Academia.eduAcademia.edu
Afr. J. Ecol. 1997, Volume 35, pages 10–38 Climatic and biogeographical associations of southern African dung beetles (Coleoptera: Scarabaeidae s. str.) ADRIAN L. V. DAVIS 1 Department of Zoology, University of Cape Town, Rondebosch, 7700 South Africa Summary Climatic and biogeographical associations of southern African dung beetles (Scarabaeinae, Coprinae) were analysed from a collection amassed between 1971 and 1986. Endemism to Africa south of 15)S was much greater in southwesterly climates (winter rainfall, bimodal spring/autumn rainfall, arid late summer rainfall) than to the north-east in the moist, mid-summer rainfall region. Major biogeographical groups centred to the south-west comprised predominantly southern African endemics, Western/Eastern Cape coast, Karoo, Karoo/Namib, northern Namibia and the south-western Kalahari. Biogeographical groups centred on the south-eastern highlands and the subtropical east coast (midsummer rainfall) also comprised predominantly southern African endemics. All other major groups centred to the north-east in the mid-summer rainfall region comprised predominantly species with widespread tropical biogeographical affiliations, pan-southern Africa but centred in the east, pan-mid-summer rainfall region, eastern mid-summer rainfall region, tropical east Zimbabwe/central Moçambique, subtropical/tropical game reserves (non-ruminant dung specialists). There were cross-climatic differences in taxonomic composition of the fauna. Within the winter rainfall region, percentage species composition of Scarabaeinae was greater whereas that of the coprine tribe, Onthophagini, was lower than within the other three climatic regions. Percentage species richness of most other tribes of Coprinae differed little between most climates but that of Scarabaeinae declined from west to east (Canthonini, Scarabaeini), east to west (Sisyphini) or to either side of the late summer rainfall region (Gymnopleurini). Key words: Africa, biogeographical, climatic, dung, Scarabaeidae Résumé Les associations climatiques et biogéographique des bousiers (Scarabaeinae, Coprinae) d’Afrique du sud furent analysées à parir d’une collection constituée entre 1971 et 1986. L’endémisme en Afrique au sud de 15) était bien plus élevé sous les climats du sud-ouest (pluies hivernales, pluies bimodales au printemps et en automme, pluies tardives lors d’étés arides) qu’au nord-est dans la région humide aux chutes de pluie de la mi-été. Des groupes biogéographiques majeurs centrés au sud-ouest comprenaient principalement des endémiques d’Afrique du sud, la côte du Cap Oriental et Occidental, L Karoo, L Karoo/Namib, la 1 Present address: Department of Zoology and Entomology, University of Pretoria, Pretoria 10002 South Africa ? 1997 East African Wild Life Society. Associations of southern African dung beetles 11 Namibie septentrionale et le sud-ouest Kalahari. Des groupes biogéogrphiques centrés sur les régions montagneuses du sud-est et la côte est subtropicale (chutes de pluies de la mi-été) comprenaient également surtout des endémiques d’Afrique du sud. Tous les autres groupes majeurs centrés au nord-est dans la région aux chutes de pluie de la mi-été comprenaient principalement des espèces avec affiliations biogéographiques tropicales étendue à l’ensemble de la région sud africaine, mais centrées dans la région oriental à cutes de pluie de la mi-été, au Zimbabwe oriental tropical/Mozambique central, et aux réserves de faune sauvage subtropicales/tropicales (spécialistes des bouses de non-ruminants). On a trouvé des différences dans la composition taxonomique de la faune quel que soit le climat. Dans la région à chutes de pluie hivernales, le pourcentage d’espèces de Scarabeinae dans la composition était plus grand alors que elle de la tribu des coprinés, Ontophagini, était plus faible que dans les trois autres régions climatiques. Le pourcentage de la richesse en espèces de la plupart des autres tribus de Coprinae différait peu entre la plupart des climats mais celui des Scarabaeinae diminuait d’ouest en est (Canthonini, Scarabaeini), d’est en ouest (Sisyphini), ou en quelle que direction de la région à chutes de pluies estivales tardives (Gymnopleurini). Introduction Dung-burying beetles (Scarabaeidae s. str.: Scarabaeinae, Coprinae) show a relatively specialist spatial distribution (Davis, 1994a). Variables which influence spatial specialization include climate (Kirk & Ridsdill-Smith, 1986; Davis & Dewhurst, 1993), soil (Nealis, 1977; Cambefort, 1991a; Doube, 1991), vegetation (Cambefort, 1982; Doube, 1983) and food type (Fincher et al., 1970; Davis, 1994b). This biogeographical study of southern African dung beetles considers both the current and historical influence of these variables. The prevailing climatic system over southern Africa developed in the late Pliocene, c. three million years ago (Deacon, 1983). This system involves interplay between three cells of air currents (Tyson, 1986) comprising the rain-bearing westerlies centred over the south Atlantic Ocean, the rain-bearing easterlies centred over the Indian Ocean and a cell of dry air centred over the cold Benguela current in the Atlantic Ocean to the west of southern Africa. During winter, the westerlies and the dry cell expand north-eastwards bringing a winter peak in rainfall to the Western Cape, bimodal autumn and spring peaks in rainfall to the Eastern Cape and dry season conditions to the remainder of southern Africa. During summer, the easterlies expand sequentially southwestwards bringing a mid-summer peak in rainfall to the moist, easterly, climate types and a late summer peak in rainfall to the arid, westerly, climate types. Concurrent with the expansion of the easterlies, the cell of dry air contracts southwards bringing dry summers to the winter rainfall region. Geomorphologically, the subcontinent comprises a tilted plateau which is bordered by coastal mountain ranges. A Permian (Deacon, 1983) or Triassic age (Dingle et al., 1983; Tyson, 1986) is claimed for the Cape fold mountain system in the Western and Eastern Cape whereas the south-eastern