Academia.eduAcademia.edu
Hydrobiologia 453/454: 201–226, 2001. R.M. Lopes, J.W. Reid & C.E.F. Rocha (eds), Copepoda: Developments in Ecology, Biology and Systematics. © 2001 Kluwer Academic Publishers. Printed in the Netherlands. 201 A human challenge: discovering and understanding continental copepod habitats Janet W. Reid Department of Systematic Biology-Invertebrate Zoology, National Museum of Natural History, Smithsonian Institution, Washington, DC 20560-0163, U.S.A. E-mail: reid.janet@nmnh.si.edu Key words: Cyclopoida, Harpacticoida, habitats, leaf litter, phytotelmata, artificial habitats, review Abstract Copepods have invaded an astonishing variety of aquatic and humid continental environments and microhabitats. The historical process of discovery and investigation of copepods in ephemeral, acid and thermal waters, subterranean waters and sediments, phytotelmata, humid soils, leaf litter, human-modified and artificial habitats, and other situations extends over about 130 years. The methods developed to collect in and study these habitats range from simple nets to elaborate pumping systems and diving techniques. Investigations of non-lacustrine continental environments have contributed greatly to the understanding of aspects of copepod biology such as reproduction, diapause and population dynamics. Questions regarding faunistics and biological diversity, biogeography, evolution, transport and introductions of alien species have also been informed by such studies. This article briefly reviews these topics, and provides detailed lists of records from some of the less well-known kinds of habitats. Introduction Free-living copepod crustaceans are customarily treated as aquatic in the general limnological literature; however, some 130 years of imaginative collecting have revealed that they are capable of invading and surviving successfully in nearly every continental habitat and situation where sufficient moisture and organic matter are present, however intermittently. Certain kinds of habitats, such as phytotelmata, have received a good deal of attention from ecologists, but their copepod fauna has not been reviewed recently. Other kinds, particularly habitats modified or constructed by humans, or extreme habitats such as thermal waters, have been barely treated in the literature pertaining to copepods. This article briefly discusses some of the early history of investigations in the betterstudied environments such as ephemeral waters, and discusses the kinds of information gained from studies in semi-aquatic natural or artificial habitats, referring to reviews where possible. The fauna of acidic waters is normally investigated by standard limnological methods, and is not treated in detail here. Species of several genera of cyclop- oids (e.g. Acanthocyclops, Diacyclops, Paracyclops), and harpacticoids (Bryocamptus, Moraria) have been found in waters of pH 4 or below (Rylov, 1948; Lewis, 1974; Fryer, 1980, 1993). The physiological adaptations that enable some species but not others to thrive in acidic waters have been almost entirely uninvestigated. Historical process and development of methods Following the first observation of free-living freshwater copepods, apparently by Blankaart (1688), investigations proceeded sporadically until the era of the great naturalists and collector-explorers in the late 19th century. Although most early investigations focused on plankton, Pratz (1866, cited in Schmeil, 1892) described several cyclopoids from wells in Munich, Germany. Brady (1868) provided the first report of copepods from a deep subterranean, human-altered habitat, a coal mine in England. Studies of copepods in caves began with the collections of Vosseler (1886) near Württemberg, Germany. Scourfield (1903) provided the earliest report of copepods in phytotelmata, in bromeliads and a pitcher 202 plant in botanical gardens in London. The potential for copepods not only to invade man-made habitats but also to survive in them successfully was apparently first recognized by Kraepelin (1886), who collected cyclopoids and calanoids from the city water system of Hamburg, Germany. In the initial investigations of subterranean waters, natural caves and springs, or relatively large permanent artificial deep holes such as dug and driven wells were sampled. The Karaman-Chappuis method (Chappuis, 1942, 1956) of simply digging holes in sand and gravel banks of streams allowed investigators to reach the top several dm of sediment, in any locality desired. The Bou-Rouch pump (Bou & Rouch, 1967), a simplification of an apparatus developed by Delamare Deboutteville (1954) for use in marine sandy beaches, yielded semi-quantitative water samples from permeable sediments 1–2 m or more deep, and became the standard method for sampling interstitial and phreatic fauna. A modification of the Bou-Rouch pump to avoid damaging the specimens, by capturing them in a container rather than passing them through the pump, was advocated by Vigna Taglianti et al. (1969). The double-packer sampler, developed by Danielopol & Niederreiter (1987), provides simultaneous samples of the fauna and the water. Perhaps the most exact quantitative method is the freeze-coring method of Bretschko & Klemens (1986), in which the meiofauna is first paralyzed by an electric field, and then the core is frozen with liquid nitrogen. What may be the largest semiportable well-drilling system was used by Stanford & Ward (1988), to reach depths of 30 m in alluvial riverine sediments of the Flathead River valley, Montana, U.S.A. Deeper sediments are more customarily reached by sampling from permanent driven wells. Habitats Ephemeral waterbodies The faunas of vernal pools were reviewed by Wiggins et al. (1980), and those of temporary lentic waters, particularly in semi-arid lands, by W. D. Williams (1985). Adaptive strategies, particularly diapause, of crustaceans for surviving dry periods have been the subject of many studies, and especially the literature on diapause in copepods has been reviewed recently by Dahms (1996), Hairston & Cáceres (1996) and Williams-Howze (1997), among others. The faunas of ephemeral streams have received much less attention. D. D. Williams & Hynes (1976) found that Attheyella nordenskioldii and Acanthocyclops vernalis were abundant in the hyporheic zone of a temporary stream in southern Canada, and both species showed habitat-specific adaptations, such as timed reproduction and summer resting stages. Otherwise, copepods (and the meiofaunal community in general) of ephemeral streams seem to have been almost unstudied. Rouch (1992) described two species of harpacticoids of a previously unknown genus, Psammonitocrella, from an ephemeral desert stream in Arizona, U.S.A. Rock hollows and rock or cliff faces Water collected in natural hollows such as solution holes on bare rocks may come to hold copepods. These are usually common species such as A. vernalis and Eucyclops agilis in England (Scourfield, 1939), and Cryptocyclops bicolor linjanticus (Kiefer, 1928) and Mesocyclops leuckarti (probably = M. aspericornis) in Fiji (Laird, 1956). However, in Western Australia, the calanoid Boeckella opaqua Fairbridge, 1945, is found only in water-filled holes (‘gnammas’) on granite outcrops (Bayly, 1979, 1992). Allocyclops ritae is known only from a small pool on granitic rock in the Ivory Coast (Dumont & Lamoot, 1978). Subterranean habitats The copepod fauna of groundwater-related and cave habitats has been extensively reviewed (e.g. Graeter, 1910; Chappuis, 1927; Bowman, 1986; LescherMoutoué, 1986; Rouch, 1986, 1994). Galassi (2000) traced the changing concepts of subterranean habitats, from the early idea that they are unusual or challenging situations, to the growing realization that subterranean habitats can support a diverse and successful copepod fauna. Indeed, certain groups such as members of the cyclopoid genus Diacyclops have been more successful in subterranean than in epigean situations (Stoch, 1995, 2000), although the reasons for their success remain mysterious. Two less-investigated subterranean habitats are discussed here: the interstitial, including the stream-hyporheos; and the ‘pholeteros’ or assemblage in crayfish and crab burrows. The diverse copepod community inhabiting the interstices among the sand grains of marine beaches, as well as in loose flocculent mud, was discovered by Wilson (1935). He pointed out the particular morphological adaptations, including reduction and uniformity in body size, vermiform shape, increased body 203 flexibility, development of sense organs, shortening and strengthening of swimming legs, shape and carriage of the egg sacs, reduction in egg number with increase in egg size, and behavior, seen in interstitial copepods. Following the pioneering studies of the microscopic fauna of sandy beaches in European lakes by Sassuchin et al. (1927) and others, copepods in the psammon of freshwater lake beaches were intensively investigated by Pennak (1939a,b, 1940), who also reviewed the early history of investigations of the psammon (Pennak, 1968). Chappuis (1946) called attention to the special groundwater habitat associated with the alluvial sand, gravel and ‘cailleurs’ sediments below and beside watercourses. This habitat, now known as the hyporheic zone, was apparently first investigated by Leruth (1938), in the groundwater of gravel deposits associated with the Meuse River in Belgium. The development of the Bou-Rouch pump allowed investigators to reach the deeper strata of streambeds and other permeable phreatic sediments. The concept of the hyporheic zone as an ecotonal habitat was discussed by Rouch et al. (1997). Rouch & Danielopol (1997) argued that hypogean habitats including the sand-interstitial, hyporheic, phreatic, karstic and hole and cave faunas are much richer in species than is commonly estimated, although longterm studies are necessary to estimate faunal diversity adequately. Certainly, in the past six decades, rich hypogean-interstitial copepod faunas have been discovered wherever these habitats have been investigated (e.g. Lescher-Moutoué, 1986; Rouch, 1986). Crayfish tunnels may serve as refuges for many species of benthic copepods, including rather eurytopic, widely distributed ones such as Attheyella dentata (Poggenpol, 1874), Attheyella trispinosa (Brady, 1880), Halectinosoma abrau (Krichagin, 1877) and Paracyclops affinis in burrows of Astacus fluviatilis in Europe (Chappuis, 1926; Kiefer, 1927b; Jakubisiak, 1939). In Ontario, Canada, burrows of Cambarus fodiens along a temporary stream harbored large populations of A. vernalis and A. nordenskioldii (D. D. Williams et al., 1974; D. D. Williams & Hynes, 1976). In Victoria, Australia, Diacyclops cryonastes Morton, 1985, was found in burrow water of Engaeus sp., and in Tasmania, Acanthocyclops sp. occurred in burrows of Parastacoides tasmanicus (Lake & Newcombe, 1975; Lake, 1977). Even normally planktonic species such as the large calanoid Osphranticum labronectum Forbes, 1882, have been found in water in the burrows of Cambarus diogenes in Missouri, U.S.A., during a dry spell (Creaser, 1931). The assemblage of animals living in the water in burrows of land crayfish was termed the ‘pholeteros’ by Lake (1977). Several species of harpacticoids (Attheyella crassa, Attheyella northumbrica (Brady, 1880) (= dentata), Attheyella trispinosa, Bryocamptus minutus, Canthocamptus staphylinus (Jurine, 1820) and Nitocrella hibernica (Brady, 1880)) have been found on crayfish gills, but may be only accidentals (Chappuis, 1926; Gurney, 1930), and may also use the burrows as refuges. This possible use of refuges may have led to the development of various degrees of commensalism between certain harpacticoid species and crayfish. Nitocrella divaricata (Chappuis, 1923) is found only on the carapace or in the gills of A. fluviatilis, Astacus astacus, Astacus leptodactylus and Austropotamobius torrentium in Europe, and is either a commensal or an obligate associate (Chappuis, 1923, 1926; Kiefer, 1937; Jakubisiak, 1939; Straskraba, 1956; Sterba, 1964; Boshko, 1976; Defaye, 1996; Subchev & Stanimirova, 1998). Two North American harpacticoids, Attheyella pilosa Chappuis, 1929, and Attheyella carolinensis Chappuis, 1932, have an intermediate habit: they occur free-living, but are more frequently found on the bodies of several species of Cambarus and Orconectes rusticus (Prins, 1964; Bowman et al., 1968). In the tropics, burrows of land crabs (Cardisoma carnifex) containing fresh or slightly brackish water regularly harbor Mesocyclops aspericornis and Paracyclops fimbriatus on the volcanic islands of French Polynesia (Rivière & Thirel, 1981; Rivière et al., 1987; Rivière, Klein, Duval et al., 1998). Laird (1956) collected Thermocyclops operculifer Kiefer, 1930, in crab holes on Tarawa (Gilbert Islands). Yeatman (1983) reported several copepod species from crab holes:Darcythompsonia inopinata Smirnov, 1934 (Western Samoa, Fiji), Ectocyclops phaleratus (Fiji), Halicyclops septentrionalis Kiefer, 1935 (Fiji), Halicyclops thermophilus Kiefer, 1929, s. str. (Tonga, Western Samoa, Fiji), H. thermophilus spinifer Kiefer, 1935 (Tonga), Mesocyclops leuckarti (possibly = M. aspericornis) (Tonga, Fiji), Microcyclops microsetosus Yeatman, 1983 (Fiji), Nitokra lacustris pacifica Yeatman, 1983 (Western Samoa, Tonga), Nitokra pseudospinipes Yeatman, 1983 (Tonga, Fiji), Schizopera tobae Chappuis, 1931 (Fiji), and Tisbella pulchella (Wilson, 1932) (Fiji). Mogi et al. (1984) reported that Thermocyclops sp. and Mesocyclops leuck- 204 arti (the latter possibly misidentified) were common in crab holes in the Ryukyus. Laird (1988) collected Eucyclops serrulatus and M. aspericornis from freshwater, and H. thermophilus s. str. from brackish-water crab holes in Western Samoa. Hobbs & Villalobos (1958) reported the presence of harpacticoid copepods on the exoskeleton of the freshwater crab Pseudothelphusa lamellifrons in Mexico. The possibility that use of crab