Academia.eduAcademia.edu
PORIFERA RESEARCH: BIODIVERSITY, INNOVATION AND SUSTAINABILITY - 2007 31 Two new haplosclerid sponges from Caribbean Panama with symbiotic filamentous cyanobacteria, and an overview of sponge-cyanobacteria associations Maria Cristina Diaz'12*>, Robert W. Thacker<3), Klaus Rutzler(1), Carla Piantoni(1) (1) Invertebrate Zoology, National Museum of Natural History, Smithsonian Institution, Washington, D.C. 20560-0163, USA. ruetzler@si.edu (2) Museo Marino de Margarita, Blvd. El Paseo, Boca del Rio, Margarita, Edo. Nueva Esparta, Venezuela. crisdiaz@ix.netcom.com <3) Department of Biology, University of Alabama at Birmingham, Birmingham, AL 35294-1170, USA. thacker@uab.edu Abstract: Two new species of the order Haplosclerida from open reef and mangrove habitats in the Bocas del Toro region (Panama) have an encrusting growth form (a few mm thick), grow copiously on shallow reef environments, and are of dark purple color from dense populations of the cyanobacterial symbiont Oscillatoria spongeliae. Haliclona (Soestella) walentinae sp. nov. (Chalinidae) is dark purple outside and tan inside, and can be distinguished by its small oscules with radial, transparent canals. The interior is tan, while the consistency is soft and elastic. The species thrives on some shallow reefs, profusely overgrowing fire corals (Millepora spp.), soft corals, scleractinians, and coral rubble. Xestospongia bocatorensis sp. nov. (Petrosiidae) is dark purple, inside and outside, and its oscules are on top of small, volcano-shaped mounds and lack radial canals. The sponge is crumbly and brittle. It is found on live coral and coral rubble on reefs, and occasionally on mangrove roots. The two species have three characteristics that make them unique among the families Chalinidae and Petrosiidae: filamentous, multicellular cyanobacterial symbionts rather than unicellular species; high propensity to overgrow other reef organisms and, because of their symbionts, high rate of photosynthetic production. These are the first descriptions of West Atlantic haplosclerid species associated with an Oscillatoria-type symbiont; all previous records of haploscleridcyanobacteria associations were of symbioses with unicellular cyanobacteria. High rates of photosynthetic production of Oscillatoria spongeliae could explain the abundance and overgrowth capability of the two host sponges in the region's reef environments. An overview of associations between sponges and cyanobacteria is presented. Keywords: Haplosclerida, new species, cyanobacteria, Panama Introduction The marine subtidal habitats of the Bocas del Toro region (coral reef, mangrove, and sea grasses) are abundantly colonized by marine sponges. A recent survey of sponges fmmnon^hchabitatsm^ species (Diaz 2005). The Haplosclerida Topsent, 1928 ^ /\. ,: J.LT»JIT. represent the mostA diverse sponge order at Bocas del Toro, vi. it.•_*. £ • AC c -1with thirty five species spread across five sponge families: Chalinidae(12spp.),Petrosiidae(8spp.),Niphatidae(7spp.), Callyspongiidae (4 spp.), and Phloeodictydae (4 spp.). Two undescribed species were encountered during this survey, one belonging to #a/;c/(wa Grant 1835, sub-genus .Sbacfe/b de Weerdt, 2000, family Chalinidae Gray, 1867, and the second one to Xestospongia de Laubenfels, 1932, family Petrosiidae van Soest, 1980. Both are thin to thickly encrusting species copiously packed with filamentous cyanobacteria identified as Oscillatoria spongeliae (Thacker et al. 2007) The presence of filamentous cyanobacteria as symbionts in these sponges constitutes a unique occurrence, both phylogenetically and geographically. To date, 100 sponge species in 29 families are known to harbor cyanobacteria (Table 1). The order Haplosclerida contains the highest number of species with ^ type of association (25, in 11 genera). Of these, 24 ^ unicellular cyanobacteria, while only one , , , r .,, • ., -, . , ..., undescnbed Caribbean species in the cfamily XT Niphatndae „ ^ .