highlands are younger and originate from the asymmetric raising and tilting westwards of the plateau during the mid-Tertiary and the Pliocene. This second uplift is more or less coeval with major climatic changes. ? East African Wild Life Society, Afr. J. Ecol., 35, 10–38 12 A. L. V. Davis Fig. 1. Climatic regions of southern Africa after Walter & Lieth (1964) and modifications by Davis (1987). Overall, the disposition of air currents and topographical features over the subcontinent results in 25 different climatic regions (Walter & Lieth, 1964). These climate types have been reduced to the four major climatic regions of winter, bimodal, late summer and mid-summer rainfall by Davis (1987, 1993). In the present study, the mid-summer rainfall region is divided into five subregions (Fig. 1, Table 1). Soil, vegetation and dung types show clear distribution patterns. A swathe of late Cretaceous to mid-Tertiary sands (Tyson, 1986) dominate the central Kalahari basin from the Northern Cape to southern Angola. Miocene to Pliocene sands are also concentrated around the coastline. In contrast, finergrained soils dominate in the south-eastern highlands with a patchwork of finer-grained soils and sand outliers elsewhere. Three principal vegetational divisions (Werger, 1978) largely coincide with climatic regions. The shrublanddominated Cape floristic and Karoo/Namib divisions roughly coincide, respectively, with the winter/bimodal and the arid, late summer rainfall regions. The highland grassland and lowland woodland of the southern Sudano-zambezian division roughly coincide with the mid-summer rainfall region. Fragmentation in the distribution of woody vegetation has occurred over much of the subcontinent although it is particularly influential on dung beetle occurrence in the winter rainfall region (Davis, 1993). The range of large indigenous mammals is also fragmented so that high densities of non-ruminant dung are mostly restricted to game reserves whereas ruminant dung remains widespread. ? East African Wild Life Society, Afr. J. Ecol., 35, 10–38 Associations of southern African dung beetles 13 Table 1. Dung beetle collection data for the 25 climatic regions of southern Africa (Walter & Lieth, 1964) south of 15)S Number of collections on: Soil type Food type Vegetation type Number Shrubland/ Non- Omnivore Coarse of open dung/ Pasture/ Climate collection Fine grained Ruminant ruminant carrion grassland woodland Forest localities* dung type dung grained (sand) Winter rainfall III3 0 III4 5 III(IV)a 11 III(IV)b 8 IV 6 3 21 38 3 4 0 20 52 14 18 2 4 1 1 0 1 1 0 0 0 0 13 32 5 10 3 12 12 7 1 0 0 0 0 0 3 28 54 15 21 Bimodal rainfall III5 29 IV(V) 31 V 22 Late summer rainfall II4a 28 II(III)a 9 II(III)b 1 III1 6 III2 1 6 7 3 37 50 42 1 4 1 0 0 0 9 34 16 18 3 4 0 4 0 38 60 49 4 56 3 36 16 30 59 3 27 9 2 4 1 9 4 1 0 0 4 1 10 18 0 7 8 17 48 3 36 8 0 0 0 0 0 35 73 4 46 18 Mid-summer rainfall Kalahari II4b 17 II4c 59 29 92 46 137 1 20 0 10 27 12 19 130 0 1 50 183 Highveld II3a II3c 144 97 24 4 140 134 3 6 1 1 125 101 19 2 3 0 211 150 Transitional II3d 106 35 156 6 6 85 56 2 197 East coast II(I)a II2a II3e II3f 35 5 28 4 46 6 43 4 19 0 23 0 13 0 2 0 31 4 15 0 20 2 37 3 29 1 6 0 144 7 108 4 13 25 60 71 83 189 12 1 80 8 1 10 32 32 58 29 49 110 15 0 23 108 113 349 29 0 32 0 Subtropical/tropical II2b 61 II3b 53 II3g 117 *Discrepancies between the number of collection localities and collection data totals are due to missing information. ? East African Wild Life Society, Afr. J. Ecol., 35, 10–38 14 A. L. V. Davis The present study examines both climatic and biogeographical relationships of the southern African dung beetle fauna recorded mainly on large herbivore dung in unshaded situations. Regional trends in biogeographical and tribal composition of the fauna have been determined. Multivariate analytical techniques have been used to identify major climatic and geographical groups. The possible influence of local factors (soil, vegetation, dung type) on these groups has been assessed. Local geographical distribution patterns and implications for routes of dispersal are discussed. Methods Dung beetle distribution data for Africa south of latitude 15)S were drawn from the reference collection of the former Australian CSIRO Dung Beetle Research Unit (DBRU) which was amassed between 1971 and 1986. Distribution data were plotted for the 220 species recorded in >15 separate collections out of 2068 made in southern Africa. Both geographical and climatic data matrices were created at optimal scales for minimizing noise and maximizing biogeographical information content. On all geographical matrices, species data were plotted according to presence (1) or absence (0) from the 76#4) squares of latitude and longitude from which dung beetle collections were made. For the climatic matrix, calculations were made of the percentage occurrences of species across eight major climatic regions of southern Africa (Table 2). These quantitative climatic data were derived from a presence or absence data matrix comprising 264 entries for each species. These entries comprised records for 202#1) squares of latitude and longitude from which dung beetles were collected with the balance comprising separate records for each portion of a degree square partitioned by climatic boundaries. Presence records for each species were summed for each of the eight climatic regions. These summed records were divided by the total number of degree squares in which collections were made in that region. These numbers were converted to percentage distributions across the eight climatic regions. The treatment of the data gave equal weighting both to each species, whose ranges differed in size, and to each of the climatic regions which differed in area. The climatic distribution of the 220 species was classified using cluster analysis. A similarity matrix was calculated using the Bray-Curtis (non-metric) similarity coefficient and this matrix was subjected to analysis by the aglomerative clustering technique, group average linking. The results were summarized as a dendrogram (not illustrated) from which seven species