# Yttrium-90 Microsphere Therapy Planning and Dose Calculations

#### S. Cheenu Kappadath, PhD

Department of Imaging Physics The University of Texas MD Anderson Cancer Center Houston, Texas, USA



Making Cancer History

### **Educational Objectives**

- To understand the imaging sequence for Yttrium-90 microsphere therapy
- To understand calculation of lung shunt fraction and estimation of absorbed dose for lung and liver
- To become familiar with radiation safety and regulations surrounding Yttrium-90 microsphere therapy

#### Outline

- Overview of <sup>90</sup>Y-microsphere therapy
- Patient imaging prior to <sup>90</sup>Y-microsphere therapy
- Calculation of the lung shunt fraction
- <sup>90</sup>Y-microsphere therapy dose calculations
- Patient imaging post <sup>90</sup>Y-microsphere therapy
- Three-compartment partition model
- Measurement of <sup>90</sup>Y activity and admin. activity
- Radiation Safety
- Challenges and Summary

# <sup>90</sup>Y-microsphere Therapy

- Trans-arterial delivery of radioactive <sup>90</sup>Y-labeled microspheres via a catheter directly at disease sites (targeted infusion)
- Microspheres (20-30 µm) trapped in tumor capillary vessels due to their embolic size and targeted delivery

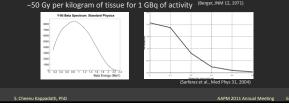




 β emissions from trapped <sup>90</sup>Y-microspheres are capable of delivering lethal radiation doses to (proximal) neoplastic tissue while sparing (more distal) surrounding normal tissue

S. Cheenu Kappadath. P

## <sup>90</sup>Y-microsphere Therapy


- <sup>90</sup>Y-microsphere therapy usually target the liver
- <sup>90</sup>Y-microsphere therapy takes advantage of the unique circulatory system in the liver
   Portal vein (normal liver) & hepatic artery (tumor)
- Liver directed EB-RT are limited in scope

   Radiation tolerance of normal hepatocytes < neoplastic tissue</li>
  - Max. tolerated doses 30-40 Gy (Emami et al, IJROBP 21, 1991; McGinn et al, J Clin Onc 16, 1998)
- With <sup>90</sup>Y-microspheres, total liver radiation doses up to 80 Gy were well tolerated with no hepatic radiation damage (Gray et al. Analo Anology 12.2003, Button et al. Radiology 75, 1500
- <sup>90</sup>Y-microsphere therapy is approved by the FDA for the treatment of unresectable HCC and metastatic colorectal cancer

S Cheenu Kannadath PhD

#### Properties of Yttrium-90

- Production: Y-89 (n,γ) Y-90
- Decay: Y-90 ( $\beta$ , 64.1 hr) Zr-90; a pure  $\beta$  emitter – Y-90 also emits  $\beta$  at low yields (~32 ppm) via internal pair-produc
- β energy: 0.937 MeV (mean) and 2.28 MeV (max)
- Tissue penetration depth: 2.5 mm (mean) and 11 mm (max)
- <sup>90</sup>Y deposits >90% of its energy in the first 5 mm of tissue
- <sup>90</sup>Y deposits >90% of its energy in the first 11 days
- Permanently implanted <sup>90</sup>Y can deliver radiation absorbed doses of



#### Commercial <sup>90</sup>Y-microsphere Products

#### <u>SIR-Spheres®</u>

- Sirtex Medical, Sydney, Australia
- Insoluble, biocompatible resin
- matrix
- 30–35 μm glass spheres
  3 GBq (81 mCi) activity =
- 30–60 x 10<sup>6</sup> spheres
- Maximum activity available: 3 GBq (81 mCi)
- Indicated for the treatment of unresectable metastatic liver tumors from primary colorectal cancer with adjuvant chemotherapy (FUDR)