„„„ . _ , A , „, / , . van Soest, 1980 is reported to have filamentous symbionts _. ,_ ' _, . . . . / (D^ 1996). This unique association seems to have two stnkmg ecological consequences: a competitive advantage over other reef organisms through overgrowth, including even aggressive reef species such as M/bpora (Hydrozoa, Cnidaria) and Neofibularia Hechtel, 1965 (Demospongeae, Porifera), and high photosynthetic rates which characterize these two species as phototrophic sponges (Thacker et al. 2007). The present paper describes the morphology and ecological features of both new species and discusses their systematic affinities with close relatives in the Caribbean. 32 Table 1: Sponge species with cyanobacterial symbionts, modified from Diaz (1996). Families assigned to orders: 1. Homoclerophorida; 2. Astrophorida; 3. Halichondrida (sensu van Soest etal, 1989); 4. Poecilosclerida; 5. 'Lithistida'; 6. Hadromerida; 7. Haplosclerida (sensu de Weerdt, 1985); 8. Dictyoceratida; 9. Dendroceratida; 10. Verongida; 11. Clathrinida; 12. Leucettida; 13. Sycettida; 14. Spirophorida. Symbionts (SYM) include the unicellular Aphanocapsafeldmanni-like (Af),A. raspaigella-like (Ar), Prochloron spp. (Pro), Synechococcus spongiarum (S.spo), Synechocystis trididemni-iike (St), Synechocystis spp.-like (Sy), the filamentous Oscillatoria spp.-like (O.sp), Oscillatoria spongeliae-Mktz (O.spo), ? = uncertain status and * = only cyanobacterial pigments detected with thin layer chromatography. Some species have more than one described symbiont; others may contain synonymous Aphanocapsa and Synechococcus symbionts. The regions surveyed: Australia (AUS), Bahamas (BAH), Belize (BEL), Great Barrier Reef (GBR), Guam (GU), Japan (JP) Mediterranean (MED), North and South Baja California (NBC, SBC), Palau (PAL), Papua New Guinea (PNG), Puerto Rico (PR), Red Sea (RS), Sulawesi (SUL) and Zanzibar (ZZ). Family Taxa Sym Region Source Plakinidae1 Plakinidae1 Ancorinidae2 Ancorinidae2 Ancorinidae2 Ancorinidae2 Ancorinidae2 Geodiidae2 Geodiidae2 Geodiidae2 Axinellidae3 Axinellidae3 Halichondriidae3 Halichondriidae3 Halichondriidae3 Dictyonellidae3 Dictyonellidae3 Desmacellidae4 Desmacellidae4 Chondropsidae4 Crambeidae4 Hymedesmiidae4 Isodictyidae4 Microcionidae4 Mycalidae4 Rhabderemidae4 Rhabderemidae4 Theonellidae5 Theonellidae5 Oscarella sp. Placinolopha mirabilis Penares affi schulzei Jaspis stellifera Stelletta clavosa Stelletta kallitetilla Stelletta pudica Geodia papyracea Geodia neptuni Geodia sp. 1 Cymbastela sp. Pseudaxinella tubulosa Axinyssa aplysinoides Halichondria sp. Pseudaxinyssa sp. Dictyonella funicularis Svenzea zeai Neofibularia irata Neofibularia notilangere Batzella melanos Crambe sp. Phorbas sp. Coelocarteria singaporense Clathria sp. Mycale hentscheli Rhabderemia sorokinae Rhabderemia sp. Discodermia dissoluta Theonella conica Ar O.spo Af Af Af S.spo S.spo Af Af Af ? S.spo ? Ar Sy Ar S.spo Af Af St Af Af,Ar ? Af Sy Theonellidae5 Theonellidae5 Theonella swinhoei Theonella swinhoei MED SUL SUL GBR PNG BAH BAH BEL BEL BEL PNG BAH PNG MED GBR BEL BAH GBR BEL GBR MED MED PNG MED NZ PNG SUL BEL SUL ZZ .IP RS Theonellidae5 Theonellidae5 Theonellidae5 Siphonidiidae5 Alectonidae6 Chondrosiidae6 Chondrosiidae6 Clionaidae6 Clionaidae6 Clionaidae6 Tethyidae6 Spirastrellidae6 Latrunculiidae6 Callyspongiidae7 Callyspongiidae7 Theonella sp. 1 Theonella sp. 2 Theonella sp. 3 Leiodermatium sp. Neamphius huxleyi Chondrilla australiensis Chondrilla nucula Spheciospongia florida Spheciospongia sp. Cliona sp. Tethya sp. Spirastrella sp. Latrunculia sp. Callyspongia sp. Siphonochalina sp. Wilkinson 1980 Diaz 1996 Diaz 1996 Wilkinson 1979 Diaz 1996 Steindler et al. 2005 Steindler et al. 2005 Rutzler 1990 Rutzler 1990 Rutzler 1990 Diaz 1996 Steindler et al. 2005 Diaz 1996 Wilkinson 1980 Larkum ef a/. 