Academia.eduAcademia.edu
Posted on 1 May 2023 — The copyright holder is the author/funder. All rights reserved. No reuse without permission. — https://doi.org/10.22541/au.168295740.05040250/v1 — This a preprint and has not been peer reviewed. Data may be preliminary. Phylogenomic time tree of bryophytes resolves 500 million years of diversification Julia Bechteler1 , Gabriel Peñaloza-Bojacá1 , David Bell1 , Gordon Burleigh1 , Stuart F. McDaniel1 , Christine Davis1 , Emily Sessa1 , Alexander Bippus1 , Christine Cargill1 , Salut Chantanaorrapint1 , Isabel Draper1 , Gaik Ee Lee1 , Lorena Endara1 , Laura L. Forrest1 , Ricardo Garilleti1 , Sean Graham1 , Sanna Huttunen1 , Javier Jauregui Lazo1 , Francisco Lara1 , Juan Larraı́n1 , Lily Lewis1 , David Long1 , Dietmar Quandt1 , Karen S. Renzaglia1 , Alfons Schäfer-Verwimp1 , Adriel Michel Sierra Pinilla1 , Matt von Konrat1 , Charles Zartman1 , Bernard Goffinet1 , and Juan Carlos Villarreal A.1 1 Affiliation not available May 8, 2023 1 April 28, 2023 Phylogenomic time tree of bryophytes resolves 500 million years of diversification Author list: Julia Bechteler1 *, Gabriel Peñaloza-Bojacá2*, David Bell3, Gordon Burleigh4*, Stuart McDaniel4, Christine Davis4, Emily Sessa4 5, Alexander Bippus6, D. Christine Cargill7, Sahut Chantanoarrapint8, Isabel Draper9, Lorena Endara4, 10, Laura L. Forrest3, Ricardo Garilleti11, Sean W. Graham12, Sanna Huttunen13, Javier Jauregui Lazo14, Francisco Lara9, Juan Larraín15, Lily Lewis4, David Long3, Dietmar Quandt1, Karen Renzaglia16, Alfons Schäfer-Verwimp17, Gaik Ee Lee18 Adriel Sierra Pinilla19, Matt von Konrat20, Charles Zartman21, Bernard Goffinet 22 *& Juan Carlos Villarreal A. 19 * 1 Nees-Institute for Plant Biodiversity, University of Bonn, Meckenheimer Allee 170, 53115 Bonn, Germany. 2Laboratório de Sistemática Vegetal, Departamento de Botânica, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais. 3 Royal Botanic Garden Edinburgh, 20A Inverleith Row, Edinburgh EH3 5LR, United Kingdom. 4Department of Biological Sciences, 220 Bartram Hall, University of Florida, Gainesville, FL 32611, USA. 5 Present address: The New York Botanical Garden, 2900 Southern Boulevard, Bronx, NY, 10458, USA. 6California State Polytechnic University, Humboldt, Arcata, CA 95521. 7Australian National Herbarium, Centre for Australian National Biodiversity Research, GPO Box 1700, Canberra. ACT. 2601. 8PSU Herbarium, Division of Biological Science, Faculty of Science Prince of Songkla University, Hat Yai, Songkhla, 90110, Thailand. 9 1 April 28, 2023 Departamento de Biología, Facultad de Ciencias, Universidad Autónoma de Madrid, 28049 Madrid, Spain / Centro de Investigación en Biodiversidad y Cambio Global, Universidad Autónoma de Madrid, Madrid, Spain. 10 Present address: Department of Biological Sciences, 132 Long Hall, Clemson University, Clemson, SC 29634, USA. 11 Departamento de Botánica y Geología. Universidad de Valencia, Avda. Vicente Andrés Estelles s/n, 46100 Burjassot, Spain. 12Department of Botany, University of British Columbia, 6270 University Boulevard, Vancouver, British Columbia, V6T 1Z4, Canada. 13Herbarium (TUR), Biodiversity Unit, 20014 University of Turku, Finland. 14 Department of Plant Biology and Genome Center, University of California Davis, 451 Health Sciences Drive, Davis, 95616, USA. 15Centro de Investigación en Recursos Naturales y Sustentabilidad (CIRENYS), Universidad Bernardo O’Higgins, Avenida Viel 1497, Santiago, Chile. 16Southern Illinois University, IL 62901, Carbondale, USA. 17Mittlere Letten 11, 88634 Herdwangen-Schönach, Germany. 18 Faculty of Science and Marine Environment/Institute of Tropical Biodiversity and Sustainable Development, Universiti Malaysia Terengganu, 21020 Kuala Nerus, Terengganu, Malaysia. 19Department de Biologie, Université Laval, Québec, QC, Canada. 20Gantz Family Collections Center, Field Museum, 1400 S. DuSable Lake Shore Drive, Chicago, IL 60605, U.S.A. 21 Instituto Nacional de Pesquisas da Amazônia, Departamento de Biodiversidade, Avenida André Araújo, 2936, Aleixo, CEP 69060-001, Manaus, AM (Brazil) f 22Ecology and Evolutionary Biology, 75 NorthEagleville road, University of Connecticut, Storrs CT, 06269-3043, USA. 2 April 28, 2023 Abstract – 200 words Bryophytes are emerging as the sister-group to extant vascular plants, and their current diversity highlights that their life cycle characterized by a dominating vegetative gametophyte and an unbranched sporophyte composes a successful alternative to that of vascular plants and their dominating sporophyte. The evolutionary history of hornworts, liverworts and mosses remains, however, poorly resolved, due in part to the small character space from which to draw shared ancestry. Our understanding of the diversification of these lineages has been significantly reshaped by inferences from molecular data, highlighting extensive homoplasy in various traits and repeated bursts of diversification. Here, we present the first bryophyte time-tree based on 228 nuclear genes sampled via target capture for 531 species with divergence times estimated based on a comprehensive set of fossil calibrations. Our phylogenetic trees reflect a robust backbone, highlight novel ordinal relationships and circumscriptions, and the recognition of 13 new orders of liverworts and mosses. Our time-tree reveals that most orders originated prior to the Cretaceous, confirms the Cretaceous radiation of the hyperdiverse hypnalean mosses and species-rich liverwort clades. This comprehensive resource provides a robust and expandable phylogenomic framework for evolutionary analyses across lineages in this diverse and important group of land plants. Keywords: Community resource, Cretaceous diversification, Hornworts, Land plants, Liverworts, Mosses, Phylogenomic, Rapid diversification. 3 April 28, 2023 Introduction The emerging consensus that bryophytes, which comprise hornworts, liverworts, and mosses (Fig. 1), form the sister group to extant vascular plants1,2 raises important questions about the morphology and life cycle of the first land plants3. Key elements of land plant development, including meristem function4, stomatal development5, and hormone responses6,7, are built from a conserved genomic blueprint5, and bryophytes hold signatures of divergence and reduction from an ancestor with at least a morphologically more complex sporophyte8. Bryophytes are important components of various ecological communities and contribute to local nutrients fluxes and global biogeochemical cycles9–11. Broad evolutionary analyses are key for assessing the significance of vegetative gametophyte trait in these roles. Reconstructing the history of bryophytes and hence of character transformations are therefore critical for understanding the transformations of developmental, physiological and functional morphological traits across land plants1,8,12. Unraveling the relationships and time of divergence among major lineages of bryophytes has been hampered by the putative low morphological character space, the high homoplasy in the evolution of these traits, the shortage of phylogenetically informative ontogenetic data, the paucity of fossil taxa and the difficulty in reliably assigning these to lineages defined by extant taxa. Furthermore, phylogenetic inferences suffer from insufficient signal, especially across major lineages, due perhaps to their old divergence, and hence substitutional saturation or their rapid diversification. All prior reconstructions rely on either a few loci sampled for perhaps many species, or many markers sampled for a few bryophyte taxa8,13–16. 4 April 28, 2023 We present the first comprehensive phylogeny of bryophytes based on 228 markers sampled for 531 species from across all orders, using the GoFlag 408 probe set. We then calibrated this phylogeny based on the most recent assessments of the affinities of liverwort17 and moss18 fossils to estimate divergence times. We acquired homologous sequences for virtually all samples and recovered strong support for many relationships between classes and orders. We confirm the persisting phylogenetic ambiguity for others and propose three new liverwort and ten new moss orders. As in vascular plants, significant conflict among genes both within rapidly diversifying groups of bryophytes and among the oldest nodes is likely due to incomplete lineage sorting, ancient hybridization, and lack of signal in explosive radiations. We have unraveled the macroevolutionary history of this key group of land plants using the GoFlag 408 probe set, which emerged as a powerful tool to tackle the complexity of the diversification process at multiple phylogenetic scales across the bryophytes19. Results and Discussion We sampled 533 samples representing 531 species from 499 genera distributed among 72% of families from all 69 orders of bryophytes (Figs 1–3; Extended Data Figs. 1–7; Supplementary Figs. S1–S9; Supplementary Tables S1–S11). The alignment of sequences from 228 targeted nuclear genes varies in length, variable sites, potentially parsimony informative sites and GC content (Supplementary Table S4). The average alignment length was 339.74 bp (min=120, max=1459) with most 5 April 28, 2023 (n=146) over 200 bp long. Parsimony informative sites were correlated with alignment length (R² = 0.9593) with a mean of 238.42 sites per alignment (min=66, max=1065) and a low percentage of missing data (8.61%, SD=0.43). Coalescent-based (ASTRAL) and maximum likelihood (ML) concatenated super-matrix analyses (IQ-TREE) of nucleotide and amino-acid data yielded similar results (Extended Data Figs. 1-7). In the following sections, we present the results from the ASTRAL analyses of nucleotide and amino-acid data including quartet values and gene concordance factors (gCF) and site concordance factors (sCF). We refer to a majority of gene trees when more than 50% of these share a given signal, and a plurality of gene trees when the proportion of trees supporting the topology is higher than 33% but less than 50%. The gene concordance factor (gCF) and site concordance factor (sCF) represent the percentage of decisive gene trees and sites containing a specific branch20. ASTRAL quartet values and IQ-TREE concordance factors for nucleotide and amino-acid analyses are presented in the Supplementary information (Supplementary Figs. S1–S8; Supplementary Tables S5–S8). Phylogenetic relationships within hornworts: The circumscription and relationships of classes and orders within the hornworts, Anthocerotophyta (Fig. 2 and Extended Data Figs. 1 and 4) reflect those inferred from organellar markers and a broad taxon sampling13 except for the affinities of the monotypic Leiosporocerotales. The monophyly of subclasses and orders is typically supported by a large majority of loci, whether inferences are based on nucleotides (Extended Data Fig. 1; Supplementary Figs. S1 and S2) or amino-acid data (Extended Data Fig. 4). By contrast, the relationship of Leiosporoceros is ambiguous, as it is resolved 6 April 28, 2023 as sister to Anthocerotales (i.e., Anthoceros) based on nucleotide gene trees (ASTRAL) (Fig. 2 and Extended Data Fig. 1) or to all hornworts based on concatenated nucleotide data (Supplementary Fig. S5) or with ambiguous affinities based amino-acid gene trees (Extended Data Fig. 4). The position of Leiosporoceros as sister to all other hornworts was previously proposed based on few organellar loci sampled for a large set of taxa21–23 and from over 400 loci sequenced for selected hornwort placeholders19,24. The novel phylogenetic hypothesis in the ASTRAL analysis would impact ancestral state reconstructions for the hornwort pyrenoid: if Leiosporoceros is sister to all hornworts, the pyrenoid-less state would be predicted as the ancestral condition in hornworts13, whereas under the alternative topology the presence of the pyrenoid may be ancestral in hornworts with subsequent losses in Leiosporoceros. Under either scenario, pyrenoids have been independently lost in all hornwort orders, and gained in the derived Dendrocerotales13. Phylogenetic relationships within liverworts: The earliest split within liverworts segregates the Haplomitriopsida (21 spp.) from the ancestor to the Marchantiopsida (mostly complex thalloid taxa, ca. 543 spp.) and the Jungermanniopsida (simple thalloid and leafy liverworts, over 6870 spp.), a topology supported by a small majority of loci (Fig. 2; Extended Data Figs. 2 and 5). Within the three classes, ordinal circumscriptions and relationships generally reflect prevailing interpretations14,25–28, with most backbone nodes supported by a majority of loci and high posterior probabilities (Fig. 2 and Fig. 3; Extended Data Figs. 2 and 5). 7 April 28, 2023 The Haplomitriopsida comprise plants with leaf-like appendages, stems secreting copious mucilage and one primary androgonial initial in early ontogeny29. The earliest split in the Marchantiopsida segregates the Marchantiidae (complex thalloids) from the Blasiidae, a lineage of two simple thalloid species with endophytic cyanobacteria30,31. The Marchantiidae typically develop a complex thallus with air chambers, four primary androgonial initials in early ontogeny, and unlobed sporocytes29. The ordinal relationships within the Marchantiidae vary in support (Fig. 2 and Fig. 3; Extended Data Figs. 2 and 5). The Neohodgsoniales comprise a single species from New Zealand, diagnosed by a uniquely branched carpocephalum, and mark another deep split in the subclass27. The Sphaerocarpales comprise mostly taxa with leafy-like gametophytes and are sister to the Marchantiales, although not supported by most gene trees (Fig. 2 and Fig. 3; Extended Data Figs. 2 and 5). The Marchantiales contain the majority of the species of the class (ca. 497 spp.), including the model species Marchantia polymorpha32. The Jungermanniopsida include species developing simple thalloid or leafy vegetative bodies, all with antheridia developed from two primary androgonial initials in early ontogeny and with lobed sporocytes29. The Jungermanniopsida are typically accommodated in three subclasses, whose monophyly and relationships are not consistently resolved (Figs. 2 and 3) perhaps due to ancient introgression31. The Pelliidae comprise two robustly monophyletic orders (i.e., Pallaviciniales and Pelliales) and the Fossombroniales, which are supported by most nucleotide gene trees but only a small plurality of amino-acid loci (Extended Data Figs. 2 and 5). The relationships among the three orders are congruent only among a plurality of gene trees (Extended Data Figs. 2 and 5), with the paraphyly of the subclass caused by the resolution of the Pelliales sister to all other Jungermanniopsida based on 8 April 28, 2023 nucleotide data23 (Figs. 2 and 3; Extended Data Fig. 2) versus sister to other Pelliidae based on amino-acid data with ambiguous signal (Extended Data Fig. 5). Such conflicting topologies were previously recovered based on nucleotide-based nuclear transcriptome and mitochondrial data24, and plastid data28,33, respectively, and may reflect a rapid divergence of the Pelliidae, ancient introgression, incomplete lineage sorting and subsequent saturation in nucleotide data. The Metzgeriidae compose a robustly monophyletic group comprising the Metzgeriales and Pleuroziales (Fig. 2; Extended Data Figs. 2 and 5), as previously resolved based on a few DNA loci25,34,35, and genomic, transcriptomic and