holes as refuges may have facilitated the development of copepod commensals remains a subject for future investigations. Phytotelmata In humid climates, the recesses of plant structures often contain enough water to support small aquatic invertebrates, of which some species seem to have a predilection for, and others may be specifically adapted for this habitat. The observed behavior of certain species implies that they may climb actively into the plants. These copepods can live in a film of water and tend to climb the walls of glass containers, out of the water, such as Bryocamptus pygmaeus (observed by Gurney, 1932) and P. fimbriatus, P. affinis and E. phaleratus (Schmeil, 1892; Scourfield, 1894). In the tropics, the water pools in bromeliads have been much investigated, following the discovery and characterization of this habitat by the celebrated naturalist Fritz Müller, working in Brazil (Müller, 1879). Frank (1980) and Janetzky (1997) listed a number of copepod species known from bromeliads; Table 1A extends their lists. Pitcher plants in temperate acid bogs are also convenient collecting sites for copepods (Table 1B). The tendency of certain species such as Bryocamptus minutus, E. phaleratus and P. affinis to climb out of water onto vertical, though still moist surfaces (Scourfield, 1894; Graham, 1907) may account for the fact that some of these are common in pitcher plants (Hamilton et al., 2000). Unidentified cyclopids occurred in about 40% of the pitcher plants at a site in northern Florida, U.S.A. (Harvey & Miller, 1996). Also in Florida, cyclopoid copepods showed an aggregated distribution in plants, and their occurrence was strongly correlated with biotic factors (Harvey & Miller, 1993). Treeholes (Table 1C) are probably the best studied type of phytotelm in temperate climates. The European beech (Fagus silvatica) is especially prone to develop holes at the junction of the trunk and its elevated limbs. The practice of pollarding trees in Europe has also led to the creation of a large number of treeholes (Scourfield, 1915). Apparently the first person to investigate treeholes was Scourfield (1915), who described a new species of Moraria. However, it is unusual for investigations of treeholes to include quantitative estimates of non-insect invertebrates. In an extensive study in Germany, Rohnert (1951) reported only one species of copepod, Moraria sp., and considered that copepods were accidental arrivals. Nearly any plant recess may form a receptacle for water and come to harbor copepods (Table 1D). However, it is clear from the list of recorded species that certain groups favor phytotelmata: Attheyella (subgenus Canthosella) and some Elaphoidella in neotropical bromeliads, and certain Ectocyclops, Paracyclops and Tropocyclops, plus the ubiquitous soil-dwellers Epactophanes richardi and Phyllognathopus viguieri in both the tropics and temperate zones. Species of Canthosella are predominantly found in bromeliads, and Tropocyclops jamaicensis invades terrestrial bromeliads quickly and may be an obligate phytotelm dweller (Reid & Janetzky, 1996). Mosses The records of harpacticoids and small cyclopoids from aquatic and terrestrial mosses in humid climates are so numerous as to be almost impossible to review. Both aquatic mosses (Sphagnum, Hypnum) and terrestrial mosses and liverworts in more humid situations harbor their own, sometimes distinctive, copepod faunas. Masses of aquatic mosses when squeezed yield small species of Acanthocyclops, Diacyclops and other cyclopid genera. Many species of Bryocyclops and Muscocyclops live in moss (e.g. Scourfield, 1939). Some 12 species of harpacticoids, mostly canthocamptids, were collected from terrestrial moss in open or forested locations in New Zealand (Lewis, 1984). Seeps on rock outcrops where moss and algae grow may also hold copepods, usually common species such as B. pygmaeus, but sometimes rarer ones such as Speocyclops demetiensis (Scourfield, 1932) (Gurney, 1932; Scourfield, 1932, 1939) and Stolonicyclops heggiensis Reid & Spooner, 1998. Wet moss on rock faces was the home of several canthocamptids in Tasmania (Hamond, 1988). Leaf litter The slowly decaying mats of leaf litter in humid temperate forests create a moist habitat favourable to several species of cyclopoids and harpacticoids, mainly canthocamptids (Table 2). Among the earliest reports were those by Gurney (1932) and Remy (1932). The 205 Table 1. Species of copepods reported from phytotelmata. Species are listed under the current name of the taxon, as far as possible; synonymies of most species were listed by Dussart & Defaye (1985, 1990) for Cyclopoida and Harpacticoida, respectively Kind of phytotelmata/ Species A. Bromeliads Harpacticoida Attheyella aliena Noodt, 1956 Attheyella jureiae Por & Hadel, 1986 Attheyella mervini Janetzky, Martı́nez Arbizu & Reid, 1996 Attheyella striblingi (Reid, 1990) Attheyella vera Por & Hadel, 1986 Canthocamptus sp.1 Elaphoidella bidens (Schmeil, 1894) Elaphoidella bromeliaecola (Chappuis, 1928) Elaphoidella malayica (Chappuis, 1928) Elaphoidella sewelli (Chappuis, 1928) E. sewelli Elaphoidella sp. Epactophanes richardi Mrázek, 1893 E. richardi Phyllognathopus viguieri (Maupas, 1892) P. viguieri P. viguieri P. viguieri P. viguieri P. viguieri P. viguieri menzeli (Chappuis, 1928) canthocamptids harpacticoids Cyclopoida Bryocyclops anninae (Menzel, 1926) Location Reference Germany (greenhouse) Brazil Jamaica Noodt (1956) Por & Hadel (1986) Janetzky et al. (1996), Janetzky (1997) Costa Rica Reid (1990) Brazil Por & Hadel (1986) Java Menzel (1922, 1924, 1925b) Puerto Rico Reid (1993b) Java Chappuis (1928, 1931), Thienemann (1934) Java Chappuis (1931), Thienemann (1934) Jamaica Laessle (1961) Puerto Rico Maguire (1970) Puerto Rico Reid (1993b) England (botanical garden) Gurney (1932) Jamaica Janetzky et al. (1996) Java Menzel (1922, 1924, 1925b, 1926b) England (botanical gardens, Gurney (1932), Lowndes purchased pineapples) 1931), Scourfield (1903, 1906, 1939) Brazil Chappuis (1936) Poland Jakubisiak (1929) Puerto Rico Maguire (1970) Jamaica Janetzky et al. (1996) Java Chappuis (1928, 1931), Thienemann (1934) Australia (botanical gardens) Hamond (1988) Brazil Lopez et al. (1998) Java Bryocyclops bogoriensis (Menzel, 1926) Java Bryocyclops caroli Bjornberg, 1985 Cyclops sp.2 Diacyclops bisetosus (Rehberg, 1880) Ectocyclops bromelicola Kiefer, 1935 Ectocyclops phaleratus (Koch, 1838) E. phaleratus Puerto Rico Argentina England Brazil Costa Rica Jamaica Ectocyclops strenzkei Herbst, 1959 E. strenzkei Ectocyclops sp. Fimbricyclops jimhensoni Reid, 1993b Fimbricyclops sp. Muscocyclops operculatus (Chappuis, 1917) Brazil Germany (greenhouse) Brazil Puerto Rico Puerto Rico Brazil Menzel (1926a), Thienemann (1934) Menzel (1926a), Thienemann (1934) Maguire (1970), Reid (1999) Torales et al. (1972) Gurney (1933) Kiefer (1935) Picado (1913) Laessle (1961), Reid & Janetzky (1996) Herbst (1959) Herbst (1959) Hadel & Carvalho (1988) Reid (1993b) Reid (1999) Kiefer (1935), Rocha & Bjornberg (1987) Continued on p. 206 206 Table 1. contd. Kind of phytotelmata/ Species Location Reference Paracyclops bromeliacola Karaytug & Boxshall, 1998 Paracyclops fimbriatus (Fischer, 1853) P. fimbriatus f. bromeliarum Herbst, 1959 Paracyclops punctatus Karaytug & Boxshall, 1998 Paracyclops reidae Karaytug & Boxshall, 1998 Paracyclops sp. Tropocyclop jamaicensis Reid & Janetzky, 1996 Brazil Brazil Brazil Brazil Trinidad Brazil Jamaica Tropocyclops prasinus (Fischer, 1860) Tropocyclops schubarti Kiefer, 1935 Tropocyclops sp. Cyclopoids copepods Puerto Rico Brazil Brazil Brazil Belgium? Karaytug & Boxshall (1998a) Ferreira (1985) Herbst (1959) Karaytug & Boxshall (1998a) Karaytug & Boxshall (1998a) Hadel & Carvalho (1988) Reid & Janetzky (1996), Janetzky (1997), Laessle (1961) Reid (1993b) Kiefer (1935), Herbst (1959) Hadel & Carvalho (1988) Lopez et al. (1998) Oye (1923); cited by Frank (1980) B. Pitcher plants (Sarracenia spp.) Harpacticoida Bryocamptus hiatus (Willey, 1925) Phyllognathopus viguieri Cyclopoida Acanthocyclops parasensitivus Reid, 1998 Acanthocyclops venustoides pilosus Kiefer, 1934 Diacyclops harryi Reid, 1992 Diacyclops languidus (G. O. Sars, 1863) Paracyclops canadensis (Willey, 1934) P. canadensis Cyclopidae Canada England Laird (1988) Scourfield (1903, 1939) U.S.A. Canada, U.S.A. U.S.A. U.S.A. Canada U.S.A. U.S.A. ‘Entomostraca’ U.S.A. Reid (1998) Laird (1988) Reid (1992) Ishida (1992) Willey (1934) Hamilton et al. (2000) Miller et al. (1994), Harvey & Miller (1996) Hegner (1926) C. Tree holes or stump holes Harpacticoida Bryocamptus minutus (Claus, 1863) Bryocamptus pygmaeus (Sars, 1863) Epactophanes richardi Moraria arboricola Scourfield, 1915 England, Ireland England Germany England Moraria varica (Graeter, 1911) England Moraria sp. Elaphoidella taroi Chappuis, 1955 Phyllognathopus viguieri Tachidius discipes Giesbrecht, 1882 Cyclopoida Apocyclops sp. Australocyclops australis Morton, 1985 Bryocyclops bogoriensis Bryocyclops fidjiensis Lindberg, 1954 Cryptocyclops linjanticus (Kiefer, 1928) Diacyclops bisetosus Germany Fiji Tonga, Western Samoa, Fiji England Fiji New South Wales, Australia Fiji (Ivi, Inocarpus edulis) Tonga, Western Samoa, Fiji Fiji England Gurney (1932) Gurney (1920, 1932) Kiefer (1924) Gurney (1920, 1932), Scourfield (1915, 1939) Gurney (1920, 1932), Scourfield (1939) Rohnert (1951) Yeatman (1983) Yeatman (1983) Gurney (1920) Yeatman (1983) Morton (1985) Yeatman (1983) Yeatman (1983) Yeatman (1983) Gurney (1933), Hollowday (1949) Continued on p. 207 207 Table 1. contd. Kind of phytotelmata/ Species Location Reference Diacyclops spp. Halicyclops thermophilus Kiefer, 1929 Mesocyclops aspericornis (Daday, 1906) Stoch (2000) Yeatman (1983) Rivière & Thirel (1981); Rivière et al. (1987) Paracyclops fimbriatus Paracyclops poppei (Rehberg, 1880) Italy Tonga, Western Samoa, Fiji French Polynesia: holes in buttresses of Inocarpus fagifer Fiji U.S.A. Cyclopidae copepods Nukunono, Tokelau Islands Brunei (dipterocarp forest) D. Other phytotelmata Harpacticoida Attheyella gessneri Chappuis, 1956 Attheyella inopinata Chappuis, 1931 Attheyella ruttneri Chappuis, 1931 Bryocamptus pygmaeus Canthocamptus sp. Elaphoidella bromeliaecola Elaphoidella cornuta Chappuis, 1931 Elaphoidella elegans Chappuis, 1931 Elaphoidella taroi E. taroi E. taroi Elaphoidella thienemanni Chappuis, 1931 Elaphoidella sp. Epactophanes richardi E. richardi E. richardi E. richardi menzeli Chappuis, 1931 Venezuela: leaf axils of Heliconia bihai (Musaceae) Sumatra: leaf axils of Cyrtandra glabra (Gesneriaceae) Bali, Java: wet leaves of Elatostema macrophyllum (Urticaceae) and leaf axils of Colocasia indica (Araceae) Germany: leaf axils of Scirpus silvaticus (Cyperaceae) Java: leaf axils of C. glabra Java, Sumatra: leaf axils of Colocasia sp., C. glabra and Pandanus sp. (Pandanaceae) Sumatra: leaf axils of C. glabra Java: leaf axils of C. indica Fiji: leaf axils of taro (Colocasia esculenta) and Cordyline terminalis (Agavaceae) Fiji, Western Samoa: fallen coconut shells, leaf axils of taro Tahiti: fallen coconut shells Sumatra: leaf axils of C. glabra Fiji: leaf axils of Colocasia sp.and C. terminalis Java: leaf-cups of Nepenthes sp. (Nepenthaceae) Sumatra: leaf axils of C. glabra Java, Sumatra: inflorescences of Zingiber macradenia (Zingiberaceae), leaf axils of Colocasia sp. and C. glabra Sumatra: leaf-cups of Yeatman (1983) Reid & Marten (1994), Karaytug & Boxshall (1998a) Laird (1956) Kitching & Orr (1996) Chappuis (1956) Chappuis (1931), Thienemann (1934) Chappuis (1931), Thienemann (1934) Strenzke (1951) Menzel (1924) Chappuis (1931), Thienemann (1934) Chappuis (1931), Thienemann (1934) Chappuis (1931), Thienemann (1934) Chappuis (1955) Yeatman (1983) Rivière, Klein, Thirel & Chebret (1998) Chappuis (1931), Thienemann (1934) Laird (1956) Menzel (1921) Chappuis (1931), Thienemann (1934), Lang (1935) Chappuis (1931) Thienemann (1932, 1934) Continued on p. 208 208 Table 1. contd. Kind of phytotelmata/ Species Parastenocaris incerta Chappious, 1931 Parastenocaris staheli Phyllognathopus viguieri P. viguieri P. viguieri P. viguieri P. viguieri P. viguieri P. viguieri P. viguieri P. viguieri P. viguieri P. viguieri menzeli P. viguieri menzeli Harpacticoida harpacticoid Cyclopoida Bryocyclops anninae B. anninae Bryocyclops bogoriensis Bryocyclops chappuisi Kiefer, 1928 Bryocyclops fidjensis B. fidjiensis Location Nepenthes ampullaria; also C. glabra, Zingiber sp. Sumatra: leaf-cups of N. ampullaria in moss Surinam: moss in old leaf axils of Livistona (Palmae) Algeria: debris of a decaying banana tree Java: leaf axils of C. glabra Poland: leaf axils of Musa encete (Musaceae) Sumatra: leaf axils of Colocasia sp. Sumatra: leaf-cups of N. ampullaria Java, Sumatra: Colocasia indica, Cyrtandra sp., Zingiber sp. England: leaf-cups of Crinum sp. (Amaryllidaceae) Fiji: leaf axils of C. terminalis and Colocasia sp. Madagascar: leaf axils of Typhonodorum sp. (Araceae) Tonga, Western Samoa, Fiji: taro leaf axils, bamboo Java, Sumatra: leaf axils of Colocasia spp., C. glabra, cups of Nepenthes sp., and inflorescences of Z. macradenia Guam: leaf axils of Pandanus Sulawesi: leaf axils of taro Costa Rica: bracts of Heliconia imbricata (Musaceae) New Hebrides: empty coconut husks Guam: leaf axils of Pandanus sp. Sumatra: leaf axils of Colocasia sp.; Java: leaf axils of Pandanus sp. Java: leaf axils of Crinum hybridum Fiji: leaf axils of C. terminalis, Freycinetia milnei (Pandanaceae), taro (Colocasia antiquorum) Fiji, Tonga, Western Samoa, Reference Chappuis (1931); Thienemann Chappuis (1932) Menzel, 1916 Chappuis (1916) Menzel (1924, 1925b, 1926b) Jakubisiak (1929) Chappuis (1931) Thienemann (1932) Thienemann (1934) Scourfield (1939) Laird (1956) Dussart (1982) Yeatman (1983) Chappuis (1931), Thienemann (1934) Watkins & Belk (1975) Mogi & Sembel (1996) Naeem (1988) Lowndes (1928a) Watkins & Belk (1975) Kiefer (1933), Thienemann (1934) Kiefer (1933), Thienemann (1934) Lindberg (1955) Yeatman (1983) Continued on p. 209 209 Table 1. contd. Kind of phytotelmata/ Species Bryocyclops muscicola (Menzel, 1926) Bryocyclops sp. Ectocyclops rubescens (as E. medius) Tropocyclops schubarti dispar Herbst, 1962 Cyclopidae cyclopoids Cyclopoida copepods copepods Location Reference Hawaii: bamboo, leaf axils of taro and Pandanus sp. Sumatra: leaf axils of Pandanus sp. Fiji, Tonga: leaf axils of Colocasia sp., C. terminalis, and Freycinetia milnei; and Pandanus sp., respectively Java: leaf axils of C. indica, leaves of nettles Brazil: shells of fallen Brazil nuts, Bertholletia excelsa (Lecythidaceae) Tarawa, Gilbert Islands: coconut shell Singapore: tree roots Sulawesi: leaf axils of taroMogi & Sembel (1996) Puerto Rico: water in fallen leaves Singapore: cups of N. ampullaria Kiefer (1933), Thienemann (1934) Laird (1956) Kiefer (1933), Thienemann (1934) Herbst (1962) Laird (1956) Laird (1988) Maguire (1971) Ghosh (1928) 1 Should be considered an unidentified canthocamptid. 