TheraSphere®

- MDS Nordion, Ottawa, Canada
- Insoluble, biocompatible glass
- matrix 20–30 μm glass spheres 3 GBq (81 mCi) activity =
- ~1.2 x 10<sup>6</sup> spheres
- Maximum activity available: 20 GBq (540 mCi)
- Indicated for radiation treatment or as a neoadjuvant for surgery or transplantation in patients with unresectable HCC

Liver is common site of metastases from a variety of neoplasms  $\rightarrow$  Clinical trials on management of metastatic liver disease

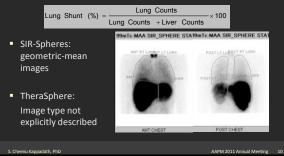
S. Cheenu Kappadath, PhD

AAPM 2011 Annual Meeting

#### Patient Imaging Prior to 90Y-TAR

CT or MRI – Estimate target tumor mass



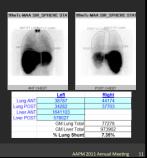

# Lung Dose Consideration

- Prevention of radiation pneumonitis
  - Arterio-venous shunting in neoplastic vasculature
  - Tc-99m MAA scans used to assess lung shunt fraction and lung dose
  - Exclude patients with lung shunting that could result in lung radiation dose >25-30 Gy per treatment or >50 Gy cumulative
     (Ho et al, EINM 24, 1997)

| SIR-Spheres         |                  | TheraSphere     |                  |  |
|---------------------|------------------|-----------------|------------------|--|
| Lung Shunting       | Reduction Factor | Lung Dose Limit | Gy               |  |
| <10 %               | No Reduction     | Per Treatment   | 30               |  |
| 10 % - 15 %         | 20 % reduction   | Cumulative      |                  |  |
| 15 % - 20 %         | 40 % reduction   |                 |                  |  |
| > 20 %              | No Treatment     |                 |                  |  |
| Lung dose per t     | reatment < 25 Gy |                 |                  |  |
|                     |                  |                 |                  |  |
| eenu Kappadath, PhD |                  |                 | AAPM 2011 Annual |  |

# Lung Shunt (LS) Fraction

- 2-4 mCi of <sup>99m</sup>Tc-MAA delivered trans-arterially in IR suite
- Planar scintigraphy of Thorax and Abdomen (AP and PA)
- Calculate Lung Shunt (LS) using the following formula




#### **Example Lung Shunt Calculation**

LS (%) = Lung GM-counts / (Lung GM-counts + Liver GM-counts) x 100 = 77278 / (77278 + 973962) x 100 = 7.35%

- SIR-Spheres:
   LS < 20% (no modification)</li>
   → 81 mCi <sup>90</sup>Y activity limit
- TheraSphere:
   30 Gy lung dose limit
   → 222 mCi <sup>90</sup>Y activity limit

adath PhC



### <sup>90</sup>Y-Therapy Planning: SIR-Spheres

- SIR-Spheres therapy doses are based on activity (not target radiation dose) – maximum activity of 81 mCi
- Empirical dosimetry models
  - Basic: Activity based on maximum activity & tumor fraction
  - BSA: Activity based on BSA & tumor involvement in liver
  - Lung Shunt modification: No treatment for LS > 20%
- Average liver dose < 80 Gy and lung dose < 25 Gy</p>

|                             |                    | Lung-Shunt Frac | tion Modification |
|-----------------------------|--------------------|-----------------|-------------------|
| Tumor Fraction Modification |                    | Lung Shunting   | Reduction Factor  |
| Tumor fraction in           | Recommended 90Y-   | <10 %           | No Reduction      |
| liver                       | activity           | 10 % - 15 %     |                   |
| > 50 %                      | 3.0 GBq (81 mCi)   | 15 % - 20 %     |                   |
| 25 - 50 %                   | 2.5 GBq (67.5 mCi) | > 20 %          | No Treatment      |
| < 25 %                      | 2.0 GBq (54 mCi)   | Lung dose per t | reatment < 25 Gy  |
|                             |                    |                 |                   |
|                             |                    |                 |                   |
| eenu Kannadath PhD          |                    |                 | AAPM 2011 Annual  |