clusters of similar climatic distribution were defined at the 50% level of similarity. One of these clusters (F) was subdivided at the 65% level of similarity. The results of the climatic analysis (Table 2) were used to define four supergroups of species whose geographical distribution was also analysed using cluster analysis. These groups comprised western climatic specialists (B, C, H, 47 spp.), eastern climatic specialists (A, D, E, G, 71 spp.), subtropical/tropical generalists (F1, F3, 74 spp.), and temperate to tropical generalists (F2, F4, F5, 28 spp.). Geographical distribution matrices for each group were each analysed using the same clustering methods as in the climatic analysis. Results were depicted as dendrograms from which species clusters of similar geographical distribution were defined at either the 35% (Figs 2, 5) or 40% levels of similarity (Figs 7, 8). ? East African Wild Life Society, Afr. J. Ecol., 35, 10–38 Associations of southern African dung beetles 15 Table 2. List of 220 species of dung beetles grouped according to the results of cluster analysis of their percentage distributions across eight climatic regions of southern Africa Group Species A Garreta malleolus (Kolbe) Sisyphus impressipennis Lansberge Copris armiger Gillet Onitis cryptodus Gillet Onitis inversidens Lansberge Diastellopalpus infernalis Lansberge Diastellopalpus quinquedens Bates Onthophagus anomalus (Klug) Onthophagus jeaneli d’Orbigny Mean B Scarabaeus rugosus (Hausman) Copris anceus Olivier Copris capensis Waterhouse Epirinus aeneus Wiedeman Epirinus flagellatus (Fabricius) Onthophagus minutus Hausman Onitis confusus Bohaeman Onthophagus cameloides d’Orbigny Scarabaeus suri (Hausman) Chironitis scabrosus (Fabricius) Metacatharsius latifrons Harold Mean C Onthophagus giraffa Hausman Onitis aygulus (Fabricius) Mean D Neosisyphus mirabilis Arrow Sisyphus sp. nr sordidus Catharsius sp. nr pandion Copris inhalatus santaluciae Nguyen-Phung Onthophagus sp. Onthophagus sp. nr sugillatus Proagoderus aureiceps d’Orbigny Onthophagus juvencus Klug Proagoderus aciculatus Fahraeus Copris puncticollis Boheman Metacatharsius pseudoopacus Ferreira Litocopris muticus Boheman Onthophagus beiranus Péringuey Sisyphus sordidus Boheman Mean Percentage frequency in climatic region WR BR Late SR Kala. Highv. II3d EC Trop. 0·0 0·0 0·0 0·0 0·0 0·0 0·0 0·0 0·0 0·0 0·0 0·0 0·0 0·0 0·0 0·0 0·0 0·0 0·0 0·0 0·0 0·0 0·0 0·0 0·0 0·0 0·0 0·0 0·0 0·0 0·0 0·0 0·0 0·0 0·0 0·0 0·0 0·0 0·0 0·0 0·0 0·0 0·0 0·0 0·0 0·0 0·0 0·0 0·0 0·0 0·0 0·0 0·0 0·0 0·0 0·0 0·0 0·0 0·0 0·0 0·0 0·0 0·0 0·0 0·0 0·0 0·0 0·0 0·0 0·0 100·0 100·0 100·0 100·0 100·0 100·0 100·0 100·0 100·0 100·0 100·0 100·0 91·6 61·0 62·7 73·1 69·7 77·9 84·5 42·8 36·5 72·7 0·0 0·0 8·4 20·4 28·8 26·9 16·0 15·9 15·5 27·6 0·0 14·5 0·0 0·0 0·0 18·6 0·0 0·0 8·4 6·2 0·0 26·7 28·0 8·0 0·0 0·0 0·0 0·0 0·0 0·0 0·0 0·0 0·0 0·0 30·5 2·7 0·0 0·0 0·0 0·0 8·5 0·0 5·9 0·0 0·0 2·9 4·9 2·8 0·0 0·0 0·0 0·0 0·0 0·0 0·0 0·0 0·0 0·0 0·0 0·0 0·0 0·0 0·0 0·0 0·0 0·0 0·0 0·0 0·0 0·0 0·0 0·0 0·0 0·0 0·0 0·0 0·0 0·0 0·0 0·0 0·0 0·0 0·0 0·0 24·5 9·7 17·1 60·2 44·8 52·5 0·0 23·3 11·7 4·3 6·8 5·6 11·1 15·4 13·3 0·0 0·0 0·0 0·0 0·0 0·0 0·0 0·0 0·0 0·0 0·0 0·0 0·0 0·0 0·0 0·0 0·0 0·0 0·0 0·0 0·0 0·0 0·0 0·0 0·0 0·0 0·0 0·0 0·0 0·0 0·0 0·0 0·0 100·0 100·0 100·0 100·0 0·0 0·0 0·0 0·0 0·0 0·0 0·0 0·0 0·0 0·0 0·0 0·0 0·0 0·0 0·0 0·0 0·0 0·0 0·0 0·0 0·0 0·0 0·0 0·0 0·0 0·0 0·0 0·0 0·0 0·0 0·0 0·0 0·0 0·0 0·0 0·0 0·0 0·0 0·0 0·0 0·0 0·0 0·0 9·8 0·0 0·0 0·0 0·0 0·0 0·0 0·0 0·0 0·0 0·0 0·0 0·0 0·0 0·0 0·0 0·0 0·0 0·0 0·0 0·0 0·0 0·0 0·0 0·0 0·0 0·0 100·0 100·0 94·1 95·8 96·3 90·2 90·3 76·3 84·3 84·9 93·7 0·0 0·0 5·9 4·3 3·8 3·5 0·0 23·8 15·8 15·1 5·2 Table 2 continued on next page ? East African Wild Life Society, Afr. J. Ecol., 35, 10–38 16 A. L. V. Davis Table 2. continued from previous page Percentage frequency in climatic region Group Species WR BR Late SR Kala. Highv. II3d EC Trop. E Scarabaeus natalensis zur Strassen Copris jacchoides Nguyen-Phung Onthophagus obtutus Péringuey Copris corniger Sahlberg Xinidium dentilabris Harold Neosisyphus barbarossa Wiedeman Onitis perpunctatus Balthasar Onthophagus vigens d’Orbigny Copris caelatus Fabricius Sisyphus caffer Boheman Proagoderus lanista Castelnau Epirinus obtusus Boheman Onthophagus fritschi d’Orbigny Onthophagus cyaneoniger d’Orbigny Onthophagus lugubris Fahraeus Copris antares Ferreira Neosisyphus macroruber Paschalidis Euoniticellus triangulatus (Harold) Euoniticellus africanus (Harold) Sisyphus costatus Thunberg Onthophagus asperulus d’Orbigny Onthophagus bubalus Harold Litocopris simplex Harold Onitis pecuarius Lansberge Drepanocerus sulcicollis (Castelnau) Oniticellus pictus (Hausman) Onthophagus binodis Thunberg Gymnopleurus leei (Fabricius) Mean 0·0 0·0 0·0 0·0 0·0 10·4 0·0 0·0 0·0 0·0 0·0 0·0 0·0 0·0 0·0 0·0 0·0 21·4 13·9 0·0 0·0 0·0 0·0 0·0 0·0 5·6 8·8 0·0 2·2 0·0 0·0 8·3 9·9 0·0 19·0 7·0 0·0 0·0 0·0 0·0 25·8 25·6 17·5 28·0 27·0 0·0 28·6 21·2 32·2 26·4 22·1 51·2 47·0 36·2 46·0 42·9 37·7 20·0 6·6 0·0 0·0 0·0 0·0 0·0 0·0 0·0 0·0 0·0 3·9 26·9 17·8 18·2 0·0 3·5 18·8 0·0 12·2 0·0 0·0 13·4 0·0 0·0 0·0 0·0 2·8 6·5 4·6 0·0 0·0 0·0 0·0 0·0 0·0 0·0 0·0 0·0 0·0 0·0 0·0 0·0 0·0 0·0 0·0 20·6 0·0 4·8 0·0 0·0 2·1 0·0 0·0 0·0 0·0 0·0 0·0 1·0 64·8 74·2 72·9 65·6 54·0 49·0 36·0 39·3 49·3 91·9 83·1 48·1 56·6 64·3 72·0 69·5 53·2 22·3 37·5 35·6 46·7 37·9 37·6 34·5 40·0 30·1 39·5 41·5 52·9 28·6 16·4 18·8 22·5 33·4 21·6 47·7 60·7 50·8 0·0 0·0 0·0 0·0 0·0 0·0 0·0 0·0 12·2 4·8 18·3 18·0 16·7 0·0 0·0 0·0 11·6 6·1 14·3 14·4 0·0 9·5 0·0 0·0 9·7 0·0 9·2 0·0 0·0 0·0 9·9 0·0 0·0 0·0 0·0 0·0 0·0 14·1 5·6 10·6 3·5 4·8 11·2 18·5 23·8 6·7 0·0 0·0 4·9 0·0 0·0 0·0 2·0 3·0 0·0 0·0 0·0 0·0 8·1 3·1 0·0 0·0 0·0 0·0 0·0 7·4 1·5 0·0 3·3 5·4 3·0 0·0 0·0 0·0 0·0 0·0 0·0 1·3 F1 Pachylomerus femoralis (Kirby) Kheper lamarcki (M’Leay) Scarabaeus goryi Harold Onthophagus vinctus Erichson Onitis deceptor Péringuey Heliocopris andersoni Bates Heliocopris japetus Klug Copris elphenor Klug Metacatharsius troglodytes Boheman Onitis uncinatus Klug Copris evanidus Klug Allogymnopleurus thalassinus Klug Heliocopris faunus Boheman Scarabaeus galenus (Westwood) Onthophagus pallidipennis Fahraeus Scarabaeus zambesianus Péringuey 0·0 0·0 0·0 0·0 0·0 0·0 0·0 0·0 0·0 0·0 0·0 0·0 0·0 0·0 0·0 0·0 0·0 0·0 0·0 0·0 0·0 0·0 0·0 0·0 0·0 0·0 0·0 0·0 0·0 0·0 0·0 0·0 7·8 8·7 2·6 0·0 8·9 5·8 6·7 6·7 3·0 7·2 0·0 7·1 20·6 15·5 2·6 0·0 28·5 23·8 25·0 14·9 9·7 12·6 19·5 25·5 29·8 17·7 17·6 21·2 18·7 16·9 30·6 37·3 0·0 0·0 0·0 2·1 0·0 0·0 0·0 4·7 2·1 3·8 3·8 10·1 0·0 0·0 0·0 0·0 22·8 19·0 22·2 19·8 19·5 25·2 29·2 29·1 26·4 31·4 35·2 26·7 29·9 27·1 33·4 24·9 26·4 33·0 32·2 38·2 33·8 29·2 11·3 8·4 7·7 15·9 17·0 18·1 17·3 23·5 19·3 28·8 14·4 15·4 18·0 25·0 28·1 27·3 33·4 25·6 31·0 24·1 26·4 16·9 13·5 17·1 14·1 9·0 Table 2 continued on next page ? East African Wild Life Society, Afr. J. Ecol., 35, 10–38 Associations of southern African dung beetles 17 Table 2. continued from previous page Group Species F1 continued Onthophagus signatus Fahraeus Pedaria sp. Neosisyphus confrater Kolbe Onitis picticollis Boheman Proagoderus brucei Reiche Drepanocerus fastiditus Péringuey Onthophagus obtusicornis Fahraeus Neosisyphus spinipes Thunberg Proagoderus loricatus Klug Onthophagus stellio Erichson Proagoderus tersidorsis d’Orbigny Hyalonthophagus alcyonides (D’Orbigny) Gymnopleurus virens Erichson Copris amyntor Klug Drepanocerus laticollis Fahraeus Phalops smaragdinus Harold Euonthophagus carbonarius Klug Copris denticulatus Nguyen-Phung Onthophagus fimetarius Roth Caccobius nigritulus Klug Phalops flavocinctus Klug Oniticellus formosus Chevrolat Onthophagus pugionatus Fahraeus Onthophagus flavolimbatus d’Orbigny Onthophagus rasipennis d’Orbigny Catharsius philus Kolbe Sisyphus seminulum Gerstaecker Onthophagus ebenus Péringuey Tiniocellus spinipes (Roth) Heliocopris neptunus Boheman Neosisyphus fortuitus Péringuey Pedaria sp. Pedaria sp. Phalops ardea Klug Onthophagus depressus Harold Onthophagus bicavifrons d’Orbigny Onthophagus lamelliger Gerstaecker Phalops boschas Klug Neosisyphus calcaratus Klug Kheper nigroaeneus (Boheman) Copris mesacanthus (Harold) Sisyphus gory Harold Onthophagus aeruginosus Roth Euonthophagus sp. Catharsius sesostris Waterhouse Onitis fulgidus Klug Percentage frequency in climatic region WR BR Late SR Kala. Highv. II3d EC Trop. 0·0 0·0 0·0 0·0 0·0 7·0 0·0 0·0 0·0 0·0 0·0 0·0 0·0 4·2 0·0 0·0 0·0 0·0 0·0 11·3 0·0 0·0 0·0 0·0 13·5 2·2 0·0 0·0 0·0 0·0 3·4 0·0 0·0 0·0 0·0 0·0 34·4 12·0 0·0 0·0 0·0 0·0 9·1 1·3 8·5 4·4 0·0 2·9 0·0 15·5 21·4 24·1 25·2 14·2 21·3 11·6 0·0 0·0 8·5 11·3 9·8 38·4 26·5 24·8 26·0 29·2 29·2 30·8 33·9 35·2 39·2 34·9 22·8 27·8 30·7 28·7 30·1 33·8 21·2 38·6 39·3 50·9 45·3 40·4 19·5 0·0 21·5 22·4 18·7 15·8 15·8 6·5 18·4 9·5 7·1 10·5 0·0 0·0 0·0 0·0 0·0 0·0 0·0 0·0 0·0 0·0 0·0 0·0 0·0 0·0 0·0 0·0 0·0 0·0 0·0 0·0 0·0 0·0 0·0 0·0 0·0 0·0 0·0 0·0 0·0 0·0 0·0 0·0 0·0 0·0 0·0 0·0 0·0 4·0 0·0 0·0 0·0 0·0 0·0 0·0 0·0 0·0 0·0 0·0 0·0 0·0 0·0 0·0 6·0 0·0 0·0 0·0 0·0 0·0 0·0 0·0 0·0 0·0 0·0 0·0 0·0 0·0 0·0 0·0 0·0 0·0 0·0 0·0 0·0 0·0 1·2 0·0 0·0 1·7 0·0 0·0 0·0 0·0 0·0 0·0 0·0 0·0 0·0 0·0 0·0 0·0 0·0 0·0 0·0 0·0 0·0 0·0 0·0 1·2 0·0 4·0 0·0 0·0 8·2 5·1 12·0 6·8 11·4 4·7 8·0 4·8 6·1 7·5 2·7 7·2 7·7 11·5 3·5 3·4 0·0 0·0 0·0 0·0 0·0 11·8 8·2 12·0 15·4 14·6 11·2 9·9 4·5 8·0 9·9 4·3 2·9 0·0 5·3 3·3 0·0 2·9 3·0 2·0 10·4 0·0 7·9 9·7 3·5 0·0 0·0 2·5 4·5 4·4 4·2 3·5 4·4 0·0 0·0 0·0 0·0 0·0 0·0 0·0 0·0 9·6 11·6 10·4 14·6 5·6 11·2 5·4 40·8 41·0 40·1 36·0 36·5 37·4 37·5 38·4 40·5 37·5 53·6 47·9 46·2 45·9 42·0 40·9 39·4 42·6 40·9 53·6 42·3 56·8 54·9 48·1 44·0 45·5 44·9 19·8 27·0 26·8 28·2 34·7 34·6 33·1 23·6 23·7 23·2 26·1 21·1 28·9 18·6 22·2 28·1 26·0 24·8 27·7 26·7 22·2 32·4 31·6 30·4 30·9 31·5 20·7 26·2 11·0 19·1 13·9 15·3 18·8 19·5 28·6 26·0 21·7 26·1 20·1 20·1 28·7 22·1 28·8 24·6 24·3 28·0 27·0 24·2 34·6 17·5 17·6 15·5 17·3 19·4 18·0 17·7 19·7 26·0 23·1 17·2 25·8 28·6 20·5 17·8 26·0 25·4 21·1 24·3 32·1 30·8 31·9 21·3 31·3 31·2 32·8 Table 2 continued on next page ? East African Wild Life Society, Afr. J. Ecol., 35, 10–38 18 A. L. V. Davis Table 2. continued from previous page Group Species Percentage frequency in climatic region WR BR Late SR Kala. Highv. II3d EC Trop. F1 continued Heteronitis castelnaui (Harold) Onitis mendax Gillet Garreta nitens (Olivier) Anachalcos convexus Boheman Onitis viridulus Boheman Onthophagus ?sugillatus Klug Kheper subaeneus (Harold) Hyalonthophagus alcedo (d’Orbigny) Caccobius ferrugineus Fahraeus Gymnopleurus humanus M’Leay Mean 0·0 0·0 0·0 0·0 0·0 0·0 0·0 0·0 0·0 0·0 0·1 0·0 0·0 0·0 0·0 0·0 0·0 0·0 0·0 0·0 0·0 0·4 0·0 0·0 0·0 0·0 0·0 0·0 0·0 0·0 6·5 0·0 1·9 3·8 0·0 8·6 9·2 1·3 7·6 3·8 6·2 7·1 14·4 9·8 0·0 0·0 2·8 0·0 6·6 0·0 0·0 0·0 0·0 0·0 4·6 30·7 27·8 25·9 27·5 30·7 30·2 30·5 49·3 42·5 28·7 34·5 26·7 32·2 30·0 31·9 35·6 35·0 35·4 0·0 8·2 0·0 25·3 38·8 40·1 32·7 31·4 25·8 27·2 30·3 44·5 35·8 56·9 23·5 F2 Catharsisus tricornutus de Geer Digitonthophagus gazella (Fabricius) Euoniticellus intermedius (Reiche) Liatongus militaris (Castelnau) Drepanocerus kirbyi (Kirby) Oniticellus planatus Castelnau Onthophagus sp. nr sugillatus Onitis caffer Boheman Chironitis sp. nr scabrosus Onitis alexis Klug Chironitis hoplosternus (Harold) Drepanocerus patrizii (Boucomont) Phalops dregei Harold Sarophorus costatus (Fahraeus) Heliocopris hamadryas (Fabricius) Neosisyphus ruber Paschalidis Onthophagus cribripennis d’Orbigny Onitis tortuosus Houston Copris obesus Boheman Caccobius obtusus Fahraeus Cyptochirus ambiguus Kirby Copris macer Péringuey Onthophagus parumnotatus Fahraeus Garreta unicolor (Fahraeus) Mean 9·8 4·2 8·0 0·0 0·0 0·0 0·0 13·8 0·0 0·0 10·1 0·0 0·0 0·0 0·0 0·0 0·0 0·0 0·0 0·0 0·0 0·0 0·0 0·0 1·9 12·7 20·6 12·9 17·0 16·6 23·5 22·7 21·6 15·2 9·3 4·7 7·1 7·3 13·3 17·1 7·8 0·0 0·0 0·0 11·0 19·0 0·0 0·0 0·0 10·8 0·0 6·0 7·2 1·4 0·0 0·0 5·5 5·3 7·9 9·1 14·6 3·7 11·4 1·7 0·0 0·0 0·0 0·0 0·0 0·0 0·0 0·0 0·0 0·0 3·1 3·0 8·0 10·5 3·0 1·6 2·1 5·2 3·6 12·3 14·6 10·6 8·0 14·6 1·9 3·9 5·4 2·9 3·5 7·2 0·0 1·8 0·0 0·0 0·0 5·2 13·3 8·5 14·9 19·3 18·3 20·0 23·3 20·6 24·0 16·7 20·6 15·6 16·1 4·9 10·1 24·2 33·2 32·9 31·2 32·4 32·6 22·4 27·3 17·5 20·8 20·5 20·4 20·9 26·8 31·5 20·6 24·0 23·1 19·7 16·4 31·8 48·2 41·6 45·4 38·9 32·1 34·2 32·3 38·6 37·6 28·7 52·0 48·3 54·1 32·8 21·4 18·6 