1988 Rutzler 1981 Steindler et al. 2005 Wilkinson 1980 Rutzler 1990 Larkum et al. 1988 Wilkinson 1980 Wilkinson 1980 Diaz 1996 Wilkinson 1980 Webb and Maas 2002 Diaz 1996 Diaz 1996 Diaz 1996 Diaz 1996 Steindler et al. 2005 Hentschel et al. 2002 Wilkinson 1978 Steindler et al. 2005 Diaz 1996 Diaz 1996 Diaz 1996 Diaz 1996 Diaz 1996 Usher et al. 2004a, 2004b SaiA 1966 Steindler et al. 2005 Rutzler 1990 Sad 1966 SaiA 1966 Coxefa/. 1985 Diaz 1996 Wilkinson 1980 Wilkinson 1978 * Af Af Af, O.sp, S.spo Pro Af S.spo Af Af O.sp * Af S.spo Af, S.spo S.spo Af Af O.sp St Af Af Af SUL SUL SUL PNG PNG, SUL AUS MED ZZ BEL MED MED GBR SUL GBR RS 33 Table 1 (cont.) * Chalinidae7 Chalinidae7 Niphatidae7 Niphatidae7 Niphatidae7 Niphatidae7 Niphatidae7 Petrosiidae7 Haliclona sp. Haliclona (Reniera) sp. Amphimedon sp. 1 Amphimedon sp. 2 Cribrochalina dura Cribrochalina vasculum Niphates sp. Neopetrosia exigua Ar Ar Af Af Af O.sp Af, S.spo RS MED SUL SUL BEL BEL BAH, BEL PNG, SUL, PAL Petrosiidae7 Petrosiidae7 Petrosiidae7 Petrosiidae7 Petrosiidae7 Neopetrosia subtriangularis Petrosiaficiformis Petrosia pellasarca Petrosia sp. Xestospongia muta Af, S.spo Af Af S.spo Af, S.spo BEL MED PR ZZ BEL Petrosiidae7 Petrosiidae7 Petrosiidae7 Petrosiidae7 Petrosiidae7 Phloeodictyidae7 Phloeodictyidae7 Phloeodictyidae7 Phloeodictyidae7 Dysideidae8 Dysideidae8 Dysideidae8 Dysideidae8 Dysideidae8 Dysideidae8 Dysideidae8 Irciniidae8 Xestospongia proximo Xestospongia rosariensis Xestospongia sp. Xestospongia testudinaria Xestospongia wiedenmayeri Calyx podatypa Oceanapia sp. Oceanapia ambionensis Pellina semitubulosa Dysidea granulosa Dysidea sp. Dysidea sp. 1 Dysidea sp. 2 Dysidea sp. 3 Lamellodysidea chlorea Lamellodysidea herbacea Ircinia campana S.spo Af Af Af Af Af Ar Af O.spo O.spo O.spo O.spo O.sp O.spo O.spo Af, S.spo BAH PR SUL PNG, BEL BEL PNG, SUL MED GU GBR PNG, PNG, PNG, PNG, GBR BEL Irciniidae8 Irciniafelix Af, S.spo BEL Irciniidae8 Irciniidae8 Ircinia ramosa Ircinia variabilis * Af, Ar, S.spo GBR MED Irciniidae8 Spongiidae8 Spongiidae8 Spongiidae8 Spongiidae8 Spongiidae8 Thorectidae8 Thorectidae8 Thorectidae8 Thorectidae8 Thorectidae8 Thorectidae8 Thorectidae8 Aplysillidae9 Darwinellidae9 Aplysinellidae10 Aplysinellidae10 Aplysinidae10 Psammocinia sp. Coscinoderma sp. Phyllospongia alcicornis Phyllospongia foliacens Phyllospongia papyracea Spongia sp. Carteriospongia foliascens Carteriospongia sp. Carteriospongia sp. Dactylospongia elegans Hyrtios violaceus Lendenfeldia frondosa Lendenfeldia dendyi Aplysilla sp. Darwinella sp. 1 Suberea azteca Suberea mollis Aplysina aerophoba Aplysinidae10 Aplysina archeri * * SUL SUL SUL SUL SUL SUL O.spo Ar Pro, O.spo Ar Af Af O.sp Af, S.spo PNG GBR GBR GBR GBR MED ZZ SUL, PNG GBR PNG, SUL BEL SUL, PNG ZZ MED SUL SBC RS MED Af, S.spo BEL Af Af Af Af ? S.spo Af Af * Wilkinson 1978 Wilkinson 1978 Diaz 1996 Diaz 1996 Rutzler 1990 Rutzler 1990 Diaz 1996 Diaz 1996 Thacker 2005 Rutzler 1990 Sar&1966 Vicente 1990 Steindler et al. 2005 Rutzler 1990 Steindler et al. 2005 Steindler et al. 2005 Vicente 1990 Diaz 1996 Diaz 1996 Rutzler 1990 Rutzler 1990 Diaz 1996 Diaz 1996 Sar&1966 Thacker and Stames 2003 Larkumefa/. 1987 Diaz 1996 Diaz 1996 Diaz 1996 Diaz 1996 Larkumefa/. 1987 Rutzler 1990 Steindler et al. 2005 Rutzler 1990 Steindler et al. 2005 Wilkinson 1983 Sara 1971 Steindler et al. 2005 Diaz 1996 Wilkinson 1980 Wilkinson 1992 Wilkinson 1978 Wilkinson 1992 Wilkinson 1980 Steindler et al. 2005 Diaz 1996 Wilkinson 1992 Diaz 1996 Rutzler 1990 Diaz 1996 Steindler et al. 2005 Wilkinson 1980 Diaz 1996 Diaz 1996 Wilkinson 1978 Sara 1966 Hentschel et al. 2002 Rutzler 1990 Steindler et al. 2005 34 Table 1 (cont.) Aplysinidae10 Aplysina cauliformis Af,S. spo BEL Aplysinidae10 Aplysina fistularis Af,S. spo BEL Aplysinidae10 Aplysina fulva Af,S. spo BEL Aplysinidae10 Aplysina gerardogreeni Af,S. spo