# <sup>90</sup>Y-Therapy Planning: TheraSphere

 TheraSphere therapy doses are based on desired radiation dose to target mass; typically 120 to 150 Gy

#### Activity Required [GBq] = Desired Dose [Gy] x Target Mass [kg] 50 [Gy-kg/GBq]

- Target mass = whole liver or liver lobe or liver segment - Patient-specific vasculature and catheter approach (common or left or right hepatic artery) to target mass defines target mass
- Therapy must maintain lung dose lower than 30 Gy - Maximum activity depends on the Lung Shunt fraction

**Radiation Absorbed Dose**  Dose<sub>tissue</sub> [Gy] = A<sub>tissue</sub> [GBq] x 49.7 [Gy-kg/GBq] / M<sub>tissue</sub> [kg] – Self dose from  $\beta$  emission: >90% energy deposit in <5mm 49.7 [Gy-kg/GBq] = equilibrium accumulated dose constant – Bremsstrahlung dose <<  $\beta$  dose , JNM 12, 1971; Stabin et al, JNM 35, 1994; Gulec et al, JNM 47, 2006 11111 Liver Dose [Gy] GBq] / M<sub>liver</sub> [kg] .0E+00 1.0E+00 1.0E-01 +44 Lung Dose [Gy] ] / M<sub>lung</sub> [kg] 105.0 Error in liver mass propagates into liver dose calculation Model estimates average dose to target volume assuming uniform microsphere uptake within volume

# Dose Calculations: TheraSphere Max Activity [mCi] = 30 [Gy] x M<sub>lung</sub> [kg] / (LS x 0.037 [GBq/mCi] x 49.7 [Gy-kg/GBq])

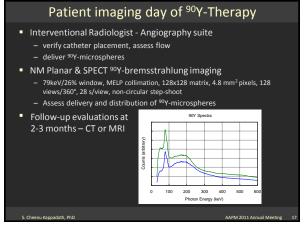
Activity [mCi] = D<sub>liver</sub> [Gy] x M<sub>liver</sub> [kg] / ((1-LS) x 0.037 [GBq/mCi] x 49.7 [Gy-kg/GBq])

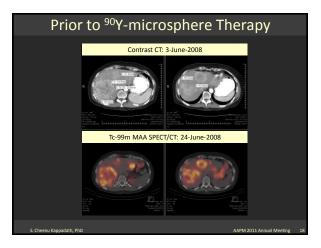
Lung Shunt

dath PhD

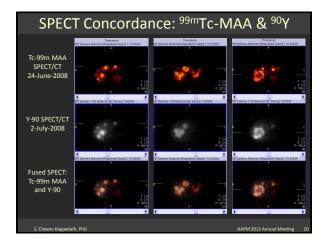
- Maximum Activity = 222 mCi, for lung dose = 30 Gy
- Liver dose [Gy]
- = 378 [Gy-kg] / M<sub>liver</sub> [kg]
- = 198 Gy for M<sub>liver</sub> = 1.91 kg (MIRD Std. Man) = 154 Gy for M<sub>liver</sub> = 2.46 kg (Weight-based) = 137 Gy for M<sub>liver</sub> = 2.76 kg (CT-based)

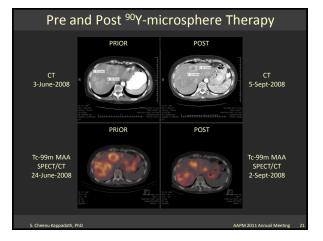
- Target liver dose = 120 Gy
  - $\rightarrow$  134.6 mCi of <sup>90</sup>Y  $\rightarrow$  Lung dose delivered = 18.2 Gy