13·3 20·7 21·9 19·1 11·9 8·4 5·7 16·3 0·0 0·0 0·0 21·9 9·0 14·5 13·2 21·4 5·6 14·5 16·6 10·0 7·0 23·5 13·1 19·3 13·7 12·4 11·8 10·2 14·8 7·4 3·7 15·1 17·7 7·7 17·4 9·0 10·9 21·0 16·1 16·5 10·0 17·4 4·5 1·3 15·6 17·4 4·9 12·3 F3 Onthophagus albipodex d’Orbigny Onthophagus quadrinodosus Fahraeus Onthophagus ?pullus Roth Mean 0·0 0·0 0·0 0·0 0·0 0·0 0·0 0·0 0·0 0·0 0·0 0·0 5·8 0·0 0·0 1·9 0·0 0·0 0·0 0·0 69·3 67·0 76·2 70·8 0·0 12·9 14·7 9·2 25·0 20·1 9·2 18·1 F4 Copris fidius Olivier 0·0 30·1 0·0 0·0 5·5 51·4 9·9 3·1 Table 2 continued on next page ? East African Wild Life Society, Afr. J. Ecol., 35, 10–38 Associations of southern African dung beetles 19 Table 2. continued from previous page Group Species Percentage frequency in climatic region WR BR Late SR Kala. Highv. II3d EC Trop. F5 Caccobius viridicollis Fahraeus Scarabaeus bohemani Harold Mean 0·0 0·0 0·0 0·0 0·0 0·0 8·3 22·4 15·4 27·1 20·4 23·8 11·7 5·3 8·5 36·1 49·0 42·6 10·4 0·0 5·2 6·5 2·9 4·7 G Scarabaeus deludens zur Strassen Proagoderus bicallosus Klug Onthophagus lacustris Harold Onitis robustus Boheman Caccobius sp. Copris bootes Klug Proagoderus dives Harold Milichus apicalis Fahraeus Neosisyphus infuscatus Klug Metacatharsius exiguus Boheman Onitis obscurus Lansberge Onitis reichei Lansberge Onitis westermanni Lansberge Onthophagus plebejus Klug Proagoderus rectefurcatus Fairmaire Copris sp. nr macer Catharsius heros Boheman Kheper cupreus (Castelnau) Onthophagus interstitialis Fahraeus Scarabaeus funebris (Boheman) Mean 0·0 0·0 0·0 0·0 0·0 0·0 0·0 0·0 0·0 0·0 0·0 0·0 0·0 0·0 0·0 0·0 0·0 0·0 0·0 0·0 0·0 0·0 0·0 0·0 0·0 0·0 0·0 0·0 0·0 0·0 0·0 0·0 0·0 0·0 0·0 0·0 0·0 0·0 0·0 0·0 0·0 0·0 0·0 0·0 0·0 0·0 0·0 0·0 0·0 0·0 0·0 10·2 0·0 0·0 0·0 0·0 0·0 0·0 8·9 0·0 2·4 18·5 2·0 7·7 13·6 0·0 0·0 12·8 0·0 4·1 0·0 3·7 22·2 31·6 11·0 13·2 0·0 0·0 10·0 19·5 29·0 0·0 10·1 9·4 0·0 0·0 0·0 0·0 0·0 0·0 0·0 0·0 9·5 0·0 0·0 0·0 0·0 0·0 0·0 0·0 0·0 0·0 36·5 26·1 3·6 0·0 0·0 0·0 0·0 0·0 0·0 16·3 23·7 14·7 0·0 0·0 0·0 0·0 0·0 0·0 20·0 0·0 0·0 10·3 0·0 4·3 53·5 47·2 54·6 51·7 59·4 65·8 47·2 54·9 51·0 51·5 0·0 25·5 15·3 39·1 34·9 23·2 22·5 22·3 41·6 23·4 39·2 38·9 39·2 45·4 48·3 27·8 34·2 32·4 21·4 21·2 16·1 68·4 63·5 71·5 60·9 65·1 46·9 49·1 48·7 9·3 21·9 41·5 H Scarabaeus viator Péringuey Euonthophagus vicarius Péringuey Chironitis audens (Péringuey) Phalops euplynes Bates Gymnopleurus sericatus Erichson Metacatharsius marani Balthasar Onthophagus probus Péringuey Gymnopleurus asperrimus Felsche Gymnopleurus andreaei Ferreira Gymnopleurus aenescens Wiedeman Onthophagus verticalus Fahraeus Onitis obenbergeri Balthasar Metacatharsius opacus Waterhouse Copris laioides Boucomont Heliocopris atropos Boheman Pachylomerus opaca Lansberge Scarabaeus satyrus (Boheman) Scarabaeus ambiguus (Boheman) Phalops wittei Harold 17·5 0·0 0·0 4·6 6·3 10·4 17·1 0·0 0·0 0·0 0·0 0·0 0·0 0·0 0·0 0·0 14·1 0·0 0·0 32·2 35·4 22·2 12·7 11·5 0·0 0·0 0·0 0·0 0·0 0·0 0·0 0·0 0·0 0·0 0·0 6·5 0·0 0·0 50·3 64·6 57·8 55·1 60·1 74·8 73·9 100·0 100·0 4·3 6·3 0·0 0·0 0·0 0·0 51·2 37·2 25·6 31·6 0·0 0·0 6·3 14·4 13·1 10·9 9·0 0·0 0·0 60·4 41·1 47·9 42·3 58·1 57·4 20·9 22·1 20·9 34·4 0·0 0·0 0·0 6·2 4·2 0·0 0·0 0·0 0·0 0·0 0·0 0·0 0·0 0·0 0·0 0·0 0·0 27·1 15·7 0·0 0·0 0·0 0·0 0·0 0·0 0·0 0·0 0·0 18·6 27·4 38·3 0·0 0·0 0·0 27·9 14·8 13·9 8·1 0·0 0·0 0·0 0·0 0·0 0·0 0·0 0·0 0·0 0·0 7·9 0·0 13·1 0·0 19·0 0·0 0·0 0·0 0·0 0·0 0·0 13·7 6·9 4·7 3·9 0·0 0·0 0·0 16·8 17·3 13·8 44·7 41·9 23·7 0·0 5·3 12·6 10·2 Table 2 continued on next page ? East African Wild Life Society, Afr. J. Ecol., 35, 10–38 20 A. L. V. Davis Table 2. continued from previous page Percentage frequency in climatic region Group Species WR BR Late SR Kala. Highv. II3d EC Trop. H continued Scarabaeus flavicornis (Boheman) Copris cassius Péringuey Kheper prodigiosus (Erichson) Copris gracilis Waterhouse Proagoderus sappharinus Péringuey Copris subsidens Péinguey Catharsius ulysses Boheman Onthophagus quadraticeps Harold Onthophagus sp. nr variegatus Catharsius calaharicus Kolbe Scarabaeus damarensis Janssens Onthophagus sp. Copris cornifrons Boheman Metacatharsius sp. Scarabaeus proboscideus Guérin Mean 0·0 0·0 0·0 0·0 0·0 0·0 0·0 0·0 0·0 0·0 0·0 0·0 0·0 0·0 12·6 2·4 0·0 0·0 0·0 0·0 0·0 0·0 0·0 0·0 0·0 0·0 0·0 0·0 0·0 0·0 0·0 3·5 30·0 24·5 26·2 32·3 33·0 41·1 20·6 24·5 26·9 37·0 45·7 46·1 52·2 61·6 36·3 39·1 39·2 49·7 42·9 42·3 35·9 37·4 45·0 49·1 64·6 55·1 49·8 41·9 42·7 38·4 46·3 33·5 0·0 5·0 0·0 0·0 0·0 0·0 11·7 0·0 0·0 0·0 0·0 0·0 0·0 0·0 0·0 2·1 26·1 15·3 0·0 0·0 0·0 0·0 0·0 0·0 0·0 0·0 0·0 0·0 0·0 0·0 0·0 5·6 0·0 0·0 0·0 0·0 0·0 0·0 0·0 10·3 0·0 0·0 0·0 0·0 0·0 0·0 0·0 1·5 4·7 5·5 30·9 25·4 31·1 21·6 22·7 16·1 8·5 7·9 4·5 12·1 5·1 0·0 4·8 12·2 WR, winter rainfall; BR, bimodal rainfall; Late SR, late summer rainfall; Kala., Kalahari; Highv., highveld; EC, east coast; Trop, north-east subtropical/tropical—see Fig. 1. Clusters of similar geographical distribution from this serial climatic/ geographical analysis were assessed for validity by comparison with the results from a second analysis conducted solely on geographical distribution. Classification of the geographical distribution of the 220 species was used to define four subgroups of species whose geographical distribution matrices were classified separately using the same clustering methods as in the climatic/geographical analysis. The results are not illustrated. However, on the dendrograms constructed from the first analysis (Figs 2, 5, 7, 8), core species are marked with an asterisk if they formed similar clusters to those shown in the second analysis. Species which change in association between the two analyses are marked with a cross. This assessment allows spurious groupings and species with outlier distributions to be identified. As collecting intensity on different soil, vegetation and dung types varied regionally (Table 1), an assessment was made of its influence on distributional results for the 220 species (Figs 2, 5, 7, 8). In each of the 25 climatic regions of southern Africa (Walter & Lieth, 1964), the numbers of collections for each species were summed for fine-grained vs. coarse-grained (sand) soils, for