Academia.eduAcademia.edu
Journal of Phytology 2023, 15: 12-37 doi: 10.25081/jp.2023.v15.8020 https://updatepublishing.com/journal/index.php/jp Review Article A comprehensive analysis on the ecosystem services of Elaeocarpus L. (Elaeocarpaceae): a review ISSN: 2075-6240 Sheenu Sharma1, Sabir Hussain1, Durg Vijay Rai2, Anand Narain Singh1* 1 Soil Ecosystem and Restoration Ecology Lab, Department of Botany, Panjab University, Chandigarh-160014, India, Department of Biomedical and Engineering, School of Biological Engineering and Sciences, Shobhit University, Modipuram, Meerut-250110, India 2 ABSTRACT Received: October 07, 2022 Revised: February 14, 2023 Accepted: February 15, 2023 Published: March 07, 2023 *Corresponding author: Anand Narain Singh E-mail: dranand1212@gmail.com The Elaeocarpus is considered the largest genus in the family Elaeocarpaceae. It is commonly called ‘Rudraksha’ in India and has a noteworthy attachment with the Indians, mostly Hindus. The plant is known for its beneficial aspects and supply of various ecosystem services, particularly in medicinal sciences. The present study provides a comprehensive review of the genus Elaeocarpus for its ecosystem services in the context of human wellbeing. A literature survey was conducted from 1970 to 2020 on internet scientific databases such as Scopus, Science Direct, Google Scholar, PubMed, and Web of Science using strings such as, Elaeocarpus, Rudraksha, medicine, conservation, tradition, and services. One hundred two publications were considered for data extraction and finalising the review. Firstly, we classified the ecosystem services under respective classes as provided by MEA (2005), and the remaining benefits that didn’t fit under the classification were presented separately. It has been reported that Rudraksha delivers all categories of ecosystem services: provisioning, regulating, cultural, and supporting services. In addition, the Rudraksha plant owes a high status in medicinal science, ayurveda, and religious mythology. In the last five decades, studies were conducted on various species of Elaeocarpus for their beneficial aspects. It was found that Elaeocarpus plants have a vital role in ayurveda, pharmaceuticals, and pharmacological and astrological science. In addition, they have been used as food, firewood, timber, and the production of secondary metabolites and their role in cultural and religious dimensions are very clearly discussed. The provisioning and cultural services delivered by Rudraksha constitute only 30% and 10% of the services mentioned in MEA (2005). However, only a little research has been conducted on regulatory and supporting services provided by Rudraksha. Therefore, for a long-term sustainability and multifunctionality assessment, the extension of ecosystem services regarding individual plant’s (tree) services should be highly recommended. Hence, the present review investigates the scientific knowledge about the ecosystem services of the Elaeocarpus. KEYWORDS: Conservation, Medicinal, Multifunctionality, Provisioning, Rudraksha, Sustainability INTRODUCTION Elaeocarpus commonly called Rudraksha, a genus of the family Elaeocarpaceae, is a large evergreen, drought-tolerant, perennial, broad-leaved tree with a large spreading crown and attains a height of about 15.0-20.0 m (Pant et al., 2013; Singh et al., 2015). Rudraksha- factually means “Shiva’s tears” which is believed as the seed of Elaeocarpus species. The word Elaeocarpus is derived from the Greek word Elaeo = olive and carpus = fruit (referring to olive-like fruits produced by the genus). Rudraksha’s bead is obtained from seeds of several species of the genus Elaeocarpus. The beads are sacred to Hindus, Buddhists, and Jains since ancient times. It is deep-rooted in our belief systems. It is the heritage tree of India (http://naturalheritage.intach.org). According to the Hindu mythological story in Puranas, the seed of Elaeocarpus was created from the tears of the lord Shiva which were fallen from his eyes after a prolonged fight with a demon called Asur. Therefore, Elaeocarpus beads are sacred to the Hindus, and they believe in the spirituality of the plant. The beads size ranges from the size of small peas to as large as marble. It is believed to bring good luck, sound sleep, mental stability, better memory, happy feelings, and stabilises blood pressure. Elaeocarpus tree is famous for its spiritual or aesthetic values and provides many other ecosystem services (Pandey, 2001; Jawla et al., 2018). Ecosystem services are the benefits people obtain from nature (MEA, 2005). These benefits include provisioning, regulating, supporting, and cultural services. Elaeocarpus is an important medicinal plant with several medicinal uses in the traditional medication system (Singh et al., 2015). It has been used to cure many health problems like stress, anxiety, depression, palpitation, nerve pain, epilepsy, migraine, lack of concentration, asthma, hypertension, arthritis, and liver diseases (Joshi et al., 2012). Copyright: © The authors. This article is open access and licensed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/) which permits unrestricted, use, distribution and reproduction in any medium, or format for any purpose, even commercially provided the work is properly cited. Attribution — You must give appropriate credit, provide a link to the license, and indicate if changes were made. 12 J Phytol • 2023 • Vol 15 Sharma et al. Arivu and Muthulingam (2017) claimed that Rudraksha beads might have exhibited multiple pharmacological activities. In the last few decades, the phytochemical composition of Elaeocarpus has also been studied extensively (Miller et al., 2006). Various extracts from the different Elaeocarpus parts have revealed the presence of alkaloids, phenolics, tannins, flavonoids, and fatty acids (Dubey, 2018). Traditionally, Rudraksha beads are believed to cure melancholia, mental disorders, convulsions, cephalalgia, allergies, neurological diseases and many more severe diseases like asthma, diabetes, cancer, stress, and blood circulatory disorders (Singh et al., 2015). It is further believed that the Rudraksha tree also possesses dielectric and magnetic properties, which may impart positive changes in the human body (Prajapati et al., 2016). The Rudraksha tree, also known for its other bioelectric properties, includes conductivity, resistivity, inductance, and dynamic polarity (Sharma et al., 2018). Prajapati et al. (2016) experimented with bio-electrical energy production with the help of Rudraksha beads and concluded that Rudraksha beads of Elaeocarpus ganitrus Roxb. possesses some bioelectrical energy that helps in relieving stress in humans. Similarly, Rashmi and Amrinder (2014) have classified the electrical property of Rudraksha into five categories: resistance, capacitance or dielectric property, inductance, magnetic property, and dynamic property. Furthermore, they are assumed to correlate with a concept by Kumar et al. (2013) that describes the resistance in our body as coordinated with our heartbeat and then specific impulses to generate certain biochemicals in the brain, bringing festive mood, confidence, and feeling energetic. In a similar study conducted by Swami et al. (2010), the magnetic property of Rudraksha beads affects different body elements, the poles of magnets and the body active simultaneously; thus, the passage enlarges, thus the streaming of blood circulation, suddenly, the rejuvenated feeling occurs at the side of healing, and unhealthiness disappears. All over the world, people from different parts inspired by Indian spiritualism and belief in its healing power have adopted it as sacred. Traditionally, communities were utterly dependent on natural resources and had developed a system of sustainable use of biodiversity. This traditional knowledge system ensured the conservation of all-natural resources, including soil, water, and biodiversity. However, with changing cultural values and the reluctant connectivity of the people with nature, urbanisation, industrialisation, and modern lifestyles have quickly declined traditional conservation and sustainability practices. Conservation of species that used to come from nature worship by different indigenous communities is almost extinct except in specific tribal communities. Plants and animals that were earlier worshipped are today under threat for their very existence due to cultural ethos’s dilution. Therefore, this review has been attempted to collect comprehensive information about the Elaeocarpus ecosystem services to humankind. It aims to answer the following questions: (i) What are the trends in Elaeocarpus research in the scientific field over the years? (ii) What ecosystem services are delivered by the genus Elaeocarpus and how can it be interpreted from the existing literature? (iii) What are the different anti-pathogenic activities J Phytol • 2023 • Vol 15 that have been tested and verified from various species of Elaeocarpus (iv) How this plant is linked to people’s sentiments and associated with its values and (v) Which ecosystem services are needed to be explored for a complete ecosystem services assessment of the plant. To accomplish this, we have surveyed the available database and unpublished grey literature, including dissertations and theses. Botanical Information Elaeocarpus L. is an average-sized evergreen tree with an attractive spreading crown, found in tropical and subtropical areas at an altitude ranging from the sea coast to 2,000 meters above the mean sea level. Leaves are large and shining green on the sun-facing side and dull stringy on earth facing side. Flowers are predominantly white and appear in April-May (Garg et al., 2013). Fruits are round or oval, small, violet or blue colored, and acidic in taste. They start appearing in June and ripen near October. The ripe fruit is fleshy and has a seed with a blue shell. The inner part or bead in the seed is called ‘Rudraksha’ (Joshi & Jain, 2014). A Stony endocarp is a hard, globular, strong tubercule marked with longitudinal ridges (probably 1 to 21) that have been reported (Figure 1). Ecology and Distribution Elaeocarpus consists of 552 species (Global Biodiversity Information Facility) found worldwide, which surround tropical and subtropical regions (Table S1). It is widely distributed from Madagascar in the west through India, Southeast Asia, Malaysia, Southern China, and Japan, through Australia to New Zealand, a b c Figure 1: Morphological features of the Rudraksha tree (E. ganitrus) a) Oblong-lanceolate leaves, b) Flowers with fringed petals and c) Fruit with a blue colour shell 13 Sharma et al. Fiji, and Hawaii in the east (Rai et al., 2018). Around 120 species of the genus, Elaeocarpus were reported from different parts of Asia (Figure 2). Only 25 species occur in Indian territories in states such as Uttar Pradesh, Maharashtra, Bihar, Madhya Pradesh, Assam, Arunachal Pradesh, and Meghalaya (Figure 3). The Rudraksha tree is found in all districts of Assam, though more frequent in Arunachal Pradesh. In Arunachal Pradesh, it is expected along the foothill of all districts except Tawang and Upper Subansiri, and some other high-altitude areas. Researchers have classified the forest vegetation of Arunachal Pradesh into five broad types. Rudraksha is found in the tropical evergreen forest, which is characterised by a three-tier forest structure. The emergent top canopy trees are straight bole with an average girth of 2-5 m and a height of 40-50 m. However, tropical forests of Arunachal Pradesh are being modified and degraded due to increased anthropogenic pressure. The age-old practice of shifting agriculture is one of the potent factors changing the forest microenvironment and reducing the forest cover (Ramakrishnan & Toky, 1981). Improved technology, the pattern of forest resource use, and infrastructure development have widely increased effective wood harvesting and land-clearing activities. It is believed that if the present trends continue and effective conservation measures are not implemented, most of the existing forests will be destroyed or replaced by degraded communities (Rajbonshi & Islam, 2018; Menon et al., 2001). METHODOLOGY For the synthesis of this review, a comprehensive search of literature pertaining to Elaeocarpus was conducted on different web-based databases such as Web of Science, Scopus, Science Direct, Google Scholar, Mendeley, PubMed, other grey literature and some authentic reports available on the internet. We searched for relevant data from 1970 until 2020 by using the following terms and keywords “Rudraksha”, “Elaeocarpus”, “Elaeocarpus AND Importance”, “Elaeocarpus AND Medicine” OR “Elaeocarpus AND Tradition” in the Title, Abstract, Keyword section of the reference databases. The search results vary with different databases. It yielded 500 publications in Scopus, 854 through ScienceDirect, 154 from PubMed, and 600 from Mendeley databases. After that, the inclusion and exclusion of publications for further analysis were performed with intensive screening based on the publication’s