SBC Aplysinidae10 Aplysina lacunosa Af,S. spo BEL Aplysinidae10 Aplysinidae10 Aplysinidae10 Aplysinidae10 Clathrinidae11 Leucettidae12 Leucettidae12 Sycettidae13 Tetillidae14 Tetillidae14 Aplysina sp. Verongula rigida Verongula gigantea Verongula reiswigi Clathrina sp. Pericharax heteroraphis Leucetta sp. Sycon sp. Cinachyrella australiensis Tetilla arb Af Af Af Af Ar Af ? Ar BEL BEL BEL BEL MED GBR PNG MED PNG BCN Materials and methods Specimens were collected during field work in 2003 and 2005, using snorkel and SCUBA equipment while exploring two reefs (Swan Cay and Crawl Cay Canal) between 0-15 m deep in the Bocas del Toro region. Sponges were fixed in 10% formalin in seawater and preserved in 70% ethanol. Skeletal and histological preparations for light microscopy and scanning electron microsopy (SEM) followed standard methodology (Rutzler 1978). The skeletal arrangement was described, and the length and width of each spicule type were measured in each specimen. Type material is deposited in the Porifera collection of the Smithsonian Institution's National Museum of Natural History, Washington, DC (USNH), and in the Snithsonian Tropical Research Institute (STRI) laboratory at Bocas del Toro, Panama (BT). Results Systematic descriptions Class Demospongiae Sollas, 1885. Order Haplosclerida Topsent, 1928 Family Chalinidae Gray, 1867 Genus Haliclona Grant, 1835 Sub-Genus Soestella de Weerdt, 2000 Haliclona (Soestella) walentinae sp. nov. (Figs. 1-3; Table 2) Material examined. Holotype: USNM 1106220, Crawl Cay Canal (9°15'050"N, 82°07'631"W), 5-10 m deep, covering top and sides of Acropora cervicornis on a shallow reef where Millepora, and Porites were the dominant coral species, collectors M.C. Diaz and R. Thacker, 21-06-05. * Af Rutzler 1990 Steindler et al. 2005 Rutzler 1990 Steindler et al. 2005 Rutzler 1990 Steindler et al 2005 Diaz 1996 Steindler et al 2005 Rutzler 1990 Steindler et al 2005 Diaz 1996 Rutzler 1990 Rutzler 1990 Rutzler 1990 Wilkinson 1980 Wilkinson 1979 Diaz 1996 Feldmann 1933 Diaz 1996 Diaz 1996 Paratypes: USNM 1106221, Crawl Cay Canal (9°15'050"N, 82°07'631"W), 5 m, on top and along sides of Acropora cervicornis, collectors M.C. Diaz and R. Thacker, 21-06-05. BT-045, Swan Cay (9°27'198"N, 82°18'024"W), 5 m deep, between fire coral (Millepora sp), and lettuce coral (Agaricia sp.) on a shallow reef with strong surge and currents, collector M.C. Diaz, 08-2003. Description Shape and size: Thin encrusting sheets (1-2 mm thick) covering patches ranging from five to a few hundred cm2 (Fig. 1A,B). Surface: Smooth to irregularly rugose to the naked eye, porous under a microscope. Small oscules (1-2 mm in diameter) with transparent membranes, regularly distributed over the sponge surface. Radial canals converging toward oscules. Spicule tracts piercing through the skin (ectosome) create a microhispid appearance, only visible under a microscope (Fig. IB). Colour: In live, deep dark- brown to purple outside, tan inside. Cream to white in alcohol. External color due to the photosynthetic cyanobacteria. Fig. 1: In situ morphology and skeleton arrangement of the new species: A. Haliclona walentinae sp. nov. habit (scale: 6 cm); B. detail showing bumpy surface, radial canals, and oscules (1 -2 mm) with white oscular membranes (scale: 5 mm); C. cross section through the choanosome with Soestella-type arrangement of subanisotropic choanosomal skeleton of ill defined paucispicular primary lines connected by paucispicular secondary ones (scale: 100 |xm); D. Xestospongia bocatorensis sp. nov. habit (scale: 2 cm); F. isotropic unispicular to paucispicular reticulation (2-3 spicules across) forming polygonal-shaped meshes (scale: 120 Urn). 35 36 Table 2: Spicule measurements of specimens of Haliclona walentinae sp. nov. [max.-min. length (mean±SD) x max.