance Unshielded Dose Transmission Shielded Dose Transmission Shielded Dose Transmission Shielded Dose Totato Y Derote Sage Totato Shielded Dose Totato Shielded Shielded Dose Shielded Shielded Sh	Arance Shielded Dose Door Shielded Dose Due to Direct L Parameter Units Workload / Treatment Gylpt Patients per Day Workload (W) Gylwk Use Factor Ratio Fraction MRT Factor Isocenter to Protected ft Point Distance m Unshielded Dose mSvlwk Transmission Shielded Dose mSvlwk Total Shielded Dose m State State m	Arance Shielded Dose Realized Coor Shielded Dose Due to Direct Leskage Door Shielded Dose Due to Direct Leskage Workload / Treatment Gylpt 3 Patients per Day puddys Workload (W) Gylwk 450 Use Factor Ratio 1 Fraction at 100E MRT Factor 2 Isocenter to Protected ft 211. Printinciance m 6.4. Unshielded Dose mSvlwk 224E Transmission 6 Transmission Sweet of Door Total Shielded Dose mSvlwk Case Shielded Dose mSvlwk Case Transmission Sweet of Door Total Shielded Dose mSvlwk Case Transmission Sweet of Door Total Shielded Dose mSvlwk Case Transmission Sweet of Door Total Shielded Dose mSvlwk Case The State State State of Door Total Shielded Dose MSvlwk	Parameter Units Photon Photon Parameter Units Photon Photon </td <td>Parameter Units Photon Photon Data Data Data Data Data Parameter Units Leakage Data Data Data Workload / Treatment Gyfpt 3 3 Data <tdd< td=""><td>Parameter Units Photon Leskage Photon Vector Photon Leskage Workload / Treatment Workload / Treatment Workload / Treatment Workload / W Gylpt 3 3 3 Parameter Units Leskage Scatter Leskage Workload / Treatment Gylpt 3 3 3 3 Parameter Gylpt 3 3 3 Workload / W Gylwk 450 450 450 Use Factor Ratio 1 1 1 Fraction 2 1 1 1 Isocentry Orbiticed ft 21.0 21.0 21.0 Point Distance m 6.4 6.4 6.4 Unsheided Dose mSvlwk 2.006-01 1.56E-01 1.50E-03 Transmission mSvlwk 0.006 0.006 0.006 Total Shielded Dose mSvlwk 0.006 0.006 0.006 Total Shielded Dose MSvlwk 0.006 0.006 0.006 Totalof</td><td>Parameter Units Photon Neutron 0 0 Odor Shielded Dose Due to Direct Leakage Control Leakage Neutron Neutron 0 Parameter Units Enkage Neutron Neutron 0 Workload / Treatment Gylpt 3 3 NCF Patients per Day p/dkag 30 30 NCF Workload (W) Gylnk 450 450 450 Use Factor Ratio 1 1 1 Fraction 1.00E-03 6.65E-04 1.50E-03 11 IMRT Factor 2 1 1 1 Point Distance m 6.4 6.4 6.4 Unshielded Dose mSvhvk 0.006 1 1 Total Shielded Dose mSvhvk 0.006 1 1 Charles To Direct Leakage Work Web or 1 5.00E-07 1.58E-06 1 Shielded Dose mSvhvk 0.006 1 1 1</td><td>Parameter Unit Sector Photon Neutron Calculation Workload / Treatment Gylpt 3 3 3 NCRP 151 del Workload / Treatment Gylpt 3 3 3 NCRP 151 del Patterts per Day pt/day 30 30 30 NCRP 151 del Workload / Treatment Gylpt 3 3 3 NCRP 151 del Workload / Treatment Gylpt 450 450 450 NCRP 151 del Use Factor Ratio 1 1 1 1 1 1 Fraction 1.00E-03 8.65E-04 1.50E-03 18.MV value IMRT Factor 2 1 1 1 1 Isocentre to Protected ft 21.0 21.0 2.00 1.05E-03 1.05E-03 1.05E-01 1000°C'd*°1/1 Transmission 2.88E-04 5.98E-07 1.85E-06 ace below Swite 0.006 Sum row1 Retend Down Cathage at ther tifs of 2/or</td></tdd<></td>	Parameter Units Photon Photon Data Data Data Data Data Parameter Units Leakage Data Data Data Workload / Treatment Gyfpt 3 3 Data Data <tdd< td=""><td>Parameter Units Photon Leskage Photon Vector Photon Leskage Workload / Treatment Workload / Treatment Workload / Treatment Workload / W Gylpt 3 3 3 Parameter Units Leskage Scatter Leskage Workload / Treatment Gylpt 3 3 3 3 Parameter Gylpt 3 3 3 Workload / W Gylwk 450 450 450 Use Factor Ratio 1 1 1 Fraction 2 1 1 1 Isocentry Orbiticed ft 21.0 21.0 21.0 Point Distance m 6.4 6.4 6.4 Unsheided Dose mSvlwk 2.006-01 1.56E-01 1.50E-03 Transmission mSvlwk 0.006 0.006 0.006 Total Shielded Dose mSvlwk 0.006 0.006 0.006 Total Shielded Dose MSvlwk 0.006 0.006 0.006 Totalof</td><td>Parameter Units Photon Neutron 0 0 Odor Shielded Dose Due to Direct Leakage Control Leakage Neutron Neutron 0 Parameter Units Enkage Neutron Neutron 0 Workload / Treatment Gylpt 3 3 NCF Patients per Day p/dkag 30 30 NCF Workload (W) Gylnk 450 450 450 Use Factor Ratio 1 1 1 Fraction 1.00E-03 6.65E-04 1.50E-03 11 IMRT Factor 2 1 1 1 Point Distance m 6.4 6.4 6.4 Unshielded Dose mSvhvk 0.006 1 1 Total Shielded Dose mSvhvk 0.006 1 1 Charles To Direct Leakage Work Web or 1 5.00E-07 1.58E-06 1 Shielded Dose mSvhvk 0.006 1 1 1</td><td>Parameter Unit Sector Photon Neutron Calculation Workload / Treatment Gylpt 3 3 3 NCRP 151 del Workload / Treatment Gylpt 3 3 3 NCRP 151 del Patterts per Day pt/day 30 30 30 NCRP 151 del Workload / Treatment Gylpt 3 3 3 NCRP 151 del Workload / Treatment Gylpt 450 450 450 NCRP 151 del Use Factor Ratio 1 1 1 1 1 1 Fraction 1.00E-03 8.65E-04 1.50E-03 18.MV value IMRT Factor 2 1 1 1 1 Isocentre to Protected ft 21.0 21.0 2.00 1.05E-03 1.05E-03 1.05E-01 1000°C'd*°1/1 Transmission 2.88E-04 5.98E-07 1.85E-06 ace below Swite 0.006 Sum row1 Retend Down Cathage at ther tifs of 2/or</td></tdd<>	Parameter Units Photon Leskage Photon Vector Photon Leskage Workload / Treatment Workload / Treatment Workload / Treatment Workload / W Gylpt 3 3 3 Parameter Units Leskage Scatter Leskage Workload / Treatment Gylpt 3 3 3 3 Parameter Gylpt 3 3 3 Workload / W Gylwk 450 450 450 Use Factor Ratio 1 1 1 Fraction 2 1 1 1 Isocentry Orbiticed ft 21.0 21.0 21.0 Point Distance m 6.4 6.4 6.4 Unsheided Dose mSvlwk 2.006-01 1.56E-01 1.50E-03 Transmission mSvlwk 0.006 0.006 0.006 Total Shielded Dose mSvlwk 0.006 0.006 0.006 Total Shielded Dose MSvlwk 0.006 0.006 0.006 Totalof	Parameter Units Photon Neutron 0 0 Odor Shielded Dose Due to Direct Leakage Control Leakage Neutron Neutron 0 Parameter Units Enkage Neutron Neutron 0 Workload / Treatment Gylpt 3 3 NCF Patients per Day p/dkag 30 30 NCF Workload (W) Gylnk 450 450 450 Use Factor Ratio 1 1 1 Fraction 1.00E-03 6.65E-04 1.50E-03 11 IMRT Factor 2 1 1 1 Point Distance m 6.4 6.4 6.4 Unshielded Dose mSvhvk 0.006 1 1 Total Shielded Dose mSvhvk 0.006 1 1 Charles To Direct Leakage Work Web or 1 5.00E-07 1.58E-06 1 Shielded Dose mSvhvk 0.006 1 1 1	Parameter Unit Sector Photon Neutron Calculation Workload / Treatment Gylpt 3 3 3 NCRP 151 del Workload / Treatment Gylpt 3 3 3 NCRP 151 del Patterts per Day pt/day 30 30 30 NCRP 151 del Workload / Treatment Gylpt 3 3 3 NCRP 151 del Workload / Treatment Gylpt 450 450 450 NCRP 151 del Use Factor Ratio 1 1 1 1 1 1 Fraction 1.00E-03 8.65E-04 1.50E-03 18.MV value IMRT Factor 2 1 1 1 1 Isocentre to Protected ft 21.0 21.0 2.00 1.05E-03 1.05E-03 1.05E-01 1000°C'd*°1/1 Transmission 2.88E-04 5.98E-07 1.85E-06 ace below Swite 0.006 Sum row1 Retend Down Cathage at ther tifs of 2/or