relativity with the review topic. It was conducted by Title screening, which resulted in the finding of 550 publications. The duplicate exclusion follows it by merely checking the title similarity among different database searches to avoid overlapping articles. In order to be more specific, the publication was scrutinised with full-text screening. Therefore, the remaining 102 publications were considered for data extraction and review synthesis (Figure 4). RESULTS Research on Elaeocarpus Over the Past 50 Years (1970-2020) Over the years, researchers have shown immense enthusiasm to work on the essential aspects of Elaeocarpus. The curative power of Rudraksha was explicitly written long back in some holy books, and people practically exercise it. However, all were written arguments without experimental work. The historical point from where research is being conducted was the extraction of organic acids from E. serratus fruits in 1932 (Yamamoto et al., 1932). Around 36 years, no research was done on this plant. However, onwards 1970, the research community was Figure 2: The distribution map of Elaeocarpus L. in the world (Source: Global Biodiversity Information Facility (GBIF), https://www.gbif.org/ species/4031193) 14 J Phytol • 2023 • Vol 15 Sharma et al. Figure 3: The distribution map of Elaeocarpus L. in India (Source: GBIF) Figure 4: The search strategy was used to identify relevant papers for a comprehensive literature review interested to know more; therefore, more research has been focused on undermining the significance of Rudraksha for human wellbeing. Due to some researchers’ devotional work, over 1500 publications have come up with different sets of powerful features of Elaeocarpus. Thus, studies on Elaeocarpus have been conducted worldwide, with India topping the list with more than 120 research publications. China, Australia, Japan, New Zealand, and the United States of America (USA) have also done fabulous work on Elaeocarpus. A meta-analysis conducted to determine per year publication rate published from 1970 to 2020 (Figure 5). It was observed that over the years the rate of research publication has increased from 1970 to 2020; however, abrupt increase was seen after 2000. Due to substantial research, it has been found that Elaeocarpus has a vital role in economics, ayurveda, pharmaceuticals, and pharmacological and astrological sciences (Kumar et al., 2013). Furthermore, secondary metabolite and phytochemical production have a prominent role when accounting for ecosystem service values (Vuong et al., 2018). J Phytol • 2023 • Vol 15 Figure 5: Representing the number of publications concerning years (1970-2020) Based on the Scopus data, more than 150 countries have researched Elaeocarpus. Summarised data in Figure 6 represents 15 Sharma et al. forage, fodder, litter decomposition, and shade. In this review, we considered only those available in the literature. Timber and Food In his book “Taxonomy of Angiosperms”, Pandey (2001) mentions E. ganitrus Roxb. as a good quality timber-producing species. The tree’s light and strong white wood were used in making aeroplane propellers during World War-I. In Nepal, wood is used as firewood and for agricultural instruments. The fruit of E. ganitrus Roxb. is a super miracle. There is much ancient literature where the medicinal and healing properties of this plant have been reported. According to some reports, Rudraksha’s fruit also has nutritional importance (Mundaragi, 2019). Figure 6: The geographic distribution of the publications concerning the studies on Elaeocarpus only countries with higher numbers of publications on this plant. Rudraksha and its Ecosystem Services Despite tremendous interest in ecosystem services research in the last three decades, working on individual tree species on the same line is negligible. Researchers have stressed the ecosystem functioning and services of the whole landscape or ecosystem level (Costanza et al., 1997; Kremer et al., 2016). This exercise attributed a system approach analysis, but the role of an individual tree species providing specific services could not be assessed at this level; therefore, this may provide a minimal understanding of ecosystem services at the species level. Trees are arguably known for regulating extreme events, carbon sequestration (Nair et al., 2010), biomass production (Cánovas et al., 2018), timber, and many more ecosystem services. Like other plants, Elaeocarpus has been noticed to play a vital role in delivering a set of ecosystem services. However, its role in carbon sequestration, temperature and extreme events, and disease regulation is unknown due to limited research that solely focuses on providing services and cultural services. A comprehensive analysis of the literature survey was conducted to develop satisfactory findings on the ecosystem services of Rudraksha. Then the reported benefits were classified based on the Millennium Ecosystem Assessment (MEA, 2005) classification of ecosystem services. Provisioning Services The MEA defines provisioning ecosystem services (food, fresh water, fuelwood, timber, biochemicals, and genetic resources) as the products obtained from the ecosystems. Provisioning Ecosystem Services (ESs) play a fundamental role in human survival and well-being. Their involvement in the nation’s economy is phenomenal, as evident from the recently appearing markets and valuation systems (Anand & Gupta, 2020). Work on Elaeocarpus identifies several provisioning services (Table 1). Although most of the services are not mentioned but are apparent to be counted. These include fuelwood, timber, 16 Jawla et al. (2018) performed an experiment in which they did an elemental analysis of pulp and bead of fruit by using a wavelength-dispersive X-ray fluorescence spectrometer. They found major minerals like calcium, magnesium, phosphorus, potassium, chlorine, sodium, and sulphur were identified in both bead and pulp. Trace elements iron, copper, zinc, molybdenum, palladium, rubidium, and silicon were also identified in both beads and pulp (Table 2). Therefore, it can be suggested to raise the production and ingestion of nutrient-rich Rudraksha fruit, which may add to the diet and relieve the risk associated with malnutrition in various parts of developing countries. Phytochemicals and Production of Secondary Metabolites The genus Elaeocarpus produces many biochemical and secondary metabolites that are vital for human well-being. Several secondary metabolites, such as terpenes, tannins, flavonoids, and alkaloids were obtained from different species of Elaeocarpus (Table 3). The fruit of blueberry ash contains flavonoids, proanthocyanidins, and anthocyanins (Vuong et al., 2018). 1α-hydroxy-olean-12-en-3-O-β-D-xylopyranoside and 1α-hydroxy-olean-12-en-3-O-α-L-arabinopyranoside oleanane-type saponins were isolated from the leaves and twigs of E. hainanensis Oliv. (Nga et al., 2018). Tectoracine, tectoraline, tectortamidine alkaloids were extracted from the leaves of E. tectorius Lour. (Chinonso et al., 2018). While cyanogenic glycoside (6′-O-galloyl sambunigrin) was isolated from the Australian tropical rainforest tree species foliage, E. sericopetalus F. (Ezeoke et al., 2018). Another four secondary metabolites found in E. grandiflorus J.E.Sm. cell suspension cultures are alkaloids, flavonoids, phenolics, and terpenoids extracted from the cell suspension culture of E. grandiflorus J.E.Sm. (Anggraito et al., 2020). As many as 14 alkaloids were reported from E. angustifolius Blume leaves (Hong et al., 2019). Indolizidine alkaloids, grandisines C, D, E, F, and G isoelaeocarpiline were isolated from the leaves of E. grandis F. Muell. (Katavic et al., 2006). E. sphaericus K. Schum. has been reported to possess alkaloids, glycosides, steroids, flavonoids, tannins, fatty acids, carbohydrates, and proteins (Singh et al., 2000b). J Phytol • 2023 • Vol 15 Sharma et al. Table 1: Provisioning services of Rudraksha species with their functions Particulars Species Roles or functions References Food and Timber E. floribundus Blume E. lanceifolius Roxb. E. munroii Mast. E. serratus L. E. sphaericus K. Schum. E. griffithii A. Gray E. reticulatus Sm. E. eumundi F.M.Bailey E. sylvestris Lour. E. lanceifolius Roxb. E. dolichostylus Schltr. E. tonkinensis A.DC. E. griffithii A. Gray E. serratus L. E. glandulosus Wall. E. dolichostylus Schltr. E. venustus Bedd. E. tuberculatus Roxb. E. sphaericus K. Schum. E. lancifolius Roxb. Fuel and energy (e.g., fuelwood, organic matter), fodder, and fertiliser (e.g., krill, leaves, litter) Vuong et al., 2018 Biochemicals and secondary metabolite production Genetic resources Medicinal resources Drugs and pharmaceuticals Pezzuto et al., 1984; http:// naturalheritage.intach.org Resources for fashion, handicraft, jewellery, pets, worship, decoration http://naturalheritage.intach.org Table 2: Macro and micronutrient analysis of E. ganitrus fruit pulp and bead (Jawla et al., 2018) Nutrients Macro Micro Mineral Potassium Calcium Phosphorus Magnesium Sodium Sulphur Chlorine Iron Copper Zinc Silicon Manganese Aluminium Palladium Rubidium Molybdenum Strontium Nickel Selenium Chromium Bromine Arsenic Content (mg/100g) Pulp Bead 1470 50 130 80 ‑‑ 110 200 0.082 0.014 0.012 30 ‑‑ ‑‑ 0.015 0.023 0.014 ‑‑ ‑‑ ‑‑ 0.009 0.006 0.004 110 240 20 60 10 40 30 80 0.012 0.018 70 11 20 0.026 0.026 0.016 0.011 0.007 0.006 ‑‑ ‑‑ ‑‑ Several isomeric alkaloids of molecular formula C16H21NO2 have been isolated from the Rudraksha tree leaves (Pant et al., 2013). These isomeric alkaloids include elaeocarpidine, elaeocarpine, isoelaeocarpine, epiisoelaeocarpiline, epialloelaeocarpiline, alloelaeocarpiline, pseudoepiisoelaeocarpiline. Besides these, species contain a crucial non-aromatic indolizidine alkaloid called rudrakine (Singh & Nath, 1999). E. serratus leaves contain potent polyphenols, flavonoids, and myricitrin (Chen & Yang, 2020). Callus culture of E. grandifloras J.E.Sm. can produce flavonoids and phenolic bioactive compounds (Habibah et al., 2020). E. ganitrus Roxb leaves possess flavonoids, tannin, saponin, and alkaloids (Indriatie et al., 2020). Fatty acids, diterpenoids, triterpene alcohol, fatty alcohols, J Phytol • 2023 • Vol 15 Singh et al., 2018; Dao et al., 2019 ‑‑ pheophytins, phytosterol, sesquiterpene, hydrocarbons have been obtained from the leaves of E. floribundus Blume by hexane extract (Ogundele & Das, 2019). Other phytochemicals such as trolliamide, gallic acid, urolithin, hydroquinone, 2,4-dihydroxybenzoic acid, 3,5-dihydroxy-4-methoxybenzoic acid, corilagin, chebulagic acid, and shikimic acid were extracted from the leaves of E. tonkinensis A. DC. (Dao et al., 2019). The leaves of E. eumundi F.M.Bailey have phenolic monosaccharides content (Singh et al., 2018). The seeds and leaves of E. ganitrus Roxb. have been reported to contain alkaloids, flavonoids, sterol, phenolic, saponin, and glycosides (Tripathi et al., 2015). The number of species identified for possessing their respective secondary metabolites is shown in Figure 7. Pharmacological and Medicinal Services Scientific advancement brought a positive approach to the Rudraksha tree systemic assessment for its healthful properties in the last 20 years. Rudraksha trees have been reported to exhibit immune-stimulatory, anti-inflammatory, antimicrobial, anxiolytic, anti-cancerous, anti-ulcerogenic, antidepressant, and antioxidant activity (Piao et al., 2009; Katavic et al., 2007). Among these, Elaeocarpus possess the highest antioxidant activity, followed by antibacterial activity. Several publications have addressed the pharmacological activity of Elaeocarpus, with E. ganitrus Roxb. being the highly stressed species for the pharmacological property. E. ganitrus Roxb. has been identified as an analgesic, anticonvulsant, anti-amphetamine, cardiac stimulant, depressor, and smooth muscle relaxant activity (Bhattacharya et al., 1975). The phenolic and flavonoid contents in the leaves of E. ganitrus Roxb. provided a considerable antioxidant activity (Kumar et al., 2008). At the same time, seeds have been observed to provide antifungal (Singh et al., 2010), antidiabetic (Hule et al., 2011), antianxietic (Singh et al., 2013), immunomodulatory and nephroprotective (Kakalij et al., 2014), hypoglycemic (Tripathi et al., 2015) and antibacterial properties. Furthermore, the Methanol extraction of E. ganitrus 17 Sharma et al. Table 3: Phytochemicals and secondary metabolites reported various Elaeocarpus species S. No Name of the species Phytochemical and Secondary Metabolites 1 E. serratus L. 2 E. sphaericus K. Schum. 3 E. ganitrus Roxb. 4 5 E. grandifloras J.E.Sm. E. reticulatus Sm. 6 E. tonkinensis A.DC. 7 8 9 10 11 12 E. augustifolius Blume E. hainanensis Oliv. E. chinensis Hook.fil.ex Benth. E. dolichostylus Schltr. E. floribus E. floribundus Blume Myricitrin, tannins, saponins, flavonoids, glycosides, alkaloids Gallic acid, ellagic acid, Quercitin, steroid, alkaloids, flavonoids Polysterol, carbohydrate, tannins, flavonoids, alkaloids Terpenes, flavonoids, alkaloids Anthocyanin, proanthocyanidin, flavonoids Gallic acid, Urolithin, hydroquinone, corilagin, chebulic acid, shikimic acid Alkaloid Cucurbitane, terpenes, saponin Terpenes, cucurbitacin 13 E. tectorius Lour. 14 15 16 17 18 19 20 21 E. mastersii King E. sericopetalus F. Muell. E. parvifolius Wall. E. sylvestris var ellipticus E. lanceifolius Roxb. E. grandis F. Muell. E. sylvestris Lour. E. eumundi F.M.Bailey 22 E. oblongus Gaertn. 