-min. width (mean±SD)] in u.m. Material studied Oxea USNM 1106220 USNM 1106221 BT-045 130-161 (140±9.3) x 6-9 (7.6±0.9) 130-160 (140±9.2) x 3-9 (4.8±1.6) 100-180 (132±19)x 3-8 (5±1) Haliclona walentinae a very interesting subject for both ecological and evolutionary studies. Etymology: The species is named after Dr. Walentina de Weerdt (University of Amsterdam) whose work with the Haplosclerida has been essential in our understanding of the group. Family Petrosiidae van Soest, 1980 Genus Xestospongia de Laubenfels, 1932 Xestospongia bocatorensis sp. nov. (Figs. 1-3; Table 3) Consistency: soft, compressible, and resilient, easy to peel off the substrate. Ectosomal skeleton: Poorly developed, some paucispicular Material examined. Holotype: USNM 1106222, Crawl Cay spicule tracts and loosely strewn spicules (Fig. 1C). Ectosome Canal (9°15'050"N, 82°07'631"W), 12 m, top of/fcmpora not peelable. The ectosome on the underside of the sponge cervicornis on a shallow reef where Millepora and Porites accumulates sand. were the dominant coral species, collectors M.C. Diaz and Choanosomal skeleton: Paucispicular, loosely organized R. Thacker, 21-06-05. Paratypes: BT-019, Crawl Cay Canal primary skeleton tracts (20-40 urn in diameter), and mostly (9°15'050"N, 82°07'631"W), 6 m, between fire coral, and unispicular tracts or single spicules connecting them. Spicule Agaricia spp. colonies, on a shallow reef, collector: M.C. tracts densely enveloped by filamentous cyanobacteria (Fig. Diaz, 08-2003; BT-163, same data as holotype. 3A, B). Spongin scarce, barely discernable. Spicules: Hastate to fusiform oxea, straight or slightly curved Description (100-180 x 3-9 urn). (Table 2, Fig. 2A). Shape and size: Thinly encrusting species (2-5 mm thick), in Ecology: The species was found thriving on a shallow reef, patches from five to a few hundred cm2. profusely overgrowing fire corals (Millepora spp.), soft corals, scleractinians, and other sponges, such a Neofibularia Surface: Smooth. Oscules (1-2 mm diameter) on top of low nolitangere (Duchassaing and Michelotti, 1864). It appeared volcano-shaped mounds (1-2 mm of height). to be a rather aggressive species, dominating all neighboring Consistency: Crumbly and brittle. sessile invertebrates. Colour: In live, dark purple, inside and out (Fig. ID). Cream Remarks: This species is here assigned to the subgenus to white in alcohol. Soestella, following the definition by de Weerdt (2000) Ectosomal skeleton: No organization, spicules strewn where "ill defined paucispicular primary lines, irregularlly tangentially (Fig. IE). connected by unispicular secondary lines" characterize the Choanosomal skeleton: Isotropic unispicular to paucispicular skeletal architecture. reticulation forming polygonal meshes (100-320 urn in Eight additional species in this subgenus occur in the diameter), and paucispicular primaries (2-3 spicules across) Caribbean: H. {Soestella) caerulea (Hechtel, 1965), H. 200-300 urn apart. Filamentous cyanobacteria densely packed (S.) lehnerti de Weerdt (2000), H. (S.) luciencis de Weerdt around the skeleton (Fig. 3C, D). (2000), H. (S.) melana Muricy and Ribeiro (1999), H. (S.) Spicules: Fusiform to slightly hastate stout oxeas in one piscaderaensis (van Soest, 1980), H. (S.) smithsae de Weerdt size class (230-320 x 8-15 urn) (Table 3), with pointed ends. (2000),//. (S.)twincayensisdeWeerdtetal. (1991), and//. (S.) Sigmas, c-shaped (10-26 x <1 urn) (Fig. 2B). vermeuleni de Weerdt (2000). Four of these, H. (S). caerulea, H. (S.) piscaderaensis, H. (S.) twincayensis, and H. (S.) Ecology: The species was found growing in small patches vermeuleni are among common species in the region of Bocas on mangrove roots, empty shells, or coral rubble, and del Toro (Diaz 2005). None of these, nor any other species of occasionally profusely overgrowing live corals. Also found Chalinidae, are known to be associated with cyanobacteria on shallow reefs (0-15 m deep) growing over