organellar data28,33. The monophyly of the Metzgeriidae is supported by the unique shared lenticular apical cell giving rise to the bilaterally symmetric and thalloid body of the Metzgeriales and the leafy stem of the Pleuroziales23. The vast majority of liverworts (ca. 6160 spp.) belong to the well supported clade Jungermanniidae or true leafy liverworts (Figs. 2 and 3; Extended Data Figs. 2 and 5). A shared ancestry of the Ptilidiales and Porellales sensu lato, as inferred from nuclear nucleotide data (Fig. 2; Extended Data Fig. 2) was recently argued for based on phylotranscriptomic and plastid evidence33. By contrast, our amino-acid data resolve the Ptilidiales as sister to the Jungermanniales s. lato (Extended Data Fig. 5), a hypothesis also supported by mitochondrial data23,33 and prior plastidbased inferences25,28. A majority of genes recover the monophyly of the Porellales s. lato, which we propose to accommodate into three resurrected and two new orders (Table 1), each of pre-Cretaceous origin: Frullaniales, Jubulales, Lejeuneales Porellales, and Radulales (Fig. 2; Extended Data Figs. 2 and 5). The Frullaniales (ca. 599 spp.) and Lejeuneales (ca. 1900 spp.) comprise two of the most species- 9 April 28, 2023 rich families of liverworts characteristic of epiphytic communities, particularly in tropical rainforests15. Within the Jungermanniales s. lato, the deepest splits giving rise to the main lineages are estimated to have occurred in or prior to the Triassic, and we therefore propose to recognize these at the ordinal level, resurrecting Perssoniellales36, Lepidoziales and Lophoziales and erecting Myliales (Table 1). The Perssoniellales (ca. 88 spp.) emerged from the earliest split (Fig. 2) in the Carboniferous (Fig. 3) and are sister to the common ancestor shared by the remaining others. The Myliales (5 spp.) mark the next split based on nucleotide data (Figs. 2 and 3; Extended Data Fig. 2) or are sister to the Lophoziales only, based on amino-acid data, although with low support (Extended Data Fig. 5). Either resolution is incongruent with Mylia sister to the Jungermanniales s. str. based on nuclear transcriptomic and organellar data33, a hypothesis based, however, on a mislabeled specimen (Y. Liu, pers. com. March 2023). A majority of nucleotide, and at least a plurality of amino-acid, gene trees resolve the remaining orders of the Jungermanniales s. lato, i.e., the Lophoziales (ca. 611 spp.), Lepidoziales (ca. 1943 spp.) and Jungermanniales s. str. (ca. 565 spp.) as monophyletic (Extended Data Figs. 2 and 5, respectively). All three suborders are highly heterogenous in terms of leaf morphology (2–4 lobes), branching patterns, form, and position of gametangia37. The sister-group relationship of the latter two suborders most recently supported by nuclear transcriptomic and organellar data33, emerges here also from a near majority of nucleotide loci but only a weak plurality of amino-acid loci (Extended Data Figs. 2 and 5, respectively). The resolution within suborders seems to vary, especially within species-rich families 10 April 28, 2023 (e.g., Lepidoziaceae) and may point to a period of rapid diversification (Extended Data Figs. 2 and 5). Phylogenetic relationships within mosses: The phylogenetic structure in mosses (Fig. 2; Extended Data Figs. 3 and 6) is congruent with most current supraordinal circumscriptions and ordinal relationships and shaped primarily by innovations in sporangial dehiscence, peristome architecture and development, and by vegetative body plant organization relative to sex organ position29,38. The circumscription and relationships of classes and subclasses sensu29,38,39 are typically supported by a majority or a plurality of loci (Fig. 2; Extended Data Fig. 3) or their amino-acid translations (Extended Data Fig. 6), while concordance among nucleotide loci is typically low for clades following the initial splits within the Bryophyta (Fig. 2; Supplementary Tables S5 and S7). The current classification11 accommodates mosses into four subdivisions, which are here recovered as emerging from the deepest splits, with the Takakiophytina sister to all other extant mosses, followed by the Sphagnophytina and the Andreaeophytina, which comprise the two lineages of lantern mosses (i.e., Andreaeales and Andreaeobryales) and are sister to the remaining mosses composing the Bryophytina (Fig. 2; Extended Data Figs. 3 and 6). The latter comprise species potentially developing stomata on their sporangia and a peristome, a set of teeth lining the sporangial mouth and controlling spore dispersal12. Thus, the lack of stomata in the other subdivisions is considered to result from independent losses5, which given the topology occurred independent in all three bryophyte lineages. 11 April 28, 2023 Mosses developing peristome teeth made of whole cells (i.e., nematodontous peristome, Fig. 1K) compose a monophyletic group, the Polytrichopsida s. str., as previously suggested38. The monospecific Oedipodiales were resolved either as sister to all peristomate mosses in a small plurality of nucleotide gene trees (Fig. 2, Extended Data Fig. 3) and congruent with signal from organellar loci38, or only to the Polytrichopsida in a small plurality of amino-acid gene trees40 (Extended Data Fig. 6). The ambiguous placement of the Oedipodiales from nucleotide data likely emerges from a combination of a relatively rapid divergence (Fig. 3) and saturation in nucleotide substitution, as the more conserved amino-acid data more robustly resolve the Oedipodiales as sister to the Polytrichales and Tetraphidales, similarly to inferences from a distinct set of hundred nuclear loci38. The remaining mosses (i.e., Bryopsida) typically develop a peristome composed solely of cell plates rather than whole cells (Fig. 1L). Such joined and hence articulate teeth lining the sporangial or capsule mouth upon dehiscence likely constitute a key innovation that optimizes and controls spore release and is developed by the vast majority of mosses. Several arthrodontous peristome types arise from distinct developmental sequences12 and these largely define monophyletic groups38. However, the resolution of Catoscopium as sister to most Dicranidae may call for an amendment of Dicranum-peristome type diagnosis41. Although mature peristomes may be variably reduced, especially along environmental gradients42, the fundamental architecture and ontogeny seem highly conserved during the diversification of mosses. The vast majority of mosses belong to the Bryidae, a lineage diagnosed by its double peristome of alternating inner and outer teeth43. The subclass comprises the 12 April 28, 2023 most speciose superorder of mosses, the Hypnanae or pleurocarpous mosses (ca. 4903 spp.), which are characterized by a homogenous anatomy of their midrib, the lateral development of female sex organs, and hence of the sporophyte on the maternal gametophyte44,45. The Hypnanae comprise five orders (i.e., Hypnodendrales, Ptychomniales, Hypopterygiales, Hookeriales and Hypnales), whose relationships match those previously recovered38 but are here, too only supported by a plurality of loci (Fig. 2; Extended Data Figs. 3 and 6). While a lateral shift of the sex organs and the associated shift to monopodial growth has occurred in other moss lineages46, such as the Orthotrichales, the persistence of lateral female sex organs in all Hypnanae suggest that this trait is either under strong genetic constraint or selection (see 47,48). Within the Hypnales, the most diverse order of mosses49 the backbone relationships are typically shared only by a plurality of gene trees (Fig. 2; Extended Data Figs. 3 and 6), likely reflecting a rapid early radiation of the order50. The recurrent phylogenetic pattern of species-rich families being either paraphyletic due to the inclusion of additional, morphologically distinct lineages, or polyphyletic following their phylogenetic fragmentation, and the resolution of various species poorer lineages across the backbone phylogeny, reveals that morphological traits, and primarily the vegetative ones, are evolutionarily highly labile within the Hypnales. Transformations of putative homologous traits appear highly homoplasious, and potentially correlated, yielding morphologically highly heterogenous clades. Such homoplasy may even span across subclasses, as reflected by Sorapilla, the sole member of Sorapillaceae, and which was originally placed in Dicranidae, but was then moved to the Hypnales51. Based on the first DNA sequences obtained for this genus, we resolve the family in the Dicranidae as proposed earlier52,53 but in an isolated position within the Dicranalean grade (Fig. 2; 13 April 28, 2023 Extended Data Figs. 3 and 6), prompting the proposal for a new order, Sorapillales (Table 1). The Hypnanae emerged from the acrocarpous Bryidae that typically develop terminal sex organs. The Bryidae are consistently recovered as paraphyletic across all present (Fig. 2; Extended Data Figs. 3 and 6) and prior38 analyses. While all orders are recovered with strong support, the relationships among them are typically supported only by a plurality of loci (Fig. 2; Extended Data Figs. 3 and 6). The relationships among the Rhizogoniales, Orthotrichales, Orthodontiales and Aulacomniales inferred here from nucleotide data (Fig. 2; Extended Data Fig. 3) match those previously proposed38 based on amino-acid sequences. However, the present protein-based topology (Extended Data Fig. 6) differs in that a clade comprising some members of the Rhizogoniales, along with Hymenodontopsis, a member of the Aulacomniaceae, are sister to the Hypnanae, whereas the Orthotrichales, Orthodontiales and Aulacomniales, and Goniobryum (a member of the Rhizogoniaceae) compose a single lineage sister to the Rhizogoniales and Hypnanae (Extended Data Fig. 6). The relationships of these orders are in all cases supported only by a small plurality of loci. Furthermore, inferences from nucleotide versus amino-acid data resolve incongruent circumscriptions of the Rhizogoniales. Calomnion, a genus of a few South Pacific Island species54 is reconstructed as sister to the Hypnanae except Hypnodendrales or all Hypnanae based on nucleotide versus amino-acid data, respectively (Fig. 2; Extended Data Figs. 3 and 6). In none of the alternative topologies are the relationships supported by a majority of loci, and hence the circumscription of the Rhizogoniales remains uncertain. The early diversification of the Bryidae gave rise to the Bartramiales, Bryales, Hedwigiales, and Splachnales, which compose robust lineages but of uncertain relationship. The 14 April 28, 2023 Helicophyllaceae (Hedwigiales), diagnosed by plagiotropic shoots and dimorphic leaves55, are robustly resolved as sister to the Bartramiaceae (Figs. 2 and 3; Extended Data Figs. 3 and 6; see also 56). Within the Dicranidae, the sister group to the Bryidae, the relationships are congruent with previous hypotheses33 and strengthen the hypothesis of a broadly polyphyletic Dicranales. The earliest splits within the subclass gave rise to the Catoscopiales, followed by the here erected Distichiales and Flexitrichales (Table 1). The later holds only the Flexitrichaceae, a family here formally recognized (Table 1), and is likely sister to a here not sampled Scouleriales (sensu 57; Fig. 2). The next split yields the Grimmiales, sister to the clade composed of the Archidiales, the dicranalean grade and the Pottiales (Fig. 2; Extended Data Figs. 3 and 6). The circumscription of the Archidiales Limpr. is here broadened to include the Micromitriaceae and Leucobryaceae, as the Archidiaceae are nested between the latter two families (Fig. 2; Extended Data Figs. 3 and 6)58. The Dicranales are consistently resolved as a grade leading to the well supported Pottiales (Fig. 2; Extended Data Figs. 3 and 6), a hypothesis congruent with prior phylogenetic studies38,58,59. To integrate the phylogenetic resolution of the dicranalean grade into the current classification, we propose to restrict the Dicranales (Fig. 2) to only the Dicranaceae, Calymperaceae, Fissidentaceae and Octoblepharaceae, and accommodate the remaining families, which all have an origin no later than the Jurassic (Fig. 3), in the Amphidiales, Bruchiales, Ditrichales, Erpodiales, Eustichiales, Pleurophascales and Rhabdoweisiales (Table 1). Despite these systematic novelties, various families of the Dicranales s. lato remain unassigned (e.g., Amphidiaceae, Distichiaceae, etc.) awaiting further study. 15 April 28, 2023 Our phylogenomic inferences confirm that the Timmiidae, restricted to Timmia characterized by a unique peristomial architecture60, compose the sister lineage to the ancestor of the Dicranidae and Bryidae38. The Funariidae, which include the model taxon Physcomitrium patens61 along with the Diphysciidae and Buxbaumiidae, each with a distinct peristome type compose the basal grade within the Bryopsida. Thus, the main transformations of the arthrodontous peristome, yielding the various fundamental types, occurred during the Permian or even late Carboniferous (Fig. 3) rather than in the first half of the Paleozoic as previously proposed (Laenen et al. 2014). 