23 24 25 E. recurvatus Corner E. chelonimorphus Gillespie E. dentatus 26 E. tuberculatus Roxb. 27 E. munronii Mast. 28 E. keniensis Cucurbitacin, terpenes Terpenes, cucurbitacin Fatty acid, Terpenes, Sterol, pheophytin Glycosides, sterol, terpenes, flavonoid, alkaloid, tannins Phenolic, alkaloid Glycosides Ellagic acid Elaeocarpusin (tannin) Flavonoid, alkaloid alkaloid Coumarin, sterol Phenolic monosaccharide, dihydropieceid Sucrose, fructose, flavonoid, tannins, steroids Proanthocyanidin, flavonoid Terpenes Palmitic, linoleic, oleic, hexadecanoic and linolenic acid Alkaloid, steroid, flavonoids, terpenes, glucosides, tannins Flavonoid, glycosides, steroid, tannins, terpenes Elaeokanine A, B, C, D, E and Elaeokanidine A Roxb. seeds stimulates both non-specific (phagocytosis) and specific (cell-mediated and humoral) arms of the immune system (Hule & Juvekar, 2010). Hexane Cucurbitacin F derived from E. dolichostylus Schltr. has shown anticancer activity (Fang et al., 1984). E. sphaericus K. Schum. fruit possesses substantial capability against bacterial disease (Singh & Nath, 1999). Furthermore, the bark extract of E. parvifolius Wall. (Ellagic acid rhamnosides) was considerably effective against babesial disease (Elkhateeb et al., 2005). The flavonoid content in the fruits of E. serratus has anxiolytic potential (Dubey, 2018). Elaeocarpus species are known for their antioxidant property. The plant species that are recognised to possess antioxidant properties include E. serratus L. (Chen & Yang, 2020), E. mastersii King. (Okselni et al., 2018), E. sphaericus K. Schum. (Sharma et al., 18 Figure 7: The number of species identified for possessing respective secondary metabolites 2015), E. serratus L. (Jayasinghe et al., 2012), E. sylvestris var. ellipticus (Piao et al., 2009). The leaf extract of E. serratus L. possessed significant antibacterial and cytotoxic properties (Biswas et al., 2012). Phenolic monosaccharides isolated from E. eumundi F.M.Bailey possess anti-inflammatory activity (Singh et al., 2018). The fruit of E. tectorius Lour. contains the essential phytochemicals that act as antioxidants and also have specific antimicrobial activity against urinary tract infection (Manoharan et al., 2019). Singh et al. (2000b) studied the benzol, crude oil ether, acetone, chloroform and ethanol extracts of edible fruit of genus E. sphaericus K. Schum. showed antiulcerogenic activities in the rats. Figure 8 shows the number of Elaeocarpus species possessing disease-inhibitory effects. Pharmacological properties with different extracts are shown in Table 4 summarises the overall significance of Elaeocarpus in pharmacology and medicines. Cultural Services A literature search mentions cultural values associated with spirituality, religion, and tradition. Cultural ecosystem services (CES) refer to the non-material benefits people obtain from the ecosystems (MEA, 2005), but it indirectly influences the quality of life. People adore services in spiritual enrichment, cognitive development, reflection, recreation and tourism, and aesthetic experiment (Table 5). These are things that are directly connected with the happiness of people. The cultural services of Elaeocarpus were familiar from lord Shiva’s period (Khan et al., 2004). From there, people, mostly the Hindus, have a solid attachment to the Rudraksha plant. Spiritual, Religious, and Traditional Values of Rudraksha Rudraksha has been used since prehistoric time for controlling various diseases. It is used against vatapaittik disease, dahashaman (scorching sensation) by rubbing it like sandalwood, swasroga (bronchial antispasmodic), jwar (fever), apasmar (epilepsy), matisudhikara (cure mental ailment), manas roga (mental syndrome) (Ayurvedic Pharmacopoeia Committee, 2001). Different parts (beads, leaves, barks) of Rudraksha are used to treat various ailments and may be worn either on the arm, wrist, J Phytol • 2023 • Vol 15 Sharma et al. Table 4: Showing pharmacological properties with different extracts used S. No. Properties Extracts used References 1 2 3 4 5 6 7 8 9 10 11 Antifungal Antioxidant Anxiolytic Anti‑ulcerogenic Antihypertensive Anti‑inflammatory Antidepressant Antibacterial Analgesic Antiasthmatic Antidiabetic Chloroform/ethanol/water Ethanol Methanol Petroleum ether/benzene/chloroform/acetone/ethanol Water/ethyl acetate Petroleum ether/benzene/chloroform/acetone/ethanol Petroleum ether/ethanol ‑‑ Petroleum ether/methanol/water/chloroform Petroleum ether/benzene/chloroform/acetone/ethanol Water Singh et al., 2010 Kumar et al., 2008 Gagan et al., 2010 Singh et al., 2000a Sakat et al., 2009 Singh et al., 2000a; Kumari et al., 2018 Singh et al., 2000a Nain et al., 2012 Singh et al., 2000a Hule et al., 2011 Table 5: Cultural services of Rudraksha species with their functions Services Species Roles or functions References Aesthetic values E. ganitrus Roxb. Rai et al., 2018 Spiritual and religious values Educational values E. ganitrus Roxb. Pleasant, positive, and artful significance Use of nature for religious or historic purposes Use of nature for scientific research E. blascoi Weibel E. robustus Roxb. E. sylvestris Lour. E. bojeri R.E.Vaughan E. prunifolium E. floribundus Blume E. venustus Bedd. E. ganitrus Roxb. E. tuberculatus Roxb. Figure 8: Quantitative distribution of potent species against various diseases or other body parts (Joshi & Jain, 2014; Hardainiyan et al., 2015). Rudraksha positively affects stress, anxiety, depression, tremors, and lack of attentiveness. As per the Ayurvedic medicine system, they were wearing Rudraksha beads that relieve strain, insomnia, anxiety, lack of concentration, depression, palpitation, hypertension, rheumatism, infertility, and asthma. It has an antiaging effect also (Liyanaarachchi et al., 2018). Rudraksha has gained a special place in Hinduism, Buddhism, and Jainism. They consider Rudraksha beads sacred and holy. In the Hindu mythological book “Puranas” (holy books, 18 types), it has been scripted that the Rudraksha plant has been created from Lord Shiva’s tears. According to Shiva Purana, the one who wears the J Phytol • 2023 • Vol 15 Tripathy et al., 2016 Roy et al., 1998; Arshad & Kumar, 2006; Das, 2014; Chauhan & Thakur, 2015; Siva et al., 2015; Iralu & Upadhaya, 2018 rosary of Rudraksha beads around his/her wrist, arm, neck, or head will be safe from any calamity. Wearing it makes the person respected and honoured by all (Chaturvedi, 2004). For centuries, Hindu believers believed one could cultivate mental, physical, and spiritual prowess to attain fearlessness and achieve ultimate enlightenment (Tripathy et al., 2016). Even morphological and microscopical studies have reported the word “OM” on the beads (Rai et al., 2016). The seeds of E. floribundus Blume were used to extract vegetable oil in Myin Ka village, although it was not produced commercially. The fruits are eaten raw as wild edible fruit in South Asia (Brahma et al., 2013). The beads of Elaeocarpus plants have a significant role in prays. They are associated with the ruling gods of Hinduism, the Beej Mantra, Planet and zodiac signs, and astrological science (Table 6). The different types of Rudraksha beads with associated significance are mentioned below (Figure 9). DISCUSSION Ecosystem services are something that we should not take for granted. These services are the real-life supporting system for the entire ecosystem. Although understanding the value of ecosystem services at the ecosystem and landscape level has provided some insight into the ecosystem and landscape’s ability to provide various ecosystem services, the focus pertaining to individual species’ contribution to ecosystem services is ignored. It should be attainable at the species level if we can evaluate and describe the ecosystem services of different ecosystems. It is familiar that trees are a fundamental and essential part of the ecosystem, despite a significant increase in ecosystem service19 Sharma et al. Table 6: Role of Rudraksha beads associated with the ruling gods, Beej mantra, planet and zodiac sign, and astrological uses S. No. Types of Rudraksha Ruling gods Beej mantra Planet and zodiac sign Benefits 1 One‑faced Shiva Om Hreem Nama, Om Namaha Shivaya Sun/Leo Chronic asthma heart problems, mental anxiety, T.B., paralysis, stroke, eye, problem, bone pain and headache 2 Double‑faced Ardhnarishwar Om Namah, Om Shiva Shaktihi Namah 3 Triple‑faced Agni Om kleem Namha 4 Four‑faced Brahma Om Kleem Namha 5 Five‑faced Kalagni Om Hreem Namah 6 Six ‑faced Kartikeya Om Hreem Hoom Namah 7 Seven‑faced Mahalaxmi Om Hoom Namah 8 Eight‑faced Ganesh Om Hoom Namah, Om Ganesha‑ya Nam 9 Nine‑faced Durga Om Hreem Hoom Namah Astrological uses Enlightens the super consciousness, provides improved concentration and mental structure changes specific to renunciation from worldly affairs. The wearer enjoys all comforts at his command but remains unattached. Blesses the wearer with Moon/ Impotency, renal failure, Cancer, stress, anxiety, lack of ‘UNITY’. It could be Scorpio concentration, depression, related to guru shishya, negative thinking, eye parents‑children, problems, mental chaos, husband‑wife, or friends. hysteria and intestinal Maintaining oneness is its disorder Peculiarity. Mars/Aries, Cures blood defect, The wearer gets free from Cancer, Leo, plague, smallpox, sins or wrongs from his Pisces digestive problems, blood life and returns to Purity. Ideal for those who suffer pressure, weakness, disturbed menstrual cycle, from inferior complexes, spontaneous abortion, and subjective fear, guilt, and depression. ulcer Mercury/ Blood circulation, cough and The wearer gains the power Gemin, brain linked illness, asthma, of creativity when blessed. Virgo hesitate, memory lapse and Increases memory power and respiratory strip intelligence. problems. Jupiter/ Cures diseases related to The wearer gains health and Aries, bone marrow, liver, kidney, peace. It increases memory Scorpio, feet, thigh, ear, diseases of also. Pisces fat, and diabetes. Venus/ Epilepsy and gynecological It saves from the emotional Taurus, problems. trauma of worldly sorrows Gemini, and gives learning, Virgo, Libra, wisdom, and knowledge. Capricorn, It affects understanding Aquarius and appreciation of love, sexual pleasure, music, and personal relationships. Saturn/ Helpful in diseases like It should be worn by those Taurus, colic pain, pain in bone and suffering from miseries of Libra, muscles, paralysis, long body, finance, and mental Capricorn, term disease, Impotency, set‑up. By wearing this, Aquarius worries and hopelessness, the wearer can progress in asthma, pharyngitis, business and service and foot‑related disease, spend his life happily. respiratory and confusion. Rahu Protection from paralytic Removes all obstacles attack, ailments of lung, and brings success in all feet, skin, and eye, hydrocele undertakings. It gives etc. the wearer all kinds of attainments‑Riddhies and Siddhis. After wearing, foes can become a friend, i.e., his/her opponent’s mind or intentions can be changed. Ketu Stomach ache, stress, skin The wearer is blessed with diseases and anxiety. a lot of energy, powers, dynamics, and fearlessness, which are useful for living a successful life. References Hardainiyan et al., 2015 Kumar et al., 2013; Rashmi & Amrinder, 2014 Hule et al., 2011 Hardainiyan et al., 2015 Hule et al., 2011 Rashmi & Amrinder, 2014 Hule et al., 2011; Hardainiyan et al., 2015 Hardainiyan et al., 2015 Hardainiyan et al., 2015 (Contd...) 