2 Since Cyclops is not a tropical genus, this record should be considered an unidentified cyclopoid. scanty literature on copepods in leaf litter was last reviewed for harpacticoids by Menzel (1946), and more generally discussed by Fiers & Ghenne (2000). Most studies have been done in Europe, where extensive areas are covered by beech (Fagus sylvatica) forests, and leaf litter from that and other trees now forms, or historically has formed vast carpets. Beech leaves tend to pack tightly together in a dense layer that retains water, and the animals live mainly in the deeper, more humid layers, directly on top of the forest floor (Nielsen, 1966; Schaeffer, 1991). In Denmark, populations of the harpacticoids E. richardi and Maraenobiotus vejdovskyi tenuispina reached substantial densities (40 and 1.5 ind/g of leaves respectively) (Nielsen, 1966). Fiers & Ghenne (2000), treating a modest number of litter samples which were sampled and extracted using techniques more suitable for nematodes, listed 9 cyclopoid and 13 harpacticoid species, 9 of these new records for Belgium, and a significant addition to the list of 71 species previously known from that country. The leaf-carpet may be the primary habitat for certain harpacticoid species, such as Maraenobiotus vejdovskyi var. truncatus (Scourfield, 1939) and some members of Moraria, as implied by the Yorkshire records of Fryer (1993). Michailova-Neikova (1973) found that 8 of 9 harpacticoid species living in wet moss beside waterbodies on a mountain in Bulgaria also appeared in the leaf litter. Outside Europe, leaf litter has been much less investigated (Table 2). Dumont & Maas (1988) described five new species of harpacticoids from leaf litter in Nepal, at altitudes from 1900 to 3900 m. Moist rotting wood may also harbor copepods. Elaphoidella cuspidata Chappuis, 1941, was found by Chappuis (1954) in rotted wood in India. Phyllognathopus camptoides was described by Boz̆ić (1965) from moist dead wood collected from a forest in Gabon. Moist soils Reid (1986) reviewed qualitative and quantitative studies reporting copepods from moist soils. In their study in Belgium, Fiers & Ghenne (2000) also discovered a surprising number of species in soil samples, particularly in fallow soils. The ecological role of soil copepods is not understood. Birch & Clark (1953) classified Epactophanes sp. among the bacterial feeding organisms in a study of 210 Table 2. Copepods recorded from leaf litter. Species are listed under the current name of the taxon, as far as possible; synonymies of most species were listed by Dussart & Defaye (1985, 1990) for Cyclopoida and Harpacticoida, respectively Species Location Source Harpacticoida Attheyella crassa (Sars, 1863) Attheyella ilami Dumont & Maas, 1988 Attheyella wierzejskii (Mrázek, 1893) Bryocamptus hoferi (Douwe, 1907) Bryocamptus minutus Bryocamptus pygmaeus Bulgaria Nepal Bulgaria Bulgaria Bulgaria England B. pygmaeus B. pygmaeus Bryocamptus stouti Harding, 1958 Bryocamptus weberi (Kessler, 1914) Bryocamptus zschokkei (Schmeil, 1893) B. zschokkei tatrensis Minkiewicz, 1916 Cantocamptus clavifurcatus Hamond, 1988 Canthocamptus dedeckkeri Hamond,1988 Canthocamptus dumonti Hamond, 1988 Canthocamptus globulisetosus Hamond, 1988 Canthocamptus howardorum Hamond, 1988 Canthocamptus lacinulatus Hamond, 1988 Canthocamptus longifurca Hamond, 1988 Canthocamptus mammillifurca Hamond, 1988 Canthocamptus mortoni Hamond, 1988 Canthocamptus tasmaniae Hamond, 1988 Canthocamptus timmsi Hamond, 1988 Echinocamptus hypophyllus Defaye & Heymer, 1996 Elaphoidella jochenmartensi Dumont & Maas, 1988 Elaphoidella propedamasi Defaye & Heymer, 1996 Elaphoidella pseudocornuta Dumont & Maas, 1988 Epactophanes muscicolus (Richters, 1901) Epactophanes richardi France Bulgaria New Zealand England Corsica Bulgaria Tasmania Victoria, Australia Victoria, Australia Victoria, Australia Tasmania Victoria, Australia Victoria, Australia Victoria, Australia Tasmania Tasmania Tasmania Congo (Zaire) Nepal Congo (Zaire) Nepal England England, Ireland E. richardi E. richardi E. richardi E. richardi E. richardi Fibulacamptus gracilior Hamond, 1988 Fibulacamptus tasmanicus Hamond, 1988 Fibulacamptus victorianus Hamond, 1988 Maraenobiotus vejdovskyi anglicus Gurney, 1932 M. vejdovskyi tenuispina Roy, 1924 M. vejdovskyi tenuispina M. vejdovskyi truncatus Gurney, 1932 M. vejdovskyi truncatus Moraria arboricola Scourfield, 1915 Germany Corsica Denmark Hawaii Congo (Zaire) Victoria, Australia Tasmania Victoria, Australia England Denmark France England France England Moraria frondicola Klie, 1943 Moraria ilami Dumont & Maas, 1988 Moraria poppei (Mrázek, 1893) Corsica Nepal Bulgaria Michailova-Neikova (1973) Dumont & Maas (1988) Michailova-Neikova (1973) Michailova-Neikova (1973) Michailova-Neikova (1973) Scourfield (1940), Fryer (1993) Klie (1943) Michailova-Neikova (1973) Harding (1958) Scourfield (1940) Klie (1943) Michailova-Neikova (1973) Hamond (1988) Hamond (1988) Hamond (1988) Hamond (1988) Hamond (1988) Hamond (1988) Hamond (1988) Hamond (1988) Hamond (1988) Hamond (1988) Hamond (1988) Defaye & Heymer (1996) Dumont & Maas (1988) Defaye & Heymer (1996) Dumont & Maas (1988) Scourfield (1940) Gurney (1932), Scourfield (1940) Precht (1936) Klie (1943) Nielsen (1966) Evenhuis & Preston (1995) Defaye & Heymer (1996) Hamond (1988) Hamond (1988) Hamond (1988) Scourfield (1940) Nielsen (1966) Remy (1932) Scourfield (1940) Klie (1943) Scourfield (1940), Fryer (1993) Klie (1943) Dumont & Maas (1988) Michailova-Neikova (1973) Continued on p. 211 211 Table 2. contd. Species Location Source Moraria terrula Kikuchi, 1991 Moraria tsukubaensis Kikuchi, 1991 Moraria valkanovi Michailova-Neikova, 1973 Moraria varica Japan Japan Bulgaria England, Ireland M. varica M. varica Parbatocamptus jochenmartensi Dumont & Maas, 1988 Phyllognathopus cf. camptoides Boz̆ić, 1965 Phyllognathopus viguieri P. viguieri P. viguieri unidentified harpacticoid Cyclopoida Allocyclops silvaticus Rocha & Bjornberg, 1988 Bryocyclops anninae Bryocyclops phyllopus Kiefer, 1935 Goniocyclops sylvestris Harding, 1958 Metacyclops hirsutus Rocha, 1994 Muscocyclops operculatus Paracyclops bromeliacola Karaytug & Boxshall, 1998 Paracyclops chiltoni (Thomson, 1882) France England Nepal Congo (Zaire) England Agrihan Is., Marianas Hawaii England Kikuchi (1984, 1991b) Kikuchi (1984, 1991a) Michailova-Neikova (1973) Gurney (1932), Scourfield (1940) Boz̆ić (1966) Fryer (1993) Dumont & Maas (1988) Defaye & Heymer (1996) Scourfield (1940) Kikuchi (1994b) Evenhuis & Preston (1995) Stout (1963) Brazil Hawaii Congo (Zaire) New Zealand Brazil Brazil Brazil Brazil Rocha & Bjornberg (1988) Evenhuis & Preston (1995) Defaye & Heymer (1996) Harding (1958) Rocha (1994) Rocha & Bjornberg (1987) Karaytug & Boxshall (1998a) Karaytug & Boxshall (1998b) soil fauna in Australia. However, Epactophanes, like P. viguieri, may be a predator on nematodes. Copepods are inefficiently sampled by the Tullgren funnel and other extraction methods used for soil fauna (Fiers & Ghenne, 2000), and their true numbers in soils are probably underestimated. Thermal waters It is difficult to define ‘thermal’, but 30 ◦ C may be a reasonable limit above which temperate-zone copepods do not easily survive. There are relatively few records of copepods, mostly cyclopoids, from thermal waters. Menzel (1925a) reported a species of Halicyclops (subsequently described as Halicyclops thermophilus by Kiefer, 1929, 1933) from a hot saline spring on Java (37–45 ◦ C, pH 6.7–7.1, salinity 26.7). Many of the temperatures reported by Kiefer (1933) from waters on Sumatra investigated by the Sunda-Expedition were over 30 ◦ C: a young cyclopoid was found in a warm acid spring (35.5 ◦ C, pH 2.68); other warm springs (29.5–39 ◦ C, pH 7.3–7.6) harbored Paracyclops eucyclopoides, P. fimbriatus, Mesocyclops aequatorialis, Microcyclops varicans s. str., M. varicans subaequalis, and Thermocyclops decipiens. Brehm (1936) mentioned a species of Eucyclops from ‘heißen Quellen’ near Cuzco, Peru; no temperature or water chemistry data were available. Mesocyclops ‘leuckarti’ was reported by Lindberg (1942) from a basin of a soap factory in Iran, water temperature 40 ◦ C. In Iceland, a thermal pool (34 ◦ C) harbored the eurytopic species E. serrulatus and Megacyclops viridis (Starmühlner, 1969). Dussart (1974) reported Cletocamptus deitersi, Cryptocyclops linjanticus micrura and Mesocyclops aequatorialis from warm springs in Ethiopia, without further habitat data. Lewis (1974) described Paracyclops waiariki from thermal springs in New Zealand, but at a relatively low temperature of 27 ◦ C (and pH 3.0). Reid (1994) found a cyclopoid, Microcyclops sp., in a spring-fed thermal (about 40 ◦ C) pond in Brazil. Other harpacticoids besides C. deitersi have been found in thermal waters. Chappuis (1931) reported Elaphoidella bidens coronata, Schizopera tobae and Parastenocaris longicaudis from a warm spring (29.5 ◦ C) on Sumatra. Por (1964) described Nitokra balnearia from hot mineral springs (31 ◦ C) on the Dead Sea shore in Israel, where it reached immense numbers. Thermomesochra reducta Itô & Burton, 1980, 212 Table 3. Copepods reported from thermal waters. Species are listed under the current name of the taxon, as far as possible; synonymies of most species were listed by Dussart & Defaye (1985, 1990) for Cyclopoida and Harpacticoida, respectively Species Harpacticoida Cletocamptus deitersi (Richard, 1897) Elaphoidella bidens coronata (Sars, 1904) Nitokra balnearia Por, 1964 Parastenocaris longicaudis Chappuis, 1931 Schizopera tobae Chappuis, 1931 Thermomesochra reducta Itô & Burton, 1980 Cyclopoida Cryptocyclops linjanticus Cyclops sp.1 Cyclops sp.1 Eucyclops serrulatus (Fischer, 1851) E. serrulatus Temp. (◦ C) Location: habitat Reference 29.5 31 29.5 29.5 38–58 Ethiopia: thermal springs Sumatra: thermal spring Israel: hot mineral spring Sumatra: thermal spring Sumatra: thermal spring Malaysia: hot spring Dussart (1974) Chappuis (1931) Por (1964) Chappuis (1931) Chappuis (1931) Itô & Burton (1980) 37–46 Ethiopia: springs India: spring 31–34 Nigeria: spring Dussart (1974) Jana (1978); Jana & Sarkar (1971) Egborge & Fagade (1979) Starmühlner (1969) Ponyi (1992) 34 28.6–29.7 (surface) 37–45 Iceland: spring Hungary: springfed lake Java: saline spring Hungary: spring-fed lake Iceland: spring Ethiopia: springs Sumatra: springs Iran: basin Sumatra: springs Hungary: thermal spring-fed lake Starmühlner (1969) Dussart (1974) Kiefer (1933) Lindberg (1942) Kiefer (1933) Ponyi (1992) M. varicans subaequalis (Kiefer, 1928) Microcyclops sp. 28.6–29.7 (surface) 34 29.5–39 40 29.5–39 28.6–29.7 (surface) 29.5–39 40 Menzel (1925a); Kiefer (1929, 1933) Ponyi (1992) Kiefer (1933) Reid (1994) Paracyclops eucyclopoides Kiefer, 1929 Paracyclops fimbriatus Paracyclops waiariki Lewis, 1974 29.5–39 29.5–39 27 Thermocyclops decipiens Kiefer, 1929 unidentified cyclopoid 29.5–39 35.5 Sumatra: thermal springs Brazil: spring-fed thermal pond Sumatra: thermal springs Sumatra: thermal springs New Zealand: thermal springs Sumatra: thermal springs Sumatra: thermal acid spring Halicyclops thermophilus Macrocyclops albidus (Jurine, 1820) Megacyclops viridis (Jurine, 1820) Mesocyclops aequatorialis Kiefer, 1929 M. aequatorialis Mesocyclops leuckarti (Claus, 1857) Microcyclops varicans (Sars, 1863)s. str. M. varicans Kiefer (1933) Kiefer (1933) Lewis (1974) Kiefer (1933) Kiefer (1933) 1 These records should be considered as unidentified cyclopoids. from a hot spring in Malaysia, holds the survival record at temperatures between 38 and 58 ◦ C. High altitude and high latitude habitats There has historically been much interest in the aquatic faunas of high-altitude regions, although of course most studies have been carried out in lakes. The non-lacustrine copepod fauna of the Alps is comparatively well known (e.g. Thienemann, 1950; Gaviria, 1998). Several surveys in montane regions outside Europe, mainly by Heinz Löffler, have included samples from non-lacustrine ‘minor’ habitats. Examples from the Andes include the reports of Harding (1955) and Löffler (1960) from Peru and Bolivia. Löffler (1965, 1968a) reported on Maraenobiotus and other copepods from the high mountains of eastern Africa. In Asia, Löffler has reported on Maraenobi- 213 otus and other harpacticoids from Nepal (1968b) and Borneo (Mt. Kinabalu; Löffler, 1973). Although the plankton of lakes at extremely high altitudes tends to be species-poor (except in the Alps; see Löffler, 1968c), most of these surveys have indicated the existence of a rich semiterrestrial copepod fauna in locations where there is some vegetation and moisture, even in the presence of permafrost. Typical altitudes reached by copepods are up to about 4100 m in Mexico and Central America (Löffler, 1972) and the Colombian páramo region (Gaviria, 1989), 3800 m on Mt. Kinabalu, Borneo (Löffler, 1973), 2140 m in the Great Smoky Mountains, eastern U.S.A. (J. W. Reid & W. Reeves, unpublished data), and to the glacier line (2300–2600 m) in the Austrian Alps (Gaviria, 1998). Dumont & Maas (1988) described five species of harpacticoids living in leaf litter in montane forests of Nepal at moderate to high altitudes (1900–3900 m). Two planktonic species of calanoids and an unidentified cyclopoid live in lakes in Nepal at altitudes from 4600 to 5460 m (Manca et al., 1994). The record for altitude is probably held by Glaciella yalensis Kikuchi, 1994a, which inhabits melt (cryconite) pits on the Yala Glacier in Nepal, at altitudes between 5100 and 5700 m (Kikuchi, 1994a). Copepods living in extreme north and south latitudes confront similar problems of a short growing season and lack of organic matter. For instance, saline lakes in Antarctica support a limited assemblage consisting of three species of harpacticoids and two of calanoids (Wright & Burton, 1981); and freshwater Antarctic lakes harbor two calanoids, Boeckella poppei (Mrázek, 1901) and Gladioferens antarcticus Bayly, 1994, and one species of cyclopoid, Acanthocyclops mirnyi Borutzky & Vinogradov, 1957 (Bayly & Burton, 1993; Bayly, 1994). The known copepod fauna of Iceland is similarly species-poor (Starmühlner, 1969). Students of biogeography have been much interested in the distribution and relationships of invertebrate montane faunas. The isolation of populations within and between mountain ranges has contributed to the development of a confusingly rich array of morphologically distinct populations of certain species. This phenomenon is well studied in the genus Maraenobiotus (Löffler, 1965, 1968a,b, 1973), and in several canthocamptid species in Japan (e.g. Ishida, 1991, 1994). Husmann (1975) argued that the edges of melting glaciers provided large areas of sand and gravel layers, followed by the moss tundra, which may have formed a ‘combined system of migration ways’ for interstitial organisms to follow from warmer regions. However, Strayer & Reid (1999) found that previously glaciated sites in the U.S.A. contained fewer species of interstitial specialist cyclopoid copepods (although equivalent numbers of generalist species) than historically unglaciated sites. This suggests that it was mainly the eurytopic species that were able to follow these ‘migration ways’. Unclassifiable natural habitats Some of the odder locations where copepods have been found include a sea shell in Fiji, which contained Halicyclops septentrionalis Kiefer, 1935 (Yeatman, 1983), and ants’ nests (B. H. Dussart, mentioned by Reid, 1986). Human-modified or artificial habitats Holes in the ground created by the multiplicity of human actions may easily be colonized by copepods and other aquatic animals. Ditches and borrow pits are common sites to find copepods. For instance, Brady (1907) and Graham (1907) described several species of harpacticoids and cyclopoids from railway borrow pits and gold mine pits in the African Gold Coast. Münchberg (1956) described the limnological conditions and aquatic faunas of ca. 10-year-old bomb craters in Germany, which included mainly common, generalist species such as Cyclops cf. strenuus Fischer, 1851, and Macrocyclops albidus. Some examples of species collected from road ruts include Canthocamptus australicus (Sars, 1908) in Australia (Hamond, 1988), Mesocyclops leuckarti (probably = M. aspericornis) in Guam (Watkins & Belk, 1975), and Metacyclops minutus (Claus, 1863) and several other species by Maier (1992, 1998) and Maier et al. (1998). Even footprints may serve as copepod microhabitats: Brehm (mentioned in Gurney, 1933: 221) found Diacyclops bicuspidatus (Claus, 1857) in the small pools formed by his own footprints in spongy woodland soil. The ecological role of borrow ditches and pits in providing refuges for the aquatic faunas in arid regions might fruitfully be examined. Copepods have invaded a variety of man-made habitats (Table 4), for example the roof of a tunnel in a coal mine (Brady, 1868), the filter beds of sewage treatment plants, and deeply buried agricultural drainage tiles (D. D. Williams, 1976). Copepods have been noticed in water systems of various sizes and uses, especially in older municipal systems where much of the water was drawn from subterranean sources, with minimal treatment. It is probably no accident 214 Table 4. Copepods reported from man-made or altered habitats. Species are listed under the current name of the taxon, as far as possible; synonymies of most species were listed by Dussart & Defaye (1985, 1990) for Cyclopoida and Harpacticoida, respectively Species Harpacticoida Attheyella nordenskioldii (Lilljeborg, 1902) Bryocamptus aquaeductus Borutsky, 1934 Bryocamptus echinatus (Mrázek, 1893) Bryocamptus luenensis (Schmeil, 1894) Bryocamptus minutus B. minutus B. minutus Bryocamptus pygmaeus Location: habitat Reference Canada: agricultural drainage tiles Ciscaucasia: city water pipe Germany: city water pipes Hungary: city water pipes England: coal mine Germany: city water pipes Romania: city water pipes Romania: city water pipes Williams, D. D. (1976) Bryocamptus typhlops (Mrázek, 1893) Canthocamptus sp. Germany: city water pipes Germany: moist decaying mine timbers Chappuisius inopinus Kiefer, 1938 Hungary, Romania: city water pipes Elaphoidella dubia Kiefer, 1931 Romania: city water pipes Elaphoidella elaphoides (Chappuis, 1924) Romania: city water pipes Elaphoidella gracilis serrulata Damian & Botosaneanu, Romania: city water pipes 1954 Elaphoidella grandidieri (Guerne & Richard, 1893) Western Samoa: old tires Elaphoidella juxtaputealis Damian & Botosaneanu, Romania: city water pipes 1954 Elaphoidella phreatica (Chappuis, 1925) Romania: city water pipe Elaphoidella putealis (Chappuis, 1925) Romania: city water pipe Elaphoidella taroi Fiji: tin cans Epactophanes richardi Hawaii: leaf-litter filled cup traps on trees E. richardi Germany: trickle filters, activated charcoal filters Nitocrella calcaripes Damian & Botosaneanu, 1954 Romania: city water pipes Nitocrella chappuisi Kiefer, 1926 Nitocrella hibernica s. str. N. hibernica hyalina (Jakubisiak, 1929) Nitocrella hirta Chappuis, 1924 N. hirta bucarestiensis Damian & Botosaneanu, 1954 Nitocrella kosswigi Noodt, 1954 Nitocrella omega Hertzog, 1936 Nitokra psammophila Noodt, 1952 Nitokra reducta Schäfer, 1936 s. str. Nitokra sewelli husmanni Kunz, 1976 Germany: city water pipes Germany: activated charcoal filters Poland: city water pipe Romania, Hungary: city water pipes Romania: city water pipes Romania: city water pipes France, Hungary: city water pipes Germany: activated charcoal filters Germany: activated charcoal filters Germany: activated charcoal filters Borutsky (1934) Kiefer (1926a, 1927a) Török (1961) Brady (1868) Kiefer (1927a) Damian (1958, 1959) Damian & Botosaneanu (1954) Kiefer (1926a, 1927a) Mrázek (1893) Török (1951), Damian (1958, 1959), respectively Damian (1958, 1959) Damian (1958, 1959) Damian & Botosaneanu (1954) Yeatman (1983) Damian & Botosaneanu (1954) Chappuis (1925) Chappuis (1925) Yeatman (1983) Evenhuis & Preston (1995) Husmann (1966, 1982) Damian & Botosaneanu (1954) Kiefer (1926b, 1927a) Husmann (1982) Jakubisiak (1929) Chappuis (1925), Török (1951), respectively Damian & Botosaneanu (1954) Damian (1958, 1959) Hertzog (1938), Török (1961), respectively Husmann (1982) Husmann (1982) Husmann (1982) Continued on p. 215 215 Table 4. contd. Species Location: habitat Reference Nitokra spinipes Boeck, 1864 Germany: activated charcoal filters France: city water pipes Romania: city water pipes France: city water pipes Romania: city water pipes Hungary: city water pipes Romania: city water pipes Hungary: city water pipes Hungary: city water pipes France: city water pipes Romania: city water pipes Romania: city water pipes Romania: city water pipes Husmann (1982) Paracamptus schmeili (Mrázek, 1893) P. schmeili biserialis (Micoletzky, 1912) Parastenocaris aedes Hertzog, 1938 Parastenocaris aquaeductus Chappuis, 1925 Parastenocaris budapestinensis Török, 1935 Parastenocaris clujensis Chappuis, 1925 Parastenocaris entzii Török, 1935 Parastenocaris germanica Kiefer, 1936 Parastenocaris hippuris Hertzog, 1938 Parastenocaris jeanneli Chappuis, 1924 Parastenocaris karamani brevicauda Damian, 1958 Parastenocaris latisetosus Damian & Botosaneanu, 1954 Parastenocaris minuta Chappuis, 1925 Parastenocaris nana Chappuis, 1925 Parastenocaris pannonica Török, 1935 Hertzog (1938) Chappuis (1925) Hertzog (1938) Chappuis (1925) Török (1935) Chappuis (1925) Török (1935) Török (1951) Hertzog (1938) Damian (1958, 1959) Damian (1958, 1959) Damian & Botosaneanu (1954) Romania: city water pipes Chappuis (1925) Romania: city water pipes Chappuis (1925) Hungary, Romania: city water Török (1935, 1961), Damian pipes (1958, 1959), respectively Parastenocaris similis Török, 1935 Hungary: city water pipes Török (1935, 1961) Parastenocaris subterraneus Damian, 1959 Romania: city water pipes Damian (1958, 1959) Parastenocaris uncinatus Damian & Botosaneanu, 1954 Romania: city water pipes Damian & Botosaneanu (1954) Parastenocaris spp. Germany: trickle filters Husmann (1966) Phyllognathopus viguieri Germany: aquarium Kessler (1914) P. viguieri Switzerland: aquarium Chappuis (1916) P. viguieri Germany: indoor swimming Klie (1924) pool P. viguieri Germany: water in coal mine Ziegelmayer (1923) P. viguieri England: ‘experimental Gurney (1932), Scourfield filters’ (1939) P. viguieri Romania, Germany: trickle Damian-Georgescu (1966), filters Husmann (1966), respectively P. viguieri Tonga, Western Samoa, Fiji: Yeatman (1983) old tires, tin cups, plastic containers, old boats P. viguieri Hawaii: leaf-litter–filled cup Evenhuis & Preston (1995) traps on trees Spelaeocamptus spelaeus (Chappuis, 1925) Romania: city water pipes Chappuis (1925, 1927) Unidentified Harpacticoida U.S.A.: old tires Nasci et al. (1987) Cyclopoida Acanthocyclops exilis (Coker, 1934) U.S.A.: old tires Nasci et al. (1987) Acanthocyclops rhenanus Kiefer, 1936 France: city water pipes Hertzog (1938) Acanthocyclops robustus (Sars, 1863) Romania: city water pipes Damian (1958, 1959) Acanthocyclops venustus (Norman & Scott, 1906) France: city water pipes Hertzog (1938) Acanthocyclops vernalis (Fischer, 1853) Canada: agricultural drainage Williams, D. D. (1976) tiles A. vernalis U.S.A.: old tires Nasci et al. (1987), Marten (1989), Reid & Marten (1994) Bryocyclops anninae Hawaii: leaf-litter–filled cup Evenhuis & Preston (1995) traps on trees Continued on p. 216 216 Table 4. contd. Species Location: habitat Reference Bryocyclops fidjiensis Yeatman (1983) Diacyclops crassicaudis (Sars, 1863) Diacyclops languidoides hiberniae (Gurney, 1927) Diacyclops navus (Herrick, 1882) Fiji, Tonga, Western Samoa: tin cans, bottles Fiji: metal drums Germany, Romania: city water pipes Germany: city water pipes Romania, Hungary: city water pipes Romania: city water pipes Wales: cistern U.S.A.: old tires Diacyclops ? stygius (Chappuis, 1924) Romania: city water pipes Ectocyclops phaleratus Ectocyclops rubescens U.S.A.: old tires U.S.A.: old tires Eucyclops agilis (Koch, 1838) E. agilis France: city water pipes U.S.A.: old tires Eucyclops elegans (Herrick, 1884) U.S.A.: old tires Eucyclops serrulatus E. serrulatus Germany: city water pipes Romania: city water pipes Graeteriella unisetigera (Graeter, 1908) Germany: city water pipes, trickle filters Tonga, Western Samoa, Fiji: old tires U.S.A.: old tires Cryptocyclops linjanticus Cyclops sp. Diacyclops clandestinus (Kiefer, 1926) D. clandestinus Halicyclops thermophilus s. str. Macrocyclops albidus M. albidus Megacyclops gigas (Claus, 1857) Megacyclops viridis M. viridis Mesocyclops affinis Van de Velde, 1987 Mesocyclops aspericornis M. aspericornis M. aspericornis M. aspericornis M. leuckarti Mesocyclops longisetus (Thiébaud, 1912) Mesocyclops ogunnus Onabamiro, 1957 Mesocyclops cf. pehpeiensis Hu, 1943 Mesocyclops ruttneri Kiefer, 1981 Romania: city water pipes Germany: city water pipes France: city water pipes England: water tank Vietnam: water containers French Polynesia: barrels in pigpen and old tires Hawaii: containers Colombia: mosquito rearing containers Vietnam: water containers Iran: basin of soap factory Venezuela: drinking tank Vietnam: water containers Vietnam: water containers Yeatman (1983) Kraepelin (1886), Damian (1958, 1959), respectively Kiefer (1926a, c, 1927a) Damian (1958, 1959), Török (1961), respectively Damian (1958, 1959) Gurney (1933) Nasci et al. (1987; as Thermocyclops dybowskii), Marten (1989), Reid & Marten (1994) Damian & Botosaneanu (1954) Nasci et al. (1987) Marten (1989), Reid & Marten (1994) Moniez (1889) Nasci et al. (1987), Marten (1989), Reid & Marten (1994) Nasci et al. (1987; as E. speratus); Reid & Marten (1994) Kiefer (1927a) Damian & Botosaneanu (1954) Kiefer (1926a, 1927a), Husmann (1966), respectively Yeatman (1983) Marten (1989), Marten et al. (1993), Reid & Marten (1994) Damian (1958, 1959) Kiefer (1927a) Moniez (1889) Scourfield (1939) Vu et al. (2000) Rivière & Thirel (1981), Rivière et al. (1987) Marten (1984) Suárez et al. (1984) Vu et al. (2000) Lindberg (1942) Dussart (1984) Vu et al. (2000) Vu et al. (2000) Continued on p. 217 217 Table 4. contd. Species Location: habitat Reference Mesocyclops thermocyclopoides Harada, 1931 Mesocyclops woutersi Van de Velde, 1987 Mesocyclops yenae Holynska, 1998 Metacyclops planus (Gurney, 1909) Metacyclops tredecimus (Lowndes, 1934) Orthocyclops modestus (Herrick, 1883) Vietnam: water containers Vietnam: water containers Vietnam: water containers Romania: city water pipes Venezuela: drinking tank U.S.A.: old tires Paracyclops affinis (Sars, 1863) Paracyclops fimbriatus P. fimbriatus P. fimbriatus Senegal: laboratory cultures of nematodes England: percolating filters of sewage works France: city water pipes Germany: city water pipes Romania: city water pipes Vu et al. (2000) Vu et al. (2000) Vu et al. (2000) Damian (1958, 1959) Dussart (1984) Marten (1989), Reid & Marten (1994) Reversat et al. (1992) P. fimbriatus P. fimbriatus Fiji: old tire U.S.A.: old tires P. fimbriatus s. lat. Easter