# **Dose Calculations: SIR-Spheres**


| M, 53 kg, 174.5 cm -      | → BSA = 1. | 60 m <sup>2</sup>     |
|---------------------------|------------|-----------------------|
| Tumor<br>involvement (TI) | 45%        | Dose modification YES |
| Lung Shunt (LS)           | 7.35%      | Dose modification NO  |

Basic model: 2.5 GBq (67.5 mCi) BSA model: (BSA[m<sup>2</sup>] - 0.2) + TI[%]/100 = 1.85 GBq (50.1 mCi)


Liver Dose [Gy] = A [GBq] x (1-LS) x 49.7 [Gy-kg/GBq]  $/ M_{liver}$  [kg] = 44.7 Gy (< 80 Gy) Lung Dose [Gy] = A [GBq] x LS x 49.7 [Gy-kg/GBq] / M<sub>lung</sub> [kg] = 6.8 Gy (<25 Gy)


AAPM 2011 Annual M











# SAM Question 1The physical properties of Yttrium-90 that<br/>makes it well suited for internal radionuclide<br/>therapy are that 90Y is a pure β° emitter with a<br/>max. energy of 2.28 MeV corresponding to a:0%A. maximum tissue penetration depth of ~0.1 mm12%B. maximum tissue penetration depth of ~10 mm0%C. maximum tissue penetration depth of ~10 mm0%D. maximum tissue penetration depth of ~100 mm

#### SAM Question 1: Answer

- The physical properties of Yttrium-90 that makes it well suited for internal radionuclide therapy are that <sup>90</sup>Y is a pure β<sup>-</sup> emitter with a maximum energy of 2.28 MeV corresponding to a:
  - A. maximum tissue penetration depth of  $^{\circ}0.1$  mm
  - B. maximum tissue penetration depth of ~1 mm
  - C. maximum tissue penetration depth of ~10 mm
  - D. maximum tissue penetration depth of  $^{-100}$  mm
- Reference: Sarfaraz M, Kennedy AS, Lodge MA, Li XA, Wu X, Yu CX, "Radiation absorbed dose distribution in a patient treated with yttrium-90 microspheres for hepatocellular carcinoma," Medical Physics 31(9):2449-53, 2004

#### AM Question 2

# The most common route of <sup>90</sup>Y-microsphere administration for liver–directed therapy is:

- % A. Peri-tumoral injection
- B. Implantation of 90Y-brachytherapy seeds
- 3% C. Systematic administration via intravenous injection
- 97% D. Trans-hepatic arterial administration via catheter

AAPM 2010 Annual Meeti

- The most common route of <sup>90</sup>Y-microsphere administration for liver-directed therapy is:
  - A. Peri-tumoral injection
  - B. Implantation of 90Y-brachytherapy seeds
  - C. Systematic administration via intravenous injection
- for hepatic malignancy: devices, indications, technical considerations, and potential complications, " Radiographics 25(Supplement 1):S41-55, 2005

The lung shunt fraction (LSF) based on <sup>99m</sup>Tc-MAA Planar images, used to estimate lung absorbed doses from <sup>90</sup>Y-microsphere therapy, is calculated as:



The lung shunt fraction (LSF) based on <sup>99m</sup>Tc-MAA Planar images, used to estimate lung absorbed doses from <sup>90</sup>Y-microsphere therapy, is calculated as:

| A.        | ang Shunt Fraction (%) = $\frac{\text{Lung Counts}}{\text{Liver Counts}} \times 100$                                                                              |
|-----------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| В.        | ang Shunt Fraction (%) = $\frac{\text{Liver Counts}}{\text{Lung Counts}} \times 100$                                                                              |
| C.        | ung Shunt Fraction (%) = $\frac{\text{Lung Counts}}{\text{Lung Counts}} \times 100$                                                                               |
| D.        | ung Shunt Fraction (%) = $\frac{\text{Lung Counts + Liver Counts}}{\text{Lung Counts}} \times 100$                                                                |
| microsphe | Sulec S, Mesoloras G, Stabin M, "Dosimetric techniques in 90Y-<br>e therapy of liver cancer: The MIRD equations for dose calculations,<br>dicine 47:1209–11, 2006 |