500 million years of bryophyte diversification Divergence time estimates of the first comprehensive phylogenomic reconstructions of bryophytes confirm that they arose in the Ordovician16. Speciose lineages arose during the diversification of angiosperms in the Cretaceous (Fig. 3; Extended Data Figs. 7, 10). The common ancestor to extant lineages of mosses and liverworts is traced to 420 [416–424] Ma and 447 [444–450] Ma, respectively, which is consistent with recent estimates8,13,15,16,44. The lineage through time plots (Fig. 3B) suggest a rather steady diversification of both lineages over the last 400 My with a higher net moss diversification near mid Cretaceous. The average crown age of orders as recognized here across all three bryophyte lineages is 150.5 Ma (SD 70 Ma) (Fig. 3C; Supplementary Table S10). The crown age of the most species rich bryophyte order, the Hypnales (491 genera, ca. 4150 species) is 129 [78–173] Ma, and thus younger than previously estimated62. The origin of mosses and liverworts (419–447 Ma, crown group Setaphyta) seem to be slightly older than that of extant lycophytes and their sister group, the euphyllophytes16. The age of most bryophyte 16 April 28, 2023 orders coincides with the diversification of angiosperms during the Late Jurassic and Cretaceous63. Our estimates of family stem ages suggest that most bryophyte families (63% of families, n=166) originated during the Cretaceous (65 families) and Jurassic (40 families). Extant bryophyte families (crown ages, n=80) diversified predominantly during the Late Cretaceous (66–102 Ma, 27 families) and the early Cretaceous (103–145 Ma, 18 families) and the Cenozoic (–65 Ma, 26 families). The average crown age of bryophyte families is 98 Ma (SD 51 Ma) (Extended Data Fig. 10; Supplementary Table S10; Supplementary Fig. S9). In mosses, the crown age of the Pottiaceae (77 genera, ca. 1,209 species) is estimated at 133.3 [115–150] Ma and the Orthotrichaceae (24 genera, ca. 900 species) started to diversify around 139.6 [106–169] Ma. Within liverworts, the diversification of the hyperdiverse Lejeuneaceae (ca. 88 genera, ca. 1900 species) began around 149 [116–188] Ma while that of the Lepidoziaceae (31 genera, ca. 703 species) dates to 121 [114–166] Ma. As previously suggested for bryophyte genera14, bryophyte diversity may have accrued during the Cretaceous and Cenozoic14 (Fig. 3C). Our analyses support the Cretaceous terrestrial revolution63,64 wherein the majority of bryophyte families diversified during this period (Fig. 3; Extended Data Fig. 10; Supplementary Table S10; Supplementary Fig. S9) contributing to an explosive radiation of life. The Cretaceous expansion of the angiosperm canopy and diversification of leptosporangiate ferns65 potentially provided novel habitats for bryophytes to diversify in tropical and subtropical areas. In addition, global and local extinctions, and the climatic fluctuations during the Cretaceous and Cenozoic may explain the burst of diversity in lineages occupying new niches in arid regions (e.g., Pottiales, 17 April 28, 2023 Marchantiales) or open areas (e.g., Funariales, Polytrichales) before the explosive diversification of angiosperms and ferns. Conclusions Bryophytes are the second-most diverse group of land plants, compose the sister group to extant vascular plants8,24 and contribute significant ecosystem functions in communities where they are abundant. Bryophytes are thus critical to understand the polarity of character transformations early in the evolution of land plants, and contemporary ecological processes, in particular, local and global nutrient flows. In parallel to the loss of complexity of the vascular plant gametophyte, this puts renewed importance on comparative studies of gametophyte morphology and function. The ordinal-level phylogeny of the bryophytes, based on the GoFlag408 probe set, provides an expandable resource upon which to build such studies. Our results are largely consistent with previous efforts based on fewer loci or representative taxon sampling, with some interesting exceptions (Fig. 2) suggesting that the bryophyte phylogenetic studies are converging on a relatively stable set of relationships. The incongruence found in several nodes along the backbone implies that different genes coalesce to variable and conflicting topologies, especially in recent radiations (e.g., Hypnales), or are remnants of potential ancient introgressions33 (Fig. 3; Extended Data Figs. 8 and 9) or incomplete lineage sorting. The current challenge facing the community is to fill in unsampled genera, species, or populations of focal taxa. At shallower phylogenetic depth, the data could be expanded to the flaking intron and spacer regions that are generally more variable 18 April 28, 2023 than the exonic regions, and hence suitable for resolving population genomic problems within or between populations of single species, or groups of closely related species. The growing GoFlag 408 database of sequences used here, and in other studies, provides a sturdy scaffold in which to place more focused studies. Methods Taxon sampling We sampled in total 531 bryophyte species belonging to 499 genera (Supplementary Table S3), comprising 362 moss species representing 338 genera (34 %); 159 liverwort species that can be assigned to 151 genera (37 %), and 12 hornwort species from 10 genera (100 %).Sampling percentage values were calculated using recent checklists and classification literature66–68. Hornworts were assumed to be the sister group of the other two bryophyte clades based on 24. DNA Extraction We used the modified cetyltrimethylammonium bromide (CTAB) extraction protocol69 described in 19 for most of the samples. This includes lysing the cells by centrifuging them and performing two rounds of chloroform/isoamyl 24:1 wash followed by cold isopropanol precipitation and an ethanol 70% wash. Finally, we added 2 μl of 10 mg/Ml ml RNase A (QIAGEN, Valencia, California, United States) to remove RNA contamination between chloroform washes. For a few specimens (Lejeuneaceae) 19 April 28, 2023 the Invisorb Spin Plant Mini Kit (Stratec Molecular GmbH, Berlin, Germany) was used following the kit protocol. Target Enrichment and Sequencing Assembly We generated a multi-locus nuclear sequence dataset with a target enrichment approach using the GoFlag probe sets. We assembled published data from 36 samples generated using the GoFlag 451 probe set and generated new data from 497 samples using the GoFlag 408 probe set, an optimized subset of the GoFlag 451 probe set consisting of 53,306 probes covering 408 exons from single or low copy nuclear loci. The library preparation, target enrichment, and sequencing were done by RAPiD Genomics (Gainesville, FL USA) using protocols described in 19, with the enriched, pooled libraries sequenced on an Illumina HiSeq 3,000 platform (Illumina; 2 × 100 bp).The paired end raw reads are available in the NCBI SRA database. We assembled phylogenetic sequence alignments for each locus using the iterative baited assembly pipeline19. In some loci, the pipeline retains more than copy per sample, where the Bridger70 assembler interprets greater than simple allelic variation. To control this, we removed all copies of a sample in a locus alignment (script "rmall.pl"). Second, we removed any columns in the alignments that had nucleotide data from fewer than ten samples in all output PHYLIP files. We also pruned out sequences associated with excessively long branches in the locus trees. First, we inferred maximum likelihood (ML) trees from the locus alignments using RAxML using the GTR CAT model, and we rooted the resulting gene trees with Newick Utilities71 using the hornworts as the outgroup. We eliminated one locus for which hornworts were not monophyletic. For the others, we calculated the root to tip 20 April 28, 2023 distance for each taxon and pruned out any sequences that had a root to distance >3 standard deviations more than the average for that locus. This removed 750 out of 178,650 sequences. We then for each locus examined the trees with branch lengths >1 and removed 35 additional long branch sequences. All loci correspond to exons, and some which are part of the same gene19. Thus, to create gene alignments, we concatenated any loci found in the same gene, resulting in 228 gene alignments that were used in our analyses. We also created amino-acid alignments for each gene. To do this, we took the original locus alignments and removed any columns sequence alignments with only one nucleotide, most likely representing sequencing error. We used AliView72 to make edits by hand to put the alignments in frame; usually this required minimal editing to getting the alignments in line. We then saved the corresponding amino-acid alignments and concatenated the loci from the same gene. Phylogenomic analyses We performed Maximum Likelihood phylogenetic inferences of the concatenated nucleotide dataset implemented in IQ-TREE v.2.173. Loci located within the same gene were concatenated and the dataset was partitioned by genes (228 genes) and were used for nucleotide and amino-acid analyses. The best-scoring ML tree and a rapid bootstrap analysis with 100 replicates was run. In all cases a GTRGAMMA model of sequence evolution was chosen. Moreover, we used IQ-TREE v.2.173 for phylogenetic inference on the translated matrix dataset (into amino-acids), with “-S option” that load all alignment files within the directory. We performed auto model 21 April 28, 2023 selection (ModelFinder) and tree inference separately for each gene. Branch support was assessed using ultrafast bootstrapping (1000 replicates)74. We conducted species tree analyses using ASTRAL-III v.5.7.775. Gene trees were estimated in RAxMLv.8.2.976,77 under the following settings for the nucleotide dataset: the default RAxML tree search algorithm (-f d) was implemented and a GTRGAMMA model selected. The loci belonging to the same gene were combined prior to the gene tree estimation, resulting in 228 unrooted gene trees. For aminoacids dataset gene trees were estimated in IQ-TREE v.2.1, with “-S option” (see above). ASTRAL-III was employed for species tree inference on both gene tree datasets using the default settings and computing local posterior probabilities78 as well as quartet scores for all three resolutions per branch (-t 8). The resulting ASTRAL topologies were annotated with quartet support values78 for the main topology (q1), the first alternative topology (q2), and the second alternative topology (q3). We also used the built-in functionality of ASTRAL to compute the percentage of gene trees that agreed with each branch in the species tree, by finding the average number of gene-tree quartets defined around the branch (choosing one taxon from each side) that were congruent with the species tree. Similar phylogenetic analyses were conducted on the translated matrix (into amino-acids). We used DiscoVista79 to visualize the results. In addition to bootstrap (IQ-TREE) and local posterior probabilities (ASTRAL), we implemented the gene (gCF) and site (sCF) concordance factors to investigate topological conflict around each branch of the species tree for the nucleotide and amino-acid datasets in IQ-TREE, using the “–gcf and –scf ” options20, particularly for 22 April 28, 2023 the backbone nodes. Likewise, we compared the species and gene trees generated with ASTRAL (gCGAst, sCFAst, sDFPAst) and IQ-TREE (maximum likelihood, gCGmL, sCFmL, gDFPmL) to evaluate possible divergences. These analyses measured every branch of the species tree; the gCF and sCF represents the percentage of decisive gene trees and sites. The program also estimates gDFP (gene discordant factor due to paraphyly) or the gene discordance factor due to lack of information in the genes or paraphyly of the quartet. For measures of support gene concordance factor/site concordance factor (gCF/sCF) was categorized as follows” weak < 33, moderate 33–50, strong > 50 (following 20,80). Using the ASTRAL output, we analyzed whether the discordance among gene trees or sites regarding the neutral ILS model implemented in IQ-TREE. We carried out χ2 tests comparing the number of trees or sites supporting discordant topologies with roughly equal quartet values. Under the assumption of ILS, the discordant topologies should be supported by an equal number of gene trees or sites (Supplementary Table 12). Equal quartets, gcf or scf (~33%) for the tree quartets point out to incomplete lineage sorting or ancient introgression20. We performed correlation analyses between branch lengths, divergence times (see below) and concordance factor values using linear regressions. Divergence time estimation Divergence time estimation was performed in treePL81 according to the analysis guidelines of 82 . The best-ML tree as input for treePL was selected from the maximum likelihood analysis (see above). In order to be able to infer node bars on the dated tree, a set of bootstrap replicates were run through the 23 April 28, 2023 “Bootstrap+Consensus” workflow of RAxML-HPC2 on XSEDE on the CIPRES Science Gateway83, whereby the best ML tree served as constraint, the option to print branch lengths on the BS replicates was selected, a partition scheme by genes (i.e., loci were grouped together according to their relatedness to genes) was implemented as well as a GTR+G substitution model and 1000 bootstrap iterations. All trees were rooted with hornworts set to be the sister group of other bryophytes, using the program pxrr in phyx84 that was also used in the dating analysis. We calibrated 16 liverwort and 13 moss nodes stemming from fossil evidence (Supplementary Table S2) and implemented a maximum age constraint of the root of 515 Ma16. Priming and cross-validation analyses were performed using the best-ML tree and all 29 calibrations. Best optimization parameters were indicated as the follows: opt = 2, optad = 2, optcvad = 5. Cross-validation used these parameters and was done four times, indicating stable values of a smoothing parameter = 10. To obtain confidence intervals on the dated tree, we ran the treePL analysis with the bootstrap replicates using the same calibration, optimization and cross-validation values as outlined above. The set of trees was summarized in TreeAnnotator v.2.6.685; (part of the BEAST package) with mean node heights and 0% of burnin. Trees were visualized in FigTree v.1.4.386. Lineage-through-time plots were conducted on the treePL chronogram for all bryophyte taxa together, as well as liverworts and mosses separated using the R-package “ape”87,88. We visualized the temporal distribution of order and family ages using the average stem and crown age. Monotypic families or orders were excluded from the calculations (Supplementary Table S10). Bryophyte species number were obtained from 66–68. Absolute rates were estimated with the same calibrations and targeted ML trees using r8s89. Among-lineage rate variation, as expected across such a dataset, 24 April 28, 2023 is high. The lowest absolute substitution rate in mosses characterizes the Orthodontiales (1.34 × 10-04 subst/site/Ma) and the highest the Polytrichales (5.44 × 10-04 subst/site/Ma). In liverworts, the variation spans from 3.53 × 10-04 subst/site/Ma in the simple thalloid Pallaviciniales to 7.85 × 10-04 subst/site/Ma in the complex thalloids (Marchantiopsida,) (Fig. 3; Supplementary Table S9). The rate variation observed in our dataset set the stage to test specific hypotheses correlating natural history traits (e.g., perennial vs annual taxa) and molecular rates across genes and all bryophyte groups. Data Availability Section All bryophyte gene sequences, alignments for each gene and concatenated alignments will be available from FigShare. Acknowledgements We thank all the herbaria that provided specimens. Funding was provided by the NSF collaborative project “Building a Comprehensive Evolutionary History of Flagellate Plants” (DEB #1541506 to JG Burleigh, EC Davis, S McDaniel, and EB Sessa, and #1541545 to M von Konrat). A.A. acknowledges the financial support by the University of Padova (BIRD 173749/17). BG acknowledges DEB-1753811. JCVA acknowledges the Canada Research Chair (950-232698); the CRNSG- RGPIN 05967–2016 and the Canadian Foundation for Innovation (projects 36781, 39135) 25 April 28, 2023 Author contributions G.B., S.M., D.B., G.P.-B., J.B., B.G., J.C.V.A. conceptualized the study. B.G, J.C.V.A. wrote the first draft. G.B., S.G., K.S.R., D.Q., J.L., F.L., I.D., E.S., J.B., D.B., G.P.-B., B.G., J.C.V.A. participated in the final reviewing and editing. A.B, A.M.S.P., A.S.-V., C.Z., C.D., D.C.C., I.D., J.J.L., J.L., L.L., M.v.K., S.C., S.H., D.L., L.E., L.L.F., P.L., R.G., G.E.L., K.F., J.B., G.P.-B., S.M., D.B., J.B., J.C.V.A. participated in the specimen collections. L.L., L.E., G.E.L., J.B., J.C.V.A. participated in data collection and laboratory work. G.B., J.B., G.P.-B., A.M.S.P., B.G., J.C.V.A. performed the analyses. G.B., C.D., E.S., S.M., J.C.V.A. procured funding. Additional Information References 1. Puttick, M. et al. The interrelationships of land plants and the nature of the ancestral embryophyte. Curr. Biol. 28, 733-745.e2 (2018). 2. Sousa, F., Foster, P., Donoghue, P., Schneider, H. & Cox, C. Nuclear protein phylogenies support the monophyly of the three bryophyte groups (Bryophyta Schimp.). New Phytol. 222, 565–575 (2019). 26 April 28, 2023 3. Rich, M. & Delaux, P.-M. Plant evolution: when Arabidopsis is more ancestral than Marchantia. Curr. Biol. 30, R642–R644 (2020). 