Island: stone basins and mouth of stone statue U.S.A.: old tires Paracyclops chiltoni Paracyclops poppei Tropocyclops prasinus T. prasinus Calanoida: ‘Calaniden’ Karaytug & Boxshall (1998b) Moniez (1889) Kiefer (1926a, 1927a) Damian & Botosaneanu (1954) Yeatman (1983) Marten (1989), Reid & Marten (1994) Dumont & Martens (1996) England: water tank U.S.A.: old tire Marten (1989), Reid & Marten (1994), Karaytug & Boxshall (1998a) Scourfield (1939) Reid & Marten (1994) Germany: city water systems Kraepelin (1886) that most records predate the use of modern water sanitation procedures. Kraepelin (1886) was apparently the first to report copepods (Cyclops sp. and ‘Calaniden’) in a municipal water system, in Hamburg, Germany. Shortly thereafter, Moniez (1889) found several common species of cyclopoids in the water pipes of Lille, France. Chappuis (1925), Török (1935) and Hertzog (1938) described several new species of parastenocaridid harpacticoids from city water pipes in Europe. A human-created analogue to the natural psammon is the sand-filter beds (trickle filters) of water treatment plants. Psammic or hypogean cyclopoids and harpacticoids such as Graeteriella unisetigera, E. richardi, P. viguieri, and species of Parastenocaris may colonize trickle filters (e.g. Husmann, 1961, 1966; Duncan, 1989). Even activated charcoal filters may harbor copepods (Husmann, 1982). The literature on copepods in various kinds of filters, much of it in obscure local reports, is difficult to review; but some examples are included in Table 4. Discussion Studies in the more cryptic habitats have contributed substantially to fundamental understanding of the biology of copepods. These have provided information on developmental rates, adaptations to low food supply and/or low temperatures, dispersal by natural and human agencies, biogeography, evolution and conservation. Some of the fastest-developing copepods live in temporary ponds. The most spectacular example is the cyclopoid Metacyclops minutus, which in tiny ponds in Germany may pass through 8 or more generations in a single growing season. Under natural conditions they may develop from egg to adult in 4.7–8.6 days, and in 218 the laboratory have matured in as little as 4 days at 30 ◦ C (Maier, 1992). In this species also, males differ little from females in size, females and males mature at about the same rate, and adults and subadults may pass through dry phases in a state of quiescence, and through the winter in diapause (Maier, 1992). Adaptations to extreme conditions of low food supply and/or low temperatures include reduction in the number (usually with enlarged size) of eggs, as in the harpacticoid Pseudomoraria triglavensis (Brancelj, 1994). Some soil harpacticoids may produce only 2 eggs at a time, and drop them or actively lay them in the leaf substrate (Nielsen, 1966); some small cave cyclopoids also produce as few as 2 large eggs, and drop them (Lescher-Moutoué, 1973). Fiers & Ghenne (2000) found Graeteriella unisetigera, previously supposed to be a strict stygobiont, in several beech litter samples, documented the striking coincidence between its known distribution and the historical limits of beech forests, and advanced the hypothesis that the animals are able to travel along the ground, rather than being restricted to particular drainage basins. They pointed out that not only might this be a convenient dispersal route, but would prevent physical and genetic separation of populations in different drainage basins, thus reducing speciation. Fiers & Ghenne (2000) noted that while larger stygobionts tend to be restricted within drainage basins (examples given by Notenboom et al., 1996), the tiny (about 0.5 mm long) copepods are usually more widely distributed. They may be not only less limited by such factors as sediment permeability, but be more eurytopic than previously estimated and able to exploit continuous epigean highways of leaf litter, mosses, and moist soils. Remy (1932) early remarked on the relative uniformity of the leaf-carpet in space and time, and suggested a possible role of humid forest habitats as a refuge for specialists, particularly trogloxenes or troglophiles, as well as for less specialized generalist species. A similar idea was advanced by Frey (1980), who developed a concept of a worldwide rainforest habitat and predicted that endemic or uniquely adapted species would be found there. Lewis (1986) remarked on the analogous distribution of one harpacticoid genus of the damp forest, Loefflerella, which occurs in Patagonia, Chile and New Zealand, to that of the genus of semiterrestrial cladocerans, Bryospilus, known from Puerto Rico, Venezuela and New Zealand (Frey, 1980). The canthocamptid harpacticoid genus Fibulacamptus is confined to wet temperate southern Australia and Tasmania, mainly in semiterrestrial situations: a river, muddy gravel and dead leaves, and wet moss and leaf litter (Hamond, 1988). Antipodiella is endemic to New Zealand (Lewis, 1986). Among cyclopoids, several genera are endemic to humid forests, and the known ranges of some are apparently restricted, e.g. Cochlacocyclops, Goniocyclops and Psammocyclops in Madagascar (Kiefer, 1955); Fimbricyclops in Puerto Rico (Reid, 1993b); Goniocyclops in New Zealand (Harding, 1958); Muscocyclops mainly in the Atlantic coastal forest of South America, with outliers in continuous wetlands in central Brazil (Reid, 1987; Rocha & Bjornberg, 1987). Lewis (1984) pointed out that in the harpacticoid fauna of New Zealand, isolated since the Mesozoic, only 2 of 16 genera are endemic but endemism at the species level is high. The general picture of the biogeography of the Canthocamptidae presented by Lewis (1986) has not much changed with the addition of further data. Some exceptions are that a few genera are now known to occur on more than one continent, e.g. Gulcamptus in North America as well as eastern Asia (Reid & Ishida, 1996). On the other hand, advances in systematic understanding may alter this picture for some groups; for instance, the New World species of Attheyella (Canthosella) form a distinct group from the Asian species, and likely should be considered a separate genus (Janetzky et al., 1996). Future collections in semiterrestrial habitats outside Europe may reveal that some genera or species are more widely distributed than presently thought. For instance, although the genus Bryocamptus s. lat. is widely distributed in the temperate northern hemisphere, in the southern hemisphere species have been found in New Zealand (Lewis, 1986) and a wet campo (hillside flush marsh) in central Brazil (Reid, 1993, 1994). The known distribution of Itocyclops yezoensis (Ito, 1953) was extended by recent collections from Japan and Alaska to the Great Smoky Mountains in the eastern U.S.A. (Reid & Ishida, 2000). Passive transport is usually invoked as an effective distribution mechanism for microcrustaceans. Maguire (1971) described the colonization of phytotelmata as “the result of a series of interlinked events – dispersal, immigration and establishment.” Janetzky (1997) suggested the possibility that disseminules might be blown by the wind, since P. viguieri appeared in a rain gauge in Jamaica. Obviously protective resting stages have been observed in few species of harpacticoids, although the eggs of at least some leaf litter- and soil-dwelling species resist 219 desiccation to some degree (e.g. Bryocamptus (Arcticocamptus) spp., see Borutsky, 1952; E. richardi, see Nielsen, 1966), and adults of a few others (e.g. A. nordenskioldii, see D. D. Williams & Hynes, 1976) form drought-resistant cysts. There are few papers that discuss natural transport, even by implication. Rouch (1972) described two harpacticoids, Phyllognathopus bassoti and Nitocrella balli, which had established good populations on a small sandy island that appeared in Wisdom Lake, a shallow crater lake on Long Island, Papua New Guinea. The copepods were collected 20 months after formation of the small island. Copepods are apparently easily transported by various human activities. They may be carried in plant parts and moist soil, and exotic tropical copepods have been found in greenhouses or associated with tropical aquatic or terrestrial plants in several parts of the world: the East Asian Sinodiaptomus sarsi (Rylov, 1923) in California, U.S.A. (Light, 1939); the Brazilian Attheyella aliena in Germany (described by Noodt, 1956); the Asian Mesocyclops ruttneri in Austria (reported and described by Kiefer, 1981), Louisiana, Mississippi and Washington, D.C., U.S.A. (Reid, 1993a, 1996); and Bryocyclops muscicola, which was first described from Indonesia, in Florida, U.S.A. (Reid, 1999). Harpacticoids of the genus Phyllognathopus are frequently found in moist soils, and are probably so easily carried as to make determination of the origin of a particular population nearly impossible. Phyllognathous viguieri has been reported from greenhouse soils and the recesses of tropical plants (Lang, 1948; Borutsky, 1952; Lehman & Reid, 1993; Table 1). Hitchhiking with commercially cultured fish and crustaceans is more often invoked as a transport mechanism (reviewed by Reid & Pinto-Coelho, 1994). The subterranean realm has been a hospitable situation for copepods (Stoch, 1995, 2001; Galassi, 2001). Attempting to account for the relatively high species and genus richness in certain hypogean areas, Stoch (1995) proposed the adaptive zone model, involving steps of colonization, speciation events and radiation, to describe the process of invasion of epigean species and their subsequent evolution in hypogean environments. Copepods in general are an ancient group (Huys & Boxshall, 1991; Stock, 1991), and they may evolve extremely slowly in stable habitats, that is in habitats that do not themselves change much or allow easy physical access to other kinds of habitats. An example is the allopatric species-pair Acanthocyclops sensitivus (Graeter & Chappuis, 1914) in Europe and A. parasensitivus Reid, 1998, in eastern North America. These are identical in gross morphological characters such as appendage segmentation and setation, and differ only in certain proportions and finer ornamentation (Pospisil, 1999). Since both are rare and found only in groundwater-related habitats, we can assume that gene flow between the European and North American populations is nil. These two taxa have diverged only slightly since the continents separated. However, where they have invaded complex habitats such as large lakes, particularly epibenthic and infaunal copepods have radiated to a sometimes surprising degree, sometimes over a relatively short time. The most complex species-flocks exist in Lake Baikal, where cyclopoids (3 flocks of 3, 4 and 13 species) and harpacticoids (6 flocks of 3–21 species) account for a large proportion of the 120 or more copepod taxa in the lake (Boxshall & Evstigneeva, 1994). The Baikal basin complex has existed (as one or several basins) since the Tertiary, and this long period has apparently allowed the development of a high degree of trophic specialization and mouthpart structure among the cyclopoids, and extreme sexual dimorphism in the caudal rami among the harpacticoids (Boxshall & Evstigneeva, 1994). The more recent formation (during the Pleistocene) of large subterranean lakes or cenotes in the Yucatan Peninsula apparently allowed primarily epigean benthic cyclopoids in the genera Diacyclops and Mesocyclops to radiate into small flocks of 2 and 3 species, respectively, including true planktonic forms (Fiers et al., 1996). Many rarely collected copepods live preferentially in and are adapted to ephemeral waters. In Germany, where naturally created temporary habitats are disappearing, tiny pools maintained in early stages of succession by vehicular activity or other factors harbor several rare or endangered species of copepods, cladocerans and branchiopods (Herbst, 1982; Maier, 1998; Maier et al., 1998). Herbst (1982) listed 6 species of calanoids, 16 cyclopoids and 37 harpacticoids that are at some degree of risk in Germany because they inhabit special habitats, including small perennial plant-rich waterbodies, oligotrophic to mesotrophic ponds, acid bogs and moorland waters, cave waters, moss, saline waters and lake beaches, in addition to tiny ephemeral pools. Because the highly organic soils of the wet campo, a kind of hillside flush marsh in Brazil which harbors an extremely diverse copepod fauna (Reid, 1994), are valuable for truck farming, wet 220 campos that are not in protected areas are at risk of being drained and destroyed. Bayly (1992, 1997, 1999) reviewed the highly diverse fauna in gnammas (rock pools) and seepage films on rock outcrops in Western Australia, and argued strongly for their protection. “Sehr zu Unrecht sind die Kleingewässer und ihre Lebewelt bisher von der Wissenschaft etwas vernachlässigt worden” (Kiefer, 1925). Hollowday (1949) also urged that attention to neglected habitats would result in valuable new information: “It is by the investigation of such habitats as these that peculiar and specialized forms are often met with”. Further pursuit of imaginative collecting, and ecologically oriented studies of copepods living at the natural extremes permissible to these basically aquatic forms are bound to provide additional insights on many aspects of their fundamental biology. Acknowledgements My gratitude is extended to Carlos E. F. Rocha for suggesting this topic. I thank Sam Lake, Gerhard Maier, Giuseppe L. Pesce, David L. Strayer, and Nicole A. C. Zyngier for providing or suggesting references, Frank Fiers for a pre-publication copy of the manuscript by Fiers & Ghenne, and Rubens Mendes Lopes, Carlos Rocha, and David Strayer for their constructive comments. The facilities of the C. B. Wilson Copepod Library and the Natural History Library, National Museum of Natural History, Smithsonian Institution were invaluable. References Bayly, I. A. E., 1972. Further contribution to a knowledge of the centropagid genera Boeckella, Hemiboeckella and Calamoecia (athalassic calanoid copepods). Aust. J. mar. Freshwat. Res. 30: 103–127. Bayly, I. A. E., 1992. Freshwater havens. Landscope 7: 49–53. Bayly, I. A. E., 1994. Gladioferens Henry (Copepoda: Calanoida) discovered in Antarctica: G. antarcticus sp. nov. described from a lake in the Bunger Hills. Polar Biol. 14: 253–259. Bayly, I. A. E., 1997. Invertebrates of temporary waters in gnammas on granite outcrops in Western Australia. J. r. Soc. west. Aust. 80: 167–172. Bayly, I. A. E., 1999. Rock of Ages: Human Use and Natural History of Australian Granites. University of Western Australia Press, Nedlands: 144 pp. Bayly, I. A. E. & H. R. Burton, 1993. Beaver Lake, Greater Antarctica, and its population of Boeckella poppei (Mrázek) (Copepoda: Calanoida). Verh. int. Ver. Limnol. 