The typical range of planned absorbed doses to

#### SAM Question 4: Answer

- The typical range of planned absorbed doses to target liver tissue in <sup>90</sup>Y-microsphere internal radionuclide therapies is around:
  - A. 40-60 cGy
  - B. 40 60 Gy
  - C. 80-120 cGy
  - D. 80 120 Gy
- Reference: Salem R, Thurston KG, "Radioembolization with 90Yttrium microspheres: a state-of-the-art brachytherapy treatment for primary and secondary liver malignancies—Part 1: Technical and methodologic considerations," J Vasc. Interv Radiology 17:1251–1278, 2006

S. Cheenu Kappadath. PhD

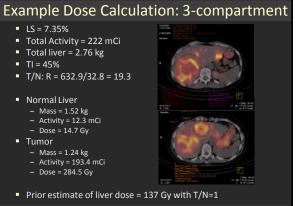
## Limitations of <sup>90</sup>Y-microsphere Dosimetry

- Not intended to calculate dose to individual tumors
- Uses conservative assumptions to ensure safety
- Assumes uniform uptake of microspheres in tumor and normal liver compartments



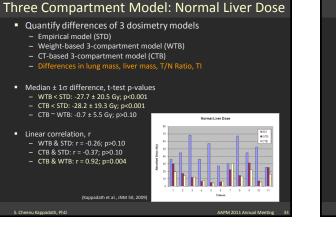
- Three-compartment model: lung, liver, and tumor
  - Accounts for differential uptake of microspheres in liver versus tumor
     All tumors, independent of their sizes or locations, grouped into the
  - tumor compartment with a single uptake value (Ho et al., EINM 23, 947-52, 1996)

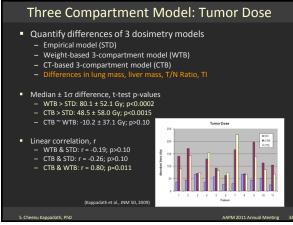
Three-compartment Partition model


- Additional information needed (Ho et al., EJINA 23, 947-52, 1996

   Tumor burden (M<sub>tumpr</sub>) and Tumor uptake ratio (R)
- Estimation of fractional Tumor Involvement (TI)
   M<sub>total</sub> = M<sub>liver</sub> + M<sub>tumor</sub>
- M<sub>tumor</sub> = TI x M<sub>total</sub> and M<sub>liver</sub> = (1-TI) x M<sub>total</sub>
   Estimation of Tumor Uptake Ratio (R)
  - R = Tumor MAA uptake [counts/pixel]

#### Liver MAA uptake [counts/pixel]


- A<sub>liver</sub> [mCi] = A [mCi] x (1-LS) x M<sub>liver</sub> / (M<sub>liver</sub> + R x M<sub>tumor</sub>)
- A<sub>tumor</sub> [mCi] = A [mCi] x (1-LS) x R x M<sub>tumor</sub> / (M<sub>liver</sub> + R x M<sub>tumor</sub>)
- Dose<sub>organ</sub> [Gy] = A<sub>organ</sub> [GBq] x 49.7 [Gy-kg/GBq] / M<sub>organ</sub> [kg]


S Cheenu Kannadath PhD



AAPM 2011 Annual Me

S Cheenu Kannadath PhD





# Assay of <sup>90</sup>Y Activity

AAPM 2011 Annual Mee

Dose calibration setting determined on-site with calibrated <sup>90</sup>Y activity