20 J Phytol • 2023 • Vol 15 Sharma et al. Table 6: (Continued) S. No. Types of Rudraksha Ruling gods Beej mantra 10 Ten‑faced Vishnu Om Hreem Namah 11 Eleven‑faced Hanuman Om Hreem Hoom Namah Gemini 12 Twelve‑faced Sun Om Drom Sarom Ram Namah, Aum Kraum Sraum Raum Namah Sun/Leo, Sagittarius 13 Thirteen‑faced Indra Om Hreem Namah Venus/ Gemini, Capricorn, Aquarius Om Namah Shivaya Gemini 14 15 16 Fourteen‑faced Hanuman Fifteen‑faced Sixteen‑faced Planet and zodiac sign Hormonal inequality in the body, mental insecurity and whooping cough. Pashupati nath Om Pashupataya Namah Rahu Hari and Shankar Ketu Om Namah Shivaya Benefits Astrological uses The wearer may contain the influence of ten incarnations and the ten directions. It works like a shield on one’s body and drives evils away. Body pain, backache, The wearer will be chronic alcoholism and liver blessed with wisdom, diseases. right judgment, powerful vocabulary, adventurous life, fearlessness, and success. Above all, it also protects from accidental death. It also helps in meditation and removes the problems of yogic practices. It is recommended for the Wearer gets the sun’s cure of several illnesses, quality – to rule and to move including heart disease, continuously with brilliant lung disease, skin disease, radiance and strength. Useful for Ministers, eyesight, and hiatus of politicians, administrators, stomach, oesophagus, and bowel problems. people in business, and executives. It removes worry, suspicion, and fear, increases self‑image and motivation. Muscular dystrophies It showers all possible comforts of life one can ever desire. It gives riches and honor and fulfills all the earthly desires and gives eight accomplishments (Siddhis), and the god cupid (Kamadeva) pleases with the man who wears it. It is helpful for meditation and spiritual and materialistic attainments. Brain related and many Most precious divine gem other types of diseases. ‑ Deva Mani. It awakens the sixth sense organ by which the wearer foresees the future happenings. Its wearer never fails in his decisions. Its wearer gets rid of all the calamities, miseries, worries. It protects from ghosts, evil spirits, and black magic. It provides the wearer safety, security and riches, and self‑power. Skin diseases, recurring This represents Lord miscarriage, stillbirth, etc., Pashupati and is especially can be cured. beneficial for economic progress. Its possessor is neither orphaned of wealth nor inflicted by any kinds of skin diseases. Taken as a curative agent It represents victory and the for diseases like leprosy, possessor is never affected by cor‑pulmonale, tuberculosis, heat or cold. It is beneficial lung diseases etc. for the saints living in jungles. The house in which it is kept is free from fire, theft, or robbery. References Dennis, 1993 Hule et al., 2011 Shah et al., 2010 ‑‑ ‑‑ ‑‑ Joshi & Jain, 2014 (Contd...) J Phytol • 2023 • Vol 15 21 Sharma et al. Table 6: (Continued) S. No. Types of Rudraksha Ruling gods Beej mantra Planet and zodiac sign Benefits Excellent for handling conditions like memory lapse, functional body disorders etc. 17 Seventeen‑faced Lord Viswakarma Om Namah Shivay Taurus 18 Eighteen‑faced Bhairav Om Namah Shivay Aquarius 19 Nineteen‑faced Vishu narayan Om Namah Shivay Mercury 20 Twenty‑faced Moon Om Shri Gauri shankarey Namah Moon 21 Twenty‑one faced Ganesh Om garbha Gauriya Namah ‑‑ Astrological uses Regarded the best for peace and comfort in the family. If a man worships Gauri Shankar at his worshipping place, the pain and suffering and other earthly obstacles can be destroyed and the peace and pleasure of family may increase. Prevent ailments like It represents the mother earth. The possessor loss of power, mental harmonisation etc. remains happy and healthy. It is especially beneficial for pregnant women in protecting their foetus. Exterminate the disorders of It represents Lord Narayana. the blood, spinal cord etc. The possessor is bestowed with all worldly pleasures. There is no scarcity in their life. It is taken as a nullifier for Regarded the best for peace the problem of eyesight and and comfort in the family. snake bites. If a man worships Gauri Shankar at his place, the pain and suffering and other earthly obstacles can be destroyed and the peace and pleasure of the family increase. Eradicates gynecological For women wanting to have disorders. children. Her motherhood gains perfection. References Joshi & Jain, 2014 Joshi & Jain, 2014 Joshi & Jain, 2014 Arivu & Muthulingam, 2017 Singh & Nath, 1999 Figure 9: Types of Rudraksha beads with their significance 22 J Phytol • 2023 • Vol 15 Sharma et al. Table 7: Regulatory and supporting services of Rudraksha species with their functions Services Species Roles or functions References Carbon sequestration E. decipiens Hemsl. Ma et al., 2016 Erosion regulation Climate regulation Nutrient cycling Soil formation and retention Biomass production Biodiversity conservation NA E. angustifolius NA NA E. decipiens Hemsl. E. lanceifolius Roxb. Alleviate carbon dioxide in the atmosphere to reduce global climate change. ‑‑ Cyclone resistance ‑‑ ‑‑ ‑‑ Saving plant, animal, microbial and genetic resources for food production (biodiversity conservation), agriculture, and ecosystem functions. related research in the past two decades. There are apparent gaps in the literature about the contribution of forest and tree-based ecosystem services. Of the few studies identified, the majority used a forest distance gradient to establish the effects and edges pollinator success as an only focus (Blanche et al., 2006; Klein, 2009; Sande et al., 2009). While such studies are useful and demonstrate the importance of trees and forests for delivering a single ecosystem service, it is well-known that ecosystem services do not act in isolation (Boreux et al., 2013a, 2013b; Renard et al., 2015). Therefore, studies that examine the interactions of multiple ecosystem services are much needed. This review has primarily focused on the ecosystem services of Elaeocarpus - a remarkable anomalous tree. The trends in scientific research on Elaeocarpus over the years has increased significantly, which is caused mainly by the interested researcher because of its comprehensive benefits to the people (Brahma et al., 2013; Swati et al., 2015). Furthermore, in earlier literature, researchers have worked on phytochemicals (Ogundele & Das, 2019), secondary metabolites (Hong et al., 2019), traditional significances (Hardainiyan et al., 2015), and other Elaeocarpus properties but have not linked it with ecosystem services. We collected all the earlier works on this plant and worked on its linkage with the ecosystem services. Several ecosystem services of Elaeocarpus have been cited, mostly under-provisioning services (30% of the overall provisioning services) and cultural services (less than 10% of cultural services). Easily accessible provisioning services such as forage and fodder, timber, fuelwood, food, and shelter for animals should be evaluated. Few or very few works have been done so far on this plant’s regulatory and supporting services (Table 7). Researchers should stress these services to get a wide-ranging review of the overall services of Elaeocarpus. We strongly recommend that future research efforts attempt to bridge these gaps by moving beyond the ecosystem services of a particular ecosystem, as it were. This level of research is essential further to dissolve the biodiversity conservation and livelihood of the people. CONCLUSION The analysis of Elaeocarpus and its services illustrates that it provides many ecosystem services and plays a vital role in humankind’s welfare. Its importance in ayurvedic science, pharmacological science, phytochemicals, mythology, and J Phytol • 2023 • Vol 15 ‑‑ Alamgir et al., 2014 ‑‑ ‑‑ Wang & Xu, 2013 Barbhuiya et al., 2009 astrology has been reported in several kinds of literature. The miracles behind disease treatment by Rudraksha was recognised even in prehistoric time. The religious value of Rudraksha beads is significant due to their higher affinity with different ruling gods and the beej mantra associated with the bead. This religious association would help in conserving Rudraksha from human exploitation. Despite having some reliable information regarding Rudraksha and its importance, our knowledge is still confined. The results show that provisioning and cultural services provided by Rudraksha constitute only 30% and 10% of provisioning and cultural services that were mentioned in MEA (2005). It can be concluded that researchers should focus on its regulatory and supporting services and this plant’s economic and socio-culture values. It is vital to note that the considerable scale of commercial production of Elaeocarpus may improve the economy and beneficial community crops for local farmers and provide sufficient revenue. In the future, the trees can be suggested as a vital commercial tree species, which yields a fair amount of non-timber forest products every year. Large-scale planting of these trees inside the forest areas provides additional livestock resources to the local, tribal, and indigenous groups. ACKNOWLEDGEMENTS The authors are grateful to the Chairperson, Department of Botany, Panjab University, Chandigarh, for providing all the necessary facilities required for the work. The first author is supported by the University Grants Commission (UGC), Government of India, New Delhi in the form of Junior Research Fellowship [UGC Ref. No.: 453/(CSIR-UGC NET DEC. 2018)]. The second author is supported by the Council of Scientific and Industrial Research, New Delhi, Government of India in the form of Junior Research Fellowship (09/135(0884)/2019-EMR-I). AUTHOR’S CONTRIBUTION ANS and DVR developed the idea. SS and SH designed the methodology, SH collected and analysed the data. SS wrote the first draft of the manuscript. All authors edited the manuscript to its final version. REFERENCES Alamgir, M., Turton, S. M., & Pert, P. L. (2014, 8-12 December). Ecosystem services-based adaptation to climate change: why and how? In Abstracts from A Community on Ecosystem Services Conference, 23 Sharma et al. Washington, DC, USA. Anand, S., & Gupta, S. (2020). Provisioning ecosystem services: Multitier bibliometric analysis and visualisation. Environmental and Sustainability Indicators, 8, 100081. https://doi.org/10.1016/j. indic.2020.100081 Anggraito, Y. U., Nugrahaningsih, W. H., Musafa, F., Mukhtar, K., Rostriana, Y., Safitri, & Habibah, N. A. (2020). Secondary metabolites in Elaeocarpus grandiflorus cell culture in WPM medium with various concentrations of PGR. Journal of Physics: Conference Series, 1524, 012054. https://doi.org/10.1088/1742-6596/1524/1/012054 Arivu, I., & Muthulingam, M. (2017). Detailed study on Elaeocarpus ganitrus (Rudraksha) for its medicinal importance - A review. International Journal of Current Science, 20(1), 16-30. Arshad, S. M., & Kumar, A. (2006). Tissue culture investigation of Elaeocarpus tuberculatus - a highly valued rudraksha. Vegetos-An International Journal of Plant Research, 19(1-2), 111-114. Ayurvedic Pharmacopoeia Committee (2001). Ayurvedic Pharmacopoeia of India. (Part I, Vol. 4) New Delhi, India: Pharmacopoeia Commission For Indian Medicine & Homoeopathy. Barbhuiya, A. R., Sharma, G. D., Arunachalam, A., & Deb, S. (2009). Diversity and conservation of medicinal plants in Barak valley, Northeast India. Indian Journal of Traditional Knowledge, 8(2), 169-175. Bhattacharya, S. K., Debnath, P. K., Pandey, V. B., & Sanyal, A. K. (1975). Pharmacological investigations on Elaeocarpus ganitrus. Planta Medica, 28(6), 174-177. https://doi.org/10.1055/s-0028-1097848 Biswas, S. K., Chowdhury, A., Das, J., Raihan, S. Z., & Muhit M. A. (2012). Phytochemical investigation with assessment of cytotoxicity and antibacterial activities of the ethanol extract of Elaeocarpus serratus. American Journal of Plant Physiology, 7(1), 47-52. https://doi. org/10.3923/ajpp.2012.47.52 Blanche, K. R., Ludwig, J. A., & Cunningham, S. A. (2006). Proximity to rainforest enhances pollination and fruit set in orchards. Journal of Applied Ecology, 43(6), 1182-1187. https://doi.org/10.1111/j.13652664.2006.01230.x Boreux, V., Krishnan, S., Cheppudira, K. G., & Ghazoul, J. (2013a). Agriculture, Ecosystems and Environment Impact of forest fragments on bee visits and fruit set in rain-fed and irrigated coffee agro-forests. Agriculture, Ecosystems and Environment, 172, 42-48. https://doi. org/10.1016/j.agee.2012.05.003 Boreux, V., Kushalappa, C. G., Vaast, P., & Ghazoul, J. (2013b). Interactive effects among ecosystem services and management practices on crop production: Pollination in coffee agroforestry systems. Proceedings of the National Academy of Sciences, 110, 8387-8392. https://doi.org/10.1073/pnas.1210590110 Brahma, S., Narzary, H., & Basumatary, S. (2013). Wild edible fruits of Kokrajhar district of Assam, North-East India. Asian Journal of Plant Science and Research, 3, 95-100. Cánovas, F. M., Cañas, R. A., de la Torre, F. N., Pascual, M. B., CastroRodríguez, V., & Avila, C. (2018). Nitrogen metabolism and biomass production in forest trees. Frontiers in Plant Science, 9, 01449. https:// doi.org/10.3389/fpls.2018.01449 Chaturvedi, B. K. (2004). Shiv Purana. New Delhi, India: Diamond books (P) Ltd. Chauhan, J. M. S., Bisht, P., Panwar, M., & Thakur, A. (2015). In vitro propagation of Elaeocarpus sphaericus. Indian Forester, 141, 173-177. Chen, Y.-H., & Yang, C.-Y. (2020). Ultrasound-assisted extraction of bioactive compounds and antioxidant capacity for the valorisation of Elaeocarpus serratus L. Leaves. Processes, 8(10), 1218. https:// doi.org/10.3390/pr8101218 Chinonso, M., Krishnan, P., Sim, D. S., Lim, S., Low, Y., Chong, K., & Lim, K. (2018). Unusual phenethylamine-containing alkaloids from Elaeocarpus tectorius. Phytochemistry, 146, 75-81. https://doi. org/10.1016/j.phytochem.2017.12.003 Costanza, R., d’Arge, R., de Groot, R., Farber, S., Grasso, M., Hannon, B., Limburg, K., Naeem, S., O’neill, R. V., Paruelo, J., Raskin, R. G., Sutton, P., & van den Belt, M. (1997). The value of the world’s ecosystem services and natural capital. Nature, 387, 253-260. https:// doi.org/10.1038/387253a0 Dao, N. T., Jang, Y., Kim, M., Nguyen, H. H., Pham, D. Q., Dang, Q. L., Nguyen, M. V., Yun, B.-S., Pham, Q. M., Kim, J.