25: 975–978. Birch, L. C. & D. P. Clark, 1953. Forest soil as an ecological community with special reference to the fauna. Q. Rev. Biol. 28: 13–36. Blankaart, S., 1688. Schou-burg de Rupsen, Wormen, Ma’den, en Vliegende Dierkens daar uit voortkomende. Amsterdam: 232 pp. + 16 pls. Borutsky, E. V., 1934. Zur Harpacticidenfauna des Kaukasus. Zool. Anz. 107: 263–269. Borutsky, E. V., 1952. Freshwater Harpacticoida. Fauna of U.S.S.R., Crustacea 3(4): 1–396. English translation, 1964, Smithsonian Institution, Washington, D.C. Boshko, E. G., 1976. O parasitakh i simbiontakh rechikh rakob reki Sluch’ (Dneprobskii basseini). Vestn. Zool. 1976(5): 91 (in Russian). Bou, C. & R. Rouch, 1967. Un nouveau champ de recherches sur la faune aquatique souterraine. C. r. Acad. Sci. Paris D 265: 369– 370. Bowman, T. E., 1986. Copepoda: Calanoida. In Botosaneanu, L. (ed.), Stygofauna Mundi. E.J. Brill/Dr. W. Backhuys, Leiden: 295–298. Bowman, T. E., R. Prins & B. F. Morris, 1968. Notes on the harpacticoid copepods Attheyella pilosa and A. carolinensis, associates of crayfishes in the eastern United States. Proc. biol. Soc. Wash. 81: 571–586. Boxshall, G. A. & T. D. Evstigneeva, 1994. The evolution of species flocks in Lake Baikal: a preliminary analysis. Ergebn. Limnol. 44: 235–245. Božić, B., 1965. Un nouveau Phyllognathopus (copépode harpacticoïde) du Gabon. Rev. Écol. Biol. Sol 2: 271–275. Božić, B., 1966. Moraria varica (Graeter) (copépode harpacticoïde) dans le forêt de Rambouillet. Bull. Mus. natn. Hist. nat., Paris, Sér. 2, 38: 648–650. Brady, G. S., 1868. Description of an entomostracan inhabiting a coal mine. Q. J. microsc. Sci., N. Ser. 9: 23–24 + pl. 6. Brady, G. S., 1907. Notes on Dr. Graham’s collection of Cyclopidae from the African Gold Coast. Ann. trop. Med. Parasit. 1: 423– 424. Brancelj, A., 1994. Pseudomoraria triglavensis gen. n., sp. n. (Copepoda, Harpacticoida) from a high-alpine reservoir in Slovenia. Hydrobiologia 294: 89–98. Brehm, V., 1936. Mitteilungen von den Forschungsreisen Prof. Rahms. Mitteilung V. Zur Variabilität der Pseudoboeckella gibbosa Brehm. Zur Thermalfauna der Anden. Zool. Anz. 114: 107–108. Bretschko, G. & W. E. Klemens, 1986. Quantitative methods and aspects in the study of the interstitial fauna of running waters. Stygologia 2: 297–316. Chappuis, P. A., 1916. Viguierella coeca Maupas. Rev. suisse Zool. 24: 521–564, pls. 3, 4. Chappuis, P. A., 1923. Description de deux harpacticides nouveaux de Transylvanie (Note préliminaire). Bull. Soc. sci. Cluj 2: 27– 45. Chappuis, P. A., 1925. Sur les copépodes et syncarides des eaux souterraines de Cluj et de Monts Bihar. Bull. Soc. sci. Cluj 2: 157–182. Chappuis, P. A., 1926. Harpacticiden aus der Kiemenhöhle des Flußkrebses. Arch. Hydrobiol. 17: 515–520. Chappuis, P. A., 1927. Die Tierwelt der unterirdischen Gewässer. Binnengewässer 3: 1–175. Chappuis, P. A., 1928. Neue Harpacticiden aus Java. Treubia 10: 271–283. Chappuis, P. A., 1931. Copepoda Harpacticoida der deutschen limnologischen Sunda-Expedition. Trop. Binnengewäss. 1: 512– 584. Chappuis, P. A., 1936. Brasilianische Ruderfusskrebse (Crustacea Copepoda), gesammelt von Herrn Dr. Otto Schubart. IV. Mitteilung. Bull. Soc. sci. Cluj 8: 450–461. 221 Chappuis, P. A., 1942. Eine neue Methode zur Untersuchung der Grundwasserfauna. Acta Sci. math. nat. Univ. FranciscoJosephina, Kolozsvar 6: 3–7. Chappuis, P. A., 1946. Un nouveau biotope de la faune souterraine aquatique. Bull. Sect. sci., Acad. Roumaine 29: 1–8. Chappuis, P. A., 1954. Copépodes harpacticoides des Indes et d’Iran. Bull. Soc. Hist. nat. Toulouse 89: 213–224. Chappuis, P. A., 1955. Notes sur les copépodes. 20. Copépodes harpacticoïdes des îles du Pacifique. Notes biospéol. 10: 97–101. Chappuis, P. A., 1956. Freilebende Ruderfusskrebse (Crustacea Copepoda). II. Harpacticoida. Ergebn. deutsch. limnol. Venezuela-Exped. 1952, 1: 269–276. Chappuis, P. A. & F. Kiefer, 1952. Copépodes cavernicoles des Pyrénées. Notes biospéol. 7: 113–131. Creaser, E. P., 1931. Some cohabitants of burrowing crayfish. Ecology 12: 243. Dahms, H. U., 1995. Dormancy in the Copepoda - an overview. Hydrobiologia 306: 199–211. Damian, A., 1958. Cercetări hidrobiologice în conducta de apă a oraşului Bucareşti. Nota II. Cu privire specială asupra copepodolor. Stud. cerc. Biol., Ser. Biol. Anim. 2: 177–198. Damian, A., 1959. Hydrobiologische Untersuchungen des Bukarester Leitungswassers. II. Mitteilung mit besonderer Berücksichtigung der Ruderfüsser (Copepoda). Revue Biol., Acad. Rép. pop. Roumaine 4: 375–395. Damian, A. & L. Botosaneanu, 1954. Cercetări hidrobiologice în conducta de apă a oraşului Bucareşti. Bul. Ştiint. Secţ. Ştiint. Biol. Agronom. Geol. Geograf. Cluj 6: 1157–1172. Damian-Georgescu, A., 1966. Phyllognatopus Mrazek, gen nou de harpacticoid pentru fauna Românei. Stud. cerc. Biol., Ser. Zool. 18: 301–304. Danielopol, D. L. & R. Niederreiter, 1987. A sampling device for groundwater organisms and oxygen measurement in multi-level monitoring wells. Stygologia 3: 252–263. Defaye, D., 1996. Redescription of Nitokra divaricata Chappuis, 1923 (Copepoda, Harpacticoida) with first records from Austropotamobius torrentium Schrank. Acta zool. Acad. Sci. hung. 42: 145–155. Defaye, D. & A. Heymer, 1996. Crustacés copépodes de litière de la forêt ombrophile du Kivu (Zaïre). Bull. Mus. natn. Hist. nat., Paris, 4e Sér., 18(A/1–2): 185–209. Delamare Deboutteville, C., 1953. Description d’un appareil pour la capture de la faune des eaux souterraines littorales sous la mer. Vie Milieu 4: 411–421. Dumont, H. J. & E. H. Lamoot, 1978. Allocyclops ritae n. sp. (Copepoda Cyclopoida), the second representative of the remarkable genus Allocyclops Kiefer. Crustaceana 35: 22–26. Dumont, H. J. & S. Maas, 1988. Five new species of leaf-litter harpacticoids (Crustacea, Copepoda) from Nepal. Zool. Scr. 17: 55–68. Dumont, H. J. & K. Martens, 1996. The freshwater microcrustacea of Easter Island. Hydrobiologia 325: 83–99. Duncan, A., 1989. The ecology of slow sand filters. In Graham, H. J. D. (ed.), Slow Sand Filtration: Recent Developments in Water Treatment Technology. Ellis Horwood Ltd., Chichester: 163–180. Dussart, B. H., 1974. Contribution à l’étude des copépodes des eaux douces d’Éthiopie. Bull. I.F.A.N., Sér. A, Sci. nat. 36: 92–116. Dussart, B. H., 1982. Crustacés copépodes des eaux intérieures. Faune Madagascar 58: 3–146. Dussart, B. H., 1984. Some Crustacea Copepoda from Venezuela. Hydrobiologia 113: 25–67. Dussart, B. H. & D. Defaye, 1985. Répertoire Mondial des Copepodes Cyclopoïdes. Editions du C.N.R.S., Bordeaux: 236 pp. Dussart, B. H. & D. Defaye, 1990. Répertoire Mondial des Crustacés Copépodes des Eaux Intérieures. III. Harpacticoïdes. Crustaceana Suppl. 16: 1–384. Egborge, A. B. M. & S. O. Fagade, 1979. Notes on the hydrobiology of the Wikki Warm Springs, Yankari Game Reserve, Nigeria. Pol. Arch. Hydrobiol. 26: 313–322. Evenhuis, N. L. & D. J. Preston, 1995. New records of copepods (Copepoda) from Oahu, Hawaii. Bishop Mus. occas. Pap. 42: 52–53. Ferreira, C. P., 1985. Mesofauna associada à bromélia Neoregelia cruenta (R. Graham) L. B. Smith, em restingas do litoral norte do estado de São Paulo. Resumos do XII Congresso Brasileiro de Zoologia, Campinas: 348–349 (Abstract). Fiers, F. & V. Ghenne, 2000. Cryptozoic copepods from Belgium: diversity and biogeographic implications. Belg. J. Zool. 130: 11– 19. Fiers, F., J. W. Reid, T. M. Iliffe & E. Suárez-Morales, 1996. New hypogean cyclopoid copepods (Crustacea) from the Yucatán Peninsula, Mexico. Contr. Zool. 66: 65–102. Frank, J. H., 1980. Bromeliad phytotelmata and their biota, especially mosquitoes. In Frank, J. H. & L. P. Lounibos (eds), Phytotelmata: Terrestrial Plants as Hosts for Aquatic Insect Communities. Plexus Publishing, Medford, New Jersey: 101–128. Fryer, G., 1980. Acidity and species diversity in freshwater crustacean faunas. Freshwat. Biol. 10: 41–45. Fryer, G., 1993. The Freshwater Crustacea of Yorkshire. A Faunistic and Ecological Survey. Yorkshire Naturalists’ Union and Leeds Philosophical and Literary Society, Kendal: 312 pp. Galassi, D. P., 2001. Groundwater copepods: diversity patterns over ecological and evolutionary scales. Hydrobiologia 453/454: 227–253. Gaviria, S., 1989. The calanoid fauna (Crustacea, Copepoda) of the Cordillera Oriental of the Colombian Andes. Hydrobiologia 178: 113–134. Gaviria, S., 1998. Checklist and distribution of the free-living copepods (Arthropoda: Crustacea) from Austria. Ann. naturhist. Mus. Wien 100B: 539–594. Ghosh, E., 1928. Notes on the fauna of pitcher-plants from Singapore. Part VIII. Protozoa. J. Malaysian Branch R. Asiatic Soc. 6(3): 24–27. Graeter, E., 1910. Die Copepoden der unterirdischen Gewässer. Arch. Hydrobiol. 6: 111–152. Graham, W. M., 1907. A description of some Gold Coast Entomostraca. Ann. trop. Med. Parasit. 1: 417–422 + pls. 33–36. Gurney, R., 1920. Notes on certain British freshwater Entomostraca. Ann. Mag. nat. Hist., Ser. 9, 5: 351–360. Gurney, R., 1930. Notes on certain species of freshwater Copepoda. Zool. Anz. 90: 105–112. Gurney, R., 1932. British Fresh-water Copepoda, Vol. 2. Ray Society, London: 336 pp. Gurney, R., 1933. British Fresh-water Copepoda, Vol. 3. Ray Society, London: 384 pp. Hadel, V. F. & M. A. J. Carvalho, 1988. Associação copépodo/bromélia: relação com o tipo de tanque. Acta limnol. bras. 2: 571–586. Hairston, N. G., Jr. & C. E. Cáceres, 1996. Distribution of crustacean diapause: micro- and macroevolutionary pattern and process. Hydrobiologia 320: 27–44. Hamilton IV, R., J. W. Reid & R. M. Duffield, 2000. Rare copepod, Paracyclops canadensis (Willey), common in leaves of Sarracenia purpurea L. Northeast. Nat. 7: 17–24. Hamond, R., 1988. Non-marine harpacticoid copepods of Australia. I. Canthocamptidae of the genus Canthocamptus Westwood s. lat. and Fibulacamptus, gen. nov., and including the description 222 of a related new species of Canthocamptus from New Caledonia. Invert. Taxon. 1: 1023–1247. Harding, J. P., 1955. The Percy Sladen Trust Expedition to Titicaca in 1937. XV. Crustacea: Copepoda. Trans. linn. Soc. Lond. 1(3): 219–247. Harding, J. P., 1958. Bryocamptus stouti and Goniocyclops silvestris, two new species of copepod crustacean from forest litter in New Zealand. Ann. Mag. nat. Hist. 13: 309–314. Harvey, E. & T. E. Miller, 1996. Variance in composition of inquiline communities in leaves of Sarracenia purpurea L. on multiple spatial scales. Oecologia 108: 562–566. Hegner, R. W., 1926. The Protozoa of the pitcher plant, Sarracenia purpurea. Biol. Bull. 50: 271–276. Herbst, H. V., 1959. Brasilianische Süßwassercyclopoiden (Crustacea Copepoda). Gewäss. Abwäss. 24: 49–73. Herbst, H. V., 1962. Crustacea aus dem Amazonasgebiet, gesammelt von Professor Dr H. Sioli und Dr R. Braun. 1. Litorale und substratgebundene Cyclopoida Gnathostoma (Copepoda). Crustaceana 3: 259–278. Herbst, H. V., 1982. Deutsche existenzbedrohte Branchiopoda und Copepoda (Crustacea). Arch. Hydrobiol. 95: 107–114. Hertzog, L., 1938. Crustaceen aus unterirdischen Biotopen des Rheintales bei Straßburg. Zool. Anz. 123: 45–56. Hobbs, H. H. Jr. & A. Villalobos, 1958. The exoskeleton of a freshwater crab as a microhabitat for several invertebrates. Virg. J. Sci. 9: 395–396 (Abstract). Hollowday, E. D., 1949. A further instance of the occurrence of Cyclops bisetosus Rehberg, in the water-filled hollows on tree trunks. J. Quekett microsc. Club, Ser. 4, 2: 361–362. Husmann, S., 1961. Filtersandschichten in Grundwasseranreicherungs-Anlagen als künstliche Biotope aquatiler Subterranorganismen. Abh. braunschw. wiss. Ges. 13: 163–181. Husmann, S., 1966. Die Oganismengemeinschaften der Sandlückensysteme in natürlichen Biotopen und Langsamsandfiltern. Veröff. hydrol. Forsch. Dortmunder Stadwerke AG 9: 93–196. Husmann, S., 1975. The boreoalpine distribution of groundwater organisms in Europe. Verh. int. Ver. Limnol. 19: 2983–2988. Husmann, S., 1982. Aktivkohlefilter als künstliche Biotope stygophiler und stygobionter Grundwassertiere. Arch. Hydrobiol. 95: 139–155. Huys, R. & G. A. Boxshall, 1991. Copepod Evolution. The Ray Society, London: 468 pp. Ishida, T., 1991. Variation in the species of freshwater harpacticoid copepods in Japan. I. Canthocamptus mirabilis Stěrba. Bull. Plankt. Soc. Jap., spec. vol. (1991): 391–396. Ishida, T., 1992. Cyclopoid and harpacticoid copepods (Crustacea) from southeastern Alaska, U.S.A. Proc. biol. Soc. Wash. 105: 249–254. Ishida, T., 1994. Variation in the species of freshwater harpacticoid copepods in Japan. II. Attheyella nakaii (Brehm). Hydrobiologia 292/293: 53–57. Ito, Takashi, 1954. Cyclopoida copepods of Japanese subterranean waters. Rep. Fac. Fish., Prefect. Univ. Mie 1:372–416. Itô, Tatsunori & J. J. S. Burton, 1980. A new genus and species of the family Canthocamptidae (Copepoda, Harpacticoida) from a hot spring at Dusun Tua, Selangor, Malaysia. Zool. Jb. Syst. Ökol. Geogr. Tiere 107:1–31. Jakubisiak, S., 1929. Sur les Harpacticidae observés en Pologne. Bull. Soc. zool. Fr. 54: 191–193. Jakubisiak, S., 1939. Nitocrella divaricata (Chappuis), komensal raka. Archwm Hydrobiol. Rybactwa 12: 117–121. Jana, B. B., 1978. The plankton ecology of some thermal springs in West Bengal, India. Hydrobiologia 61: 135–143. Jana, B. B. & H. L. Sarkar, 1971. The limnology of ‘Swetganga’ – a thermal spring of Bakreswar, West Bengal, India. Hydrobiologia 37: 33–47. Janetzky, W., 1997. Crustacea in bromeliad phytotelmata. World Wide Web site: http://www.ifas.ufl.edu/∼frank/crusbrom.htm. Copy deposited in the C. B. Wilson Copepod Library, National Museum of Natural History, Smithsonian Institution. Janetzky, W., P. Martínez Arbizu & J. W. Reid, 1996. Attheyella (Canthosella) mervini sp.n. (Canthocamptidae, Harpacticoida) from Jamaican bromeliads. Hydrobiologia 339:123–135. Karaytug, S. & G. A. Boxshall, 1998a. Partial revision of Paracyclops Claus, 1893 (Copepoda, Cyclopoida, Cyclopidae) with descriptions of four new species. Bull. nat. Hist. Mus. London (Zool.) 62: 111–205. Karaytug, S. & G. A. Boxshall, 1998b. The Paracyclops fimbriatuscomplex (Copepoda, Cyclopoida): a revision. Zoosystema 20: 563–602. Kessler, E., 1914. Über ein Excretionsorgan bei der Harpacticidengattung Phyllognathopus Mrázek. Zool. Anz. 43: 530–532. Kiefer, F., 1924. Beiträge zur Copepodenkunde. 