4. Cammarata, J., Morales Farfan, C., Scanlon, M. & Roeder, A. Cytokinin– CLAVATA cross-talk is an ancient mechanism regulating shoot meristem homeostasis in land plants. Proc. Natl. Acad. Sci. 119, 1–11 (2022). 5. Harris, B. J., Harrison, C. J., Hetherington, A. M. & Williams, T. A. Phylogenomic Evidence for the Monophyly of Bryophytes and the Reductive Evolution of Stomata. Curr. Biol. 30, 1–12 (2020). 6. Bennett, T. et al. Plasma membrane-targeted pin proteins drive shoot development in a moss. Curr. Biol. 24, 2776–2785 (2014). 7. Lavy, M. et al. Constitutive auxin response in Physcomitrella reveals complex interactions between Aux/IAA and ARF proteins. Elife 5, 1–22 (2016). 8. Harris, B. J. et al. Divergent evolutionary trajectories of bryophytes and tracheophytes from a complex common ancestor of land plants. Nat. Ecol. Evol. (2022) doi:10.1038/s41559-022-01885-x. 9. Porada, P., Weber, B., Elbert, W., Pöschl, U. & Kleidon, A. Estimating impacts of lichens and bryophytes on global biogeochemical cycles. Global Biogeochem. Cycles 28, 71–85 (2014). 10. Stuart, J. et al. Host identity as a driver of moss-associated N2 fixation rates in Alaska. Ecosystems 24, 530–547 (2021). 11. Porada, P., Weber, B., Elbert, W., Pöschl, U. & Kleidon, A. Estimating global 27 April 28, 2023 carbon uptake by lichens and bryophytes with a process-based model. Biogeosciences 10, 6989–7033 (2013). 12. Goffinet, B., Buck, W. & Shaw, J. Morphology, anatomy, and classification of the Bryophyta. in Bryophyte biology 55–138 (Cambridge University Press, 2009). 13. Villarreal, J. C. & Renner, S. Hornwort pyrenoids, carbon-concentrating structures, evolved and were lost at least five times during the last 100 million years. Proc. Natl. Acad. Sci. 109, 18873–18878 (2012). 14. Laenen, B. et al. Extant diversity of bryophytes emerged from successive postMesozoic diversification bursts. Nat. Commun. 5, 5134 (2014). 15. Feldberg, K. et al. Epiphytic leafy liverworts diversified in angiospermdominated forests. Sci. Rep. 4, 5974 (2014). 16. Morris, J. L. et al. The timescale of early land plant evolution. Proc. Natl. Acad. Sci. 115, E2274–E2283 (2018). 17. Feldberg, K. et al. Checklist of fossil liverworts suitable for calibrating phylogenetic reconstructions. Bryophyt. Divers. Evol. 43, 14–71 (2021). 18. Ignatov, M. S. & Maslova, E. V. Fossil mosses: What do they tell us about moss evolution? Bryophyt. Divers. Evol. 43, 72–97 (2021). 19. Breinholt, J. W. et al. A target enrichment probe set for resolving the flagellate land plant tree of life. Appl. Plant Sci. 9, 1–28 (2021). 20. Minh, B. Q., Hahn, M. W. & Lanfear, R. New Methods to Calculate 28 April 28, 2023 Concordance Factors for Phylogenomic Datasets. Mol. Biol. Evol. 37, 2727– 2733 (2020). 21. Duff, J., Villarreal, J. C., Cargill, C. & Renzaglia, K. Progress and challenges toward developing a phylogeny and classification of the hornworts. Bryologist 110, 214–243 (2007). 22. Villarreal, J. C., Cusimano, N. & Renner, S. Biogeography and diversification rates in hornworts: The limitations of diversification modeling. Taxon 64, 229– 238 (2015). 23. Bell, D. et al. Organellomic data sets confirm a cryptic consensus on (unrooted) land-plant relationships and provide new insights into bryophyte molecular evolution. Am. J. Bot. 107, 91–115 (2020). 24. Leebens-Mack, J. et al. One thousand plant transcriptomes and the phylogenomics of green plants. Nature 574, 679–685 (2019). 25. Forrest, L. L. et al. Unraveling the evolutionary history of the liverworts (Marchantiophyta): Multiple taxa, genomes and analyses. Bryologist 109, 303– 334 (2006). 26. Dong, S. et al. Plastid genomes and phylogenomics of liverworts (Marchantiophyta): Conserved genome structure but highest relative plastid substitution rate in land plants. Mol. Phylogenet. Evol. 161, 107171 (2021). 27. Villarreal, J. C., Crandall-Stotler, B., Hart, M., Long, D. & Forrest, L. Divergence times and the evolution of morphological complexity in an early land plant lineage (Marchantiopsida) with a slow molecular rate. New Phytol. 29 April 28, 2023 209, 1734–1746 (2016). 28. Yu, Y. et al. Chloroplast phylogenomics of liverworts: a reappraisal of the backbone phylogeny of liverworts with emphasis on Ptilidiales. Cladistics 36, 184–193 (2020). 29. Crandall-Stotler, B. J., Stotler, R. E. & Long, D. G. Morphology and classification of the Marchantiophyta. in Bryophyte Biology (eds. Shaw, B. & Goffinet, A. J.) 1–54 (Cambridge University Press, 2009). 30. Liaimer, A., Jensen, J. & Dittmann, E. A genetic and chemical perspective on symbiotic recruitment of cyanobacteria of the genus Nostoc into the host plant Blasia pusilla L. Front. Microbiol. 7, 1–16 (2016). 31. Renzaglia, K. S. & Duckett, J. G. Spermatogenesis in Blasia pusilla: from young antheridium through mature spermatozoid. Bryologist 90, 419 (1987). 32. Bowman, J. L. et al. Insights into Land Plant evolution garnered from the Marchantia polymorpha Genome. Cell 171, 287-304.e15 (2017). 33. Dong, S., Yu, J., Zhang, L., Goffinet, B. & Liu, Y. Phylotranscriptomics of liverworts: revisiting the backbone phylogeny and ancestral gene duplications. Ann. Bot. 1–13 (2022) doi:10.1093/aob/mcac113. 34. Davis, E. C. A molecular phylogeny of leafy liverworts (Jungermanniidae: Marchantiophyta). in Molecular systematics of bryophytes: progress, problems and perspectives vol. 98 (eds. Goffinet, B., Hollowell, V. C. & Magill, R. E.) 61– 86 (Missouri Botanical Garden, 2004). 30 April 28, 2023 35. He-Nygrén, X., Ahonen, I., Juslén, A., Glenny, D. & Piippo, S. Phylogeny of liverworts-beyond a leaf and a thallus. in Molecular systematics of bryophytes: progress, problems and perspectives vol. 98 (eds. Goffinet, B., Hollowell, V. C. & Magill, R. E.) 87–118 (Missouri Botanical Garden, 2004). 36. Schljakov, R. N. On the higher taxa of liverworts—class Hepaticae s. str. Bot. Zhurnal 57, 496–508. (1972). 37. Crandall-Stotler, B., Stotler, R. E. & Long, D. G. Phylogeny and classification of the Marchantiophyta. Edinburgh J. Bot. 66, 155–198 (2009). 38. Liu, Y. et al. Resolution of the ordinal phylogeny of mosses using targeted exons from organellar and nuclear genomes. Nat. Commun. 10, 1–11 (2019). 39. Goffinet, B., Buck, W. & Shaw, J. Addenda to the classification of mosses. I. Andreaeophytina stat. nov. and Andreaeobryophytina stat. nov. Bryologist 112, 856–857 (2009). 40. Chang, Y. & Graham, S. W. Patterns of clade support across the major lineages of moss phylogeny. Cladistics 30, 590–606 (2014). 41. Ignatov, M. S., Spirina, U. N., Ignatova, E. A., Krug, M. & Quandt, D. On the systematic position of the moss genus Catoscopium, with a new approach to the peristome reduction study. Arctoa 24, 389–415 (2015). 42. Vitt, D. Adaptive modes of the moss sporophyte. Bryologist 84, 166–186 (1981). 43. Goffinet, B. & Shaw, A. J. Bryophyte biology. (Cambridge University Press, 31 April 28, 2023 2009). 44. Bell, N. E., Quandt, D., O’Brien, T. J. & Newton, A. E. Taxonomy and phylogeny in the earliest diverging pleurocarps: Square holes and bifurcating pegs. Bryologist 110, 533–560 (2007). 45. Huttunen, S., Bell, N. & Hedenäs, L. The Evolutionary Diversity of Mosses – Taxonomic Heterogeneity and its Ecological Drivers. CRC. Crit. Rev. Plant Sci. 37, 128–174 (2018). 46. Farge-England, C. La. Growth Form, Branching Pattern, and Perichaetial Position in Mosses: Cladocarpy and Pleurocarpy Redefined. Bryologist 99, 170 (1996). 47. Coudert, Y., Bell, N., Edelin, C. & Harrison, C. Multiple innovations underpinned branching form diversification in mosses. New Phytol. 215, 840– 850 (2017). 48. Coudert, Y. et al. Three ancient hormonal cues co-ordinate shoot branching in a moss. Elife 4, 1–26 (2015). 49. Crosby, M. R., Magill, R. E., Allen, B. & He, S. A checklist ofthe mosses. Missouri Bot. Gard. (1999). 50. Shaw, A., Cox, C., Goffinet, B., Buck, W. & Boles, S. Phylogenetic evidence of a rapid radiation of pleurocarpous mosses (Bryophyta). Evolution (N. Y). 57, 2226–2241 (2003). 51. Meagher, D., Cairns, A., Seppelt, R. & Grixti, M. A re-evaluation of the 32 April 28, 2023 morphology of Sorapilla (Bryophyta: Sorapillaceae) based on Sorapilla papuana. Aust. Syst. Bot. 33, 427–435 (2020). 52. Lin, S. H. A taxonomic revision of Phyllogoniaceae (Bryopsida). part I J. Taiwan Mus. 臺灣省立博物館半年刊 37, 1–54 (1983). 53. Vitt, D. H. Classification of the Bryopsida. New Man. Bryol. 696–759 (1984). 54. Vitt, D. H. The genus Calomnion (Bryopsida): taxonomy, phylogeny, and biogeography. Bryologist 98, 338 (1995). 55. Vitt, D. H. The New Zealand species of the pantropical genus Macromitrium (Orthotrichaceae Musci) taxonomy, phylogeny and phytogeography. J. Hattori Bot. Lab. 1–94 (1983) doi:10.18968/jhbl.54.0_1. 56. Buchbender, V. et al. Phylogenetic reconstructions of the Hedwigiaceae reveal cryptic speciation and hybridisation in Hedwigia. Bryophyt. Divers. Evol. 36, 1 (2014). 57. Fedosov, V. E., Fedorova, A. V., Fedosov, A. E. & Ignatov, M. S. Phylogenetic inference and peristome evolution in haplolepideous mosses, focusing on Pseudoditrichaceae and Ditrichaceae s. l . Bot. J. Linn. Soc. 181, 139–155 (2016). 58. Bonfim Santos, M. et al. Phylogenetic inferences reveal deep polyphyly of Aongstroemiaceae and Dicranellaceae within the haplolepideous mosses (Dicranidae, Bryophyta). Taxon 70, 246–262 (2021). 59. Fedosov, V. E. et al. Unity in diversity: phylogenetics and taxonomy of 33 April 28, 2023 Rhabdoweisiaceae (Dicranales, Bryophyta). Bot. J. Linn. Soc. 195, 545–567 (2021). 60. Budke, J., Jones, C. & Goffinet, B. Development of the enigmatic peristome of Timmia megapolitana (Timmiaceae; Bryophyta). Am. J. Bot. 94, 460–467 (2007). 61. Rensing, S. A., Goffinet, B., Meyberg, R., Wu, S.-Z. & Bezanilla, M. The moss Physcomitrium ( Physcomitrella ) patens : A model organism for non-seed plants. Plant Cell 32, 1361–1376 (2020). 62. Newton, A. E., Wikström, N., Bell, N., Forrest, L. L. & Ignatov, M. S. Dating the diversification of the pleurocarpous mosses. in Pleurocarpous Mosses (eds. Newton, A. E. & Tangney, R. S.) 337 (Systematics and Evolution, 2007). 63. Lloyd, G. T. et al. Dinosaurs and the Cretaceous Terrestrial Revolution. Proc. R. Soc. B Biol. Sci. 275, 2483–2490 (2008). 64. Benton, M. J., Wilf, P. & Sauquet, H. The Angiosperm Terrestrial Revolution and the origins of modern biodiversity. New Phytol. 233, 2017–2035 (2022). 65. Schuettpelz, E. & Pryer, K. M. Evidence for a Cenozoic radiation of ferns in an angiosperm-dominated canopy. Proc. Natl. Acad. Sci. 106, 11200–11205 (2009). 66. Söderström, L. et al. World checklist of hornworts and liverworts. PhytoKeys 59, 1–828 (2016). 67. Brinda, J. C. & Atwood, J. J. Bryophyte nomenclator. Catalogue of life checklist 34 April 28, 2023 (Jan 2023) (2023). doi:10.48580/dfqt-8zmp. 68. Goffinet, B. & Buck, W. R. Classification of the Bryophyta. http://bryology. uconn. edu/classification/ (2020). 69. Doyle, J. & Doyle, J. A rapid DNA isolation procedure for small quantities of fresh leaf tissue. Phytochem Bull. 19, 11–15 (1987). 70. Chang, Z. et al. Bridger: a new framework for de novo transcriptome assembly using RNA-seq data. Genome Biol. 16, 30 (2015). 71. Junier, T. & Zdobnov, E. M. The Newick utilities: high-throughput phylogenetic tree processing in the Unix shell. Bioinformatics 26, 1669–1670 (2010). 72. Larsson, A. AliView: a fast and lightweight alignment viewer and editor for large datasets. Bioinformatics 30, 3276–3278 (2014). 73. Nguyen, L.-T., Schmidt, H., von Haeseler, A. & Minh, B. Q. IQ-TREE: A Fast and Effective Stochastic Algorithm for Estimating Maximum-Likelihood Phylogenies. Mol. Biol. Evol. 32, 268–274 (2015). 74. Hoang, D. T., Chernomor, O., von Haeseler, A., Minh, B. Q. & Vinh, L. UFBoot2: Improving the Ultrafast Bootstrap Approximation. Mol. Biol. Evol. 35, 518–522 (2017). 75. Zhang, C., Rabiee, M., Sayyari, E. & Mirarab, S. ASTRAL-III: polynomial time species tree reconstruction from partially resolved gene trees. BMC Bioinformatics 19, 153 (2018). 76. Stamatakis, A. RAxML version 8: A tool for phylogenetic analysis and post35 April 28, 2023 analysis of large phylogenies. Bioinformatics 30, 1312–1313 (2014). 77. Stamatakis, A. RAxML-VI-HPC: maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models. Bioinformatics 22, 2688– 2690 (2006). 78. Sayyari, E. & Mirarab, S. Fast Coalescent-Based Computation of Local Branch Support from Quartet Frequencies. Mol. Biol. Evol. 33, 1654–1668 (2016). 79. Sayyari, E., Whitfield, J. B. & Mirarab, S. DiscoVista: Interpretable visualizations of gene tree discordance. Mol. Phylogenet. Evol. 122, 110–115 (2018). 80. Cooper, B. J. et al. Target Enrichment and Extensive Population Sampling Help Untangle the Recent, Rapid Radiation of Oenothera Sect. Calylophus. Syst. Biol. 0, 1–15 (2022). 81. Smith, S. & O’Meara, B. treePL: divergence time estimation using penalized likelihood for large phylogenies. Bioinformatics 28, 2689–2690 (2012). 82. Maurin, K. J. L. An empirical guide for producing a dated phylogeny with treePL in a maximum likelihood framework. arXiv 2008.07054 (2020) doi:10.48550/arXiv.2008.07054. 83. Miller, M., Pfeiffer, W. & Schwartz, T. The CIPRES science gateway. in Proceedings of the 2011 TeraGrid Conference: Extreme Digital Discovery 1–8 (ACM, 2011). doi:10.1145/2016741.2016785. 84. Brown, J., Walker, J. & Smith, S. Phyx: phylogenetic tools for unix. 36 April 28, 2023 Bioinformatics 33, 1886–1888 (2017). 85. Bouckaert, R. et al. Beast 2: a software platform for bayesian evolutionary analysis. PLoS Comput. Biol. 10, e1003537 (2014). 86. Rambaut, A. FigTree-version 1.4. 3, a graphical viewer of phylogenetic trees. http://tree.bio.ed.ac.uk/software/figtree/. (2017). 87. Paradis, E. & Schliep, K. ape 5.0: an environment for modern phylogenetics and evolutionary analyses in R. Bioinformatics 35, 526–528 (2019). 88. R Core Team, R. R: A language and environment for statistical computing. Foundation for Statistical Computing https://www.r-project.org/ (2020). 89. Werness, S. A. & Anderson, D. J. r8s, version 1.70 User’s Manual. at (2004). 37 April 28, 2023 Table 1: Description of novel families and orders of liverworts and mosses. MARCHANTIOPHYTA (LIVERWORTS) Lejeuneales Bechteler, A.M. Sierra, D. Bell & D.G. Long ord. nov. Leaves mostly 2-lobed, the ventral lobule forming a Lejeunea-type water sac, gynoecia with 1 archegonium and a single series of bracts and bracteoles, seta 4 cells in diameter, commonly articulate; Type: Lejeuneaceae Rostovzev, New Phytol. 9: 291. 1910; Lejeuneaceae. Frullaniales D. Bell & D.G. Long ord. nov. Leaves 3-lobed, the median lobule forming a Frullania-type water sac, underleaves bifid, gynoecia with multiple archegonia, bracts and bracteoles in 3 or 4 series, seta up to 12 cells in diameter, non-articulate; Type: Frullaniaceae Lorch in G.Lindau, Krypt.-Fl. Anf. 6: 174. 1914; Frullaniaceae. Myliales D.G. Long & D. Bell ord. nov. Leaves unlobed, branching mostly terminal, rhizoids numerous, leaves succubous, simple, gemmiferous, with reduced underleaves, dioicous, sporophyte enclosed in shoot calyptra and perianth; Type: Myliaceae Schljakov, Novosti Sist. Nizsh. Rast. 12: 308. 1975; Myliaceae. BRYOPHYTA (MOSSES) Amphidiales D. Bell & Goffinet ord. nov. Plants acrocarpous, forming dense cushions, leaves crisped when dry, capsules gymnostomous, emergent to shortly exserted; Type: Amphidiaceae M. Stech, Nova Hedwigia 86: 14, 2008; Amphidiaceae. 