Exan	nple 1	1c:	Dire	ct Shi	ielde	d I	Doo	r I	lear	Side o	i
Entra	ince	Shi	elded	Dose	Rate	e (Calc	ul	atior	1 [4 of 9	9]
Wall Scatte	er Transmis	sion fo	r Near Side	of Door						-	-
Line	Symbol		Par	ameter		-	Jnits	٧	alue	Calculat	ion
а	MV		Machine	X-ray Energ	IY		MV		18		
b	w		Wo	orkload		G	Sy/wk		450		
с	f		Patient t	ransmissio	n				0.27	0.27 if MV	≥10
d	do	Distar	nce from tar	get to prima	ary barrier		ft		25	measur	ed
е	- G0			wall			m	1	7.62	d * 0.30	48
f	d,	Distance from primary barrie					ft		9	measur	ed
g	ur	1	near side of	maze entra	ance		m		2.74	f * 0.30	
h	α,	Reflection coefficient			nt	1	/ m ²	0.	.0016	Table 8a with 85° scatter	
1			Effectiv	e field size			cm		40.0	0.0 see abo	
j.	A ₀		Beam area	at far maze	wall		m²		9.29	(e * i/100	<i>,</i>
k	U		Use	Factor					0.25	Orientation wit dose ra	te
L	f H _S	v	Vall scatter	unshielded	dose	m	Sv/wk	1.0	3E+00	1000 * b * c * / (e^2 * g	
	Near Side	of Door	Wall Scatte	er Transmis	sion Calcu	latio	n				
		Material Slant Thickness Thickne		Slant Thickness		Wall		all Scatter		Photon	
	Barrie	ər	inches	mm	Materia	al	TVL1 (n	nm)	TVLe (mr	n) Trans.	
	Inside L	ayer	1.5	54	Lead		8		8	1.84E-07	
	Layer	#2	5.5	198	Concret	te	160		160	5.82E-02	
	Layer	#3	3	108	Borated F	Poly	396		396	5.34E-01	
	Slan	t Angle	(degrees):	45			0.3 M	v	Tota	al: 5.73E-09	