3. Epactophanes richardi Mrázek. Zool. Anz. 59: 204. Kiefer, F., 1925. Über einige Ruderfußkrebse aus Kleingewässern. Mikrokosmos 18: 239–243. Kiefer, F., 1926a. Über einige Krebse aus der Wasserleitung von Oefingen. Schr. Ver. Gesch. Naturg. Baar 16: 273–283. Kiefer, F., 1926b. Nitocrella chappuisi n. sp., eine neue Harpacticidenform aus dem Grundwasser. Zool. Anz. 66: 252–256. Kiefer, F., 1926c. Die languidus-Gruppe der Gattung Cyclops (Copepoda). Int. Rev. ges. Hydrobiol. Hydrogr. 14: 341–370. Kiefer, F., 1927a. Kleinkrebse in Wasserleitungen. Mikrokosmos 20: 140–141. Kiefer, F., 1927b. Kopepoden und Rotatorien aus den Kiemenhöhlen des Flußkrebses. Mikrokosmos 20: 155. Kiefer, F., 1929. Neue Ruderfußkrebse von den Sunda-Inseln. Zool. Anz. 84: 46–49. Kiefer, F., 1933. Die freilebenden Copepoden der Binnengewässer von Insulinde. Trop. Binnengewäss. 4: 519–621. Kiefer, F., 1935. Über drei Cyclopiden (Crustacea Copepoda) aus Brasilien. Zool. Anz. 112: 23–31. Kiefer, F., 1937. Die freilebenden Ruderfusskrebse (Crustacea Copepoda) Jugoslawiens. Wiss. Gesellsch. Skopje 18: 77–105. Kiefer, F., 1955. Neue Cyclopoida Gnathostoma (Crustacea Copepoda) aus Madagaskar. II. Cyclopinae. Zool. Anz. 154: 222–232. Kiefer, F., 1981. Beitrag zur Kenntnis von Morphologie, Taxonomie und geographischer Verbreitung von Mesocyclops leuckarti auctorum. Arch. Hydrobiol. Suppl. 62 (monogr. Beitr.) 1: 148–190. Kikuchi, Y., 1984. Morphological comparison of two terrestrial species of Moraria (Canthocamptidae, Harpacticoida) from Japan, with the scanning electron microscope. Crustaceana, Suppl. 7: 279–285. Kikuchi, Y., 1991a. A new species of terrestrial harpacticoid copepods from forest litter in central Japan. Publ. Itako hydrobiol. Stn 5: 27–34. Kikuchi, Y., 1991b. A new species of the terrestrial Harpacticoida (Copepoda) from forest litter in northern Japan. Edaphologia 47: 25–31. Kikuchi, Y., 1994a. Glaciella, a new genus of freshwater Canthocamptidae (Copepoda, Harpacticoida) from a glacier in Nepal, Himalayas. Hydrobiologia 292/293: 59–66. Kikuchi, Y., 1994b. The occurrence of a terrestrial harpacticoid copepod, Phylloganthopus viguieri (Maupas, 1892) from Agrihan Island, the northern Mariana Islands, Micronesia. Nat. Hist. Res., Spec. Iss., 1: 257. 223 Kitching, R. L. & A. G. Orr, 1996. The foodweb from water-filled treeholes in Kuala Belalong, Brunei. Raffles Bull. Zool. 44: 405– 413. Klie, W., 1924. Über das Vorkommen von Viguierella coeca in einem Hallenschwimmbad. Arch. Hydrobiol. 15: 122–124. Klie, W., 1943. Harpacticoiden aus Fallaub. Zool. Anz. 142: 183– 191. Kraepelin, K., 1886. Die Fauna der Hamburger Wasserleitung. Abh. Gebiete Naturwiss. Hamburg 9(1/3): 1–15. Laessle, A. M., 1961. A micro-limnological study of Jamaican bromeliads. Ecology 42: 499–517. Laird, M., 1956. Studies of Mosquitoes and Freshwater Ecology in the South Pacific. Bull. r. Soc. N. Z. 6: 1–213. Laird, M., 1988. The Natural History of Larval Mosquito Habitats. Academic Press, Harcourt Brace Jovanovich, Publishers, London: 555 pp. Lake, P. S., 1977. Pholeteros – the faunal assemblage found in crayfish burrows. Newsl. Aust. Soc. Limnol. 15: 57–60. Lake, P. S. & K. J. Newcombe, 1975. Observations on the ecology of the crayfish Parastacoides tasmanicus (Decapoda; Parastacidae) from south-western Tasmania. Austr. Zool. 18: 197-214. Lang, K., 1935. Studien in der Gattung Epactophanes (Copepoda Harpacticoida). Ark. Zool. 28: 1–27. Lang, K., 1948. Monographie der Harpacticiden. Håkan Ohlsson, Lund: 1682 pp. Lehman, P. S. & J. W. Reid, 1993. Phyllognathopus viguieri (Crustacea: Harpacticoida), a predaceous copepod of phytoparasitic, entomopathogenic, and free-living nematodes. Soil Crop Sci. Soc. Fl. Proc. 52: 78–82. Leruth, R., 1938. La faune de la nappe phréatique du gravier de la Meuse a Hermalle-sous-Argenteau. Bull. Mus. r. Hist. nat. Belg. 14(41): 1–37. Lescher-Moutoué, F., 1973. Sur la biologie et l’écologie des copépodes cyclopides hypogés (crustacés). Ann. Spéléol. 28: 429–502. Lescher-Moutoué, F., 1986. Copepoda Cyclopoida Cyclopidae des eaux douces souterraines continentales. In Botosaneanu, L. (ed.), Stygofauna Mundi. E.J. Brill/Dr. W. Backhuys, Leiden: 299– 312. Lewis, M. H., 1974. Paracyclops waiariki n. sp. (Copepoda: Cyclopoida) from thermal waters in Rotorua. N. Z. J. mar. Freshwat. Res. 8: 275–281. Lewis, M. H., 1984. The freshwater Harpacticoida of New Zealand: a zoogeographical discussion. Crustaceana, Suppl. 7, Stud. Copepoda 2: 305–314. Lewis, M. H., 1986. Biogeographic trends within the freshwater Canthocamptidae (Harpacticoida). Syllogeus 58: 115–125. Light, S. F., 1939. New American subgenera of Diaptomus Westwood (Copepoda, Calanoida). Trans. am. microsc. Soc. 58: 473–484. Lindberg, K., 1942. Cyclopides (crustacés copépodes) de l’Inde, XIV–XVIII. XVIII. Tableaux analysées de deux collections de cyclopides. Rec. Ind. Mus. 44: 153–173. Lindberg, K., 1955. Cyclopides (crustacés copépodes) d’îles du Pacifique Sud (Mélanésie et Micronésie) et de Bornéo. K. Fysiogr. Sällsk. Lund Förh. 24(18): 1–14. Löffler, H., 1960. Eine neue Maraenobiotus-Art (Copepoda Harpacticoida) aus tropischen Hochgebirgsgewässern Perus. Zool. Anz. 165: 478–481. Löffler, H., 1965. Die Gattung Maraenobiotus in Afrika. Zool. Jb. Abt. Syst. 92: 195–218. Löffler, H., 1968a. Die Crustaceenfauna der Binnengewässer Ostafrikanischer Hochgebirge. Hochgebirgsforschung 1: 107–170. Löffler, H., 1968b. Zur Harpacticidenfauna des östlichen Nepal mit besonderer Berücksichtigung der Gattung Maraenobiotus. Arch. Hydrobiol. 65: 1–24. Löffler, H., 1968c. Diaptomus (Arctodiaptomus) jurisowitchi nov. spec.) aus dem Khumbu-Gebiet (Nepal). Khumbu Himal. 3: 9– 16. Löffler, H., 1972. Contribution to the limnology of high montain lakes in Central America. Int. Rev. ges. Hydrobiol. 57: 397–408. Löffler, H., 1973. Die Harpacticidenfauna des Mt. Kinabalu (Borneo) mit besonderer Berücksichtigung der Gattung Maraenobiotus nebst Angaben zur Harpacticidenfauna des Gebietes Nuwara (Hochplateau Ceylon). Hochgebirgsforschung 3: 5–28. Lopez, L. C. S., A. M. A. D’Elias & R. Iglesias R., 1998. Fatores que controlam a riqueza e a composição da fauna aquática em tanques de bromélia Aechmea bromeliifolia (Rudge) Baker, na restinga de Jacarepiá - Saquarema/RJ. In Nessimian, J. L. & A. L. Carvalho (eds), Ecologia de Insetos Aquáticos. Oecologia Brasiliensis 5. PPGE-Univ. Federal do Rio de Janeiro: 91–100. Lowndes, A. G., 1928a. Freshwater Copepoda from the New Hebrides. Ann. Mag. nat. Hist., Ser. 10, 1: 704–712 + pls. 20, 21. Lowndes, A. G., 1928b. The Copepoda of Wicken Fen, with observations of the influence of environment. In Stanley Gardiner, J. (ed.), The Natural History of Wicken Fen, Vol. 4, Bowes & Bowes, Cambridge, pp. 334–345 + pl. 8. Lowndes, A. G., 1928c. Freshwater Copepoda and hydrogen ion concentration. Ann. Mag. nat. Hist., Ser. 10, 1: 457–460. Lowndes, A. G., 1928d. Copepoda and Cladocera of the Cuillin Hills of the Isle of Skye. Ann. Mag. nat. Hist., Ser. 10, 1: 461–465. Lowndes, A. G., 1931. Some fresh-water Entomostraca of the Birmingham district. Ann. Mag. nat. Hist., Ser. 10, 8: 561–577. Maguire, B. Jr., 1970. Aquatic communities in bromeliad leaf axils and the influence of radiation. In Odum, H. T. & R. Pigeon (eds), A Tropical Rain Forest: A Study of Irradiation and Ecology at El Verde, Puerto Rico. United States Atomic Energy Commission, Washington (D.C.): E.95–E.101. Maguire B. Jr., 1971. Phytotelmata: biota and community structure determination in plant-held waters. Ann. Rev. Ecol. Syst. 2: 435– 464. Maier, G., 1992. Metacyclops minutus (Claus, 1863) – population dynamics and life history characteristics of a rapidly developing copepod. Int. Rev. ges. Hydrobiol. 77: 455–466. Maier, G., 1998. The status of large branchiopods (Anostraca; Notostraca, Conchostraca) in Germany. Limnologica 28: 223–228. Maier, G., J. Hössler & U. Tessenow, 1998. Succession of physical and chemical conditions and of crustacean communities in some small, man made water bodies. Int. Rev. ges. Hydrobiol. 83: 405– 418. Manca, M., P. Cammarano & T. Spagnuolo, 1994. Notes on Cladocera and Copepoda from high altitude lakes in the Mount Everest region (Nepal). Hydrobiologia 287: 225–231. Marten, G. G., 1984. Impact of the copepod Mesocyclops leuckarti pilosa and the green alga Kirchneriella irregularis upon larval Aedes albopictus (Diptera: Culicidae). Bull. Soc. Vector Ecol. 9: 1–5. Marten, G. G., 1989. A survey of cyclopoid copepods for control of Aedes albopictus larvae. Bull. Soc. Vector Ecol. 14: 232–236. Marten, G. G., W. Che & E. S. Bordes, 1993. Compatibility of cyclopoid copepods with mosquito insecticides. J. am. Mosquito Control Ass. 9: 150–154. Menzel, R., 1916. Über das Auftreten der Harpacticidengattung Epactophanes Mrázek und Parastenocaris Kessler in Surinam. Zool. Anz. 47: 145–152. 224 Menzel, R., 1921. Beiträge zur Kenntnis der Mikrofauna von Niederländisch-Ost-Indien. I. Moosbewohnende Harpacticiden. Treubia 2: 137–145. Menzel, R., 1922. Beiträge zur Kenntnis der Mikrofauna von Niederländisch-Ost-Indien. III. Harpacticiden als Bromeliaceenbewohner. Treubia 3: 122–126. Menzel, R., 1924. Zum subterranen Auftreten der Gattung Viguierella Maupas (Harpacticidae) im malayischen Archipel. Zool. Anz. 59: 69–72. Menzel, R., 1925a. Beiträge xur Kenntnis der Mikrofauna von Niederländisch-Ostindien. VI. Bewohner salzhaltiger Thermalgewässer. Treubia 6: 450–454. Menzel, R., 1925b. Over mos bewonende cyclopiden en harpacticiden en over vrij levende terricole nematoden van den Maleischen Archipel. Handelingen, Derde Nederlandisch-Indisch Natuurwetenschappelijk Congres, Buitenzorg: 298–309. Menzel, R., 1926a. Cyclopoides muscicoles et bromélicoles de Java (Indes Néerlandaises). Ann. Biol. lac. 14: 209–216. Menzel, R., 1926b. Zum Vorkommen der Harpacticidengattung Viguierella Maupas im malayischen Archipel. Zool. Anz. 65: 228–232. Menzel, R., 1946. Zum Vorkommen von Harpacticiden im Fallaub. Rev. suisse Zool. 53: 524–529. Michailova-Neikova, M., 1973. Harpacticoida (Crustacea, Copepoda) reported from mountain waters in Bulgaria. III. Lyulin Mountain (water moss and wet forest leaves). Ann. Univ. Sofia, Fac. Biol. 65(1970/1971): 89–99. Miller, T., D. Cassill, C. Johnson, C. Kindell, J. Leips, D. McInnes, T. Bevis, D. Mehlman & B. Richard, 1994. Intraspecific and interspecific competition of Wyeomyia smithii (Coq.) (Culicidae) in pitcher plant communities. Am. Midl. Nat. 131: 136–145. Mogi, M., I. Miyagi & T. Okazawa, 1984. Population estimation by removal methods and observations on population-regulating factors of crab-hole mosquito immatures (Diptera, Culicidae) in the Ryukyus, Japan. J. med. Ent. 21: 720–726. Mogi, M. & D. T. Sembel, 1996. Predator-prey system structure in patchy and ephemeral phytotelmata: aquatic communities in small aroid axils. Res. pop. Ecol. 38: 95–103. Moniez, R., 1889. Faune des eaux souterraines du Département du Nord et en particulier de la ville de Lille. Rev. biol. Nord France 1: 170–182 (pp. referring to copepods; complete pagination 81– 94, 142–153, 170–182, 241–262, 309–318). Morton, D. W., 1985. Revision of the Australian Cyclopidae (Copepoda: Cyclopoida). I. Acanthocyclops Kiefer, Diacyclops Kiefer and Australocyclops, gen. nov. Aust. J. mar. Freshwat. Res. 36: 615–634. Mrázek, A., 1893. Beitrag zur Kenntnis der Harpacticidenfauna des Süßwassers. Zool. Jb. Abt. Syst. 7: 89–130 + pls. 4–7. Müller, F., 1879. Phryganiden-Studien. 3. Wasserthiere in den Wipfeln des Waldes. Kosmos 4: 390–392. Münchberg, P., 1956. Die tierische Besiedlung etwa 10 jähriger Bombentrichter, zugleich ein Beitrag zur Herkunft und Verbreitung der Fauna von limnischen Kleinstbiotopen. Arch. Hydrobiol. 52: 185–203. Naeem, S., 1988. Predator–prey interactions and community structure: chironomids, mosquitoes and copepods in Heliconia imbricata (Musaceae). Oecologia 77: 202–209. Nasci, R. S., S. G. F. Hare & M. Vecchione, 1987. Habitat associations of mosquito and copepod species. J. am. Mosq. Control Ass. 3: 593–600. Nielsen, L. B., 1966. Studies on the biology of Harpacticoida (Copepoda, Crustacea) in Danish beech leaf litter. Natura Jutl. 12: 195–211. Noodt, W., 1956. Attheyella (Chappuisiella) aliena n. sp., ein Copepode tropischer Verwandtschaft aus Phytotelmen des Göttinger Gewächshauses. Gewäss. Abwäss. 14: 62–69. Notenboom, J., W. Hendrix & A.-J. Folkerts, 1996. Meiofauna assemblages discharged by springs from a phreatic aquifer system in the Netherlands. Neth. J. aquat. Ecol. 30: 1–13. Pennak, R. W., 1939a. The microscopic fauna of the sandy beaches. In Problems of Lake Biology. Publs. am. Ass. Adv. Sci. 10: 94– 106. Pennak, R. W., 1939b. A new copepod from the sandy beaches of a Wisconsin lake. Trans. am. microsc. Soc., 58: 224–227. Pennak, R. W., 1940. Ecology of the microscopic Metazoa inhabiting the sandy beaches of some Wisconsin lakes. Ecol. Monogr. 