38 April 28, 2023 Bruchiales Goffinet ord. nov. Plants erect, acrocarpous, capsule with well-developed neck, peristome haplolepideous; Type: Bruchiaceae Schimp., Coroll. Bryol. Eur.: 6, 1856; Bruchiaceae. Distichiales D. Bell & Goffinet ord. nov. Plants acrocarpous, leaves distichous, spreading from broad sheathing base, costa excurrent, monoecious, peristome haplolepideous; Type: Distichiaceae Schimp., Syn. Musc. Eur. 135. 1860; Distichiaceae. Ditrichales D. Bell & Goffinet ord. nov. Plants erect, acrocarpous, with costate and mostly lanceolate leaves, sporangium exserted with haplolepideous peristome, or immersed and cleistocarpous. Type: Ditrichaceae Limpr., Laubm. Deutschl. 1: 482, 1887; Ditrichaceae. Erpodiales Goffinet ord. nov. Plants small, plagiotropic, leaves ecostate, cladocarpous, peristome haplolepideous; Type: Erpodiaceae Broth., Nat. Pflanzenfam. I(3): 706. 1905; Erpodiaceae. Eustichiales Goffinet ord. nov. Plants erect, leaves single costate, distichous with sheathing laminae, with lateral sporophytes and erect capsules; Type: Eustichiaceae Broth., Nat. Pflanzenfam. (ed. 2) 10: 420, 1924; Eustichiaceae. Flexitrichaceae Ignatov & Fedosov ex Goffinet fam. nov. for Flexitrichaceae Ignatov & Fedosov invalid 39 April 28, 2023 Plants acrocarpous; leaves straight to flexuose, from sheathing bases, dioecious, peristome haplolepideous; Type: Flexitrichum Ignatov & Fedosov, Bot. J. Linn. Soc. 181(2): 152. 2016; Flexitrichum. Flexitrichales D. Bell & Goffinet ord. nov. Plants acrocarpous; leaves straight to flexuose, from sheathing bases, dioecious; Type: Flexitrichaceae Ignatov & Fedosov ex D. Bell & Goffinet; Flexitrichaceae. Pleurophascales Goffinet ord. nov. Plants robust, stems plagiotropic, branches erect, leaves acostate, sporophyte exserted, capsule globose, cleistocarpous; Type: Pleurophascaceae Broth. Nat. Pflanzenfam. I(3): 774, 1906; Pleurophascaceae. Rhabdoweisiales D. Bell & Goffinet ord. nov. Plants small, erect, acrocarpous, leaves unicostate, unistratose, peristome haplolepideous; Type: Rhabdoweisiaceae Limpr. Laubm. Deutschl. 1: 271, 1886; Rhabdoweisiaceae52 and Rhachitheciaceae. Sorapillales Goffinet ord. nov. Plants monopodial, vaginant leaves distichous, complanate, sporophyte lateral, immersed, peristome haplolepideous with vestigial exostome; Type: Sorapillaceae M. Fleisch, Musci Buitenzorg 3: 847, 1908; Sorapillaceae. 40 April 28, 2023 Figure 1. Representatives of major lineages of bryophytes and examples of traits unique to hornworts, liverworts and mosses. A. Hornwort with longitudinally dehiscing sporophyte: Anthoceros neesii. B. Pyrenoid (arrowheads) of the hornwort Phaeoceros perpusillus. C. Complex thalloid liverwort: Marchantia paleacea. D. Simple thalloid liverwort: Metzgeria conjugata. E. Leafy liverwort: Leiocolea badensis. F. Liverwort sporophyte before (left) and after (right) dehiscence: Fossombronia pusilla. G. Oil bodies of Gymnocolea inflata. H. Polytrichopsida moss: Atrichopsis trichodon. I. Acrocarpous moss: Orthotrichum anomalum. J. Pleurocarpous moss: Exsertotheca intermedia. K. Nematodontous peristome of Polytrichum ohioense. L. Arthrodontous peristome of Bryum capillare. Pictures kindly shared by Štěpán Koval (A, D, E, F & I), Sahut Chantanaorrapint (B), Des Callaghan (C, J & L), Bernard Goffinet (H), Jerry Jenkins (K) and David Wagner (G). 41 April 28, 2023 CF DFP DF1 DF2 SCF 48 35 93 29 63 94 37 70 29 95 50 71 53 96 53 82 72 30 97 26 94 31 68 84 69 45 36 46 56 47 43 44 48 40 73 44 98 48 25 74 23 99 45 50 44 75 28 100 56 51 63 76 42 101 22 52 76 77 32 102 50 53 35 78 53 103 29 42 79 31 104 57 55 45 80 46 105 42 56 28 81 46 106 33 57 39 82 78 107 35 58 61 83 91 108 47 59 78 84 32 109 37 60 37 85 60 110 40 61 32 86 39 111 52 62 45 87 51 63 23 88 29 64 24 89 71 65 61 90 40 93 66 94 91 64 55 30 28 11 35 31 64 38 41 33 36 33 34 56 15 42 35 48 16 42 36 38 17 47 37 42 18 52 38 49 40 13 14 19 30 39 82 Sorapillales* Rhabdoweisiales* 61 74 76 Dicranales s. str. Amphidiales* 73 72 Eustichiales* Pleurophascales* 70 Archidiales 68 71 60 Grimmiales 69 64 67 Scouleriales 63 65 Flexitrichales* 66 62 Distichales* 56 Catoscopiales Timmiales Funariales 59 55 57 Encalyptales 58 Disceliales Gigaspermales 75 54 48 Dicranales s. lato Bryophyta Polytrichales 52 50 Tetraphidales Oedipodiales 51 Andreaeales 47 46 42 78 Diphysciales Buxbaumiales 49 Andreaeobryales Sphagnales 44 39 37 S e t a p h y t a 8 34 20 36 40 49 21 51 41 34 22 30 1 NA 23 44 2 35 24 36 25 34 26 30 27 68 28 25 Anthocerotophyta 83 Takakiales 32 12 Ditrichales* s. str. Bruchiales* Erpodiales* 85 81 79 Pottiales 86 77 53 Marchantiophyta 29 Splachnales Hedwigiales 91 84 45 47 Bryales Bartramiales 89 43 44 Rhizogoniales 96 94 87 48 9 Orthotrichales 98 88 92 Setaphyta 10 Aulacomniales Orthodontiales 97 100 95 80 54 8 104 99 102 90 49 Calomnion Hypnodendrales 103 101 Ptychomniales 107 105 92 67 44 Hypopterygiales 106 Bryophyta 42 Hypnales Hookeriales 111 109 108 110 q3 q1 q2 23 82 4 52 5 44 6 48 7 51 24 17 14 6 2 Marchantiophyta Pelliales Marchantiales 16 Sphaerocarpales 15 Neohodgsoniales Blasiales Calobryales 13 12 10 1 Porellales s. lato Radulales Porellales Ptilidiales Metzgeriales Pleuroziales Pallaviciniales 18 4 Jubulales** Frullaniales* Fossombroniales 20 9 Lejeuneales* 34 21 11 3 29 27 19 Jungermanniales s. lato Myliales* Perssoniellales** 33 32 30 28 31 22 26 40 38 36 35 25 Lepidoziales** Jungermanniales s. str. Lophoziales** 41 Dendrocerotales 7 Phymatocerotales 5 Notothyladales 3 Anthocerotales Leiosporocerotales Anthocerotophyta Figure 2. Phylogenetic inferences for 531 species from 499 genera belonging to orders from all three bryophyte groups (mosses, liverworts and hornworts) based on ASTRAL analysis of 228 single-copy nuclear genes (Supplementary Tables S1 and S3). The phylogram shows internal branch lengths relative to coalescent unites between branching events, as estimated by ASTRAL-III v.5.7.7. The nodes of interests have been numbered to illustrate quartet values from ASTRAL analyses presented as pie-charts (right) and quartet values from concordance factor values (left), while the number in the center is the site concordance factor (sCF). ASTRAL pies are divided into q1 (blue), q2 (orange) and q3 (grey) with the percentage for q1 included in the pie diagram; see Supplementary Fig. S1 and Fig. S2 for quartet values for all other nodes and local posterior probabilities. Pies for quartet values from concordance factor values: CF (topology shown) and alternative options (DF1, DF2, DFP); see Supplementary Tables S4-S6 for the concordance factors for all nodes. * marks newly proposed order and ** resurrected order. 42 April 28, 2023 A Bryanae* 100 200 500 B bryophytes 50 liverworts Mosses Bryopsida Bryidae Hypnanae C Cam Ord Sil Dev 500 Car Per 300 400 Tri Jur 200 Cre 100 Dicranidae 1 2 5 10 N 20 mosses Pal N 0 Ma Liverworts Metzgeriidae Pelliidae Jungermanniopsida Jungermanniidae Timmiidae Gigaspermidae Funariidae Diphysciidae Buxbaumiidae Polytrichopsida Andreaeopsida Sphagnopsida Takakiopsida Marchantiopsida Haplomitriopsida Hornworts Cambrian 500 Ordovician Silurian 450 Devonian 400 Carboniferous 350 300 Triassic Permian 250 Cretaceous Jurassic 200 150 100 Paleogene 50 Neo 0 Ma Figure 3. A. Divergence time estimates for bryophytes inferred by penalized likelihood using 29 fossil calibrations. The three bryophyte groups (hornworts, liverworts, mosses) are included with their major suprafamilial taxonomic ranks including classes, subclasses, orders and suborders. Black dots scattered in the tree represent calibration points (Supplementary Table S2). Detailed chronograms with mean node ages including confidence intervals are reported in three parts: liverworts and hornworts in Extended Data Figure 7-1, mosses Extended Data Figure 7-2 and Extended Data Figure 7-3. B. Lineage through time plots of all bryophytes (black line), liverworts (orange line) and mosses (green line), reflecting the slowdown in diversification in liverworts during the Late Cretaceous when 43 April 28, 2023 compared to mosses. C. Histogram of the frequency of orders and families estimated from crown age divergences of all bryophytes (hornworts, liverworts, and mosses). Kernel density plots depict the probability distribution (95% confidence interval) of crown age divergences. The green dotted line represents the average of family crown ages and orange dotted line represents the average of order crown ages. See also Extended Data Fig. 10, Supplementary Table S10 and Supplementary Fig. S9. 44 Extended data Phylogenomic 2me tree of bryophytes resolves 500 million years of diversifica2on Table of content Extended Data Figure 1. Annotated ASTRAL phylogeny of hornworts inferred from nucleo:de data, highligh:ng (supra-)ordinal rela:onships. Extended Data Figure 2. Annotated ASTRAL phylogeny of liverworts inferred from nucleo:de data, highligh:ng suprafamilial rela:onships. Extended Data Figure 3. Annotated ASTRAL phylogeny of mosses inferred from nucleo:de data, highligh:ng suprafamilial rela:onships. Extended Data Figure 4. Annotated ASTRAL phylogeny of hornworts inferred from amino acid data, highligh:ng (supra)ordinal rela:onships. Extended Data Figure 5. Annotated ASTRAL phylogeny of liverworts inferred from amino acid data, highligh:ng suprafamilial rela:onships. Extended Data Figure 6 Annotated ASTRAL phylogeny of mosses inferred from amino acid data, highligh:ng suprafamilial rela:onships. Extended Data Figure 7. Divergence :mes es:mates for bryophytes inferred by penalized likelihood using 29 fossil calibra:ons. Extended Data Figure 8. Correla:on between gene concordance factor inferred by IQ-TREE and number of genes in the nucleo:de dataset suppor:ng a node. Extended Data Figure 9. Correla:on between gene concordance factor inferred by IQ-TREE and mean divergence :mes for backbone nodes (between 130-450 Ma) inferred from the nucleo:de data. Extended Data Figure 10. Histogram of the frequency of orders and families (A) stem and (B) crown es:mated age divergences of three bryophyte phyla (Anthocerotophyta, Bryophyta, and Marchan:ophyta). Extended Data Figure 1. Annotated ASTRAL phylogeny of hornworts inferred from nucleo:de data, highligh:ng (supra-)ordinal rela:onships. Quartet values from ASTRAL analyses are presented as pie-charts (q1:blue; q2:orange; q3:grey) for selected nodes with the percentage for the first quartet (q1) included in the pie diagram; see Fig. S1 for quartet values for all other nodes. Branches with maximum local posterior probability (lpp) are represented as solid black lines; those with a lpp below 0.80 as a grey dashed line; see Fig. S2 for detailed lpp for all branches. Telaranea blepharostoma Tricholepidozia tetradactyla Lepidozia reptans Kurzia trichoclados Amazoopsis diplopoda Bazzania pearsonii Herbertus aduncus Lepidoziales** Herbertus sendtneri Triandrophyllum sp. Mastigophora woodsii Lepicolea rigida Chiloscyphus pallescens Protosyzygiella sp. Lophocolea fragrans Leptoscyphus cuneifolius Plagiochila punctata Plagiochila carringtonii Pedinophyllopsis abdita Acrochila biserialis Leiomitra elegans 60 Trichocolea tomentella Temnoma pilosum Blepharostoma trichophyllum Gymnomitrion obtusum Marsupella sprucei Nardia geoscyphus Solenostoma obovatum Saccogyna viticulosa Harpanthus scutatus Liochlaena lanceolata 47 Jungermannia pumila Mesoptychia rutheana Anthelia julacea Jungermanniales Hygrobiella laxifolia Southbya tophacea Gongylanthus ericetorum Geocalyx graveolens Calypogeia muelleriana Balantiopsis splendens Blepharidophyllum densifolium 88 Goebelobryum unguiculatum Acrobolbus wilsonii Saccogynidium vasculosum Scapania nimbosa J Scapania irrigua Douinia ovata u Diplophyllum obtusifolium n Saccobasis polita Schistochilopsis opacifolia g J 58 Tritomaria quinquedentata Lophozia excisa e U Cephaloziella hampeana Cephaloziopsis intertexta r N Chonecolea doellingeri m G Pisanoa sp. Orthocaulis attenuatus a E Sphenolobus donnianum Anastrepta orcadensis Lophoziales** n R Anastrophyllum saxicola Gymnocolea inflata n M Sphenolobopsis pearsonii i A Chandonanthus hirtellus 85 Tetralophozia setiformis i N Barbilophozia lycopodioides Biantheridion undulifolium d N Isopaches bicrenatus I Odontoschisma denudatum a Odontoschisma portoricensis 87 65 e O Fuscocephaloziopsis albescens Cephalozia bicuspidata P Syzygiella sonderi S Perdusenia sp. Pseudomarsupidium decipiens upidium decipie I Myliales* Mylia My Myl lia anomala Schistochila acuminata acuminat acumina Perssoniellales** D Microlejeunea ulicina Harpalejeunea stricta A Lejeunea adpressa Lepidolejeunea cuspidata Luteolejeunea herzogii Ceratolejeunea cubensis Colura tortifolia Cololejeunea clavatopapillata Diplasiolejeunea replicata Drepanolejeunea hamatifolia Leptolejeunea epiphylla Cheilolejeunea xanthocarpa Pictolejeunea sprucei Acanthocoleus aberrans Brachiolejeunea laxifolia 65 Neurolejeunea seminervis Symbiezidium transversale Lejeuneales* Ptychanthus striatus Spruceanthus semirepandus Dibrachiella auberiana 96 Mastigolejeunea auriculata Thysananthus repletus Frullanoides densifolia Lopholejeunea nigricans Acrolejeunea sandvicensis 49 M Archilejeunea crispistipula Achilejeunea badia e Caudalejeunea lehmaniana Bryopteris filicina 66 t 40 Marchesinia mackaii Jubulales** Jubula bogotensis z 43 Frullania tamarisci Frullaniales* g Radula retroflexa Radula voluta Radulales** e 47 Radula complanata Lepidolaena taylorii r Gackstroemia schwabei Porellales 39 Porella canariensis i Ptilidium ciliare 37 Ptilidiales i Neotrichocolea bissetii 41 94 Aneura pinguis d Riccardia multifida Metzgeriales 73 Metzgeria pubescens a 75 Pleurozia purpurea Pleuroziales Jensenia decipiens 0.87 e 76 Pallavicinia lyellii Pallaviciniales 87 Moerckia blyttii Fossombronia angulosa P Petalophyllum ralfsii 48 Fossombroniales e Makinoa crispata Pellia epiphylla l Pelliales Apopellia endiviifolia 80 Sauteria alpina 50 l Athalamia pinguis Clevea hyalina i M Peltolepis quadrata Wiesnerella denudata M i A Targionia hypophylla Cronisia fimbriata a d R Exormotheca bischleri r a C Corsinia coriandrina Riccia glauca 50 c e H Riccia fluitans Riccia crustata A h Marchantiales Oxymitra cristata N Conocephalum conicum a Monoclea forsteri n B T Dumortiera hirsuta Plagiochasma wrightii t l I Reboulia hemisphaerica Asterella tenella i a O Mannia triandra Cryptomitrium tenerum i s P Cyathodium tuberosum 81 d i S Preissia quadrata Bucegia romanica a i I Marchantia polymorpha 46 Sphaerocarpos texanus e d D Monocarpus sphaerocarpus 81 Sphaerocarpales 55 Riella parisii a A Neohodgsonia mirabilis 70 Neohodgsoniales Blasia pusilla e Blasiales Apotreubia nana Haplomitrium blumei 66 HAPLOMITRIOPSIDA q3 q1 q2 lpp = 1.00 1.00 < lpp ≥ 0.80 lpp < 0.80 87 3.0 Extended Data Figure 2. Annotated ASTRAL phylogeny of liverworts inferred from nucleo:de data, highligh:ng suprafamilial rela:onships. Quartet values from ASTRAL analyses are presented as pie-charts (q1:blue; q2:orange; q3:grey) for selected nodes with the percentage for the first quartet (q1) included in the pie diagram; see Fig. S1 for quartet values for all other nodes. Branches with maximum local posterior probability (lpp) are represented as solid black lines; those with a lpp between 0.8 and 1.0 as a solid grey line and those with a lpp below 0.80 as a grey dashed line; see Fig. S2 for detailed lpp for all branches. Asterisk marks novel order, and double Asterisk resurrected order. 