-C., & Hoang, V. D. (2019). Chemical constituents and anti-influenza viral activity of the leaves of vietnamese plant Elaeocarpus tonkinensis. Records of Natural Products, 13(1), 71-80. https://doi.org/10.25135/ rnp.76.18.04.266 24 Das, N. (2014). The Effect of Seed Sources Variation and Presowing Treatments on the Seed Germination of Acacia catechu and Elaeocarpus floribundus species in Bangladesh. International Journal of Forestry Research, 2014, 984194. https://doi. org/10.1155/2014/984194 Dennis, T. J. (1993). Rudraksha-not just a spiritual symbol but also a medicinal remedy. Sachitra Ayurved, 46(2), 142. Dubey, G. A. (2018). Effect of Extract of Rudraksha (Elaeocarpus ganitrus) on Parkinson’ S Disease and Depression. World Journal of Pharmaceutical Research, 7(12), 937-947. Elkhateeb, A., Subeki, S., Takahashi, K., Matsuura, H., Yamasaki, M., Yamato, O., Maede, Y., Katakura, K., Yoshihara, T., & Nabeta, K. (2005). Anti-babesial ellagic acid rhamnosides from the bark of Elaeocarpus parvifolius. Phytochemistry, 66(21), 2577-2580. https:// doi.org/10.1016/j.phytochem.2005.08.020 Ezeoke, M. C., Krishnan, P., Sim, D. S.-Y., Lim, S.-H., Low, Y.-Y., Chong, K. W., & Lim, K.-H. (2018). Unusual phenethylamine-containing alkaloids from Elaeocarpus tectorius. Phytochemistry, 146, 75-81. https://doi. org/10.1016/j.phytochem.2017.12.003 Fang, X., Phoebe, C. H., Pezzuto, J. M., Fong, H. H. S., Farnsworth, N. R., Yellin, B., & Hecht, S. M. (1984). Plant anticancer agents, XXXIV. Cucurbitacins from Elaeocarpus dolichostylus. Journal of Natural Products, 47(6), 988-993. https://doi.org/10.1021/np50036a013 Gagan, S., Richa, S., Avninder, M., Sandeep, R., & Vivek, P. (2010). Anxiolytic effects of Elaeocarpus sphaericus fruits on the elevated plus-maze model of anxiety in mice. International Journal of PharmTech Research, 2(3), 1781-1786. Garg, K., Goswami, K., & Khurana, G. (2013). A pharmacognostical review on Elaeocarpus sphaericus. International Journal of Pharmacy and Pharmaceutical Sciences, 5(1), 3-8. Habibah, N. A., Nugrahaningsih, W. H., Musafa, F., Rostriana, Y., Mukhtar, K., Wijawati, N., & Anggraito, Y. U. (2020). Bioactive compounds from callus culture of Elaeocarpus grandiflorus. Journal of Physics: Conference Series, 1567, 032055. https://doi. org/10.1088/1742-6596/1567/3/032055 Hardainiyan, S., Nandy, B. C., & Kumar, K. (2015). Elaeocarpus ganitrus (Rudraksha): A reservoir plant with their pharmacological effects. International Journal of Pharmaceutical Sciences Review and Research, 34(1), 55-64. Hong, W., Zhang, Y., Yang, J., Xia, M.-Y., Luo, J.-F., Li, X.-N., Wang, Y.-H., & Wang, J.-S. (2019). Alkaloids from the Branches and Leaves of Elaeocarpus angustifolius. Journal of National Products, 82(12), 3221-3226. https://doi.org/10.1021/acs.jnatprod.8b01027 Hule, A. K., & Juvekar, A. R. (2010). Evaluation of immunomodulatory effects of methanol extract of Elaeocarpus ganitrus seeds. Journal of Natural Remedies, 10(1), 1-10. Hule, A. K., Shah, A. S., Gambhire, M. N., & Juvekar, A. R. (2011). An evaluation of the antidiabetic effects of Elaeocarpus ganitrus in experimental animals. Indian Journal of Pharmacology, 43(1), 56-59. https://doi.org/10.4103/0253-7613.75671 Indriatie, R., Mudaliana, S., Hapsari, F. R., & Masruri, M. (2020). Phytochemistry and Antibacterial Activity Evaluation of Genitri (Elaeocarpus ganitrus). IOP Conference Series: Materials Science and Engineering, 833, 012016. https://doi.org/10.1088/1757899X/833/1/012016 Iralu, V., & Upadhaya, K. (2018a). Seed dormancy, germination and seedling characteristics of Elaeocarpus prunifolius Wall. ex Müll. Berol.: a threatened tree species of north-eastern India. New Zealand Journal of Forestry Science, 48, 16. https://doi.org/10.1186/s40490018-0121-y Jawla, S., Sharma, R., & Rai, D. V. (2018). Essential and Trace Elements Analysis of Elaeocarpus ganitrus Fruit by Wavelength Dispersive X-Ray Fluorescence Spectrometer and its Impact on Health. Middle-East Journal of Scientific Research, 26(6), 621-629. Jayasinghe, L., Amarasinghe, N. R., Arundathie, B. G. S., Rupasinghe, G. K., Jayatilake, N. H. A. N., & Fujimoto, Y. (2012). Antioxidant flavonol glycosides from Elaeocarpus serratus and Filicium decipiens. Natural Product Research, 26(8), 717-721. https://doi.org/10.1080/1478641 9.2010.551514 Joshi, S. C., & Jain, P. K. (2014). A review on ethnomedicinal and traditional uses of Elaeocarpus ganitrus Roxb. (Rudraksha). International Journal of Pharmacy and Biological Sciences, 5(1), 495-511. Joshi, S., Gupta, P., Kumar, N., Rai, N., Gautam, P., & Thapliyal, A. (2012). A Comprehensive Report on Therapeutic Potential of Elaeocarpus J Phytol • 2023 • Vol 15 Sharma et al. ganitrus Roxb. Environment Conservation Journal, 13(3), 147-150. Kakalij, R. M., Alla, C. P., Kshirsagar, R. P., Kumar, B. H., Mutha S. S., & Diwan, P. V. (2014). Ameliorative effect of Elaeocarpus ganitrus on gentamicininduced nephrotoxicity in rats. Indian Journal of Pharmacology, 46(3), 298-302. https://doi.org/10.4103/0253-7613.132163 Katavic, P. L., Venables, D. A., Rali, T., & Carroll, A. R. (2007). Indolizidine Alkaloids with Î ́- Opioid Receptor Binding Affinity from the Leaves of Elaeocarpus fuscoides. Journal of Natural Products, 70(5), 872-875. https://doi.org/10.1021/np060607e Katavic, P. L., Venables, D. A., Forster, P. I., Guymer, G., & Carroll, A. R. (2006). Grandisines C-G, indolizidine alkaloids from the Australian rainforest tree Elaeocarpus grandis. Journal of Natural Products, 69(9), 1295-1299. https://doi.org/10.1021/np060179c Khan, M. L., Bhuyan, P., & Tripathi, R. S. (2004). Conservation status of rudraksh in tropical wet evergreen forests of Arunachal Pradesh. Current Science, 86, 646-650. Klein, A.-M. (2009). Forest Ecology and Management Nearby rainforest promotes coffee pollination by increasing spatio-temporal stability in bee species richness. Forest Ecology and Management, 258(9), 1838-1845. https://doi.org/10.1016/j.foreco.2009.05.005 Kremer, P., Hamstead, Z. A., & McPhearson, T. (2016). The value of urban ecosystem services in New York City: A spatially explicit multicriteria analysis of landscape scale valuation scenarios. Environmental Science & Policy, 62, 57-68. https://doi. org/10.1016/j.envsci.2016.04.012 Kumar, N., Dubey, M., & Agarwal, V. (2013). Rudraksha: A Review on Mythological, Spiritual and Medicinal Importance. Global Journal of Research on Medicinal Plants & Indigenous Medicine, 2(1), 65-72. Kumar, T. S., Shanmugam, S., Palvannan, T., & Kumar, V. M. B. (2008). Evaluation of antioxidant properties of Elaeocarpus ganitrus roxb. leaves. Iranian Journal of Pharmaceutical Research, 7(3), 211-215. https://doi.org/10.22037/ijpr.2010.767 Kumari, B., Srivastava, A., & Tiwari, S. K. (2018). Elaeocarpus spp.: A threatened power generating plant, its geographical distribution, propagation through in vivo condition and its medicinal aspects. International Journal of Fauna and Biological Studies, 5(2), 27-31. Liyanaarachchi, G. D., Samarasekera, J. K. R. R., Mahanama, K. R. R., & Hemalal, K. D. P. (2018). Tyrosinase, elastase, hyaluronidase, inhibitory and antioxidant activity of Sri Lankan medicinal plants for novel cosmeceuticals. Industrial Crops and Products, 111, 597-605. https:// doi.org/10.1016/j.indcrop.2017.11.019 Ma, W., Li, Z., Ding, K., Huang, B., Nie, X., Lu, Y., & Xiao, H. (2016). Soil erosion, organic carbon and nitrogen dynamics in planted forests: A case study in a hilly catchment of Hunan Province, China. Soil and Tillage Research, 155, 69-77. https://doi.org/10.1016/j. still.2015.07.007 Manoharan, A. L., Thamburaj, S., Muniyandi, K., Jagadeesan, G., Sathyanarayanan, S., Nataraj, G., & Thangaraj, P. (2019). Antioxidant and antimicrobial investigations of Elaeocarpus tectorius (Lour.) Poir. fruits against urinary tract infection pathogens. Biocatalysis and Agricultural Biotechnology, 20, 101260. https://doi.org/10.1016/j. bcab.2019.101260 MEA. (2005). Ecosystems and human well-being: the assessment series. Millennium Ecosystem Assessment. Washington, DC: Island Press. MEA. (2005). Millennium ecosystem assessment: Ecosystems and human wellbeing (Vol. 5). Washington, DC: Island press. Menon, S., Pontius, R. G., Rose, J., Khan, M. L., & Bawa, K. S. (2001). Identifying conservation-priority areas in the tropics: A land-use change modeling approach. Conservation Biology, 15(2), 501-512. https://doi.org/10.1046/j.1523-1739.2001.015002501.x Miller, R. E., Stewart, M., Capon, R. J., & Woodrow, I. E. (2006). A galloylated cyanogenic glycoside from the Australian endemic rainforest tree Elaeocarpus sericopetalus (Elaeocarpaceae). Phytochemistry, 67(13), 1365-1371. https://doi.org/10.1016/j.phytochem.2006.03.022 Mundaragi, A., Thangadurai, D., Sangeetha, J., & Bhat, S. (2019). Phenolic composition, volatile constituents and antioxidant potential of wild edible fruit Elaeocarpus tectorius (Lour.) Poir. (Elaeocarpaceae). Farmacia, 67(2), 311-317. https://doi.org/10.31925/farmacia.2019.2.16 Nain, J., Garg, K., & Dhahiya, S. (2012). Analgesic and anti-inflammatory activity of Elaeocarpus sphaericus leaf extract. International Journal of Pharmacy and Pharmaceutical Sciences, 4(S1), 379-381. Nair, P. K. R., Nair, V. D., Kumar, B. M., & Showalter, J. M. (2010). Carbon sequestration in agroforestry systems. Advances in Agronomy, 108, 237-307. https://doi.org/10.1016/S0065-2113(10)08005-3 J Phytol • 2023 • Vol 15 Nga, D. T., Duong, P. Q., Le Dang, Q., Tung, N. H., & Hoang, V. D. (2018). Two new oleanane-type saponins from Elaeocarpus hainanensis Oliv. growing in Vietnam. Phytochemistry Letters, 27, 174-177. https://doi. org/10.1016/j.phytol.2018.07.003 Ogundele, A. V., & Das, A. M. (2019). Chemical constituents from the leaves of Elaeocarpus floribundus. Natural Product Research, 35(3), 517-520. https://doi.org/10.1080/14786419.2019.1637870 Okselni, T., Santoni, A., Dharma, A., & Efdi, M. (2018). Determination of antioxidant activity, total phenolic content, and total flavonoid content of roots, stem bark, and leaves of Elaeocarpus mastersii king. Rasayan Journal of Chemistry, 11(3), 1211-1216. https://doi.org/10.31788/ RJC.2018.1133058 Pandey, B. P. (2001). Taxonomy of angiosperms. New Delhi, India: S. Chand Publishing. Pant, M., Lal, A., Bisht, P., & Rani, A. (2013). Elaeocarpus sphaericus: A tree with curative powers: An overview. Research Journal of Medicinal Plants, 7, 23-31. https://doi.org/10.3923/rjmp.2013.23.31 Piao, M. J., Kang, K. A., Zhang, R., Ko, D. O., Wang, Z. H., Lee, K. H., Chang, W. Y., Chae, S., Jee, Y., Shin, T., Park, J. W., Lee, N. H., & Hyun, J. W. (2009). Antioxidant properties of 1,2,3,4,6-penta-O-galloyl-β-dglucose from Elaeocarpus sylvestris var. ellipticus. Food Chemistry, 115(2), 412-418. https://doi.org/10.1016/j.foodchem.2008.12.020 Prajapati, S., Kumar, R., & Prajapati, S. K. (2016). Electronic and bioelectric properties of Elaeocarpus ganitrus. Der Pharmacia Lettre, 8(8), 45-49. Rai, D. V., Jawla, S., & Bajpai, S. (2016). The Study of Rudraksha Bead showing a Symbol of OM. Dev Sanskriti Interdisciplinary International Journal, 8, 8-13. https://doi.org/10.36018/dsiij.v8i0.82 Rai, D. V., Sharma, S., & Rastogi, M. (2018). Scientific research on Elaeocarpus ganitrus (Rudraksha) for its medicinal importance. Panjab University Research Journal (Science), 68, 1-6. Rajbonshi, B., & Islam, M. (2018). Vegetation Characteristics along Disturbance Gradient of Jeypore Reserve Forest of North East India. World Wide Journal of Multidisciplinary Research and Development, 4(3), 258-263. Ramakrishnan, P. S., & Toky, O. P. (1981). Soil nutrient status of hill agroecosystems and recovery pattern after slash and burn agriculture (Jhum) in north-eastern India. Plant and Soil, 60, 41-64. https://doi. org/10.1007/BF02377111 Rashmi, P., & Amrinder, K. (2014). Mythological and Spiritual review on Elaeocarpus ganitrus and assessment of scientific facts for its medicinal uses. International Journal of Research, 1(5), 334-353. Renard, D., Rhemtulla, J. M., & Bennett, E. M. (2015). Historical dynamics in ecosystem service bundles. Proceedings of National Academic of Sciences, 112(43), 13411-13416. https://doi.org/10.1073/ pnas.1502565112 Roy, S., Islam, M., & Hadiuzzaman, S. (1998). Micropropagation of Elaeocarpus robustus roxb. Plant Cell Reports, 17, 810-813. https:// doi.org/10.1007/s002990050488 Sakat, S. S., Wankhede, S. S., Juvekar, A. R., Mali, V. R., & Bodhankar, S. L. (2009). Antihypertensive effect of aqueous extract of Elaeocarpus ganitrus Roxb. seeds in renal artery occluded hypertensive rats. International Journal of PharmTech Research, 1(3), 779-782. Sande, S. O., Crewe, R. M., Raina, S. K., Nicolson, S. W., & Gordon, I. (2009). Proximity to a forest leads to higher honey yield: Another reason to conserve. Biological Conservation, 142(11), 2703-2709. https://doi. org/10.1016/j.biocon.2009.06.023 Shah, G., Shiri, R., Kumar, R., Singh, H., & Nagpal, N. (2010). Pharmacognostical standardisation of fruits of Elaeocarpus sphaericus (Gaertn). K. Schum. Pharmacognosy Journal, 2(13), 565-571. https://doi.org/10.1016/S0975-3575(10)80061-6 Sharma, A., Joshi, S., & Kumar, N. (2015). Antioxidant and antibacterial properties of leaves of Elaeocarpus