pasture/ grassland vs. shrubland/open woodland, and for ruminant vs. non-ruminant herbivore dung types. The overall number of collections for each species on each habitat variable were divided by the total number of collections made in the climatic regions from which that species was collected. For each pair of variables, these numbers were converted to percentages. Where possible, these standardized results for collecting bias were compared with quantitative results for habitat associations. ? East African Wild Life Society, Afr. J. Ecol., 35, 10–38 Associations of southern African dung beetles 21 Table 3. Biogeographical composition of the total 582 species of dung beetles recorded and the 220 species recorded most frequently in eight climatic regions of southern Africa Percentage biogeographical composition of species within each climatic region Overall % Mid-summer rainfall Late composition Biogeographical East Subtropical/ in southern Winter Bimodal summer distribution tropical rainfall rainfall rainfall Kalahari Highveld II3d coast Africa pattern* 220 species 1 2 3 4 5 6 No.species 80·6 3·2 12·9 3·2 0·0 0·0 31 71·2 6·8 16·9 3·4 0·0 1·7 59 72·9 8·2 10·6 5·9 2·4 0·0 85 48·1 21·8 16·5 11·3 1·5 0·8 133 59·1 13·6 19·1 7·3 0·0 0·9 110 45·9 21·8 19·5 9·8 1·5 1·5 133 40·7 24·1 22·1 10·3 1·4 1·4 145 44·3 24·7 18·4 10·3 1·1 1·1 174 55·0 20·0 15·0 8·2 0·9 0·9 220 582 species 1 2 3 4 5 6 No.species 90·5 1·6 6·3 1·6 0·0 0·0 63 79·1 4·7 11·6 2·3 1·2 1·2 86 77·6 6·0 7·8 4·3 4·3 0·0 116 60·3 16·3 12·0 8·2 2·2 1·1 184 69·9 9·8 13·7 5·9 0·0 0·7 151 58·4 17·3 13·4 7·4 1·0 2·5 202 55·5 19·7 15·1 6·7 0·8 2·1 238 57·6 17·7 11·1 7·6 2·2 3·8 368 71·8 11·7 7·4 5·0 1·5 2·6 582 *1, Recorded only in southern Africa south of latitude 15)S. 2, Recorded in southern, southern central and east Africa. 3, Pan-African distribution, east, west/northern central, southern central, southern and, infrequently, west central Africa. 4, Recorded in southern and southern central Africa. 5, Recorded in southern, southern central and west central Africa. 6, Recorded in southern, southern central, west central and east Africa. Biogeographical relationships were assessed for all 582 species of dung beetles which were recorded in southern Africa by the DBRU. Pan-African distribution data were drawn from the reference collection of the former DBRU, Ferreira (1972, 1978), Cambefort (1982, 1991a), Scholtz & Howden (1987a, b), Howden & Scholtz (1987), Nguyen-Phung (1988a, b, c) and Nguyen-Phung & Cambefort (1986, 1987). Biogeographical regions are as in Davis & Dewhurst (1993) except that southern Africa is defined as lying south of 15)S instead of 20)S. The six different biogeographical distribution patterns shown by the species are defined in Table 3. Cross-climatic variation in biogeographical composition of the dung beetle fauna was assessed both for the total 582 species recorded and for the 220 species showing the greatest frequency in collections. Within each of the eight climatic regions, the numbers of species showing each biogeographical distribution pattern were converted to percentage representation to remove species/area bias. Cross-climatic variation in dung beetle community structure was assessed using data for the entire 582 species recorded. The numbers of species recorded in each of the 25 climatic regions (Walter & Lieth, 1964) were divided amongst the nine tribes of dung beetles. These numbers were converted to percentage ? East African Wild Life Society, Afr. J. Ecol., 35, 10–38 22 A. L. V. Davis ? East African Wild Life Society, Afr. J. Ecol., 35, 10–38 Associations of southern African dung beetles 23 tribal composition within each climatic region to remove species/area bias. Mean percentage occurrence for each tribe was calculated for each of the four major climatic regions of southern Africa (Davis, 1987). One-way analysis of variance was used to test for statistical significance of cross-climatic differences in tribal composition. Results and discussion The dung beetle fauna of southern Africa shows clear climatic and biogeographical associations. Increasing endemism to the south-west in both dung beetles (Table 3) and Coleoptera as a whole (Endrödi-Younga, 1978) is associated especially with arid late summer, winter and bimodal rainfall climate types. Geographical groups of southern African endemics are centred to the south-west (Figs 2–4) and also on the south-eastern highlands and the subtropical east coast (Figs 4–6). However, most species groups centred to the north-east in the mid-summer rainfall region comprise primarily widespread elements with broad tropical biogeographical associations (Figs 6–8). Some widespread species penetrate into the south-western climate types, chiefly across the highveld and along the moist southern coastline. The numbers of widespread and highveld species decline sharply to the west of George (34)00*S 22)15*E) (Figs 4, 6). George is situated at the westerly limit of climate Type V (Walter & Lieth, 1964) in which substantial bimodal rain falls throughout the year. Beyond George, there is increasing emphasis on the spring peak in rainfall of the bimodal climate Type IV(V). Most of the widespread, summer rainfall species, which penetrate beyond George to the Western Cape, are active in the dry summer (Davis, 1987, 1993). Increasing endemism to the arid west and cooler south-west is paralleled by reduced species richness (Table 3) and changing community structure (Table 4; Davis, 1994c). Functional complexity of the dung beetle fauna is reduced to the south-west (Davis, 1994c) by the virtual loss of endocoprids (some Oniticellini), which breed within dung in situ, and by the decline or loss of kleptocoprid species (some Onthophagini) which use dung buried by other beetles. Tunnelling Coprinae (Dichotomiini to Oniticellini) manifest few cross-climatic changes in community structure except for reduced percentage occurrence of Onthophagini to the south-west. This tribe includes many kleptocoprids in communities to the Fig. 2. Dendrogram showing percentage geographical overlap between species of the western climatic specialist