40 q3 q1 q2 lpp = 1.00 1.00 < lpp ≥ 0.80 lpp < 0.80 49 35 41 56 35 35 34 36 85 Homalothecium sericeum Brachytheciastrum velutinum Eurhynchiastrum pulchellum Brachythecium rivulare Myuroclada maximowiczii Sciuro-hypnum plumosum Kindbergia praelonga Rhynchostegiella tenella Helicodontium capillare Cirriphyllum piliferum Microeurhynchium pumilum Oxyrrhynchium hians Squamidium brasiliense Palamocladium leskeoides Pseudoscleropodium purum Rhynchostegium riparioides Rhynchostegium confertum Eurhynchium striatum Scorpiurium circinatum Claopodium whippleanum Floribundaria flaccida Meteoriopsis squarrosa Pseudospiridentopsis horrida Aerobryopsis longissima Aerobryidium subpiligerum Pseudobarbella attenuata Toloxis imponderosa Meteorium polytrichum Papillaria crocea Hyocomium armoricum Ctenidium molluscum Myurium hochstetteri Exsertotheca crispa Leptodon smithii Alleniella complanata Neckera pennata Porothamnium fasciculatum Echinodiopsis hispida Porotrichodendron superbum Homalia trichomanoides Pseudanomodon attenuatus Taiwanobryum crenulatum Shevockia inunctocarpa Pinnatella minuta Neckeropsis disticha Homaliodendron flabellatum Lembophyllum divulsum Isothecium myosuroides Nogopterium gracile Heterocladium heteropterum Orthostichella pachycastrella Limbella tricostata Anomodon longifolius Callicladium imponens Hypnum cupressiforme Isopterygium albescens Isocladiella surcularis Taxithelium nepalense Trachyphyllum inflexum Platygyrium repens Hageniella micans Sematophyllum demissum Donnellia commutata Macrohymenium muelleri Piloecium pseudorufescens Trismegistia calderensis Clastobryum cuculligerum Lescuraea incurvata 36 Lescuraea patens Lescuraea plicata Schwetschkeopsis fabronia Conardia compacta Hylocomium splendens Loeskeobryum brevirostre 33 Pleurozium schreberi Hypnales Hylocomiastrum pyrenaicum Rhytidiadelphus squarrosus Pleuroziopsis ruthenica Climacium dendroides Antitrichia curtipendula Sarmentypnum exannulatum Warnstorfia fluitans Straminergon stramineum Calliergon cordifolium Leskea polycarpa Haplocladium microphyllum Rauiella scita Abietinella abietina Pelekium chenagonii Thuidium tamariscinum Ptilium crista-castrensis Pseudoleskeella catenulata Rhytidium rugosum Lindbergia patentifolia Entodon schleicheri Homomallium incurvatum Pylaisia polyantha Buckia vaucheri 48 Ectropothecium perrotii Vesicularia galerulata Pseudostereodon procerrimus Elmeriobryum philippinense Gollania turgens Chryso-hypnum elegantulum Calliergonella cuspidata Breidleria pratensis Palustriella commutata Cratoneuron curvicaule Kandaea elodes Amblystegium serpens Hygroamblystegium tenax Vittia pachyloma Cratoneuropsis chilensis 38 Drepanocladus aduncus 39 Pseudocalliergon trifarium Serpoleskea confervoides Pseudoamblystegium subtile Hygrohypnum luridum Campylium stellatum Campylophyllum calcareum Leptodictyum riparium Tomentypnum nitens Sanionia uncinata Scorpidium scorpioides 41 34 Hamatocaulis vernicosus Herpetineuron toccoae Phyllodon truncatulus Henicodium geniculatum Orthostichopsis tortipilis Phyllogonium viscosum Pterobryopsis orientalis 35 Leucodon sciuroides Cryphaea heteromalla Pterigynandrum filiforme Orthothecium rufescens Myurella julacea Platydictya jungermannioides Dichelyma capillaceum Fontinalis antipyretica 55 Habrodon perpusillus Rectithecium piliferum Plagiothecium denticulatum 44 Isopterygiopsis muelleriana Herzogiella striatella Pseudotaxiphyllum elegans Pilosium chlorophyllum 36 Stereophyllum leucostegum 37 Entodontopsis nitens Ischyrodon lepturus Fabronia pusilla Acrocladium auriculatum Lepyrodon lagurus Catagonium nitens 56 Rutenbergia madagassa Neorutenbergia usagarae Pseudocryphaea domingensis Benitotania elimbata 39 Adelothecium bogotense Bryobrothera crenulata Daltonia splachnoides Hookeriales Cyclodictyon laetevirens 73 Lepidopilidium nitens 85 Leucomium lignicola 50 Hookeria lucens Hypopterygium didictyon Hypopterygiales Ptychomnion aciculare 47 Garovaglia elegans Ptychomniales Cladomniopsis crenato-obtusa Orthorrhynchium elegans 52 Calomnion schistostegiellum 31 Franciella spiridentoides 50 Bescherellia elegantissima Hypnodendron comosum Hypnodendrales Pterobryella vieillardii 38 Racopilum tomentosum 74 Racopilum cuspidigerum Aulacomnium heterostichum Aulacomniales Aulacomnium androgynum Hymenodontopsis mnioides 42 Leptotheca gaudichaudii Orthodontiales Orthodontium lineare 45 Pulvigera lyellii Pulvigera lyellii Plenogemma phyllantha 45 Lewinskya striata Orthotrichales Nyholmiella obtusifolia Orthotrichum anomalum Zygodon rupestris Zygodon conoideus 68 Macromitrium saddleanum 80 Macrocoma abyssinica Leratia obtusifolia Pyrrhobryum medium Rhizogoniales Goniobryum subbasilare 50 Mnium thomsonii Mnium lycopodioides Rhizomnium punctatum Pseudobryum cinclidioides Plagiomnium undulatum Cinclidium stygium 67 Plagiomnium cuspidatum Mielichoferia elongata Pohlia elongata Pohlia cruda Roellobryon roellii Phyllodrepanium falcifolium Bryales Mniomalia viridis Plagiobryum zieri Ptychostomum pseudotriquetrum Gemmabryum vinosum Imbribryum alpinum 70 Bryum argenteum 37 Anomobryum julaceum Brachymenium nepalense Rosulabryum perlimbatum Leptostomopsis systylia Rhodobryum roseum Rhodobryum ontariense Leptostomum menziesii 47 Conostomum tetragonum Breutelia integrefolia Philonotis fontana Bartramiales Bartramia pomiformis Bartramia ithyphylla 66 Helicophyllum torquatum Amblyodon dealbatus Meesia triquetra Paludella squarrosa Tayloria dubyi Splachnales Splachnum vasculosum Tetraplodon mnioides Leptobryum pyriforme 96 Neomeesia paludella Pararhacocarpus patagonicus Rhacocarpus purpurascens Hedwigiales Braunia imberbis 94 Hedwigia ciliata Willia austroleucophaea H y p n a n a e = p l e u r o c a r p o u s m o s s e s B r y i d a e B r y a n a e B r y o p s i d a B R Y O P H Y T I N A 67 34 75 43 73 44 62 98 Willia austroleucophaea Sagenotortula quitoensis Syntrichia ruralis Streptopogon erythrodontus Calyptopogon mnioides Hennediella macrophylla Tortula truncata Dolotortula mniifolia Chenia leptophylla Acaulon muticum Microbryum davallianum Aloina aloides Cinclidotus fontinaloides Dialytrichia saxicola Barbula unguiculata Bryoerythrophyllum recurvirostrum Pottiales Saitobryum lorentzii Didymodon rigidulus Leptodontium flexifolium Weissia controversa Trichostomum brachydontium Chionoloma hibernicum Tortella fragilis Ephemerum serratum Eucladium verticillatum Molendoa warburgii Anoectangium aestivum Gymnostomum calcareum Gyroweisia tenuis Hyophila apiculata 68 53 Streblotrichum convolutum Scopelophila cataractae Pseudephemerum nitidum Pleuridium subulatum Ditrichum subulatum Ditrichales* 50 Ditrichum cornubicum Ceratodon purpureus Trichodon cylindricus 45 Trematodon longicollis Bruchiales* Bruchia brevifolia Erpodium domingense Erpodiales* Venturiella coronata 50 Sorapilla papuana Sorapillales* Kiaeria starkei Cynodontium tenellum 46 Rhabdoweisiales* Glyphomitrium daviesii Oncophorus virens Dicranoweisia cirrata Rhabdoweisia fugax Rhachithecium perpusillum Platyneuron praealtum Chorisodontium aciphyllum Dicranum scoparium Dicranum flagellare 53 Holomitrium seticalycinum Dicranales Dicranales Dicranoloma billarderi Leucoloma molle sensu stricto sensu lato Syrrhopodon ligulatus 47 Calymperes lonchophyllum Octoblepharum albidum Fissidens exilis 44 Fissidens bryoides Dicranella heteromalla 35 Aongstroemia longipes 46 Dichodontium pellucidum Amphidiales* Amphidium mougeotii Eustichiales* Eustichia longirostris Pleurophascum globosum 46 Dicranodontium denudatum Atractylocarpus subporodictyon 43 Leucobrym glaucu m Campylopus flexuosus Archidiales Archidium alternifolium Micromitrium tenerum 70 Bucklandiella heterosticha Codriophorus acicularis Niphotrichum canescens 77 Grimmia anomala Dryptodon trichophyllus Schistidium maritimum Coscinodon cribrosus 41 Grimmiales Ptychomitrium polyphyllum Brachydontium trichodes 59 Campylostelium saxicola Blindiadelphus recurvatus 82 41 Blindia acuta Seligeria pusilla Holodontium strictum Scouleriales Hymenoloma crispulum Flexitrichum gracile Flexitrichales* 43 Flexitrichum flexicaule 65 Distichium capillaceum Distichales* 80 Catoscopium nigritum Catoscopiales Timmia norvegica Physcomitrium patens Physcomitrium pyriforme Funariales Entosthodon attenuatus 100 Funaria hygrometrica 68 Encalyptales Encalypta ciliata 53 Discelium nudum Disceliales 69 Gigaspermum mouretii Diphyscium foliosum Buxbaumia aphylla Pogonatum aloides Polytrichales Polytrichum commune Oligotrichum hercynicum Atrichum undulatum Dendroligotrichum squamosum Notoligotrichum trichodon 100 Dawsonia beccarii Tetraphis pellucida Tetraphidales 89 Tetrodontium brownianum Oedipodiales Oedipodium griffithianum Andreaea wilsonii Andreaea wilsonii Andreaea rupestris Andreaea rothii Andreaeobryum macrosporum Sphagnum strictum Sphagnum girgensohnii Sphagnum palustre Sphagnum cuspidatum Sphagnum falcatulum 99 Eosphagum inretortum D i c r a n i d a e Timmiidae Funariidae Gigaspermidae Diphysciidae Buxbaumiidae Polytrichopsida ANDREAEOPHYTINA SPHAGNOPHYTINA 85 Takakia lepidozioides TAKAKIOPHYTINA Extended Data Figure 3. Annotated ASTRAL phylogeny of mosses inferred from nucleo:de data, highligh:ng suprafamilial rela:onships. Quartet values from ASTRAL analyses are presented as pie-charts (q1:blue; q2:orange; q3:grey) for selected nodes with the percentage for the first quartet (q1) included in the pie diagram; see Fig. S1 for quartet values for all other nodes. Branches with maximum local posterior probability (lpp) are represented as solid black lines; those with a lpp between 0.8 and 1.0 as a solid grey line and those with a lpp below 0.80 as a grey dashed line; see Fig. S2 for detailed lpp for all branches. Asterisks mark novel orders. 95/2/3 lpp = 1.00 lpp < 0.80 Dendroceros aff. crispus 46/22/32 53/21/26 73/10/18 61/19/20 Megaceros austronesophilus Nothoceros endiviifolius Phaeomegaceros fimbriatus Phymatoceros sp. 78/12/10 Dendroceros tubercularis Dendrocerotales Phymatocerotales D E N D R O C E R O T I D A E Notothylas levieri q: 35/29/36 lpp: 33/12/55 94/2/4 Phaeoceros himalayensis 67/19/14 70/22/7 96/2/2 Phaeoceros engelii Folioceros fuciformis Anthoceros punctatus Leiosporoceros dussii NOTOTHYLATIDAE Notothyladales A N T H O C E R O T O P S I D A ANTHOCEROTIDAE Anthocerotales LEIOSPOROCEROTOPSIDA Leiosporocerotales Extended Data Figure 4. Annotated ASTRAL phylogeny of hornworts inferred from amino acid data, highligh:ng (supra)ordinal rela:onships. Quartet values for the three possible topologies are presented as percentages near the node. Branches with maximum local posterior probability (lpp) are represented as solid black lines; those with a lpp below 0.80 as a grey dashed line; see Fig. S7 for detailed lpp for all branches. 41/27/32 Telaranea blepharostoma 51/25/24 Lepidozia reptans Tricholepidozia tetradactyla Kurzia trichoclados Amazoopsis diplopoda 40/31/29 Herbertus aduncus 80/8/11 44/33/23 Herbertus sendtneri 60/21/18 Triandrophyllum sp. 36/33/31 Mastigophora woodsii 38/33/29 Lepicolea rigida Temnoma pilosum Leiomitra elegans 68/15/18 Trichocolea tomentella 34/37/28 41/30/29 Pedinophyllopsis abdita 64/18/18 41/29/31 Acrochila biserialis 46/28/26 53/24/23 Plagiochila punctata 60/18/22 Plagiochila carringtonii Leptoscyphus cuneifolius 54/24/22 Lophocolea fragrans 67/19/15 Protosyzygiella sp. 40/24/36 Chiloscyphus pallescens Blepharostoma trichophyllum 46/32/22 Balantiopsis splendens Blepharidophyllum densifolium Calypogeia muelleriana 34/34/31 39/29/32 Geocalyx graveolens Southbya tophacea 60/18/21 41/24/35 Gongylanthus ericetorum 50/25/25 65/12/23 Anthelia julacea Hygrobiella laxifolia Mesoptychia rutheana 49/22/28 Liochlaena lanceolata 40/34/26 59/18/23 Jungermannia pumila 38/33/29 45/31/24 Harpanthus scutatus 37/33/30 Saccogyna viticulosa Solenostoma obovatum 36/31/33 Marsupella sprucei 48/33/19 Nardia geoscyphus 37/33/30 46/29/25 Gymnomitrion obtusum Acrobolbus wilsonii 52/26/23 Saccogynidium vasculosum 36/32/32 Goebelobryum unguiculatum Bazzania pearsonii 61/21/19 Fuscocephaloziopsis albescens Cephalozia bicuspidata 57/20/23 42/31/27 65/19/15 lpp = 1.00 1.00 < lpp ≥ 800 lpp < 800 37/32/32 1 q: 39/26/35 lpp: 84/2/13 2 q: 48/37/015 lpp: 92/7/0.01 66/17/17 2 48/37/15 Lepidoziales** Jungermanniales Odontoschisma denudatum Odontoschisma portoricensis Cephaloziopsis intertexta Cephaloziella hampeana 41/37/23 Chonecolea doellingeri 88/5/6 77/16/7 47/41/11 Pisanoa sp. Lophozia excisa Tritomaria quinquedentata Schistochilopsis opacifolia 40/26/34 Saccobasis polita 36/35/29 Diplophyllum obtusifolium 37/28/35 Douinia ovata 50/28/23 46/24/30 Scapania irrigua 42/26/31 44/34/22 Scapania nimbosa Isopaches bicrenatus Biantheridion undulifolium Barbilophozia lycopodioides 46/31/22 35/33/33 Tetralophozia setiformis 44/27/29 Sphenolobopsis pearsonii 39/27/34 49/28/23 Chandonanthus hirtellus 40/27/33 Orthocaulis attenuatus 35/31/34 Gymnocolea inflata Anastrepta orcadensis 36/35/30 Anastrophyllum donnianum 36/35/29 37/33/30 Sphenolobus saxicola Pseudomarsupidium decipiens Syzygiella sonderi 76/10/14 Perdusenia sp. 40/27/32 61/23/16 43/30/27 57/26/17 40/23/37 36/35/29 1 52/23/25 Mylia anomala Schistochila acuminata Ptilidium ciliare 75/14/11 Neotrichocolea bissetii Microlejeunea ulicina Lejeunea adpressa Harpalejeunea stricta Lepidolejeunea cuspidata 53/28/19 Luteolejeunea herzogii her ogii herz 37/38/25 Ceratolejeunea cubensis Leptolejeunea epiphylla 47/32/21 39/30/30 Diplasiolejeunea replicata Drepanolejeunea hamatifolia hamatifol f fol ia 45/25/29 Colura tortifolia tortifol f ia fol 39/29/32 47/21/32 48/33/19 Cololejeunea clavatopapillata Cheilolejeunea xanthocarpa xanthocarp hocar a hocarp Pictolejeunea Pictolej e eunea sprucei ej Acanthocoleus aberrans 84/7/8 40/26/34 laxifolia Brachiolejeunea laxifol f ia fol 37/30/33 Neurolejeunea seminervis seminervi vs vi Symbiezidium transversale transvers ver ale vers 39/25/35 Ptychanthus Pty t chanthus striatus ty 45/29/26 Spruceanthus semirepandus 49/24/27 Dibrachiella auberiana Mastigolejeunea auriculata 41/32/26 T sananthus repletus Thy 47/28/25 Thysananthus 38/24/38 47/30/22 Acrolejeunea sandvicensis 36/29/36 Frullanoides densifolia densifol f ia fol 63/12/25 Lopholejeunea nigricans 38/34/28 Marchesinia mackaii Bryopteris Bry r opteri ry r s filicina ri f icina fil 38/32/29 Caudalejeunea lehmaniana 55/24/22 75/11/14 Archilejeunea crispistipula Achilejeunea chilejeunea badia Lophoziales** J u n g e J r U N m G a E n R n M i A i N d N a OI e P S I D A Myliales* Perssoniellales** Ptilidiales 37/30/32 46/29/25 39/24/37 43/25/33 40/30/30 83/9/8 43/27/30 42/25/33 54/26/20 32/ 32/ 36 Jubula bogotensis Frullania tamarisci 90/7/3 43/24/33 69/19/12 75/14/11 44/26/31 57/23/20 60/21/19 64/14/22 Radula retroflexa r tro re r fle ro f xa Radula complanata Radula voluta Gackstroemia schwabei Lepidolaena taylorii taylor ylori ylor lori i 37/31/32 Porella canariensis Pleurozia purpurea Metzgeria pubescens 54/21/25 Riccardia multifida 43/23/34 Aneura pinguis Pellia epiphylla Apopellia endiviifolia Moerckia blyttii 38/33/29 39/28/33 36/32/32 Jubulales** Frullaniales* Radulales** Porellales Pleuroziales Metzgeriales Pelliales Jensenia decipiens Pallavicinia lyellii 81/10/9 Lejeuneales* Makinoa crispata Fossombronia angulosa Petalophyllum ralfsii Pallaviciniales Fossombroniales 45/27/28 Cryptomitrium tenerum Mannia triandra 58/23/19 Asterella tenella 45/28/26 49/23/28 Plagiochasma wrightii Reboulia hemisphaerica 45/32/23 Corsinia coriandrina 92/3/5 Cronisia fimbriata Exormotheca bischleri 56/24/20 Oxymitra cristata 53/23/24 Riccia crustata 58/17/25 40/35/25 Riccia glauca 38/32/29 Riccia fluitans Dumortiera hirsuta 35/32/33 57/19/24 Wiesnerella denudata Targionia hypophylla 