sphaericus Roxb. and Pinus wallichiana from Uttarakhand region of India. International Journal of Green Pharmacy, 9(4), 246-251. https://doi.org/10.22377/ijgp.v9i4.570 Sharma, S., Rawat, B., Rai, D. V., & Rastogi, M. (2018). Bioelectrical and Mineralogical Properties of Elaeocarpus ganitrus (Rudraksha) Bead. Biochemical and Cellular Archives, 18(2), 1699-1703. Singh, A., Münch, G., Reddell, P., Radzieta, M., Jensen, S. O., & Raju, R. (2018). A new anti-inflammatory phenolic monosaccharide from the Australian native rainforest plant Elaeocarpus eumundi. Natural Product Communications, 13(6), 731-733. https://doi. org/10.1177/1934578x1801300619 Singh, B., Chopra, A., Ishar, M. P. S., Sharma, A., & Raj, T. (2010). Pharmacognostic and antifungal investigations of Elaeocarpus 25 Sharma et al. ganitrus (Rudraksha). Indian Journal of Pharmaceutical Sciences, 72(2), 261-265. Singh, B., Ishar, M. P. S., Sharma, A., Arora, R., & Arora, S. (2015). Phytochemical and biological aspects of Rudraksha, the stony endocarp of Elaeocarpus ganitrus (Roxb.): a review. Israel Journal of Plant Sciences, 62(4), 265-276. https://doi.org/10.1080/0792997 8.2015.1020659 Singh, B., Sharma, V., Ishar, M. P. S., & Sharma, A. (2013). Bioactivity Guided Isolation of Quercetin as Anxiolytic Compound from Elaeocarpus ganitrus Beads. The Natural Products Journal, 3(3), 224-229. https:// doi.org/10.2174/22103155113039990010 Singh, R. K., & Nath, G. (1999). Antimicrobial activity of Elaeocarpus sphaericus. Phytotherapy Research, 13(5), 448-450. https:// doi.org/10.1002/(SICI)1099-1573(199908/09)13:5%3C448:AIDPTR480%3E3.0.CO;2-6 Singh, R. K., Acharya, S. B., & Bhattacharya, S. K. (2000a). Pharmacological activity of Elaeocarpus sphaericus. Phytotherapy Research, 14(1), 36-39. https://doi.org/10.1002/(SICI)1099-1573(200002)14:1%3C36:AIDPTR541%3E3.0.CO;2-J Singh, R. K., Bhattacharya, S. K., & Acharya, S. B. (2000b). Studies on extracts of Elaeocarpus sphaericus fruits on in vitro rat mast cells. Phytomedicine, 7(3), 205-207. https://doi.org/10.1016/S09447113(00)80005-7 Siva, S. M., Amutha Priya, T., Balasubramanian, P., Manimekalai, V., & Ravichandran, P. (2015). In vitro regeneration of an endangered tree - Elaeocarpus blascoi Weibel. (Rudraksha) from Southern Western Ghats, Tamil Nadu, India. European Journal of Biotechnology and Bioscience, 3, 62-66. 26 Swami, G., Nagpal, N., Rahar, S., Singh, P., Singla, S., Porwal, A., & Kapoor, R. (2010). Elaeocarpus sphaericus: medical and scientific facts. Der Pharmacia Lettre, 2(1), 297-306. Swati, H., Bankim, C. N., & Krishan, K. (2015). Elaeocarpus ganitrus (Rudraksha): A Reservoir Plant with their Pharmacological Effects. International Journal Pharmaceutical Sciences Review and Research, 34(1), 55-64. Tripathi, Y. C., Shukla, P., & Tewari, D. (2015). Phytochemical evaluation and antihyperglycemic effects of Elaeocarpus ganitrus roxb (Rudraksha) in streptozotocin induced diabetes. International Journal of Pharmacy and Pharmaceutical Sciences, 7(1), 280-283. Tripathy, S., Mida, A., & Swain, S. R. (2016). Phytochemical Screening and Thin Layer Chromatographic Studies of Elaeocarpus ganitrus Seed the Magical Electromagnetic Bead (Rudraksha). International Journal of Pharmacy and Biological Sciences, 6(3), 16-24. https://doi. org/10.21276/ijpbs.2016.6.3.3 Vuong, Q. V., Pham, H. N. T., Vu, H. T., Dang, T. T., Ngo, T. V., & Chalmers, A. C. (2018). Fruit characteristics, phytochemical and antioxidant properties of blueberry ash (Elaeocarpus reticulatus). Heliyon, 4, e00834. https:// doi.org/10.1016/j.heliyon.2018.e00834 Wang, Z., & Xu, W. (2013). Decomposition-rate estimation of leaf litter in karst forests in China based on a mathematical model. Plant and Soil, 367, 563-577. Yamamoto, R., Osima, Y., & Goma, T. (1932). On the Organic Acids in the Fruits of Ceylon Olive. Bulletin of the Agricultural Chemical Society of Japan, 8(10-12), 141-142. https://doi.org/10.1080/03758397.193 2.10857011 J Phytol • 2023 • Vol 15 Sharma et al. SUPPLEMENTARY TABLE Table S1: Geographical distribution of Elaeocarpus L. with IUCN status (NE- not evaluated, DD- data deficient, LC- least concern, NT- near threatened, VU- vulnerable, EN- endangered, CR- critically endangered). Source: Global Biodiversity Information Facility (GBIF) S. no. Species Distribution range IUCN Status 1 Elaeocarpus carolinensis NE 2 Elaeocarpus bifidus Elaeocarpus montanus Elaeocarpus rotundifolius Australia, United States of America, Micronesia United States of America Srilanka 3 4 S. no. Species Distribution range IUCN Status Reference 275 Elaeocarpus adenopus Indonesia NE GBIF NE 276 Indonesia NE NE 277 LC LC 278 Papua New Guinea, Indonesia Malaysia, Brunei Darussalam, Indonesia Knuth, 1941 GBIF New Caledonia, Madagascar Elaeocarpus kraengensis Elaeocarpus oriomensis Elaeocarpus kostermansii 5 Elaeocarpus clementis Malaysia, Indonesia, Brunei Darussalam LC 279 Elaeocarpus dentatus 6 Elaeocarpus habbemensis Elaeocarpus monocera Cav. Elaeocarpus gymnogynus Elaeocarpus chrysophyllus Elaeocarpus gustaviifolius Elaeocarpus christophersenii Elaeocarpus gummatus Elaeocarpus mollis Elaeocarpus guillaumii Elaeocarpus miriensis Elaeocarpus chionanthus Elaeocarpus grumosus Papua New Guinea, Indonesia Philippines NE 280 NE 281 Elaeocarpus kontumensis Elaeocarpus steupii China NE 282 Malaysia, Indonesia, Brunei Darussalam Malaysia, Brunei Darussalam Samoa, Fiji, Wallis and Futuna New Caledonia, Madagascar Philippines NE 283 NE 284 NE 285 LC 286 EN 287 New Caledonia NT 288 Malaysia, Brunei Darussalam Fiji, Cook Islands, Malaysia Vietnam, Lao People’s Democratic Republic ‑‑ VU 289 NE 290 NE 291 NE 292 Fiji NE 293 ‑‑ DD 294 Malaysia CR 295 Philippines CR 296 Fiji, Cook Islands, United States of America, Vanuatu Philippines NE 297 NE 298 ‑‑ DD 299 Malaysia, Brunei Darussalam, Indonesia, Thailand, Singapore, Vietnam, Myanmar, Cambodia, Bangladesh NE 300 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 Elaeocarpus miquelii Elaeocarpus roseiflorus Elaeocarpus mingendensis Elaeocarpus chewii Elaeocarpus mindoroensis Elaeocarpus chelonimorphus Elaeocarpus mindanaensis Elaeocarpus cheirophorus Elaeocarpus griffithii Elaeocarpus densiflorus Elaeocarpus degenerianus Elaeocarpus stellaris Elaeocarpus kjellbergii Elaeocarpus octantherus Elaeocarpus kirtonii Elaeocarpus stapfianus Elaeocarpus acrantherus Elaeocarpus sphaerocarpus Elaeocarpus acmosepalus NE New Zealand, Brazil, Srilanka, Australia, Indonesia, Puerto Rico Vietnam NE Brongniart & Gris, 1861 GBIF NE GBIF Indonesia NE Papua New Guinea, Indonesia Fiji NE Coode, 1995 Knuth, 1941 GBIF Australia NE Indonesia NE Philippines, Malaysia NE Australia, Papua New Guinea, Indonesia, India Vietnam, India, Thailand NE Knuth, 1941 Coode, 1996 Guillaumin, 1920 GBIF NE GBIF NE Malaysia, Brunei Darussalam China NE GBIF NE GBIF Malaysia VU GBIF Elaeocarpus decandrus Elaeocarpus kinabaluensis Elaeocarpus occidentalis Elaeocarpus acmocarpus Elaeocarpus de‑bruynii Elaeocarpus kerstingianus China, Lao’s People Democratic Republic Malaysia NE GBIF NE Knuth, 1940 Madagascar CR Malaysia, Brunei Darussalam, Indonesia Papua New Guinea, Indonesia Micronesia NE Elaeocarpus dasycarpus Elaeocarpus kasiensis Elaeocarpus kaniensis Papua New Guinea, Indonesia, Chinese Taipei Fiji, Cook Islands Papua New Guinea, Indonesia NE Coode, 1998 GBIF NE GBIF LC GBIF NE GBIF NE GBIF (Contd...) J Phytol • 2023 • Vol 15 27 Sharma et al. Table S1: (Continued) S. no. Species Distribution range IUCN Status 27 Elaeocarpus milnei Fiji NE 28 Elaeocarpus kalabitii Elaeocarpus millarii Elaeocarpus rivularis Malaysia 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 S. no. Species Distribution range IUCN Status Reference 301 Elaeocarpus speciosus New Caledonia LC NE 302 ‑‑ NE Papua New Guinea NE 303 Elaeocarpus darlacensis Elaeocarpus kambi Brongniart & Gris, 1861 GBIF Fiji NE Gibbs, 1909 ‑‑ NE 304 Elaeocarpus spathulatus New Caledonia NT Elaeocarpus celebicus Elaeocarpus grandifolius Elaeocarpus celebesianus Elaeocarpus castaneifolius Elaeocarpus grijsii Elaeocarpus chakrosila Elaeocarpus gratissimus Elaeocarpus chackroula Elaeocarpus ceylanicus Elaeocarpus yentanensis Elaeocarpus yateensis Elaeocarpus cassinoides Elaeocarpus grahamii Elaeocarpus xanthodactylus Elaeocarpus graeffei Elaeocarpus womersleyi Indonesia NE 305 ‑‑ NE Indonesia, Myanmar NE 306 Vanuatu NE GBIF Indonesia NE 307 Malaysia NE GBIF New Caledonia CR 308 New Caledonia VU ‑‑ ‑‑ 309 ‑‑ 310 Malaysia, Brunei Darussalam, Indonesia Australia NE India NE Guillaumin, 1920 Coode, 1998 GBIF ‑‑ ‑‑ 311 Elaeocarpus dallmannensis Elaeocarpus kajewskii Elaeocarpus sordidus Elaeocarpus kaalensis Elaeocarpus jugahanus Elaeocarpus johnsonii Elaeocarpus simplex Brongniart & Gris, 1861 GBIF ‑‑ NE GBIF ‑‑ ‑‑ 312 Indonesia VU GBIF India, Srilanka EN 313 Elaeocarpus simaluensis Elaeocarpus joga NE GBIF ‑‑ ‑‑ 314 NE GBIF New Caledonia LC 315 India, Bhutan, China NE GBIF Fiji, Tonga NE 316 Philippines NT GBIF Australia NE 317 Elaeocarpus oblongilimbus Elaeocarpus sikkimensis Elaeocarpus curranii Elaeocarpus cupreus Northern Mariana Island, Palau, Guam, ‑‑ NE GBIF Fiji, Cook Islands NE 318 Elaeocarpus jacobsii Malaysia, Brunei Darussalam, Indonesia Malaysia, Indonesia NE Fiji, Tonga, Samoa NE 319 Papua New Guinea NE Papua New Guinea, Indonesia NE 320 Elaeocarpus cuneifolius Elaeocarpus cumingii Coode, 1996 GBIF LC GBIF Elaeocarpus carolinae Elaeocarpus gordonii Elaeocarpus merrittii Australia NE 321 Philippines, Malaysia, Indonesia, Singapore, Brunei Darussalam, Vietnam, Thailand Indonesia CR GBIF New Caledonia EN 322 NE GBIF Philippines NE 323 Elaeocarpus williamsianus Elaeocarpus capuronii Elaeocarpus whartonensis Elaeocarpus melochioides Elaeocarpus candollei Elaeocarpus glandulifer Elaeocarpus wallichii Australia NE 324 Madagascar LC 325 Papua New Guinea EN 326 Fiji, Cook Islands NE 327 Philippines NE 328 India, Srilanka VU 329 Myanmar NE 330 Elaeocarpus integripetalus Elaeocarpus nouhuysii Elaeocarpus culminicola Elaeocarpus nooteboomii Elaeocarpus nodosus Elaeocarpus cruciatus Elaeocarpus cristatus Elaeocarpus seringii Elaeocarpus crenulatus Elaeocarpus sericopetalus Indonesia, Papua New Guinea Papua New Guinea, Australia, Indonesia, Philippines, Malaysia Indonesia, Malaysia LC GBIF NE New Caledonia VU Coode, 1998 GBIF Malaysia LC GBIF Malaysia, Brunei Darussalam, Indonesia New Caledonia NE Coode, 1998 GBIF Papua New Guinea, Indonesia Australia NE LC NE Knuth, 1940 GBIF (Contd...) 28 J Phytol • 2023 • Vol 15 Sharma et al. Table S1: (Continued) S. no. Species Distribution range IUCN Status 57 Elaeocarpus reticosus Elaeocarpus vitiensis Elaeocarpus retakensis Elaeocarpus merrillii Elaeocarpus burkii Elaeocarpus renae Elaeocarpus burebidensis Elaeocarpus bullatus Elaeocarpus medioglaber Elaeocarpus buderi Elaeocarpus glaberrimus Malaysia LC Fiji Brunei Darussalam Elaeocarpus recurvatus Elaeocarpus verticillatus Elaeocarpus brunnescens Elaeocarpus mastersii 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 Elaeocarpus rarotongensis 73 Elaeocarpus marginatus Elaeocarpus verruculosus Elaeocarpus brigittae Elaeocarpus marafunganus Elaeocarpus verheijenii Elaeocarpus maquilingensis Elaeocarpus venustus Elaeocarpus verrucosus Elaeocarpus gillespieanus Elaeocarpus mandiae Elaeocarpus venosus Elaeocarpus gigantifolius Elaeocarpus mamasii 74 75 76 77 78 79 80 81 82 83 84 85 Species Distribution range IUCN Status Reference 331 Elaeocarpus insignis Malaysia, Indonesia NE GBIF NE 332 Elaeocarpus crassus Indonesia NE NE 333 Elaeocarpus inopportunus Elaeocarpus crassinervatus Elaeocarpus inopinatus Elaeocarpus indochinensis Elaeocarpus nitentifolius Elaeocarpus coumbouiensis Elaeocarpus ilocanus Elaeocarpus costatus Elaeocarpus seramicus Indonesia NE Malaysia NE Malaysia VU Vietnam, Lao’s People Democratic Republic China, Fiji, Vietnam NE NE Coode, 2001 Coode, 1996 Knuth, 1940 Coode, 1995 Coode, 1998 GBIF New Caledonia VU GBIF Philippines DD GBIF Australia NE GBIF Indonesia NE Elaeocarpus hypadenus Elaeocarpus sepikanus Elaeocarpus corsonianus Elaeocarpus hygrophilus ‑‑ CR Coode, 2001; Knuth, 1940 Pai, 1938 Indonesia, Papua New Guinea ‑‑ NE GBIF NE GBIF Vietnam, India, Thailand, United States of America NE GBIF Philippines S. no. 334 Indonesia NE 335 Malaysia, Indonesia NE 336 Philippines CR 337 New Caledonia LC 338 Vietnam NE 339 Papua New Guinea EN 340 Malaysia NE 341 India VU 342 Philippines VU 343 Philippines, Malaysia NE 344 Malaysia, Indonesia, Brunei Darussalam, Singapore Cook Islands, French Polynesia, Australia, United States of America Malaysia, Indonesia, Brunei Darussalam Philippines LC 345 NE 346 Elaeocarpus sedentarius Australia, Indonesia NE GBIF NE 347 Elaeocarpus corneri Malaysia VU GBIF VU 348 Indonesia NE GBIF Indonesia VU 349 Srilanka EN Coode, 1994 Papua New Guinea LC 350 Philippines EN Indonesia NE 351 Malaysia LC Philippines NE 352 Elaeocarpus sebastianii Elaeocarpus coriaceus Elaeocarpus nervosus Elaeocarpus cordifolius Elaeocarpus howii ‑‑ NE Coode, 1994 GBIF India VU 353 Elaeocarpus schoddei Elaeocarpus corallococcus Elaeocarpus hosei Papua New Guinea LC GBIF Madagascar EN GBIF Malaysia NE GBIF Elaeocarpus schmutzii