group defined from Table 2. Species marked with an asterisk or a cross show, respectively, similar or different cluster associations using different methods for analysing spatial distribution. *Superscripted numbers represent the biogeographical distribution pattern shown by each species. Numbers in box brackets are doubtful distribution patterns. **Standardized percentage of collection bias to sand as opposed to finer-grained soils, numbers in brackets are percentage occurences of species on sand in Gauteng from quantitative data (Davis, 1996), S, sand, C, clay, G, soil generalist, asterisk=statistically significant relationship (P<0·05); **standardized percentage of collection bias to pasture/grassland as opposed to shrubland/open woodland, numbers in brackets are percentage occurences of species in pasture/grassland in the Western Cape and Gauteng from quantitative data (Davis, 1993, 1996), P, pasture; S, shrubland; OW, open woodland; G, vegetation generalist, forest= >75% of collections of species made in forest; **standardized percentage of collection bias to ruminant as opposed to non-ruminant dung, numbers in brackets are percentage occurences of species on ruminant dung in Gauteng from quantitative data (Davis, 1994b). ? East African Wild Life Society, Afr. J. Ecol., 35, 10–38 24 A. L. V. Davis ? East African Wild Life Society, Afr. J. Ecol., 35, 10–38 Associations of southern African dung beetles 25 north-east. Increased representation by ball-rolling Scarabaeinae to the west and south-west (Table 4) reflects the southern African centres of distribution in both the Canthonini (Scholtz & Howden, 1987a, b; Howden & Scholtz, 1987) and the Scarabaeini (Mostert & Scholtz, 1986). Sisyphini, and to a lesser extent, Gymnopleurini, show an opposite trend. There is also increased prominence of Gondwanaland Coleoptera to the south-west and these are thought to be the oldest faunal members (EndrödiYounga, 1978). In Gondwanaland dung beetles (Halffter & Matthews, 1966; Halffter, 1974), increased prominence to the south-west is true of the Canthonini but not of the Dichotomiini, which are centred in the summer rainfall tropics (Ferreira, 1972; Davis, 1993) south of the equator (Cambefort, 1991b) with a taxonomic disjunction between tropical and winter/bimodal rainfall elements (Davis, 1993). Southern Gondwanaland taxa may have a south temperate (palaeantarctic) origin (Halffter, 1974; Endrödi-Younga, 1978) with tropical relicts resulting from the 15–18) northward drift of the African continent from the late Cretaceous to the Miocene (Axelrod & Raven, 1978). Alternatively, tropical Gondwanaland taxa may have entered Africa via a tropical west African route (Halffter, 1974). There is circumstantial support for Cambefort’s competitive exclusion hypothesis (1991b), which explains the distribution of African Canthonini, since Anachalcos is the only widespread tropical canthonine genus whereas Cape canthonines are maximized to cool seasonal conditions (Davis, 1993) which reduces overlap with other Scarabaeinae. Survival and radiation of tropical Dichotomiini may result from dietary, behavioural (Cambefort, 1991b), size (Davis, 1990) and distributional specializations. Endrödi-Younga (1978) has defined seven biogeographical regions for southern Africa based on the distribution of ground Coleoptera, mainly Tenebrionidae. The present study on dung beetles partly supports this zonation although some modifications are proposed. These are based on species distribution of major dendrogram clusters (Figs 2–8, Table 5) with minor clusters ignored. Members of the western (Fig. 2) and eastern climatic specialists (Fig. 5) mostly form similar clusters in both the climatic/geographical and the purely geographical analyses. However, there are greater differences between clusters defined from the subtropical/tropical (Fig. 7) and temperate to tropical generalists (Fig. 8) by the two analyses. Even so, most species added to clusters in the climatic/geographical analysis (7C, 7D, 8A) generally comprise blocks of species from no more than one or two different clusters in the purely geographical analysis. The winter and bimodal rainfall cluster (2B) is primarily restricted to sand on the western and southern coastline of South Africa (Figs 2, 3, Table 5). Its distribution largely conforms to the Cape Zone (Endrödi-Younga, 1978) except that it includes Namaqualand but excludes the east coastline beyond East London (33)01*S, 27)58*E). A few species occupy the entire winter and bimodal rainfall regions, Copris capensis, Epirinus flagellatus. However, most species are restricted to subregional distribution patterns. One subgroup is associated with Fig. 3. Geographical distribution of species clusters of dung beetles defined from Fig. 2 (the numbers of species occurring in each 4) square of latitude and longitude are size-coded: largest size= >75% of species comprising each dendrogram cluster, second largest=50–75% of species, second smallest=25–50% of species, smallest size= <25% of species comprising each dendrogram cluster). ? East African Wild Life Society, Afr. J. Ecol., 35, 10–38 26 A. L. V. Davis ? East African Wild Life Society, Afr. J. Ecol., 35, 10–38 Fig. 4. Geographical distribution of species clusters of dung beetles defined from Figs 2 and 5 (see notes in legend to Fig. 3 for key to species numbers). Associations of southern African dung beetles 27 ? East African Wild Life Society, Afr. J. Ecol., 35, 10–38 Fig. 5. Dendrogram showing percentage geographical overlap between species of the eastern climatic specialist group defined from Table 2 (*,** see notes in legend to Fig. 2). 28 A. L. V. Davis ? East African Wild Life Society, Afr. J. Ecol., 35, 10–38 Fig. 6. Geographical distribution of species clusters of dung beetles defined from Figs 5, 7 and 8 (see notes in legend to Fig. 3 for key to species numbers). Associations of southern African dung beetles 29 ? East African Wild Life Society, Afr. J. Ecol., 35, 10–38 Fig. 7. Dendrogram showing percentage geographical overlap between species of the subtropical/tropical climatic specialist group defined from Table 2 (*,** see notes in legend to Fig. 2). 