coral and bare (Table 1). Two species in Soestella {melana, and luciencis) rock substrates. are black to dark brown color, but only darkly pigmented Remarks: The predominance of unispicular over cells are reported, at least for the former (de Weerdt 2000). paucispicular reticulation, and the relatively light spicule Distinct morphological and ecological differences separate density, compared to other Xestospongia, makes this species H. (S.) walentinae from the other Haliclona (Soestella) slightly atypical for the genus. However, two other Caribbean Caribbean species. Among them a thinly encrusting growth congeners, X. arenosa van Soest and de Weerdt, 2001, and habit, soft but resilient consistency, characteristic oscule X. wiedenmayeri van Soest, 1980 are precedents for similar morphology, and possession of cyanobacterial symbionts. skeleton structure. The assignment to Xestospongia is based on The filamentous cyanobacteria turn out to be a branch of spicule size, skeleton structure (more petrosiid than chalinid), Oscillatoria spongeliae, with genetic affinities to certain and petrosiid consistency (brittle and crumbly); it was first Pacific sponge symbionts (Thacker et al. 2007), making suggested by Dr. Walentina de Weerdt who examined our 37 Fig. 2: SEM photomicrographs of spicules: A. Haliclona walentinae sp. nov. (USNM 1106220) oxeas; B. Xestospongia bocatorensis sp. nov. (USNM 1106222), oxeas and sigmas. Table 3: Spicule measurements of specimens of Xestospongia bocatorensis sp. nov. [max-min. length (meantSD-) x max.- min. width (mean + SD)] in urn. Material studied Oxea Sigma (length in um) USNM 1106222 BT-019 BT-163 280-320 (302±11.5) x 12-15 (13±0.9) 230-260 (248±11.2) x 8-12 (11.8±0.7) 270-305 (293±12.4) x 8-12 (10.6±1.2) 20-25 (22±1.6) 10-12 (11.8±0.7) 10-26 (19± 1.22) material. Seven other Xestospongia species are recognized in the Caribbean: X. arenosa van Soest and de Weerdt (2001), X. caminata Pulitzer-Finali (1986), X. deweerdtae Lehnert and van Soest (1999), X. muta (Schmidt, 1870),% portoricensis van Soest (1980), X. proximo (Duchassaing and Michelotti, 1864), X. rosariensis Zea and Rutzler (1983), none of these has the thinly encrusting morphology of X. bocatorensis sp. nov. Three are very common inhabitants of Bocas del Toro reefs: X. proxima, X. muta, X. rosariensis. Even though all of these species harbor symbiotic cyanobacteria, Xestospongia bocatorensis sp. nov. is unique for its possession of a hostspecific clade of filamentous Oscillatoria spongeliae, rather than the more typical unicellular symbionts, Candidatus Synechococcus spongiarum (Usher et al. 2004a, 2004b, Thacker et al. 2007). Etymology: The species is named after the Bocas del Toro region, an extensive system of islands with well developed mangrove communities and patchy reefs in northeastern Panama where the new species was found. Discussion and conclusions To evaluate the relative frequency of associations between cyanobacterial symbionts and marine sponges, we compiled data from morphological and phylogenetic studies of sponges and their symbionts (Table 1, Diaz 1996, SteindlereW. 2005). Prior to genetic studies, many unicellular cyanobacterial symbionts were classified as Aphanocapsa feldmanni Fremy, 1933; some of these have subsequently been recognized as members of the genus Synechococcus (Usher et al. 2006), including a proposed species of sponge-specific unicellular cyanobacteria, Candidatus Synechococcus spongiarum Usher, 2004. Here, we present symbiont names as given by the authors of each study, and recognize that some of 38 Fig. 3: Filamentous cyanobacteria (Oscillatoria spongeliae) and choanocyte chambers shown in sections of the new species: A, B. Haliclona walentinae sp. nov.; C, D.Xestospongia bocatorensis sp. nov. these names may be synonyms (Table 1). Clearly, combined morphological and genetic studies are needed to resolve