|                                                                                                                             | Dose Calibrator S/N                                                                                                              | Calibration Number                                                            |                      |  |
|-----------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------|----------------------|--|
|                                                                                                                             | 15722                                                                                                                            | 47 x 10                                                                       |                      |  |
|                                                                                                                             | 15724                                                                                                                            | 47 x 10                                                                       |                      |  |
|                                                                                                                             | 15725                                                                                                                            | 47 x 10                                                                       |                      |  |
|                                                                                                                             | 15728                                                                                                                            | 47 x 10                                                                       |                      |  |
|                                                                                                                             | 15729                                                                                                                            | 47 x 10                                                                       |                      |  |
|                                                                                                                             | 151034                                                                                                                           | 45 x 10                                                                       |                      |  |
| SIR-Spheres                                                                                                                 | 510034                                                                                                                           | 46 x 10                                                                       |                      |  |
| in-spheres                                                                                                                  |                                                                                                                                  |                                                                               |                      |  |
| <ul> <li>Draw microsphe</li> </ul>                                                                                          | re solution by                                                                                                                   | volume to des                                                                 | ired activity        |  |
| Draw microsphe     D. Divide activity by the numbe     Original activity in vial =                                          | r of mI in vial to calculate n                                                                                                   | nCi per ml                                                                    | ired activity        |  |
| D. Divide activity by the numbe                                                                                             | rofml in vial to calculate n<br>80 mCl ÷<br>uired for the prescril<br>the mCi per mi calculated                                  | nCiperml<br>5 ml = <u>16</u><br>bed dose:<br>above)                           | mCi/mi Concentration |  |
| D. Dhide activity by the numbe<br>Original activity in vial =<br>2. Calculate volume req<br>(Dhide the prescribed dose by ) | r of ml in vial to calculate m<br><u>80</u> mCi ÷<br>uired for the prescril<br>the mCi per ml calculated<br>mCi ÷ <u>16</u> mCi/ | mCi per ml<br>5 ml = <u>16</u><br>bed dose:<br>above)<br>ml Concentration = _ | mCi/mi Concentration |  |

u Kappadath, PhD

### Assay of <sup>90</sup>Y Activity

- TheraSphere
  - Modification of the delivered activity is not allowed
  - Ordered activity would account for day/time of therapy

| Target Volume (cc):                 | 929.0       |                             | arget Live   | r Mass (I | ka): 0.9  | 57              |            |        |
|-------------------------------------|-------------|-----------------------------|--------------|-----------|-----------|-----------------|------------|--------|
| Desired Dose (Gy):                  | 120         |                             |              |           |           |                 |            |        |
| Time Zone Variance (h):             | 1 Variance  | from Eastern Standard Time  | (EST)        |           |           |                 |            |        |
|                                     |             | automatically from Lung Shu |              | on works  | heet      |                 |            |        |
|                                     |             | stimated value              |              |           |           |                 |            |        |
| Previous Dose to the Lungs (Gy):    | 0.0         |                             |              |           |           |                 |            | _      |
| Required Activity at Administration | (GBq): 2.48 | This value is correcte      | d for LSF a  | ind Resid | ual Waste | if values are e | ntered abo | ve.    |
|                                     |             | Dose Delivered              | (Gy) for:    |           |           | 6               | GBq Act    | tivity |
|                                     |             | Time                        | Sunday       | Monday    | Tuesday   | Wednesday       | Thurnday   | Friday |
|                                     |             | 8.00 AM                     | Calibratio   | 193       | 149       | 115             | 88         | 68     |
|                                     |             | 12.00 PM                    | = Day @      | 184       | 142       | 110             | 85         | 65     |
|                                     |             | 4.00 PM                     | 12:00<br>EST | 177       | 136       | 105             | 81         | 63     |
|                                     |             | 8.00 PM                     | 201          | 169       | 131       | 101             | 78         | 60     |
|                                     |             | Dose Delivered              | (Gu) for:    |           |           | 7               | GBg Act    | luite  |
|                                     |             | Time                        | Sunday       | Monday    | Tuesday   | Wednesday       | Thursday   |        |
| Activity Size Selected (GBg):       | 7           | 8:00 AM                     | Calibratio   | 270       | 208       | 160             | 124        | 96     |
|                                     |             | 12.00 FM                    | n Day @      | 258       | 199       | 154             | 119        | 91     |
| Date & Time for Administration:     | hursday     | 4.00 PM                     | 12:00        | 247       | 191       | 147             | -          | 88     |
|                                     |             | 8.00 PM                     | EST          | 237       | 183       | 141             | 109        | 84     |
|                                     |             | Dose Delivered              |              |           |           | 10              | GBq Act    |        |
|                                     |             | Time                        | Sunday       | Monday    |           | Wednesday       | Thursday   | Friday |
|                                     |             | 8.00 AM                     | Calibratio   | 385       | 297       | 229             | 177        | 136    |
|                                     |             | 12.00 PM                    | = Day @      | 369       | 285       | 220             | 169        | 131    |
|                                     |             | 4.00 PM                     | 12:00<br>EST | 353       | 273       | 210             | 162        | 125    |
|                                     |             | 8:00 PM                     |              | 338       | 261       | 201             | 155        | 120    |