Elaeocarpus schlechterianus Elaeocarpus coorangooloo Elaeocarpus schlechteri Indonesia NE Papua New Guinea, Indonesia Australia NE Coode, 2001 GBIF NE GBIF ‑‑ NE GBIF ‑‑ 354 Fiji, Cook Islands NE 355 Philippines CR 356 Philippines EN 357 Philippines EN 358 Indonesia LC 359 (Contd...) J Phytol • 2023 • Vol 15 29 Sharma et al. Table S1: (Continued) S. no. Species Distribution range IUCN Status 86 Elaeocarpus varunua NE 87 Elaeocarpus branderhorstii Elaeocarpus mallotoides Elaeocarpus bracteatus Elaeocarpus geminiflorus Elaeocarpus quadratus Elaeocarpus variabilis Elaeocarpus gaussenii Elaeocarpus pyriformis Elaeocarpus validus Elaeocarpus gardneri Elaeocarpus pycnanthus Elaeocarpus brachypodus Elaeocarpus ganitrus Roxb. China, India, Bangladesh, Myanmar, Pakistan, Bhutan, Nepal, Thailand Papua New Guinea, Indonesia ‑‑ 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 Elaeocarpus purus Elaeocarpus vaccinioides Elaeocarpus gammillii Elaeocarpus braceanus Elaeocarpus gambutanus Elaeocarpus undulatus Elaeocarpus pullenii Elaeocarpus ulianus Elaeocarpus gagnepainii Elaeocarpus macrophyllus Elaeocarpus macrocerus Species Distribution range IUCN Status Reference 360 Elaeocarpus hookerianus New Zealand NE GBIF NE 361 Papua New Guinea LC GBIF DD 362 Elaeocarpus neobritannicus Elaeocarpus sayeri LC GBIF Myanmar, Thailand, India New Caledonia NE 363 Elaeocarpus coodei Papua New Guinea, Indonesia Solomon Islands NE GBIF LC 364 Myanmar NE 365 India NE 366 India CR 367 Fiji NE 368 Malaysia VU 369 Elaeocarpus homalioides Elaeocarpus conoideus Elaeocarpus holosericeus Elaeocarpus sarcanthus Elaeocarpus holopetalus Elaeocarpus samari Papua New Guinea NE 370 Papua New Guinea, Indonesia New Caledonia NE 371 NT 372 Indonesia, India, United States of America, Bangladesh, Brazil, China, Nepal Indonesia NE 373 NE 374 New Caledonia, Papua New Guinea Philippines LC 375 CR 376 NE 377 NE 378 Papua New Guinea, Indonesia, Solomon Islands Papua New Guinea, Indonesia Samoa, American Samoa NE 379 LC 380 NE 381 Vietnam, Malaysia, Indonesia Indonesia, Malaysia NE 382 NE 383 Vietnam, Malaysia, Indonesia, Thailand, Brunei Darussalam, Singapore LC 384 China, India, Myanmar, Thailand, Lao’s People Democratic Republic Indonesia S. no. Papua New Guinea, Indonesia Malaysia DD GBIF NE ‑‑ NE Papua New Guinea, Indonesia, Malaysia Australia NE Knuth, 1938 Zmarzty, 2001; GBIF NE GBIF Philippines CR Elaeocarpus hochreutineri Elaeocarpus hildebrandtii Elaeocarpus myrmecophilus Elaeocarpus heptadactylus Malaysia, Brunei Darussalam, Indonesia Madagascar NE Knuth, 1940 Coode, 2003 GBIF Elaeocarpus mutabilis Elaeocarpus sadikanensis Elaeocarpus heptadactyloides Elaeocarpus musseri Malaysia, Brunei Darussalam Malaysia NE Indonesia NE Indonesia NE Elaeocarpus rutengii Elaeocarpus compactus Indonesia ‑‑ ‑‑ DD Coode, 1995 GBIF Elaeocarpus murukkai Elaeocarpus murudensis Papua New Guinea VU GBIF Malaysia, Brunei Darussalam, Indonesia, Thailand, Singapore, Philippines Indonesia NE GBIF NE GBIF ‑‑ NE GBIF India NE GBIF Elaeocarpus subpuberus Elaeocarpus heinrichii Elaeocarpus munroii Papua New Guinea, Indonesia Indonesia LC NE DD NE Guillaumin, 1920 GBIF Coode, 1995 Knuth, 1940 Knuth, 1941 Coode, 1995 (Contd...) 30 J Phytol • 2023 • Vol 15 Sharma et al. Table S1: (Continued) S. no. Species Distribution range IUCN Status 111 Elaeocarpus tuberculatus Roxb. Elaeocarpus bontocensis Elaeocarpus fuscus Elaeocarpus macrocarpus Elaeocarpus tuasivicus India, Myanmar NE Species Distribution range IUCN Status Reference 385 Elaeocarpus hedyosmus Srilanka NE Zmarzty, 2001 ‑‑ EN 386 Australia, India NE GBIF ‑‑ DD 387 ‑‑ DD GBIF Malaysia NE 388 Malaysia NE GBIF Samoa NE 389 Elaeocarpus ruminatus Elaeocarpus hebecarpus Elaeocarpus muluensis Elaeocarpus multisectus NE GBIF Elaeocarpus bonii Vietnam NE 390 Papua New Guinea, Solomon Islands, Indonesia, Cook Islands New Caledonia 116 EN GBIF 117 Elaeocarpus fuscoides Papua New Guinea, Indonesia NE 391 Malaysia NE 118 Elaeocarpus truncatus Elaeocarpus bojeri Elaeocarpus fulvus Elaeocarpus macranthus Elaeocarpus blepharoceras Elaeocarpus ptilanthus Brunei Darussalam, Malaysia ‑‑ NE 392 Vietnam NE CR 393 Elaeocarpus coactilus Elaeocarpus hartleyi Coode, 2001; Knuth, 1940 GBIF Papua New Guinea EN GBIF Philippines EN 394 NT 395 Malaysia, Brunei Darussalam, Indonesia Papua New Guinea NE Philippines NE Knuth, 1938 GBIF Papua New Guinea, Indonesia, Nigeria Papua New Guinea, Indonesia LC 396 China NE GBIF NE 397 Elaeocarpus multinervosus Elaeocarpus clethroides Elaeocarpus harmandii Elaeocarpus multiflorus NE GBIF Elaeocarpus blascoi Elaeocarpus fulgens Elaeocarpus macdonaldii Elaeocarpus trichophyllus Elaeocarpus bilongvinas Elaeocarpus fruticosus Elaeocarpus luzonicus Elaeocarpus pseudopaniculatus India EN 398 VU GBIF Indonesia DD 399 Elaeocarpus rufovestitus Elaeocarpus hallieri Philippines, Japan, Indonesia, Chinese Taipei, Micronesia, China Madagascar Malaysia, Indonesia NE GBIF ‑‑ NE 400 Elaeocarpus rubidus Palau NE GBIF Papua New Guinea, Indonesia Papua New Guinea NE 401 ‑‑ ‑‑ GBIF NE 402 Philippines CR ‑‑ NE 403 Elaeocarpus munoceroides Elaeocarpus halconensis Elaeocarpus moratii New Caledonia EN Coode, 1980 GBIF Philippines ‑‑ 404 GBIF LC 405 NE GBIF Elaeocarpus fraseri Elaeocarpus luteolus Indonesia, Malaysia VU 406 Elaeocarpus royenii Papua New Guinea, Solomon Islands China, Thailand, Hong Kong, Vietnam, Lao’s People Democratic Republic, Malaysia, Singapore Indonesia NE Brunei Darussalam, Malaysia, Indonesia Elaeocarpus rubescens Elaeocarpus hainanensis VU Papua New Guinea, Indonesia NE 407 Elaeocarpus lanceifolius NE Coode, 1994 GBIF Elaeocarpus bilobatus Elaeocarpus luteolignum Elaeocarpus treubii Papua New Guinea, Indonesia ‑‑ NE 408 LC GBIF NE 409 Elaeocarpus chinensis Elaeocarpus roslii NE Indonesia NE 410 Elaeocarpus miegei Coode, 1995 GBIF 112 113 114 115 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 S. no. Elaeocarpus colnettianus Elaeocarpus harunii China, India, Thailand, Myanmar, Vietnam, Lao’s People Democratic Republic, Nepal, Bhutan, Hong Kong China, Hong Kong, Vietnam Malaysia, Brunei Darussalam, Indonesia Papua New Guinea, Australia, Indonesia, Solomon Islands NE (Contd...) J Phytol • 2023 • Vol 15 31 Sharma et al. Table S1: (Continued) S. no. Species Distribution range IUCN Status 137 Elaeocarpus biflorus New Caledonia CR 138 Elaeocarpus foxworthyi Elaeocarpus tremulus Elaeocarpus prunifolius Elaeocarpus foveolatus Philippines 139 140 141 142 143 144 145 146 147 148 149 150 151 152 S. no. Species Distribution range IUCN Status Reference 411 Elaeocarpus reticulatus NE GBIF EN 412 NE GBIF New Caledonia NT 413 NE GBIF New Caledonia, Thailand Australia VU 414 New Caledonia NT GBIF NE 415 Elaeocarpus calomala Elaeocarpus glabripetalus Elaeocarpus vieillardii Elaeocarpus glaber Australia, New Zealand, United States of America, Indonesia, Guyana, Korea Philippines, India, Papua New Guinea China NE GBIF Elaeocarpus lucidus Elaeocarpus bidupensis Elaeocarpus longlingensis Elaeocarpus tonkinensis Elaeocarpus bellus Elaeocarpus toninensis Elaeocarpus prafiensis Elaeocarpus tonganus ‑‑ NE 416 Indonesia, Malaysia, Brunei Darussalam, Philippines China NE GBIF Vietnam NE 417 Indonesia, Malaysia LC GBIF ‑‑ NE 418 Indonesia ‑‑ Vietnam NE 419 New Caledonia VU Tang et al., 2001 GBIF ‑‑ NE 420 China LC GBIF New Caledonia NE 421 Philippines EN GBIF Papua New Guinea, Indonesia ‑‑ NE 422 ‑‑ GBIF NE 423 NE Burkill & Crosby, 1901 Elaeocarpus praeclarus Elaeocarpus tjerengii Elaeocarpus floridanus Fiji NE 424 Indonesia, Malaysia, Brunei Darussalam Indonesia, Malaysia, Thailand, Singapore, Philippines, India, Myanmar, Madagascar, Vietnam Indonesia NE GBIF ‑‑ NE 425 Indonesia, Malaysia NE Solomon Islands, Papua New Guinea, Vanuatu, Cook Islands, French polynesia, Tonga, Samoa, Indonesia, Malaysia, Niue ‑‑ NE 426 Indonesia, Malaysia, Singapore, Brunei Darussalam, India NE Knuth, 1938 GBIF ‑‑ 427 Elaeocarpus submonoceras Indonesia, Philippines, Malaysia, Srilanka, Brunei Darussalam Australia NE GBIF NE China NE Indonesia NE Indonesia, Malaysia, Brunei Darussalam, Singapore, China Papua New Guinea, Indonesia Indonesia, Malaysia, Brunei Darussalam, Thailand, Singapore, Cambodia, Puerto Rico Philippines, Vietnam Indonesia NE Brongniart & Gris, 1865 Knuth, 1940 Coode, 2001 GBIF LC GBIF NE GBIF NE GBIF Elaeocarpus brachystachyus Elaeocarpus valetonii Elaeocarpus macropus Elaeocarpus pulchellus Elaeocarpus prunifolioides Elaeocarpus forbesii Elaeocarpus beccarii Elaeocarpus floribundus Elaeocarpus batudulangii Elaeocarpus barbulatus Elaeocarpus ferrugineus 153 Elaeocarpus griffithii 154 Elaeocarpus baudouinii New Caledonia VU 428 Elaeocarpus largiflorens 155 Elaeocarpus timorensis Elaeocarpus batui Indonesia NE 429 Indonesia NE 430 157 Elaeocarpus polystachyus NE 431 158 Elaeocarpus prinodes Elaeocarpus longifolius Malaysia, Indonesia, Brunei Darussalam, Singapore ‑‑ Elaeocarpus duclouxii Elaeocarpus lancipetalus Elaeocarpus palembanicus ‑‑ 432 Myanmar, India ‑‑ 433 ‑‑ ‑‑ 434 156 159 160 Elaeocarpus tinctorius Elaeocarpus dolichostylus Elaeocarpus stipularis Elaeocarpus amabilis (Contd...) 32 J Phytol • 2023 • Vol 15 Sharma et al. Table S1: (Continued) S. no. Species Distribution range IUCN Status 161 Elaeocarpus polysticus Elaeocarpus timikensis Elaeocarpus floribundoides Elaeocarpus floresii ‑‑ ‑‑ Indonesia 162 163 164 S. no. Species Distribution range IUCN Status Reference 435 Elaeocarpus knuthii NE GBIF NE 436 NE China NE 437 LC Coode, 2001 GBIF Indonesia NE 438 Elaeocarpus octopetalus Elaeocarpus acronodia Elaeocarpus decipiens Malaysia, Brunei Darussalam, Singapore Indonesia, Philippines NE GBIF NE GBIF NE Knuth, 1940 NE GBIF NE GBIF NE GBIF 165 Elaeocarpus polydactylus Papua New Guinea, Indonesia NE 439 Elaeocarpus obtusus 166 Elaeocarpus batjanicus ‑‑ NE 440 Elaeocarpus serratus 167 Elaeocarpus fleuryi Vietnam, Lao’s People Democratic Republic, china NE 441 Elaeocarpus nitidus 168 Elaeocarpus polycarpus Elaeocarpus flavescens Elaeocarpus polyanthus Malaysia NE 442 ‑‑ DD 443 Malaysia NE 444 Elaeocarpus sericoloides Elaeocarpus hortensis Elaeocarpus nanus Elaeocarpus thelmae Elaeocarpus linsmithii Elaeocarpus polyandrus Australia NE 445 Australia NE 446 Solomon Islands, Papua New Guinea, Cook Islands, Indonesia Papua New Guinea NE 447 DD 448 Elaeocarpus coloides 169 170 171 172 173 Elaeocarpus myrtoides Elaeocarpus comptonii Elaeocarpus rumphii 174 Elaeocarpus firmus 175 Elaeocarpus poilanei Vietnam, China NE 449 Elaeocarpus angustifolius 176 Elaeocarpus linnaei Elaeocarpus poculifer Elaeocarpus finisterrae Elaeocarpus lingualis Elaeocarpus pittosporoides Elaeocarpus baramii Elaeocarpus linearifolius Elaeocarpus ferruginiflorus Indonesia NE 450 Papua New Guinea NE 451 Papua New Guinea NE 452 Papua New Guinea, Indonesia Fiji NE 453 NE 454 Malaysia NE 455 Vietnam NE 456 Australia NE 457 Elaeocarpus dianxiensis Elaeocarpus austroyunnanensis Elaeocarpus oblongus Elaeocarpus weibelianus Elaeocarpus roseoalbus Elaeocarpus japonicus Elaeocarpus ellipticus Elaeocarpus pubescens 177 178 179 180 181 182 183 Indonesia, Papua New Guinea, Malaysia China, Chinese Taipei, Japan, United States of America Indonesia, Malaysia, China, Philippines, Brunei Darussalam, Singapore, Thailand, Vietnam, Papua New Guinea Chinese Taipei, India, Brazil, Srilanka, Indonesia, Ghana, United States of America, Panama, Japan Indonesia, Malaysia, Brunei Darussalam, Singapore, Philippines, Myanmar, Thailand, Vietnam Indonesia, Papua New Guinea Vanuatu, New Caledonia Indonesia, Malaysia, Brunei Darussalam, Singapore Papua New Guinea LC GBIF NT New Caledonia VU Coode, 1984 GBIF Indonesia NE GBIF Papua New Guinea, Indonesia, Solomon Islands Australia, Papua New Guinea, Indonesia, New Caledonia, Solomon Islands, Philippines, Malaysia, United States of America, Vanuatu China NE Knuth, 1940 ‑‑ GBIF ‑‑ China ‑‑ Coode, 1995 GBIF India, Brazil, Philippines, Australia, Srilanka New Caledonia, Madagascar Indonesia ‑‑ GBIF ‑‑ ‑‑ Knuth, 1940 GBIF ‑‑ LC GBIF ‑‑ ‑‑ ‑‑ ‑‑ Knuth, 1940 GBIF (Contd...) J Phytol • 2023 • Vol 15 33 Sharma et al. Table S1: (Continued) S. no. Species Distribution range IUCN Status 184 Elaeocarpus limitaneus Vietnam, Lao’s People Democratic Republic, china NE 185 Elaeocarpus pinosukii Malaysia 186 Elaeocarpus limitaneioides Elaeocarpus piestocarpus Elaeocarpus balgooyi Elaeocarpus pierrei Elaeocarpus terminalioides Elaeocarpus balansae Species Distribution range IUCN Status Reference 458 Elaeocarpus japonicus ‑‑ GBIF CR 459 Elaeocarpus robustus ‑‑ GBIF ‑‑ NE 460 ‑‑ Solomon Islands, Papua New Guinea Indonesia LC 461 Mauritius, China ‑‑ Knuth, 1940 GBIF NE 462 Cambodia ‑‑ Indonesia, New Zealand Papua New Guinea NE 463 Elaeocarpus filiformidentatus Elaeocarpus integrifolius Elaeocarpus bokorensis Elaeocarpus leratii China, Chinese Taipei, Japan, Korea, United States of America, Trinidad and Tobago Malaysia, Thailand, India, Vietnam, Indonesia, Myanmar, Bangladesh, Brazil, Nepal Papua New Guinea New Caledonia ‑‑ Coode, 2001 GBIF EN 464 Indonesia ‑‑ GBIF Vietnam, China NE 465 ‑‑ GBIF Elaeocarpus leucanthus Elaeocarpus balabanii Papua New Guinea NE 466 China, Chinese Taipei, Japan, Korea, United