some of these issues. Symbiosis of sponges and filamentous (Oscillatoriatype) cyanobacteria is a common occurrence in the IndoPacific region where at least 10 common species are known for this association. The families concerned are Plakinidae (Homosclerophorida), Theonellidae ("Lithistida"), Dysideidae and Spongiidae (Dictyoceratida), and Aplysinidae (Verongida). In the much better studied Mediterranean Sea, only one Tethya (Tethyidae, Hadromerida) is known with this kind of symbiont. Until our discovery of Haliclona walentinae sp. nov. and Xestospongia bocatorensis sp. nov., only two records of sponges with Oscillatoria-type symbionts existed in the tropical western Atlantic. One is the common "bleeder sponge" Hyrtios violaceus (Duchassaing and Michelotti, 1864) (Thorectidae, Dictyoceratida), of which the symbiont fine-structure was studied (Rutzler 1990). The other is an undescribed species of Niphates (Niphatidae, Haplosclerida), which was recorded from the Bahamas and Belize (Diaz 1996). The phototrophic properties of the new species, the nature of the cyanobacterial symbionts, and the phylogenetic affinities of the symbionts to those hosted by Pacific sponges (Thacker et al. 2007) lends these biological assemblages a unique ecological and evolutionary significance. An unsolved issue remains about the origin of the two new species: are they systematic and ecological oddities among Caribbean sponges, or are they invasive species that originated in the tropical Pacific? Acknowledgments We thank Dr. Walentina ("Wallie") de Weerdt (Amsterdam) who kindly examined fragments of the specimens and commented on their identification. This is Caribbean Coral Reef Ecosystems (CCRE) contribution number 798, supported in part by the Hunterdon Oceanographic Research Fund. 39 References Cox GC, Hiller RG, Larkum AWD (1985) An unusual cyanophyte containing phycourobilin and symbiotic with ascidians and sponges. Mar Biol 89: 149-163 de Weerdt WH (2000) A monograph of the shallow-water Chalinidae (Porifera, Haplosclerida) of the Caribbean. Beaufortia 50: 1-67 de Weerdt WH, Ruetzler K, Smith KP (1991) The Chalinidae (Porifera) of Twin Cays, Belize, and adjacent waters. Proc Biol Soc %W: 104(1): 189-205 Diaz MC (1996) Molecular and ecological studies of spongemicrobial associations. PhD Thesis. University of California, Santa Cruz Diaz MC (2005) Common sponges from shallow marine habitats from Bocas del Toro region, Panama. CaribJ Sci 41(3): 466-475 Duchassaing de Fonbressin P, Michelotti G (1864) Spongiaires de la mer Caraibe. Natuurk Verh Holl Mij Wetensch Haarlem (2) 21(3): 1-124 Feldmann J (1933) Sur quelques cyanophycees vivant dans le tissue des eponges. Arch ZoolExp Gen 75: 331-404 Hechtel GJ (1965) A systematic study of the Demospongiae of Port Royal, Jamaica. Bull Peobody Mus Nat Hist 20: 1-94 Hentschel U, Hopke J, Horn M, Friedrich AB, Wagner M, Hacker J, Moore BS (2002) Molecular evidence for a uniform microbial community in sponges from different oceans. Appl Environ Microbiol 68: 4431-4440 Larkum AWD, Cox GC, Hiller RG, Dibbayawan TP (1988) Prokaryotic algal symbionts of coral reef sponges. Proc 6"' Int Coral Reef Symp, Townsville 3: 163-169 Larkum AWD, Cox GC, Hiller RG, Parry DL, Dibbayawan TP (1987) Filamentous cyanophytes containing phycouribilin and in symbiosis with sponges and an ascidian of coral reefs. Mar Biol 95: 1-13 Lehnert H, van Soest RWM (1999) More North Jamaican deep forereef sponges. Beaufortia 49(12): 141-169 Muricy G, Ribeiro SM (1999) Shallow water Haplosclerida (Porifera, Demospongiae) from Rio de Janeiro State, Brazil (southwestern Atlantic). Beau/brAa 49(9): 83-108 Pullitzer-Finalli G (1986) A collection of West Indian Demospongiae (Porifera). In appendix, a list of Demospongiae hitherto recorded from the West Indies. Ann Mus Civ Storia Nat Genova 86: 65-216 Rutzler K (1978) Sponges in coral reefs. In: Stoddart OR, Johannes RF (eds). Coral reefs: research methods. Monographs on OceanograpMcMefAodo/ogiec (UNESCO) 5: 299-314 Rutzler K (1981) An unusual bluegreen alga symbiotic with two new species of Ulosa (Porifera:Hymeniacidonidae) from Carrie Bow Cay, Belize. Mar Ecoll: 35-50 Rutzler K (1990) Associations between Caribbean sponges and photosynthetic organisms. In: Rutzler K (ed). New perspectives in sponge biology. Smithsonian Institution Press, Washington DC. pp. 455-466 Sara M (1966) Associazioni fra Porifera e alghe in acque superficial! del litorale marino. Ric Sci 36: 277-282 Sara M (1971) Ultrastructural aspects of the symbiosis between two species of the genus Aphanocapsa (Cyanophyceae) and Ircinia variabilis (Demospongiae). Mar Biol 11: 214-221 Schmidt 0(1870) GrundziigeeinerSpongien-FaunadesAtlantischen Gebietes. Wilhelm Engelmann, Leipzig Steindler L, Huchon D, Avni A, Han M (2005) 16S rRNA phytogeny of sponge-associated cyanobacteria. Appl Environ Microbiol 71(7): 4127-4131 Thacker RW (2005) Impacts of shading on sponge-cyanobacteria symbioses: a comparison between host-specific and generalist associations. Int Comp Biol 45: 69-376 Thacker RW, Diaz MC, Rutzler K, Erwin PM, Kimble SJA, Pierce MJ, Dillard SL (2007) Phylogenetic relationships among the filamentous cyanobacterial symbionts of Caribbean sponges and a comparison of photosynthetic production between sponges hosting filamentous and unicellular cyanobacteria. In: Custodio MR, Lobo-Hajdu G, Hajdu E, Muricy G (eds). Porifera research: biodiversity, innovation andsustainability. Serie Livros 28. Museu Nacional, Rio de Janeiro, pp. 621-626 Thacker RW, Starnes S (2003) Host specificity of the symbiotic cyanobacterium Oscillatoria spongeliae in marine sponges, Dysidea spp. Mar Biol 142: 643-648 Usher KM, Fromont J, Sutton DC, Toze S (2004a) The biogeography and phylogeny of unicellular cyanobacterial symbionts in sponges from Australia and the Mediterranean. Microb Ecol 48: 167-177 Usher KM, Kuo J, Fromont J, Toze S, Sutton DC (2006) Comparative morphology of five species of symbiotic and non-symbiotic coccoid cyanobacteria. Eur JPhycol 41(2): 179-188 Usher KM, Toze S, Fromont J, Kuo J, Sutton DC (2004b) A new species of cyanobacterial symbiont from the marine sponge Chondrilla nucula. Symbiosis 36: 183-192 van Soest RWM (1980) Marine sponges from Curacao and other Caribbean localities. Part II: Haplosclerida. Stud fauna Curacao Caribb Isl 62(191): 1-173 van Soest RWM, de Weerdt WH (2001) New records ofXestospongia species (Haplosclerida: Petrosiidae) from the Curacao reefs, with a description of a new species. Beaufortia 51: 109-117 Vicente V (1990) Response of sponges with autotrophic symbionts during the coral bleaching episode in Puerto Rico. Coral Reefs 8(1): 99-202 Webb VL, Maas EW (2002) Sequence analysis of 16S rRNA gene of cyanobacteria associated with the marine sponge Mycale (Carmia) hentscheli. FEMS Microbiol Lett 207(1): 43-47 Wilkinson CR (1978) Microbial associations in sponges. I. Ecology, physiology, and microbial populations of coral reefs sponges. Mar Biol 49: 161-167 Wilkinson CR (1979) Nutrient translocation from symbiotic cyanobacteria to coral reef sponges. In: Levi C, Boury-Esnault N (eds). Biologie des spongiaires. Collogues Internationaux du CNRS, vol. 291. Editions du CNRS, Paris, pp. 373-380 Wilkinson CR (1980) Cyanobacteria symbiotic in marine sponges. In: Schwemmler W, Schenck HEA (eds). Endocytobiology Endosymbiosis and Cell Biology. De Gruyter, Berlin, pp. 9931002 Wilkinson CR (1983) Net primary productivity in coral reef sponges. Science 219: 410-412 Wilkinson CR (1992) Symbiotic interactions between marine sponges and algae. In: Reiser W (ed.) Algae and symbioses. Biopress Ltd, Bristol, pp.111-151 Zea S and K Rutzler (1983) A new species of Xestospongia (Porifera, Demospongiae), from the Colombian Caribbean. Caldasia 13: 817-831