39/34/27 44/28/28 Clevea hyalina 37/35/27 Peltolepis quadrata 57/20/24 65/19/16 Sauteria alpina 37/30/33 Athalamia pinguis Conocephalum conicum 40/27/33 Monoclea forsteri Cyathodium tuberosum Marchantia polymorpha 84/6/9 Preissia quadrata Bucegia romanica 62/21/17 41/21/38 54/33/13 84/11/5 56/16/28 64/16/20 62/19/19 Neohodgsonia mirabilis Riella parisii 37/31/32 Sphaerocarpos texanus 37/35/29 46/27/27 Monocarpus sphaerocarpus Blasia pusilla Apotreubia nana Haplomitrium blumei 64/13/24 51/21/28 Marchantiales M e t z g e r i i d a e P e l l i i d M Ma A a e R C r H c A h N a n B TI t l O i a P i s S d i I a i D e d A a e Neohodgsoniales Sphaerocarpales Blasiales HAPLOMITRIOPSIDA Extended Data Figure 5. Annotated ASTRAL phylogeny of liverworts inferred from amino acid data, highligh:ng suprafamilial rela:onships. Quartet values for the three possible topologies are presented as percentages near the node. Branches with maximum local posterior probability (lpp) are represented as solid black lines; those with a lpp between 0.8 and 1.0 as a solid grey line and those with a lpp below 0.80 as a grey dashed line; see Fig. S7 for detailed lpp for all branches. Asterisk marks novel order, and double Asterisk resurrected order. Sanionia uncinata Scorpidium scorpioides Hamatocaulis vernicosus Tomentypnum nitens Hygroamblystegium tenax Amblystegium serpens Kandaea elodes Palustriella commutata Cratoneuron curvicaule Leptodictyum riparium Drepanocladus aduncus Pseudocalliergon trifarium 35/34/30 Vittia pachyloma Cratoneuropsis chilensis Campylium stellatum Campylophyllum calcareum Hygrohypnum luridum Pseudoamblystegium subtile Serpoleskea confervoides Lindbergia patentifolia Breidleria pratensis Chryso-hypnum elegantulum 35/34/31 Elmeriobryum philippinense Gollania turgens Ectropothecium perrotii Vesicularia galerulata Calliergonella cuspidata 36/32/33 Buckia vaucheri Pseudostereodon procerrimus Homomallium incurvatum Pylaisia polyantha Entodon schleicheri Ptilium crista-castrensis Pseudoleskeella catenulata Rhytidium rugosum Pelekium chenagonii Thuidium tamariscinum Rauiella scita 35/34/31 Abietinella abietina Leskea polycarpa Haplocladium microphyllum Herpetineuron toccoae Calliergon cordifolium Straminergon stramineum Sarmentypnum exannulatum Warnstorfia fluitans Conardia compacta Callicladium imponens Hypnum cupressiforme Schwetschkeopsis fabronia Anomodon longifolius Lescuraea plicata Lescuraea incurvata Lescuraea patens Porotrichodendron superbum Nogopterium gracile Lembophyllum divulsum 35/32/33 Isothecium myosuroides Heterocladium heteropterum Orthostichella pachycastrella Limbella tricostata Neckeropsis disticha Homaliodendron flabellatum Shevockia inunctocarpa Taiwanobryum crenulatum Pinnatella minuta Porothamnium fasciculatum Echinodiopsis hispida Homalia trichomanoides Pseudanomodon attenuatus Neckera pennata Leptodon smithii Alleniella complanata Exsertotheca crispa Pleuroziopsis ruthenica Climacium dendroides 34/32/34 Rhytidiadelphus squarrosus Antitrichia curtipendula Pleurozium schreberi Hylocomiastrum pyrenaicum Loeskeobryum brevirostre Hylocomium splendens Myurium hochstetteri Hyocomium armoricum Ctenidium molluscum Claopodium whippleanum 35/31/34 Papillaria crocea Meteorium polytrichum Toloxis imponderosa Pseudobarbella attenuata 40/29/30 Aerobryopsis longissima Aerobryidium subpiligerum Pseudospiridentopsis horrida Floribundaria flaccida Meteoriopsis squarrosa 39/30/32 Sciuro-hypnum plumosum Kindbergia praelonga Brachythecium rivulare 38/31/31 Myuroclada maximowiczii Brachytheciastrum velutinum Eurhynchiastrum pulchellum Homalothecium sericeum 39/33/29 Squamidium brasiliense Oxyrrhynchium hians Microeurhynchium pumilum Cirriphyllum piliferum Rhynchostegiella tenella Helicodontium capillare Scorpiurium circinatum Palamocladium leskeoides Eurhynchium striatum Pseudoscleropodium purum 36/36/28 Rhynchostegium riparioides Rhynchostegium confertum Clastobryum cuculligerum Trismegistia calderensis Piloecium pseudorufescens Donnellia commutata Macrohymenium muelleri 51/26/23 Sematophyllum demissum Platygyrium repens 36/31/33 Hageniella micans Trachyphyllum inflexum Taxithelium nepalense Isopterygium albescens Isocladiella surcularis Phyllodon truncatulus Leucodon sciuroides Pterigynandrum filiforme 34/34/33 Cryphaea heteromalla Pterobryopsis orientalis Phyllogonium viscosum Henicodium geniculatum Orthostichopsis tortipilis Platydictya jungermannioides Orthothecium rufescens 41/27/32 Myurella julacea Pseudotaxiphyllum elegans Isopterygiopsis muelleriana Herzogiella striatella 34/33/33 Rectithecium piliferum Plagiothecium denticulatum Habrodon perpusillus Dichelyma capillaceum 38/32/30 57/17/25 Fontinalis antipyretica Catagonium nitens Acrocladium auriculatum Lepyrodon lagurus Ischyrodon lepturus 41/33/26 Fabronia pusilla Entodontopsis nitens Pilosium chlorophyllum Stereophyllum leucostegum Neorutenbergia usagarae 40/30/30 Rutenbergia madagassa 47/36/17 Pseudocryphaea domingensis Hookeria lucens Leucomium lignicola Cyclodictyon laetevirens 47/29/24 Lepidopilidium nitens 47/28/25 Daltonia splachnoides Bryobrothera crenulata 44/27/29 Benitotania elimbata Adelothecium bogotense Hypopterygium didictyon Orthorrhynchium elegans 84/6/10 Cladomniopsis crenato-obtusa 33/33/34 41/29/31 Ptychomnion aciculare Garovaglia elegans Racopilum tomentosum Racopilum cuspidigerum 38/31/31 46/30/24 Pterobryella vieillardii Hypnodendron comosum Franciella spiridentoides 35/32/33 Bescherellia elegantissima Hymenodontopsis mnioides q: 28/31/42 Calomnion schistostegiellum lpp: 3/4/93 Pyrrhobryum medium 44/29/27 Aulacomnium heterostichum Aulacomnium androgynum 38/31/31 Goniobryum subbasilare Orthodontium lineare 38/36/26 Leptotheca gaudichaudii Leratia obtusifolia 35/32/34 Macromitrium saddleanum Macrocoma abyssinica 50/25/25 Zygodon rupestris Zygodon conoideus Orthotrichum anomalum Nyholmiella obtusifolia 40/27/33 Lewinskya striata Plenogemma phyllantha Pulvigera lyellii Pulvigera lyellii Rhodobryum roseum Rhodobryum ontariense 82/10/8 Leptostomopsis systylia Rosulabryum perlimbatum Brachymenium nepalense 59/16/25 Gemmabryum vinosum Plagiobryum zieri Ptychostomum pseudotriquetrum Anomobryum julaceum 42/31/27 Imbribryum alpinum Bryum argenteum 36/27/37 Leptostomum menziesii 89/4/7 Phyllodrepanium falcifolium Mniomalia viridis 39/30/31 Roellobryon roellii Pohlia cruda 49/28/24 Mielichoferia elongata 59/22/19 Pohlia elongata Rhizomnium punctatum Plagiomnium cuspidatum Plagiomnium undulatum Cinclidium stygium Pseudobryum cinclidioides Mnium thomsonii Mnium lycopodioides 57/18/25 Helicophyllum torquatum 55/21/24 Bartramia pomiformis Bartramia ithyphylla Conostomum tetragonum 37/34/29 Breutelia integrefolia Philonotis fontana Tetraplodon mnioides Tayloria dubyi 43/32/25 Splachnum vasculosum Amblyodon dealbatus 48/39/12 Paludella squarrosa Leptobryum pyriforme 78/12/10 Meesia triquetra Neomeesia paludella Pararhacocarpus patagonicus 37/32/30 74/13/14 Rhacocarpus purpurascens Braunia imberbis Hedwigia ciliata 34/33/34 43/26/31 lpp = 1.00 1.00 < lpp ≥ 800 lpp < 800 1 1 H y p n a n a e = p l e u r o c a r p o u s Hypnales m o s s e s B r y i d a e Hookeriales Hypopterygiales Ptychomniales Hypnodendrales Rhizogoniales Aulacomniales Rhizogoniales Orthodontiales Orthotrichales Bryales Bartramiales Splachnales Hedwigiales Willia austroleucophaea B r y a n a e B r y o p s i d a B R Y O P H Y T I N A Hedwigia ciliata Willia austroleucophaea Syntrichia ruralis Sagenotortula quitoensis Streptopogon erythrodontus Tortula truncata Hennediella macrophylla Chenia leptophylla Acaulon muticum Calyptopogon mnioides Microbryum davallianum Dolotortula mniifolia Dialytrichia saxicola Cinclidotus fontinaloides Barbula unguiculata Bryoerythrophyllum recurvirostrum Saitobryum lorentzii Pottiales Aloina aloides Didymodon rigidulus Leptodontium flexifolium Eucladium verticillatum Ephemerum serratum Chionoloma hibernicum 61/21/18 Tortella fragilis Weissia controversa Trichostomum brachydontium Gyroweisia tenuis Gymnostomum calcareum 40/31/29 Molendoa warburgii Anoectangium aestivum Hyophila apiculata 36/26/38 Streblotrichum convolutum Scopelophila cataractae 53/27/20 Ceratodon purpureus 30/35/35 Trichodon cylindricus Ditrichum cornubicum Ditrichales* Ditrichum subulatum 36/30/33 Pseudephemerum nitidum 30/45/25 41/28/31 Pleuridium subulatum Sorapilla papuana Sorapillales* 75/12/13 Trematodon longicollis Bruchiales* Bruchia brevifolia 30/38/32 Rhachithecium perpusillum Dicranoweisia cirrata Rhabdoweisiales* Rhabdoweisia fugax 45/32/23 38/28/34 Kiaeria starkei Cynodontium tenellum Glyphomitrium daviesii Oncophorus virens Erpodium domingense Erpodales* Venturiella coronata Dicranum scoparium Dicranum flagellare Platyneuron praealtum 40/29/31 Holomitrium seticalycinum Dicranoloma billarderi Chorisodontium aciphyllum Dicranales Dicranales Leucoloma molle sensu stricto sensu lato Octoblepharum albidum Syrrhopodon ligulatus 34/34/32 34/32/33 Calymperes lonchophyllum 37/34/28 Dicranella heteromalla Fissidens exilis Fissidens bryoides 41/23/35 37/30/33 Aongstroemia longipes Dichodontium pellucidum 37/32/31 Amphidium mougeotii Amphidiales* Eustichia longirostris Eustichiales* Dicranodontium denudatum Atractylocarpus subporodictyon Leucobrym glaucum Archidiales Campylopus flexuosus 53/24/24 Archidium alternifolium Micromitrium tenerum 44/35/22 Niphotrichum canescens Bucklandiella heterosticha Codriophorus acicularis Grimmia anomala Dryptodon trichophyllus Schistidium maritimum 46/23/31 Coscinodon cribrosus 43/39/19 Ptychomitrium polyphyllum Grimmiales Brachydontium trichodes Campylostelium saxicola Seligeria pusilla 53/21/25 Blindia acuta Blindiadelphus recurvatus Pleurophascum globosum Pleurophascales* Distichium capillaceum Distichiales* Catoscopium nigritum Catoscopiales Flexitrichum gracile 60/15/25 38/32/30 Flexitrichales* Flexitrichum flexicaule 35/34/30 Holodontium strictum 38/30/31 Scouleriales Hymenoloma crispulum Timmia norvegica Encalyptales Encalypta ciliata 48/22/30 50/26/23 Discelium nudum Disceliales Funaria hygrometrica 47/23/30 90/5/5 Entosthodon attenuatus Funariales 51/20/29 Physcomitrium pyriforme q: 45/27/28 Physcomitrium patens Gigaspermum mouretii lpp: 100/0/0 Diphyscium foliosum Buxbaumia aphylla Pogonatum aloides 58/16/26 Polytrichales Polytrichum commune Oligotrichum hercynicum Atrichum undulatum Dendroligotrichum squamosum 90/5/5 Notoligotrichum trichodon Dawsonia beccarii 65/12/23 70/14/16 Tetraphis pellucida Tetraphidales Tetrodontium brownianum Oedipodiales 37/30/33 Oedipodium griffithianum 84/6/10 Andreaea wilsonii 51/15/34 Andreaea wilsonii 82/15/4 Andreaea rupestris 49/27/23 44/20/36 Andreaea rothii Andreaeobryum macrosporum Sphagnum strictum Sphagnum girgensohnii 75/11/14 Sphagnum palustre 69/21/10 Sphagnum cuspidatum 97/2/1 Sphagnum falcatulum Eosphagum inretortum Takakia lepidozioides D i c r a n i d a e Timmiidae Funariidae Gigaspermidae Diphysciidae Buxbaumiidae 2 2 Polytrichopsida ANDREAEOPHYTINA SPHAGNOPHYTINA T TAKAKIOPHYTINA Extended Data Figure 6 Annotated ASTRAL phylogeny of mosses inferred from amino acid data, highligh:ng suprafamilial rela:onships. Quartet values for the three possible topologies are presented as percentages near selected nodes; see Fig. S6 for quartet values for all other branches. Branches with maximum local posterior probability (lpp) are represented as solid black lines; those with a lpp between 0.8 and 1.0 as a solid grey line and those with a lpp below 0.80 as a grey dashed line; see Fig. S7 for detailed lpp for all branches. Asterisks mark novel orders. 15,39 61] Sphagnum palustre ED Fig. 7A 93 [89-98] 103 [99-108] 121 [115-128] 166 [160-173] 54 [51-56] 57 [54-60] 17 [15-19] 74 [67-80] 92 [85-99] 155 [147-162] mosses 53 [51-56] 64 [61-66] 189 [184-194] ED Fig. 7B H 124 [122-126] 199 [194-205] 86 [83-88] 178 [175-183] 43 [41-45] 49 [47-51] 103 [100-108] 184 [178-190] 62 [57-67] 68 [63-73] 76 [71-82] 103 [98-108] 219 [213-225] 100 [94-105] 106 [101-112] 80 [76-85] 87 [83-92] 63 [59-66] 115 [110-121] 126 [120-132] 67 [63-70] G 152 [144-159] 119 [113-124] 160 [153-168] 123 [116-131] 110 [103-117] 101 [93-107] I 44 [41-46] 48 [44-51] 59 [53-65] 61 [54-67] 64 [57-70] 67 [59-73] 231 [225-238] 109 [102-116] 49 [45-52] F 105 [98-112] E 116 [108-123] 40 [29-40] 44 [37-52] 254 [250-259] 181 [173-190] D 23 [21-25] 119 [111-126] 75 [70-81] 38 [34-41] 131 [123-139] 486 [485-487] 30 [24-36] 38 [40-59] 49 [31-46] 5 1 [42-61] 75 [66-84] 147 [139-155] 35 [29-41] 3 4 [35-46] 64 [46-85] M 94 [68-125] 103 [74-136] 58 [40-80] 108 [79-142] 68 [49-90] 86 [63-115] 98 [71-129] 116 [85-152] 121 [90-158] 126 [95-164] 143 [110-181] 146 [113-184] 26 [20-34] C 131 [101-166] O 60 [48-75] 75 [60-92] 90 [72-110] 97 [77-118] 27 [21-34] 149 [116-188] P 122 [96-151] 262 [239-288] 14 [10-19] 72 [56-90] 125 [99-155] 284 [265-307] 364 [360-369] 115 [89-144] 313 [298-329] 117 [107-128] 131 [121-144] 324 [310-338] 329 [317-342] 339 [330-349] 374 [371-376] J 190 [181-199] 225 [217-235] 289 [280-298] B N 107 [102-111] 238 [230-244] 358 [352-362] 287 [277-294] 326 [317-335] 282 [275-288] 27 [26-29] 44 [41-46] 227 [221-233] 260 [256-264] 141 [131-151] 163 [151-172] 266 [262-270] 94 [87-100] 195 [188-201] 424 [422-426] 272 [269-276] 276 [272-279] 185 [179-190] K 252 [249-254] 269 [266-273] 235 [230-241] 280 [276-283] 303 [299-307] 447 [444-450] A 74 [66-80] 93 [84-100] 103 [94-112] 53 [50-56] 332 [328-336] 391 [387-395] 178 [169-186] L 251 [243-260] 280 [272-287] 325 [303-346] 132 [111-156] 60 my 184 [160-212] 308 [283-339] 341 [317-369] 128 [110-149] 7 [5-9] 63 [51-77] 74 [60-91] 83 [68-103] 30 [24-37] 59 [53-66] Telaranea blepharostoma Tricholepidozia tetradactyla Lepidozia reptans Kurzia trichoclados Amazoopsis diplopoda Bazzania pearsonii Herbertus sendtneri Herbertus aduncus Triandrophyllum sp. Mastigophora woodsii Lepicolea rigida Acrochila biserialis Pedinophyllopsis abdita Plagiochila punctata Plagiochila carringtonii Protosyzygiella sp. Chiloscyphus pallescens Lophocolea fragrans Leptoscyphus cuneifolius Leiomitra elegans Trichocolea tomentella Blepharostoma trichophyllum Temnoma pilosum Marsupella sprucei Gymnomitrion obtusum Nardia geoscyphus Solenostoma obovatum Harpanthus scutatus Saccogyna viticulosa Liochlaena lanceolata Jungermannia pumila Mesoptychia rutheana Hygrobiella laxifolia Anthelia julacea Southbya tophacea Gongylanthus ericetorum Geocalyx graveolens Calypogeia muelleriana Balantiopsis splendens Blepharidophyllum densifolium Goebelobryum unguiculatum Acrobolbus wilsonii Saccogynidium vasculosum Scapania nimbosa Scapania irrigua Douinia ovata Diplophyllum obtusifolium Saccobasis polita Schistochilopsis opacifolia Tritomaria quinquedentata Lophozia excisa Cephaloziopsis intertexta Cephaloziella hampeana Chonecolea doellingeri Pisanoa sp. Gymnocolea inflata Sphenolobus saxicola Orthocaulis attenuatus Anastrophyllum donnianum Anastrepta orcadensis Chandonanthus hirtellus Sphenolobopsis pearsonii Tetralophozia setiformis Biantheridion undulifolium Barbilophozia lycopodioides Isopaches bicrenatus Odontoschisma portoricensis Odontoschisma denudatum Cephalozia bicuspidata Fuscocephaloziopsis albescens Syzygiella sonderi Perdusenia sp. Pseudomarsupidium decipiens Mylia anomala Schistochila acuminata Microlejeunea ulicina Harpalejeunea stricta Lejeunea adpressa Lepidolejeunea cuspidata Luteolejeunea herzogii Ceratolejeunea cubensis Colura tortifolia Cololejeunea clavatopapillata Diplasiolejeunea replicata