States of America, Vietnam, Belgium, Indonesia, India New Caledonia ‑‑ GBIF Malaysia NE 467 ‑‑ GBIF 194 Elaeocarpus bakaianus Papua New Guinea, Indonesia NE 468 Elaeocarpus petiolatus ‑‑ GBIF 195 Elaeocarpus tariensis Elaeocarpus taprobanicus Elaeocarpus fairchildii Elaeocarpus pirincara Elaeocarpus pilosus Elaeocarpus tectonaefolius Elaeocarpus baeuerlenii Elaeocarpus takolensis Elaeocarpus badius Elaeocarpus eymae Elaeocarpus petelotii Elaeocarpus bachmaensis Elaeocarpus symingtonii Elaeocarpus azaleifolius Elaeocarpus euneurus Elaeocarpus lepidus Papua New Guinea LC 469 Srilanka NE 470 Papua New Guinea, Indonesia ‑‑ NE 471 ‑‑ 472 ‑‑ ‑‑ 473 ‑‑ ‑‑ 474 ‑‑ NE 475 Indonesia NE 476 Solomon Islands, Papua New Guinea Indonesia NE 477 NE 478 Elaeocarpus glandulosus Elaeocarpus griseopuberulus Elaeocarpus polystachyus Elaeocarpus serratus Elaeocarpus sericeus Elaeocarpus chakrosila Elaeocarpus merrillii Elaeocarpus auricomus Elaeocarpus balansae Elaeocarpus cyaneus Vietnam NE 479 Vietnam, China NE 480 Malaysia LC 481 Papua New Guinea, Indonesia Malaysia LC 482 NE 483 Cook Islands, Fiji NE 484 187 188 189 190 191 192 193 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 S. no. Elaeocarpus brunneotomentosus Elaeocarpus sylvestris Elaeocarpus guillainii Elaeocarpus rugosus Elaeocarpus magnifolius Elaeocarpus quercifolius Elaeocarpus zeylanicus Elaeocarpus sallehianus Elaeocarpus nubigenus Elaeocarpus punctatus China, India, Thailand, Myanmar, Malaysia, Bhutan, Singapore Indonesia, Malaysia, Thailand, China, Singapore, Cambodia, Lao’s People Democratic Republic, India, Vietnam India, Switzerland, Myanmar Vietnam ‑‑ GBIF ‑‑ Malaysia ‑‑ Zmarzty, 2001 GBIF ‑‑ ‑‑ GBIF ‑‑ ‑‑ ‑‑ ‑‑ Clarke, 1890 GBIF Philippines ‑‑ GBIF ‑‑ ‑‑ Lao’s People Democratic Republic, Vietnam Australia, Korea, New Caledonia Samoa ‑‑ ‑‑ Coode, 2001 Coode, 1977 Coode, 1995 GBIF Vietnam ‑‑ GBIF Srilanka ‑‑ GBIF Malaysia LC GBIF ‑‑ ‑‑ GBIF Indonesia, Malaysia ‑‑ GBIF ‑‑ (Contd...) 34 J Phytol • 2023 • Vol 15 Sharma et al. Table S1: (Continued) S. no. Species Distribution range IUCN Status 211 Elaeocarpus perrieri Elaeocarpus eumundi Madagascar, Indonesia Australia, Singapore VU 485 NE 486 Elaeocarpus leopoldii Elaeocarpus auricomus Elaeocarpus ledermannii Malaysia VU 487 China NE 488 Papua New Guinea, Indonesia NE 489 Elaeocarpus pentadactylus Elaeocarpus atropunctatus Elaeocarpus eriobotryoides Elaeocarpus surigaensis Elaeocarpus subvillosus ‑‑ DD 490 ‑‑ NE 491 Malaysia VU 492 Philippines CR 493 Srilanka, Brazil, Malaysia VU 494 Elaeocarpus leptophanes Elaeocarpus erdinii Elaeocarpus lawasii Elaeocarpus arnhemicus ‑‑ ‑‑ 495 Indonesia NE 496 Malaysia NE 497 Australia, Papua New Guinea, Indonesia Fiji LC 498 NE 499 Malaysia, Philippines, Singapore, Indonesia, Madagascar NE 500 LC 501 Papua New Guinea, Indonesia India, Myanmar, Thailand DD 502 NE 503 NE 504 NE 505 NE Papua New Guinea, Indonesia Papua New Guinea 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 Elaeocarpus laurifolius Elaeocarpus pedunculatus Elaeocarpus subserratus Elaeocarpus latescens Elaeocarpus aristatus Elaeocarpus aristatus Elaeocarpus argenteus 232 Elaeocarpus elliffii 233 Elaeocarpus arfakensis Elaeocarpus elatus Elaeocarpus elaeagnoides Elaeocarpus laoticus Elaeocarpus sublucidus 234 235 236 237 J Phytol • 2023 Species Distribution range IUCN Status Reference Elaeocarpus sterrophyllus Elaeocarpus obovatus ‑‑ ‑‑ GBIF Australia, United Kingdom of Great Britain and Northern Ireland, Indonesia, Japan, Srilanka China ‑‑ GBIF ‑‑ GBIF Bangladesh, India ‑‑ GBIF Indonesia, Papua New Guinea, Australia, India, Myanmar, Malaysia ‑‑ ‑‑ GBIF ‑‑ ‑‑ ‑‑ Knuth, 1941 GBIF Papua New Guinea ‑‑ GBIF Vietnam ‑‑ GBIF Thailand, India, Myanmar, New Caledonia, Bangladesh, China ‑‑ ‑‑ GBIF ‑‑ GBIF China, Bhutan, India, Myanmar ‑‑ ‑‑ ‑‑ Coode, 2001 GBIF Indonesia, Malaysia ‑‑ GBIF Elaeocarpus parviflorus Elaeocarpus castanaefolius ‑‑ ‑‑ GBIF New Caledonia ‑‑ GBIF Elaeocarpus micranthus Elaeocarpus prunifolius Elaeocarpus kanehirae Elaeocarpus kaalaensis Elaeocarpus bancroftii Indonesia ‑‑ GBIF Thailand, Bhutan, India, New Caledonia, Vietnam ‑‑ ‑‑ GBIF ‑‑ GBIF ‑‑ ‑‑ GBIF Papua New Guinea, Australia ‑‑ GBIF 506 Elaeocarpus grandiflorus ‑‑ Coode, 1984 NE 507 ‑‑ GBIF LC 508 Malaysia, Indonesia ‑‑ GBIF ‑‑ DD 509 Malaysia ‑‑ GBIF China NE 510 Papua New Guinea ‑‑ GBIF ‑‑ NE 511 Elaeocarpus borealiyunnanensis Elaeocarpus paniculatis Elaeocarpus hochruetineri Elaeocarpus stenodactylis Elaeocarpus hebridarum Indonesia, Thailand, Vietnam, Cambodia, Lao’s People Democratic Republic, Philippines, Malaysia, Singapore, Bangladesh China Vanuatu ‑‑ Clarke, 1890 Philippines, Chinese Taipei, China, United States of America Australia • Vol 15 S. no. Elaeocarpus gaoligongshanensis Elaeocarpus acuminatus Wall. Elaeocarpus longifolius Elaeocarpus mindorensis Elaeocarpus acuminatus Bonpl. Elaeocarpus aemulus Elaeocarpus tonkinensis Elaeocarpus prunifolius Elaeocarpus serratus Benth. Elaeocarpus varunua Elaeocarpus ovalifolius Elaeocarpus teysmannii (Contd...) 35 Sharma et al. Table S1: (Continued) S. no. Species Distribution range IUCN Status 238 Elaeocarpus angustipes Elaeocarpus subisensis Elaeocarpus subisensis Elaeocarpus dulongensis Elaeocarpus dubius Indonesia, Malaysia NE 512 Malaysia NE 513 ‑‑ NE 514 China ‑‑ 515 China, Vietnam, Cambodia, Lao’s People Democratic Republic, Myanmar Indonesia NE 516 NE 517 Elaeocarpus pedunculatus Fiji NE 518 Philippines NE 519 Papua New Guinea, Indonesia Papua New Guinea, Fiji Fiji NE 520 VU 521 NE 522 Srilanka, India NE 523 Malaysia, Brunei Darussalam Indonesia NE 524 NE 525 Malaysia, Brunei Darussalam, Indonesia ‑‑ NE 526 Elaeocarpus salomonensis Elaeocarpus symongtonii Elaeocarpus seriopetalus Elaeocarpus coarctilis Elaeocarpus submonocerus Elaeocarpus gitingensus Elaeocarpus staphianus Elaeocarpus firdausii Elaeocarpus kingii DD 527 Papua New Guinea, Indonesia Papua New Guinea, Indonesia Papua New Guinea, Indonesia Papua New Guinea NE 528 NE 529 NE 530 NE 531 Malaysia NE 532 New Caledonia, Cambodia China, India, Bangladesh, Hong Kong, Thailand Myanmar NE 533 ‑‑ 239 240 241 242 243 Elaeocarpus lancistipulatus 244 Elaeocarpus subcapitatus Elaeocarpus palimlimensis Elaeocarpus amplifolius Elaeocarpus ampliflorus Elaeocarpus storckii Elaeocarpus amoenus Elaeocarpus pagonensis Elaeocarpus amboinensis Elaeocarpus pachyophrys 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 Elaeocarpus pachydactylus Elaeocarpus altisectus Elaeocarpus dolichodactylus Elaeocarpus pachyanthus Elaeocarpus altigenus Elaeocarpus dolichobotrys Elaeocarpus dognyensis Elaeocarpus lanceaefolius Elaeocarpus lacunosus Elaeocarpus alnifolius Elaeocarpus divaricativenus Elaeocarpus ovigerus Elaeocarpus albiflorus Elaeocarpus dinagatensis S. no. Species Distribution range IUCN Status Reference Elaeocarpus holzapfelii Elaeocarpus pxypyren Elaeocarpus acuminatus Elaeocarpus monoceroides Elaeocarpus punctatus Wall. Germany ‑‑ ‑‑ ‑‑ Knuth, 1938 GBIF Indonesia ‑‑ ‑‑ ‑‑ Coode, 1998 GBIF Singapore ‑‑ GBIF Malaysia, Indonesia, Philippines, Brunei Darussalam, Singapore, Myanmar, Papua New Guinea, Thailand ‑‑ ‑‑ Coode, 1995 ‑‑ GBIF Malaysia ‑‑ Australia ‑‑ Knuth, 1940 GBIF Indonesia ‑‑ GBIF Indonesia ‑‑ GBIF Philippines ‑‑ GBIF ‑‑ ‑‑ Indonesia ‑‑ Coode, 1996 GBIF India ‑‑ GBIF Elaeocarpus sadicanensis Elaeocarpus lanceolatus Elaeocarpus angustus Elaeocarpus alaskensis Elaeocarpus leptostachys Elaeocarpus blepharoceros Elaeocarpus firmus Malaysia ‑‑ GBIF Bangladesh ‑‑ GBIF Malaysia ‑‑ GBIF ‑‑ ‑‑ Gibbs, 1909 Malaysia ‑‑ GBIF ‑‑ ‑‑ GBIF Papua New Guinea ‑‑ GBIF 534 Elaeocarpus dentatus ‑‑ ‑‑ GBIF NE 535 ‑‑ ‑‑ GBIF Madagascar LC 536 Elaeocarpus stipularis Elaeocarpus obtusus Malaysia ‑‑ ‑‑ LC 537 ‑‑ ‑‑ New Caledonia LC 538 Indonesia ‑‑ GBIF Papua New Guinea, Indonesia Philippines NE 539 GBIF 540 Papua New Guinea, Indonesia Malaysia ‑‑ EN Elaeocarpus sylvestris Elaeocarpus batadulangii Elaeocarpus poculiferus Elaeocarpus penibucanensis Beaton et al., 1984 GBIF ‑‑ Warburg, 1922 (Contd...) 36 J Phytol • 2023 • Vol 15 Sharma et al. Table S1: (Continued) S. no. Species Distribution range IUCN Status 267 Elaeocarpus kwangsiensis Elaeocarpus alaternoides China NE 541 New Caledonia, Cambodia LC 542 Elaeocarpus dictyophlebius Elaeocarpus kusanoi Elaeocarpus affinis Elaeocarpus kusaiensis Elaeocarpus orohensis Elaeocarpus dewildei Malaysia NE 543 Micronesia NE 544 Philippines NE Micronesia Papua New Guinea, Indonesia Indonesia 268 269 270 271 272 273 274 S. no. Species Distribution range IUCN Status Reference Elaeocarpus verticellatus Elaeocarpus davisii Philippines ‑‑ GBIF Indonesia ‑‑ Papua New Guinea ‑‑ Fiji ‑‑ 545 Elaeocarpus murukhai Elaeocarpus cassinioides Elaeocarpus meigei Brongniart & Gris, 1861; Robinson, 1908 Guymer, 1983 GBIF ‑‑ ‑‑ GBIF NE 546 Elaeocarpus osiae Papua New Guinea ‑‑ NE 547 Elaeocarpus avium Indonesia ‑‑ NE 548 Elaeocarpus culminicola Elmer ‑‑ ‑‑ Baker, 1883 Kükenthal, 1940 Smith, 1969 SUPPLEMENTARY REFERENCES Baker, J. G. (1883). Contributions to the Flora of Madagascar. Part I. Polypetalae. Botanical Journal of the Linnean Society, 20, 87-158. Beaton, G., Pegler, D. N., & Young, T. W. K. (1984). Gasteroid Basidiomycota of Victoria State Australia I. Hydnangiaceae. Kew Bulletin, 39(3), 499508. https://doi.org/10.2307/4108593 Brongniart, M. A., & Gris, A. (1861). Description of Some Eleocarpus from New Caledonia. Bulletin de la Société botanique de France, 8, 198-203. Brongniart, M. A., & Gris, A. (1865). Descriptions of some new species from New Caledonia. Bulletin de la Société botanique de France, 12, 299-302. Burkill, I. H., & Crosby, C. S. (1901). The flora of Vavau, one of the Tonga Islands. Botanical Journal of the Linnean Society, 35(242), 20-65. https://doi.org/10.1111/j.1095-8339.1901.tb02318.x Clarke, C. B. (1890). On the plants of Kohima and Muneypore. Botanical Journal of the Linnean Society, 25, 165-169. https://doi. org/10.1111/j.1095-8339.1889.tb00793.x Coode, M. J. (1980). An obscure new species of Elaeocarpus from Central New Guinea. Kew Bulletin, 35(2), 247-251. https://doi. org/10.2307/4114567 Coode, M. J. E . (1977). A conspectus of Elaeocarpaceae in Papuasia. Brunonia, 1(2), 131-302. https://doi.org/10.1071/ BRU9780131 Coode, M. J. E. (1995). Elaeocarpus in the Flora Malesiana area: E. kraengensis and ten new species from Sulawesi. Kew Bulletin, 50(2), 267-294. https://doi.org/10.2307/4110631 Coode, M. J. E. (1996). Elaeocarpus for Flora Malesiana: notes, new taxa and combinations in sect. Elaeocarpus: 2. Kew Bulletin, 51(1), 83-101. https://doi.org/10.2307/4118746 Coode, M. J. E. (1998). Elaeocarpus for Flora Malesiana: Notes, new taxa, names and combinations for Borneo. Kew Bulletin, 53(1), 83-128. https://doi.org/10.2307/4110455 Coode, M. J. E. (2001). Elaeocarpus for Flora Malesiana: The Verticellatae subgroup of the Monocera group and a new Philippine species. Kew Bulletin, 56(4), 885-901. https://doi. J Phytol • 2023 • Vol 15 org/10.2307/4119300 Coode, M. J. E. (2003). Elaeocarpus for Flora Malesiana: two new taxa in the Coloides subgroup of the Monocera group from New Guinea. Kew Bulletin, 58(2), 453-458. https://doi.org/10.2307/4120628 Coode, M. J. E., & Weibel, R. (1994). Elaeocarpus for Flora Malesiana: notes, new taxa and combinations in sect. Elaeocarpus: 1. Kew Bulletin, 49(2), 235-259. https://doi.org/10.2307/4110262 Gibbs, L. S. (1909). A Contribution to the Montane Flora of Fiji (including Cryptogams), with Ecological Notes. (Concluded). Botanical Journal of the Linnean Society, 39(271), 137-212. https://doi. org/10.1111/j.1095-8339.1909.tb01193.x Guillaumin, M. A. (1920). Materials for the flora of New Caledonia. Bulletin de la Société botanique de France, 67, 47-54. Guymer, G. P. (1983). New species of Elaeocarpus (Elaeocarpaceae) from north east New South Wales. Telopea, 2(4), 385-389. Knuth, R. (1938). Elaeocarpaceae novae. Decades 1–2. Repertorium novarum specierum regni vegetabilis, 44, 124-132. Knuth, R. (1940). Elaeocarpaceae novae. Repertorium novarum specierum regni vegetabilis, 48, 72-79. Knuth, R. (1941). Elaeocarpaceae novae. Decades 7–8. Repertorium novarum specierum regni vegetabilis, 50, 81-88. Kükenthal, G. (1940). Preparatory work for a monograph of the Rhynchosporoideae. VIII. Repert. Repertorium novarum specierum regni vegetabilis, 48, 49-72. Pai, Y. Y. (1938). Die chinesischen Arten der Gattung Morina. Repert. Repertorium novarum specierum regni vegetabilis, 44, 114-124. Robinson, C. B. (1908). Alabastra philippinensia-I. Bulletin of the Torrey Botanical Club, 35, 63-75. Smith, L. S. (1969). New species of and notes on Queensland plants, V. Contributions from the Queensland Herbarium, 6, 1-25. Tang, Y., Dao, Z. L., & Li, H. (2011). Elaeocarpus gaoligongshanensis and E. dianxiensis (Elaeocarpaceae), two new species from Yunnan, China. Annales Botanici Fennici, 48(2), 169-173. Warburg, O. (1922). Plantae novae borneenses. Repert. Repertorium novarum specierum regni vegetabilis, 18, 327-330. Zmarzty, S. (2001). Revision of Elaeocarpus (Elaeocarpaceae) section Elaeocarpus in Southern India and Sri Lanka. Kew Bulletin, 56(2), 405-447. https://doi.org/10.2307/4110964 37