# <sup>90</sup>Y-microsphere Therapy Preparation



# Calculation of Administered Activity Percentage of activity delivered to the patient can be based on ionchamber exposure rate measurements Before administration: dose-vial in acrylic shield After administration: the 2L Nalgene jar with beta shield containing waste and residual activity The percentage of activity delivered to the patient Activity Delivered [%] = 100 x $\left(1 - \frac{W \text{ aste measurement after therapy}}{\text{Dose vial measurement before therap}} \right)$ Activity delivered to patient Activity Delivered [mCi] = Dose Vial Activity [mCi] x Activity Delivered [%] / 100

## **Radiation Safety**

- Transport
  - Acrylic shield will stop all beta emission and keep exposure rate low
  - <2 mR/hr at 1 m for up to 300 mCi of activity in acrylic shield</p>
- During administration
  - Highest potential for exposure is to administering staff in IR suite when spheres are located in catheter between v-vial and the patient - Stand behind shield and maintain distance
- Survey personnel leaving the room with GM survey meter
- Store radioactive material until the container surface radioactivity cannot be distinguished from background
- Long-lived contaminants <sup>91</sup>Yand <sup>88</sup>Y may be present with reactor production of <sup>90</sup>Y
  - Long-lived radioactive by-products may not be a problem using carrier free 90Y from a 90Sr generator

nu Kappadath, PhD

Some Challenges for <sup>90</sup>Y-Therapy

- ROIs on 2D Planar images introduce uncertainties - Estimate lung shunt fraction and lung dose
  - Split dose calculation lobar separation of liver not visualized
- MAA is a sub-optimal surrogate for microspheres
  - Biologic degradation time 1–3 hours  $\rightarrow$  free 99mTc-pertechnatate Free 99mTc biodistribution differs from MAA; thyroid & stomach uptakes free 99mTc ← introduce error in LSF

  - Non-spherical shape; Size range 10-to-100 µm
- Additional objective measures of response

  - Tumor volume reduction is the mainstay (gray et al, Aus & NZ) Surgery 62, 1992; Van Hazel et al, J Sur Ghote, B. 2004; Lauet al, URDBP 40, 1998; Sangroet al, URDBP 66, 2006)
     Metabolic response: observed in higher proportion than an CT-based anatomical response for mCRC (p<0.0002) (Wong et al, EINMMI 29, 2002)</li>
  - Functional response: >50% change in TLG at 6 weeks for mCRC lesions with tumor doses >46 Gy  $_{\rm (Flamen et al, PMB 53, 2008)}$

lath PhD

AAPM 2011 Annual Meetin

AAPM 2011 Annual Mee

#### Summary

- 9ºY-microsphere therapy is a promising and an increasingly popular treatment option for palliative care of patients with metastatic liver disease and unresectable HCC
- Decreased tumor volumes and increased time to tumor progression have been reported
- New objective measures of response are under investigation
- Improved imaging and dosimetry are beginning to yield more accurate dose estimates

S. Cheenu Kappadath, PhD

A&RM 2010 Annual Meeting