Example 11c: Direct Shielded Door Net	ar Side of
Entrance Shielded Dose Rate Calculati	on [5 of 9]

Line	Symbol	Parameter	Units	Value	Calculation
а	MV	Machine X-ray Energy	MV	18	
b		Vendor		Varian	
с		Neutron IMRT Factor		1	
d	β	Head Transmission Factor		1	1 for lead, 0.85 for tungsten head shield
е	d₁	Distance from Isocenter to maze	ft	17	measured
f	u 1	opening (Point A)	m	5.18	e * 0.3048
g	d		ft	28	measured
h	u _L	Vault Average Length	m	8.53	g * 0.3048
i	dw	V	ft	25	measured
j	uw	Vault Average Width	m	7.62	i * 0.3048
k	h	Vault Average Height	ft	10	measured
L	n	vauit Average neight	m	3.05	k * 0.3048
m	S _r	Vault Surface Area	m ²	228.5	2 * (h*j + h*L + j*L)
n	Q _n	Neutron Source Strenth	n / Gy	9.60E+11	Function of a & b
o	φ	Neutron Fluence at Point A per Gy	n /m²/Gy	7.32E+09	c*n* [d/(4*π* f^2) + (5.4*d+1.3)/(2*π*m)]

Example 11c: Direct Shielded Door Near Side of Entrance Shielded Dose Rate Calculation [6 of 9]

Canture G	mma linsh	ielded Dose Rate Calculation			
Line	Symbol	Parameter	Units	Value	Calculation
а	MV	Machine X-ray Energy	MV	18	
а	w	Workload	Gy/wk	450	
с	φΑ	Neutron Fluence at Point A per Gy	n /m ² /Gy	7.32E+09	see above
d	d ₂	Distance from maze opening	ft	9	measured
е	u ₂	(Point A) to door	m	2.74	d * 0.3048
f	TVD	Tenth-Value Distance	m	5.4	3.9 if a<18, 5.4 otherwise
g	к	Ratio Capture Gamma Dose- Equivalent to Neutron Fluence		6.90E-16	Constant
h	hφ	Capture Gamma Unshielded Dose at Door per Dose at Isocenter	Sv/Gy	1.57E-06	g * c * 10^(-e / f)
i i		Capture Gamma Unshielded Dose Rate	mSv/wk	7.06E-01	1000 * a * h