Drepanolejeunea hamatifolia Leptolejeunea epiphylla Cheilolejeunea xanthocarpa Pictolejeunea sprucei Symbiezidium transversale Acanthocoleus aberrans Brachiolejeunea laxifolia Neurolejeunea seminervis Spruceanthus semirepandus Ptychanthus striatus Dibrachiella auberiana Mastigolejeunea auriculata Thysananthus repletus Frullanoides densifolia Lopholejeunea nigricans Acrolejeunea sandvicensis Archilejeunea crispistipula Achilejeunea badia Caudalejeunea lehmaniana Marchesinia mackaii Bryopteris filicina Jubula bogotensis Frullania tamarisci Radula complanata Radula voluta Radula retroflexa Porella canariensis Gackstroemia schwabei Lepidolaena taylorii Ptilidium ciliare Neotrichocolea bissetii Riccardia multifida Aneura pinguis Metzgeria pubescens Pleurozia purpurea Jensenia decipiens Pallavicinia lyellii Moerckia blyttii Petalophyllum ralfsii Fossombronia angulosa Makinoa crispata Pellia epiphylla Apopellia endiviifolia Cronisia fimbriata Exormotheca bischleri Corsinia coriandrina Cyathodium tuberosum Clevea hyalina Peltolepis quadrata Athalamia pinguis Sauteria alpina Targionia hypophylla Wiesnerella denudata Riccia fluitans Riccia glauca Riccia crustata Oxymitra cristata Conocephalum conicum Monoclea forsteri Dumortiera hirsuta Reboulia hemisphaerica Plagiochasma wrightii Asterella tenella Mannia triandra Cryptomitrium tenerum Preissia quadrata Bucegia romanica Marchantia polymorpha Monocarpus sphaerocarpus Sphaerocarpos texanus Riella parisii Neohodgsonia mirabilis Blasia pusilla Haplomitrium blumei Apotreubia nana Dendroceros aff. crispus Dendroceros tubercularis Megaceros austronesophilus Nothoceros endiviifolius Phaeomegaceros fimbriatus Phymatoceros sp. Phaeoceros himalayensis Phaeoceros engelii Notothylas levieri Anthoceros punctatus Folioceros fuciformis Leiosporoceros dussii mosses ED continued Fig. 7C39 29[30-47] [22-35] 2 [1-3] Pulvigera lyellii Pulvigera lyellii Plenogemma phyllantha Lewinskya striata Nyholmiella obtusifolia Orthotrichum anomalum 187 [143-225] Zygodon rupestris 140 [105-169] Zygodon conoideus 40 [29-50] Macromitrium saddleanum 101 [77-124] Macrocoma abyssinica Leratia obtusifolia Calomnion schistostegiellum 170 Pyrrhobryum medium [125-209] Goniobryum subbasilare 14 [8-19] Mnium thomsonii Mnium lycopodioides 70 [44-93] Rhizomnium punctatum 72 [46-96] Pseudobryum cinclidioides 211 [179-238] 26 [16-36] Plagiomnium undulatum Cinclidium stygium 88 [58-116] 52 [33-70] Plagiomnium cuspidatum 17 [9-23] Mielichoferia elongata 27 [16-37] Pohlia elongata 133 [101-159] Pohlia cruda 71 [44-96] Roellobryon roellii 18 [13-22] Phyllodrepanium falcifolium Mniomalia viridis 18 [15-20] Ptychostomum pseudotriquetrum 22 [18-24] Plagiobryum zieri 179 [146-207] 40 [34-45] Gemmabryum vinosum 231 [210-248] Bryum argenteum 31 [27-35] 52 [45-50] 35 [30-39] Imbribryum alpinum Anomobryum julaceum Rosulabryum perlimbatum 25 [21-29] 74 [62-84] Brachymenium nepalense 38 [32-44] Leptostomopsis systylia 10 [7-12] Rhodobryum roseum 167 [135-194] Rhodobryum ontariense Leptostomum menziesii 102 [62-136] Breutelia integrefolia 113 [70-150] Conostomum tetragonum 158 [111-198] Philonotis fontana 2 5 1 186 [153-213] Bartramia pomiformis Bartramia ithyphylla Helicophyllum torquatum 57 [49-64] Tayloria dubyi 60 [52-67] Splachnum vasculosum 68 [59-76] Tetraplodon mnioides Meesia triquetra 45 [37-52] 72 [63-81] Amblyodon dealbatus 56 [47-63] 105 [95-113] Paludella squarrosa Leptobryum pyriforme 234 [229-237] Neomeesia paludella 63 [58-69] Pararhacocarpus patagonicus 93 [85-99] Rhacocarpus purpurascens Hedwigia ciliata 72 [66-77] Braunia imberbis 25 [20-30] Calyptopogon mnioides 26 [21-31] Syntrichia ruralis 27 [22-32] Willia austroleucophaea 29 [25-34] Sagenotortula quitoensis 36 [32-42] Streptopogon erythrodontus 28 [24-33] Hennediella macrophylla 39 [34-44] 34 [29-39] Dolotortula mniifolia 42 [38-47] Tortula truncata Chenia leptophylla 46 [41-51] Acaulon muticum 50 [45-54] Microbryum davallianum Aloina aloides 52 [48-57] 12 [10-13] Dialytrichia saxicola 26 [23-29] Cinclidotus fontinaloides 57 [53-60] Barbula unguiculata 45 [41-50] recurvirostrum 31 [27-35] Bryoerythrophyllum 63 [60-65] Saitobryum lorentzii Didymodon rigidulus Leptodontium flexifolium 24 [23-25] Tortella fragilis 27 [26-28] Chionoloma hibernicum 83 [79-86] 33 [31-34] Weissia controversa 21[20-22]Trichostomum brachydontium 35 [33-36] Ephemerum serratum 58 [56-60] Eucladium verticillatum 88 [83-92] Hyophila apiculata 63 [61-66] Molendoa warburgii 28 [27-29] 25[24-26] Anoectangium aestivum 133 [115-150] Gymnostomum calcareum 44 [42-50] Gyroweisia tenuis 160 [133-182] Streblotrichum convolutum Scopelophila cataractae 162 [135-186] 98 [76-118] Ceratodon purpureus Trichodon cylindricus 164 [137-188] Ditrichum cornubicum 30 [20-40] Pseudephemerum nitidum 37 [25-48] Pleuridium subulatum 269 [264-273] 178 [147-204] Ditrichum subulatum 58 [47-69] Venturiella coronata Erpodium domingense 143 [116-166] Sorapilla papuana 21 [16-26] 159 [131-184] Trematodon longicollis 187 [155-213] Bruchia brevifolia Cynodontium tenellum 117 [92-139] Kiaeria starkei Oncophorus virens 134 [106-159] 106 [83-127] Glyphomitrium daviesii 151 [122-175] Dicranoweisia cirrata 103 [79-123] Rhabdoweisia fugax Rhachithecium perpusillum 12 [8-16] Dicranum scoparium 22 [16-28] Dicranum flagellare 196 [164-222] 6 30 [22-37] Chorisodontium aciphyllum [2-8] Platyneuron praealtum 46 [35-56] Holomitrium seticalycinum Dicranoloma billarderi 159 [132-183] Leucoloma molle Calymperes lonchophyllum 84 [70-97] Syrrhopodon ligulatus 172 [143-197] 120 [100-138] 202 [171-227] Octoblepharum albidum 12 [9-15] Fissidens bryoides 179 Fissidens exilis [148-205] 161 [133-186] Dicranella heteromalla 189 Pleurophascum globosum [157-216] 61 [47-73] Dichodontium pellucidum 273 [268-277] 211 [182-233] Aongstroemia longipes Amphidium mougeotii 28 [24-31] Dicranodontium denudatum Atractylocarpus subporodictyon 128 [125-130] Campylopus flexuosus Leucobrym glaucum 178 [162-192] Archidium alternifolium 186 [166-202] Micromitrium tenerum 205 [178-227] Eustichia longirostris 216 [190-237] 31 [25-36] Codriophorus acicularis 39 [32-44] Bucklandiella heterosticha 115 [106-121] Niphotrichum canescens 70 [61-78] Dryptodon trichophyllus Grimmia anomala 81 [77-86] Coscinodon cribrosus 165 [153-176] Schistidium maritimum 234 [210-251] 276 [271-280] Ptychomitrium polyphyllum 127 [108-142] 134 Brachydontium trichodes 180 [115-149] Campylostelium saxicola [163-193] 78 [63-90] Blindia acuta 237 [215-255] 107 [88-121] Blindiadelphus recurvatus Seligeria pusilla 28 [24-32] Hymenoloma crispulum 242 [222-258] Holodontium strictum 40 [25-58] Flexitrichum gracile 248[230-261] 282 [277-286] Flexitrichum flexicaule Distichium capillaceum Catoscopium nigritum Timmia norvegica 19 [17-20] Physcomitrium patens 22 [20-24] 303 [297-307] Physcomitrium pyriforme 77 [73-79] Entosthodon attenuatus 252 Funaria hygrometrica 182 [172-191] [245-258] 317 [312-322] Discelium nudum Encalypta ciliata Gigaspermum mouretii Diphyscium foliosum Buxbaumia aphylla 334 [329-339] 72 [70-74] Atrichum undulatum Oligotrichum hercynicum 93 [92-94] Polytrichum commune 68 [66-70] 103 [102-105] Pogonatum aloides 337 [332-343] Dendroligotrichum squamosum Notoligotrichum trichodon 342 [337-347] Dawsonia beccarii 169 [161-177] Tetraphis pellucida 60 my Tetrodontium brownianum 372 [367-377] Oedipodium griffithianum 3.5 [3-4] Andreaea wilsonii 37 [35-39] Andreaea wilsonii 58 [55-60] Andreaea rupestris 282 [269-297] Andreaea rothii 403 [398-406] Andreaeobryum macrosporum 4 [2-5] Sphagnum falcatulum 14 [12-15] Sphagnum cuspidatum 15 [13-17] 420 [416-423] Sphagnum palustre Sphagnum girgensohnii 75 [73-79] 17 [15-19] Sphagnum strictum Eosphagum inretortum Takakia lepidozioides 183 [138-221] 54 [42-65] 58 [45-70] 86 [66-104] 28 [21-34] ED Fig. 7B j i g h f e d c b a liverworts 43 [15-70] 47 [17-76] 52 [19-83] 55 [20-87] ED Fig. 7C 74 [27-116] 46 [15-75] 77 [29-122] 26 [9-43] 31 [11-51] 53 [19-86] 74 [27-117] 46 [16-75] 55 [20-89] 85 [32-132] 53 [19-85] 67 [24-106] 79 [29-125] 87 [34-135] 90 [36-139] 99 [46-146] 60 [31-87] 74 [37-107] 79 [39-114] 80 [40-117] 72 [35-105] 10 [6-15] 14 [8-19] 85 [42-125] 99 [46-146] 52 [27-74] 76 [38-110] 96 [45-142] m 38 [16-60] 44 [18-69] 50 [21-77] 55 [24-85] 40 [17-62] 58 [25-89] 62 [27-94] 100 [47-148] 67 [29-102] 78 [34-119] 84 [37-127] 13 [5-20] 39 [16-61] 41 [17-64] 42 [17-65] 44 [18-69] 75 [32-114] 100 [47-148] 38 [18-58] 40 [18-60] 42 [19-64] 47 [21-71] 59 [26-90] 27 [11-43] 38 [15-60] 41 [17-65] 46 [19-71] 30 [12-48] 59 [25-91] 63 [27-97] 43 [17-67] 50 [21-78] 56 [24-87] 101 [47-149] 52 [20-81] 32 [12-52] 94 [42-140] 97 [44-145] 52 [18-84] 77 [28-121] 79 [29-125] 84 [31-132] 71 [25-113] 78 [28-123] 81 [30-127] 61 [27-93] 66 [30-100] 71 [32-106] 80 [36-120] 42 [19-64] 59 [27-89] 84 [38-126] 55 [23-86] 79 [35-119] 86 [39-129] 27 [12-42] 64 [29-97] 75 [35-111] 102 [48-150] 90 [42-134] 77 [36-115] 93 [43-138] 81 [38-120] 83 [39-123] 66 [31-97] 29 [14-43] 31 [15-46] 20 [10-30] 37 [20-54] 47 [25-67] 26 [13-38] 53 [28-77] 21 [11-30] 36 [19-51] 14 [7-21] 55 [29-79] 28 [15-40] 32 [17-45] 58 [30-84] 38 [20-54] 41 [22-59] 81 [39-120] 96 [45-141] 105 [49-155] 99 [46-146] 92 [43-136] 59 [25-90] 65 [28-100] 100 [47-149] 96 [45-142] 107 [50-157] 50 [21-78] 15 [6-24] 18 [7-28] 97 [45-144] 61 [27-92] 73 [32-110] 90 [40-135] 98 [44-146] 91 [40-136] 100 [45-149] 68 [23-111] 75 [16-120] 107 [51-158] 112 [58-160] 60 my 118 [65-166] 95 [36-148] 99 [37-153] 91 [34-142] 102 [40-156] 57 [30-81] 96 [50-137] 72 [40-101] 96 [52-135] 105 [56-147] 123 [70-169] 51 [29-72] 57 [31-81] 129 [78-173] 94 [47-136] 63 [38-86] 84 [51-114] 148 [106-184] 99 [74-121] 152 [110-189] 50 [38-61] 78 [59-95] 121 [89-149] 92 [69-113] 62 [46-76] 65 [49-81] 165 [121-203] 53 [40-66] 78 [56-98] 64 [45-92] 114 [91-137] 178 [133-219] 23 [15-32] l 180 [135-220] 169 [124-210] mosses continued 39 [29-48] 147 [108-182] 175 [129-214] 154 [109-195] k Taiwanobryum crenulatum Pinnatella minuta Shevockia inunctocarpa Neckeropsis disticha Homaliodendron flabellatum Pseudoanomodon attenuatus Homalia trichomanoides Exsertotheca crispa Alleniella complanata Leptodon smithii Neckera pennata Porothamnium fasciculatum Porotrichodendron superbum Echinodiopsis hispida Isothecium myosuroides Lembophyllum divulsum Nogopterium gracile Heterocladium heteropterum Orthostichella pachycastrella Limbella tricostata Isocladiella surcularis Isopterygium albescens Taxithelium nepalense Hageniella micans Platygyrium repens Trachyphyllum inflexum Donnellia commutata Sematophyllum demissum Macrohymenium muelleri Piloecium pseudorufescens Trismegistia calderensis Dicnemon cuspidatum Hypnum cupressiforme Callicladium imponens Homalothecium sericeum Brachytheciastrum velutinum Eurhynchiastrum pulchellum Brachythecium rivulare Myuroclada maximowiczii Sciuro-hypnum plumosum Kindbergia praelonga Cirriphyllum piliferum Helicodontium capillare Rhynchostegiella tenella Microeurhynchium pumilum Oxyrrhynchium hians Squamidium brasiliense Rhynchostegium confertum Rhynchostegium riparioides Palamocladium leskeoides Scorpiurium circinatum Pseudoscleropodium purum Eurhynchium striatum Claopodium whippleanum Floribundaria flaccida Meteoriopsis squarrosa Pseudospiridentopsis horrida Aerobryidium subpiligerum Aerobryopsis longissima Pseudobarbella attenuata Toloxis imponderosa Meteorium polytrichum Papillaria crocea Ctenidium molluscum Hyocomium armoricum Myurium hochstetteri Lescuraea patens Lescuraea incurvata Lescuraea plicata Schwetschkeopsis fabronia Anomodon longifolius Climacium dendroides Pleuroziopsis ruthenica Antitrichia curtipendula Pleurozium schreberi Hylocomium splendens Loeskeobryum brevirostre Rhytidiadelphus squarrosus Hylocomiastrum pyrenaicum Abietinella abietina Rauiella scita Haplocladium microphyllum Leskea polycarpa Thuidium tamariscinum Pelekium chenagonii Ptilium crista-castrensis Rhytidium rugosum Pseudoleskeella catenulata Lindbergia patentifolia Entodon schleicheri Homomallium incurvatum Pylaisia polyantha Buckia vaucheri Ectropothecium perrotii Vesicularia galerulata Pseudostereodon procerrimus Calliergonella cuspidata Gollania turgens Elmeriobryum philippinense Chryso-hypnum elegantulum Breidleria pratensis Pseudoamblystegium subtile Serpoleskea confervoides Hygrohypnum luridum Campylophyllum calcareum Campylium stellatum Drepanocladus aduncus Pseudocalliergon trifarium Vittia pachyloma Cratoneuropsis chilensis Palustriella commutata Kandaea elodes Cratoneuron curvicaule Amblystegium serpens Hygroamblystegium tenax Leptodictyum riparium Tomentypnum nitens Sanionia uncinata Scorpidium scorpioides Hamatocaulis vernicosus Phyllodon truncatulus Herpetineuron toccoae Straminergon stramineum Sarmentypnum exannulatum Warnstorfia fluitans Calliergon cordifolium Conardia compacta Henicodium geniculatum Orthostichopsis tortipilis Phyllogonium viscosum Pterobryopsis orientalis Cryphaea heteromalla Leucodon sciuroides Pterigynandrum filiforme Orthothecium rufescens Myurella julacea Platydictya jungermannioides Isopterygiopsis muelleriana Herzogiella striatella Plagiothecium denticulatum Rectithecium piliferum Pseudotaxiphyllum elegans Dichelyma capillaceum Fontinalis antipyretica Habrodon perpusillus Stereophyllum leucostegum Pilosium chlorophyllum Entodontopsis nitens Fabronia pusilla Ischyrodon lepturus Acrocladium auriculatum Lepyrodon lagurus Catagonium nitens Rutenbergia madagassa Neorutenbergia usagarae Pseudocryphaea domingensis Lepidopilidium nitens Cyclodictyon laetevirens Leucomium lignicola Hookeria lucens Adelothecium bogotense Benitotania elimbata Bryobrothera crenulata Daltonia splachnoides Hypopterygium didictyon Ptychomnion aciculare Garovaglia elegans Cladomniopsis crenato-obtusa Orthorrhynchium elegans Bescherellia elegantissima Franciella spiridentoides Hypnodendron comosum Racopilum cuspidigerum Racopilum tomentosum Pterobryella vieillardii Aulacomnium androgynum Aulacomnium heterostichum Hymenodontopsis mnioides Leptotheca gaudichaudii Orthodontium lineare Extended Data Figure 7. Divergence :mes es:mates for bryophytes inferred by penalized likelihood using 29 fossil calibra:ons. Mean node ages (in bold) including confidence intervals (in brackets) reported in millions of years are stemming from a treePL analysis. Le]ers in red circles indicate fossil calibra:ons as outlined in Table S2. The figure is divided in three parts: liverworts and hornworts: Extended Data Figure 7A, mosses Extended Data Figures 7B & C. Number of genes Concordance factor Extended Data Figure 8. Correla:on between gene concordance factor inferred by IQ-TREE and number of genes in the nucleo:de dataset suppor:ng a node. For details on the concordance values see Table S5 Concordance factor Time (Ma) Extended Data Figure 9. Correla:on between gene concordance factor inferred by IQ-TREE and mean divergence :mes for backbone nodes (between 130-450 Ma) inferred from the nucleo:de data. For details on the concordance values see Table S5. Extended Data Figure 10. Histogram of the frequency of orders and families (A) stem and (B) crown es:mated age divergences of three bryophyte phyla (Anthocerotophyta, Bryophyta, and Marchan:ophyta). Kernel density plots depict the probability distribu:on (95% confidence interval) of the es:mated divergence :me of orders and families. Boxplots at the bo]om show the distribu:on of the es:mated age divergences of orders and families separated for Anthocerotophyta, Bryophyte, and Marchan:ophyta.