10: 537–615. Pennak, R. W., 1968. Historical origins and ramifications of interstitial investigations. Trans. am. microsc. Soc., 87: 214–218. Picado, C., 1913. Les broméliacées épiphytes considerées comme milieu biologique. Bull. sci. Fr. Belg. 47: 16–360. Ponyi, J. E., 1992. Studies of the crustacean fauna of a Hungarian hot spring (Héviz Spa). Zool. Jb. Syst. 119: 397–404. Por, F. D., 1964. The genus Nitocra Boeck (Copepoda Harpacticoida) in the Jordan rift valley. Israel J. Zool. 13: 78–88. Por, F. D. & V. F. Hadel, 1986. Two new species of Attheyella (Copepoda: Harpacticoida: Canthocamptidae) from bromeliads of the Serra da Juréia (São Paulo, Brazil). J. crust. Biol. 6: 777–788. Pospisil, P., 1999. Acanthocyclops sensitivus (Graeter & Chappuis, 1914) (Copepoda: Cyclopoida) in Austria. Ann. Limnol. 35: 49– 55. Pratz, E., 1866. Über einige im Grundwasser lebende Tiere. Beitrag zur Kenntnis der unterirdischen Crustaceen. St. Petersburg (not seen; cited in Schmeil, 1892). Precht, H., 1936. Opercularia frondicola spec. n., ein Epizoon eines Landcopepoden. Zool. Anz. 115: 217–218. Prins, R., 1964. Attheyella carolinensis Chappuis (Copepoda; Harpacticoida) on freshwater crayfishes from Kentucky. Trans. am. microsc. Soc. 83: 370–371. Reid, J. W., 1986. Some usually overlooked cryptic copepod habitats. Syllogeus 58: 594–598. Reid, J. W., 1987. The cyclopoid copepods of a wet campo marsh in central Brazil. Hydrobiologia 153: 121–138. Reid, J. W., 1990. Canthocamptus (Elaphoidella) striblingi, new species (Copepoda Harpacticoida) from Costa Rica. Proc. biol. Soc. Wash. 103: 336–340. Reid, J. W., 1992. Redescription of Diacyclops nearcticus (Kiefer, 1934) and description of four similar new congeners from North America, with comments on D. crassicaudis (G. O. Sars, 1863) and D. crassicaudis var. brachycercus (Kiefer, 1927) (Crustacea: Copepoda). Can. J. Zool. 70: 1445–1469. Reid, J. W., 1993a. New records and redescriptions of American species of Mesocyclops and of Diacyclops bernardi (Petkovski, 1986) (Copepoda: Cyclopoida). Bijdr. Dierk. 63: 173–191. Reid, J. W., 1993b. Fimbricyclops jimhensoni, new genus, new species (Copepoda: Cyclopoida: Cyclopidae), from bromeliads in Puerto Rico. J. crust. Biol. 13: 383–92. Reid, J. W., 1993 (1994). Two new species of copepods (Copepoda: Harpacticoida: Canthocamptidae) of particular biogeographical interest from central Brazil. Nauplius 1: 13–38. Reid, J. W., 1994. The harpacticoid and cyclopoid copepod fauna in the cerrado region of central Brazil. 1. Species composition, habitats, and zoogeography. Acta limnol. bras. 6: 56–68. Reid, J. W., 1996. Checklist of the Copepoda (Crustacea) of the District of Columbia. Bio-Blitz World Wide Web site, National Park Service and National Biological Service: http://www.im.nbs.gov/blitz/biocopewash.html. 225 Reid, J. W., 1998. How ‘cosmopolitan’ are the continental cyclopoid copepods? Comparison of the North American and Eurasian faunas, with description of Acanthocyclops parasensitivus sp.n. (Copepoda: Cyclopoida) from the U.S.A. Zool. Anz. 236: 109–118. Reid, J. W., 1999. New records of Bryocyclops from the continental U.S.A., Puerto Rico and Brazil (Copepoda: Cyclopoida: Cyclopidae). J. crust. Biol. 19: 84–92. Reid, J. W. & T. Ishida, 1996. Two new species of Gulcamptus (Crustacea: Copepoda: Harpacticoida) from North America. Jap. J. Limnol. 57: 133–144. Reid, J. W. & T. Ishida, 2000. Itocyclops, a new genus proposed for Speocyclops yezoensis (Copepoda: Cyclopoida: Cyclopidae). J. crust. Biol. 20: 591–598. Reid, J. W. & W. Janetzky, 1996. Colonization of phytotelmata by Tropocyclops jamaicensis sp. n. (Crustacea: Copepoda: Cyclopoida). Invert. Biol. 115: 305–320. Reid, J. W. & G. G. Marten, 1995. The cyclopoid copepod (Crustacea) fauna of non-planktonic continental habitats in Louisiana and Mississippi. Tulane Stud. Zool. Bot. 30: 39–45. Reid, J. W. & R. M. Pinto-Coelho, 1994. An Afro-Asian continental copepod, Mesocyclops ogunnus, found in Brazil; with a new key to the species of Mesocyclops in South America and a review of intercontinental introductions of copepods. Limnologica 24: 359–368. Reid, J. W. & J. D. Spooner, 1998. Stolonicyclops heggiensis, new genus, new species, from Georgia, U.S.A. (Copepoda: Cyclopoida: Cyclopidae). J. crust. Biol. 18: 405–411. Remy, P., 1932. Sur la faune détriticole des forêts. C. r. hebd. Séanc. Acad. Sci., Paris 194: 127–129. Reversat, G., N. Garcia & B. Dussart, 1992. The copepod Paracyclops affinis as a predator of plant parasitic nematodes. Fund. appl. Nematol. 15: 183–191. Rivière, F., B. H. Kay, J.-M. Klein & Y. Séchan, 1987. Mesocyclops aspericornis (Copepoda) and Bacillus thuringiensis var. Israelensis for the biological control of Aedes and Culex vectors (Diptera: Culicidae) breeding in crab holes, tree holes, and artificial containers. J. med. Ent. 24: 425–430. Rivière, F. & R. Thirel, 1981. La prédation du copépode Mesocyclops leuckarti pilosa (Crustacea) sur les larves de Aedes (Stegomyia) aegypti et de Ae. (St.) polynesiensis (Dip.: Culicidae). Essais préliminaires d’utilisation comme agent de lutte biologique. Entomophaga 26: 427–439. Rivière, F., J.-M. Klein, J. Duval, Y. Séchan, R. Thirel, M. Faaruia & L. Colombani, 1998. Écologie d’Aedes polynesiensis Marks, 1951 (Diptera: Culicidae) vecteur de la filariose de Bancroft, II. - Les terriers du crabe terrestre Cardisoma carnifex comme gîtes larvaires. Ann. Soc. entom. Fr. (N.S.) 34: 259–283. Rivière, F., J.-M. Klein, R. Thirel & M. Chebret, 1998. Écologie d’Aedes polynesiensis Marks, 1951 (Diptera: Culicidae) vecteur de la filariose de Bancroft. I. Les noix de coco rongées par les rats comme gîtes larvaires. Ann. Soc. entom. Fr. (N.S.) 34: 195–207. Rocha, C. E. F., 1994. New species of Metacyclops (Copepoda, Cyclopidae) from Brazil, with remarks on M. campestris. Zool. Scr. 23: 133–146. Rocha, C. E. F. & M. H. G. C. Bjornberg, 1987. Copepods of the Juréia Ecological Reserve, state of São Paulo, Brazil. II. The genera Hesperocyclops, Muscocyclops, and Bryocyclops (Cyclopoida, Cyclopidae). Hydrobiologia 153: 97–107. Rocha, C. E. F. & M. H. G. C. Bjornberg, 1988. Allocyclops silvaticus sp. n. (Copepoda, Cyclopoida, Cyclopidae), the first representative of the genus in South America. Hydrobiologia 167/168: 445–448. Rohnert, U., 1951. Wassererfüllte Baumhöhlen und ihre Besiedlung. Arch. Hydrobiol. 44: 472–516. Rouch, R., 1972. Deux harpacticides nouveaux de l’ile de LongIsland (Territoire de Papouasie et de Nouvelle-Guinée). Arch. Zool. exp. gén. 113: 147–164. Rouch, R., 1986. Copepoda: Les harpacticoïdes souterrains des eaux douces continentales. In Botosaneanu, L. (ed.), Stygofauna Mundi. E.J. Brill/Dr. W. Backhuys, Leiden: 321–355. Rouch, R., 1992. Un nouveau genre d’Ameiridae (Copepoda, Harpacticoida) dans le milieu hyporhéique d’un cours d’eau de l’Arizona. Stygologia 7: 149–157. Rouch, R., 1994. Copepoda. Encyclopaedia Biospeologica 2: 105– 111. Rouch, R. & D. L. Danielopol, 1997. Species richness of microcrustacea in subterranean freshwater habitats. Comparative analysis and approximate evaluation. Int. Rev. ges. Hydrobiol. 82: 121–145. Rouch, R., A. Mangin, M. Bakalowicz & D. D’Hulst, 1997. The hyporheic zone: hydrogeological and chemical study of a stream in the Pyrenees Mountains. Int. Rev. ges. Hydrobiol. 82: 357– 378. Sassuchin, D. N., N. M. Kabanov & E. S. Neiswestnova, 1927. Über die mikroskopische Pflanzen- und Tierwelt der Sandfläche des Okaufers bei Murom. Russ. hydrobiol. Zeitschr. 6: 59–83 (in Russian; German summary). Schmeil, O., 1892. Deutschlands freilebende SüsswasserCopepoden. I. Teil: Cyclopidae. Theodor Fischer, Stuttgart: 182 pp. Scourfield, D. J., 1894. Entomostraca and the surface-film of water. J. linn. Soc. London, Zool. 25(158): 1–19 + pls. 1,2. Scourfield, D. J., 1903. Synopsis of the known species of British fresh-water Entomostraca. Part II. Copepoda. J. Quekett microsc. Club, Ser. 2, 8: 531–544. Scourfield, D. J., 1906. The wild fauna and flora of the Royal Botanic Gardens, Kew. Crustacea, Entomostraca. Bull. misc. Inform. r. bot. Gardens, Kew, Addl Ser. 5: 14–20. Scourfield, D. J., 1915. A new copepod found in water from hollows on tree trunks. J. Quekett microsc. Soc., Ser. 2, 12: 431–440 + pls. 24, 25. Scourfield, D. J., 1932. A new species of Cyclops found on the cliffface at Tenby (Cyclops (Bryocyclops) demetiensis, sp. n.). Ann. Mag. nat. Hist., Ser. 10, 10: 559–570. Scourfield, D. J., 1939. Entomostraca in strange places. J. Quekett microsc. Club, Ser. 4, 1: 116–122. Scourfield, D. J., 1940. The microscopic life of the ‘leaf-carpet’ of woods and forests. Essex Natur. 26: 231-246 + pl. 9. Stanford, J. A. & J. V. Ward, 1988. The hyporheic habitat of river ecosystems. Nature 335(6185): 64–66. Starmühlner, F., 1969. Beiträge zur Kenntnis der Biozönosen isländischer Thermalgewässer. Sber. Öst. Akad. Wiss. Math.naturw. Kl., Abt. I, 178: 83–173. Sterba, O., 1964. Plazviky (Copepoda Harpacticoida) Moravy a Slovenska. Acta Univ. Palacki. Olomuc. Fac. Rer. nat. 16: 203– 213. Stoch, F., 1995. The ecological and historical determinants of crustacean diversity in groundwaters, or: why are there so many species? Mém. Biospéol. 22: 139–160. Stoch, F., 2001. How many species of Diacyclops? New taxonomic characters and species richness in a freshwater cyclopoid genus (Copepoda, Cyclopoida). Hydrobiologia 453/454: 525–531. Stock, J. H., 1991. Some reflections on the antiquity of the copepod lineages. Bull. Plankton Soc. Jap., spec. vol. (1991): 1–7. 226 Stout, J. D., 1963. Some observations on the Protozoa of some beechwood soils on the Chiltern Hills. J. anim. Ecol. 32: 281– 297. Straskraba, M., 1956. Komensálové v z̆aberní dutinĕ Astacus astacus L. ze Slezska (Nitocrella divaricata in der Kiemenhöhle des Krebses Astacus astacus L. in Schlesien.) Pr̆írodov. Sborn. Ostrav. Kraje 17: 593–595 (in Czech; abstracts in Russian and German). Strayer, D. L. & J. W. Reid, 1999. Distribution of hyporheic cyclopoids (Crustacea, Copepoda) in the eastern United States. Arch. Hydrobiol. 145: 79–92. Strenzke, K., 1951. Die Pflanzengewässer von Scirpus silvaticus und ihre Tierwelt. Arch. Hydrobiol. 44: 123–170. Suárez, M. F., D. Ayala, M. J. Nelson & J. W. Reid, 1984. Hallazgo de Mesocyclops aspericornis (Daday) (Copepoda: Cyclopidae) depredador de larvas de Aedes aegypti en Anapoima-Colombia. Biomedica 4: 74–76. Subchev, M. & L. Stanimirova, 1998. Distribution of freshwater crayfishes (Crustacea: Astacidae) and the epibionts of the genus Branchiobdella (Annelida: Branchiobdellidae), Hystricosoma chappuisi Michaelsen, 1926 (Annelida: Oligochaeta) and Nitocrella divaricata (Crustacea: Copepoda) in Bulgaria. Hist. nat. bulgar. 9: 5–18 (in Bulgarian; English abstract). Thienemann, A., 1932. Die Tierwelt der Nepenthes-Kannen. Trop. Binnengewäss. 3: 1–54. Thienemann, A., 1934. Die Tierwelt der tropischen Pflanzengewässer. Arch. Hydrobiol., Suppl.-Bd. 13: 1–91 + 5 pls. Thienemann, A., 1950. Verbreitungsgeschichte der Sußwassertierwelt Europas. Binnengewässer 18: 1–809. Torales, G. J., W. H. Hack & B. Turn, 1972. Criaderos de culícidos en bromeliáceas del NW de Corrientes. Acta zool. lill. 29: 293– 308. Török, P., 1935. A Budapesti vízvezeteki víz szüredékének faunája. (Filtrat-Fauna der Budapester Wasserleitung.) Math. Természettud. Ertes. (Math. naturw. Anz. Ungar. Acad. Wiss.) 53: 637–664. Török, P., 1951. Quelques nouvelles écrevisses caracteristiques pour l’eau souterraine concernant la faune de la Hongrie. Acta biol. Acad. Scient. Hungaricae 2: 281–285. Török, P., 1961. Biologische Untersuchungen in verschiedenen Wasserleitungstypen Ungarns. Verh. int. Ver. Limnol. 14: 1105– 1110. Van Oye, P., 1923. De mikrofauna an flora der bladtrechers van Bromeliaceae. Natuurwetenschappelijk Tidschrift 5: 179–182 (cited in Frank, 1980). Vigna Taglianti, A., V. Cottarelli & R. Argano, 1969. Messa a punto di metodiche per la raccolta della fauna interstiziale e freatica. Arch. bot. biogeogr. ital., Ser. 4, 14: 376–380 + pl. I. Vosseler, J., 1886. Die freilebenden Copepoden Württembergs und angrenzender Gegenden. Jahreshefte Vereins vaterländ. Naturk. Württemberg 42: 167–202 + pls. 4–6. Vu, S. N., T. Y. Nguyen, M. Holynska, J. W. Reid & B. H. Kay, 2000. National progress in dengue vector control in Vietnam: survey for Mesocyclops (Copepoda), Micronecta (Corixidae), and fish as biological control agents. Am. J. trop. Med. Hyg. 62: 5–10. Watkins, R. L. & D. Belk, 1975. The Copepoda of Guam. Crustaceana 28: 302–303. Wiggins, G. B., R. J. Mackay & I. M. Smith, 1980. Evolutionary and ecological strategies of animals in annual temporary pools. Arch. Hydrobiol., Suppl. 58 (monogr. Beitr.) 1/2: 97–206. Willey, A., 1934. Some Laurentian copepods and their variations. Trans. r. can. Inst. 20: 77–97 + pls. XIII–XV. Williams, D. D., 1976. Aquatic invertebrates inhabiting agricultural drainage tile systems in southern Ontario. Can. Fld-Nat. 90: 193– 195. Williams, D. D. & H. B. N. Hynes, 1976. The ecology of temporary streams. I. The faunas of two Canadian streams. Int. Rev. ges. Hydrobiol. 61: 761–787. Williams, D. D., N. E. Williams & H. B. N. Hynes, 1974. Observations on the life history and burrow construction of the crayfish Cambarus fodiens in a temporary stream in southern Ontario. Can. J. Zool. 52: 365–370. Williams, W. D., 1985. Biotic adaptations in temporary lentic waters, with special reference to those in semi-arid and arid regions. Hydrobiologia 125: 85–110. Williams-Howze, J., 1997. Dormancy in the free-living copepod orders Cyclopoida, Calanoida, and Harpacticoida. Ann. Rev. Oceanogr. mar. Biol. 35: 257–321. Wilson, C. B., 1935. A new and important copepod habitat. Smiths. misc. Colls 94(7/3336): 1–13. Wright, S. W. & H. R. Burton, 1981. The biology of Antarctic saline lakes. Hydrobiologia 81/82: 319–338. Yeatman, H. C., 1983. Copepods from microhabitats in Fiji, Western Samoa, and Tonga. Micronesica 19: 57–90. Ziegelmayer, W., 1923. Eine neue subterrane Harpacticidenform aus der Gattung Viguierella. Zool. Anz. 57: 129–137.