Example 11c: Direct Shielded Door Near Side of Entrance Shielded Dose Rate Calculation [7 of 9]									
		lded Dose-Equivalent Calculation (Modif							
Line	Symbol	Parameter	Units	Value	Calculation				
а	w	Workload	Gy/wk	450					
b	φΑ	Neutron Fluence at Point A per Gy	n /m ² /Gy	7.32E+09	See above				
с		Distance from maze opening	ft	9	measured				
d	d ₂	(Point A) to door	m	2.74	c*0.3048				
е			ft	4	measured				
f	d ₀	Inner Maze Entrance Width	m	1.22	e * 0.3048				
g			ft	10	measured				
h	h	Inner Maze Entrance Height	m	3.05	g * 0.3048				
i	S ₀	Inner Maze Cross-Sectional Area	m ²	3.72	f*h				
j			ft	4	measured				
k	d _m	Maze Width	m	1.22	j*0.3048				
L			ft	10	measured				
m	h _m	Average Height Along Maze	m	3.05	L * 0.3048				
n	S	Maze Cross-Sectional Area	m ²	3.72	i*m				
0	TVD _n	Maze Neutron Tenth-Value Distance	m	3.97	2.06 * sqrt(n)				
р	H _{n,D}	Neutron Unshielded Dose-Equivalent at Door per Dose at Isocenter	Sv/Gy	4.62E-06	2.4E-15 * b * sqrt(i / n) * [1.64*10^(-d/1.9)+10^(-d/o)]				
q		Neutron Unshielded Dose-Equivalent Rate at Door	Sv/wk	2.08E+00	1000 * a * p				

Example 11c: Direct Shielded Door Near Side of Entrance Shielded Dose Rate Calculation [8 of 9]

	Material Thickness	Slant Thickness		Neur	rons	Neutron	
Barrier	inches	mm	Material	TVL1 (mm) TVLe (mm)		Trans.	
Inside Layer	1.5	54	Lead	1000000	1000000	1.00E+00	
Layer #2	5.5	198	Concrete	161	161	5.93E-02	
Layer #3	3	108	Borated Poly	45	45	4.03E-03	
Layer #4						1.00E+00	
Outside Layer						1.00E+00	
	(1	45		0.1 MV	Total:	2.39E-04	
Slant Angle Capture Gamma	Transmissio	on for Near S	Side of Maze Er		Total.	2.002 04	
	Transmissic Material		Side of Maze Er	ntrance	Gammas	Photon	
Slant Angle Capture Gamma T Barrier	Transmissic Material	n for Near Slant	Side of Maze El Material	ntrance			
Capture Gamma 1	Transmissio Material Thickness	on for Near S Slant Thickness		<i>trance</i> Capture	Gammas	Photon	
Capture Gamma T Barrier	Transmission Material Thickness inches	on for Near S Slant Thickness mm	Material	trance Capture TVL1 (mm)	Gammas TVLe (mm)	Photon Trans.	
Capture Gamma T Barrier Inside Layer	Transmission Material Thickness inches 1.5	on for Near S Slant Thickness mm 54	Material Lead	ntrance Capture TVL1 (mm) 61	Gammas TVLe (mm) <mark>61</mark>	Photon Trans. 1.31E-01	
Capture Gamma T Barrier Inside Layer Layer #2	Transmission Material Thickness inches 1.5 5.5	on for Near S Slant Thickness mm 54 198	Material Lead Concrete	ntrance Capture TVL1 (mm) 61 410	Gammas TVLe (mm) 61 370	Photon Trans. 1.31E-01 3.01E-01	
Capture Gamma Barrier Inside Layer Layer #2 Layer #3	Transmission Material Thickness inches 1.5 5.5	on for Near S Slant Thickness mm 54 198	Material Lead Concrete	ntrance Capture TVL1 (mm) 61 410	Gammas TVLe (mm) 61 370	Photon Trans. 1.31E-01 3.01E-01 7.63E-01	

Example 11c: Direct Shielded Door Near Side of Entrance Shielded Dose Rate Calculation [9 of 9]

Maze Shiel	Maze Shielded Dose at Door									
Line	Parameter	Units	Wall Scatter	Direct Leakage	Neutrons	Capture Gammas				
а	Calc. Unshielded Dose	mSv/wk	1.03E+00	6.36E-03	2.08E+00	7.06E-01				
b	Total / Calc. Dose Rate		2.64	1	1	1				
с	Unshielded Dose Rate	mSv/wk	2.73E+00	6.36E-03	2.08E+00	7.06E-01				
b	Energy for TVL	MV	0.3	18	0.1	10.0				
с	Transmission		5.73E-09	1.00E+00	2.39E-04	3.00E-02				
d	Shielded Dose	mSv/wk	0.0000	0.0064	0.0005	0.0212				
e	Total Shielded Dose	mSv/wk	0.0281							