30 A. L. V. Davis ? East African Wild Life Society, Afr. J. Ecol., 35, 10–38 Fig. 8. Dendrogram showing percentage geographical overlap between species of the temperate to tropical climatic generalist group defined from Table 2 (*,** see notes in legend to Fig. 2). Associations of southern African dung beetles 31 Table 4. Percentage subfamily and tribal composition of the dung beetle fauna in four major climatic regions of southern Africa Mean percentage species composition&S.D. in climate types comprising each climatic region Subfamily/ tribe Subfamily Scarabaeinae Coprinae Tribes Scarabaeini Gymnopleurini Sisyphini Canthonini Dichotomiini Coprini Onitini Onthophagini Oniticellini Total number of species in region Winter rainfall Bimodal rainfall Late summer rainfall Mid-summer rainfall Resul;ts of ANOVA (F) (d.f.=3,21) 45·6&17·3b 54·4&17·3a 22·5&2·2a 77·5&2·2b 26·7&7·9a 73·3&7·9b 20·7&3·4a 79·3&3·4b 8·09*** 8·09*** 28·0&15·5b 0·9&1·7a 1·3&1·6a 15·4&5·6c 4·0&2·2 13·3&2·6 12·4&6·9 15·7&8·0a 9·0&5·2ab 4·7&2·1a 2·8&1·3ab 6·1&4·7ab 8·9&3·6bc 5·6&2·4 9·9&4·4 18·8&4·8 28·5&3·4b 14·6&3·8b 15·8&7·5ab 7·2&1·7b 1·1&1·4a 2·6&1·3ab 4·5&2·6 12·6&5·6 16·3&4·0 35·5&2·2bc 4·4&3·1a 7·1&5·0a 4·3&3·1ab 7·4&3·4b 1·9&1·5a 5·5&2·5 14·9&2·2 13·1&4·0 38·8&4·7c 6·9&3·1a 6·99** 4·89** 6·72** 21·99*** 0·48 1·48 1·43 21·37*** 4·38* 63 86 116 517 *P<0·05, **P<0·01, ***P<0·001. In each line, values followed by a different letter differed significantly (P<0·05, Tukey’s HSD). the dry west coastal sands of South Africa. Several species occur along the entire coastline, Scarabaeus rugosus, Kheper bonellii M’Leay. Others appear in the moister regions to the south, Copris anceus, Epirinus scrobiculatus Harold, E. granulatus Scholtz & Howden, Neosisyphus quadricollis Gory. Another subgroup extends from the south-western coast of the Western Cape along the southern coastline to the Eastern Cape, Sarophorus tuberculatus (Castelnau), Onthophagus giraffa, O. minutus, with further species restricted to the southern coastline, Copris jacchus (Fabricius), Onitis minutus Lansberge, Scarabaeus savignyi M’Leay. A number of species also occupy restricted or wider distributions in the south-west of the Western Cape, Onthophagus immundus Péringuey, Epirinus comosus Péringuey, Scarabaeus spretus zur Strassen. Finally, small numbers of species occupy arid ranges in Namaqualand, Scarabaeus alienus Péringuey, Byrrhidium namakwensis Scholtz & Howden, B. ovale Harold, or ranges restricted to the central Eastern Cape, Scarabaeus ambulans, Chironitis sp., Epirinus striatus Scholtz & Howden, at the limits, respectively, of the winter and bimodal rainfall regions. Cluster 2A comprises a loose assemblage of species ranging from the winter and bimodal rainfall regions across the arid karoo into the late summer rainfall region (Figs 2, 3, Table 5). These species comprise both spring-active elements, Epirinus aeneus, Onthophagus cameloides (Davis, 1993), which have probably expanded their ranges to the north-east, and summer-active elements, Chironitis scabrosus, Onitis aygulus, which have expanded their ranges to the south-west. There are also some karoo-centred elements, Scarabaeus viator, Euonthophagus vicarius, Onthophagus albipennis Péringuey, O. suturalis Péringuey. This range ? East African Wild Life Society, Afr. J. Ecol., 35, 10–38 32 A. L. V. Davis Table 5. Climatic distributions of 14 major geographical species groups defined from dendrograms (Figs 2, 5, 7, 8) Mean standardized percentage climatic distribution of species&S.D. Species clusters Winter rainfall Bimodal rainfall 2A 2D 34·8 &28·1 75·8 &23·3 6·6 &6·3 0·0 29·4 &9·5 19·5 &18·4 6·6 &7·7 0·0 2E 0·0 0·0 2F 0·0 5A 3·8 &10·0 0·0 5B 0·0 0·0 5D 0·0 0·0 5G 7A 2·2 &5·2 0·0 20·1 &16·7 0·0 7C 0·0 0·0 7D 0·2 &1·2 2·2 &4·2 0·1 &0·7 15·0 &6·0 2B 2C 8A 0·0 Late summer rainfall 31·6 &19·8 1·0 &2·8 69·9 &20·6 24·5 &17·7 13·7 &11·4 38·6 &11·3 0·0 0·8 &2·6 0·0 3·6 &6·5 6·5 &4·8 3·4 &3·1 0·1 &0·4 2·8 &3·3 Mid-summer rainfall Subtropical/ tropical Number of species Kalahari Highveld II3d East coast 1·1 &2·5 0·5 &1·4 9·5 &7·0 45·9 &8·8 46·8 &13·0 41·1 &8·9 3·7 &5·4 5·6 &9·8 0·7 &2·6 0·3 &1·0 29·8 &5·3 14·4 &7·5 6·0 &5·0 5·0 &4·1 3·0 &5·6 3·2 &4·3 1·3 &2·3 0·0 0·0 0·0 0·0 6 0·0 0·0 0·0 8 1·8 &4·9 0·0 0·0 8 7·5 &10·3 6·0 &10·0 1·5 &4·7 2·2 &6·8 0·0 5·0 &7·0 0·8 &2·8 18·4 &23·2 37·7 &23·7 95·1 &5·7 6·6 &9.4 28·6 &3·8 20·8 &9·8 25·4 &6·4 15·9 &5·0 4·3 &4·3 29·6 &8·8 22·1 &10·7 7·9 &8·1 76·4 &25·4 53·7 &25·4 3·7 &5·4 1·4 &2·5 15·3 &3·6 28·3 &6·0 23·7 &5·8 11·9 &5·4 4·8 &9·2 2·0 &4·3 0·0 0·0 0·5 &1·7 50·6 &17·6 0·0 3·9 &4·6 5·5 &6·3 19·7 &8·2 15·3 &16·5 19·8 &5·3 29·2 &5·4 39·1 &9·7 27·4 &8·0 0·0 3 8 13 11 11 13 27 5 13 34 16 largely equates to the southern part of the central arid zone (Endrödi-Younga, 1978). Cluster 2C is centred on the Karoo and arid regions of Namibia (Figs 2, 3, Table 5). This region equates to the south-western zone plus the southern and western parts of the central arid zone (Endrödi-Younga, 1978). It also equates to the arid late summer rainfall region where 69% of observations were made. Various species extend throughout the entire Karoo/Namib system, Chironitis audens, Phalops euplynes, Gymnopleurus sericatus, although blue and green varieties of G. sericatus appear in the southern Karoo in contrast to the more widespread copper-red variety. Other distribution patterns include, south-western Angola to the Northern Cape, Gymnopleurus andreaei, Onthophagus semiflavus Boheman, and southern Namibia to the Karoo, Onthophagus probus, O. ochropygus d’Orbigny. The relict species, Gymnopleurus asperrimus, is centred on the Namibian/Northern Cape border zone whereas ? East African Wild Life Society, Afr. J. Ecol., 35, 10–38 Associations of southern African dung beetles 33 Phalops densegranosus d’Orbigny and Onthophagus phalopsides Frey have only been recorded in arid climate type III2 at the edge of the Namib Desert (latitudes 20)–25)S). Despite some regionalism, the composite parts of the Karoo/Namib system probably form a distinct biogeographical entity in terms of dung beetles. Although the south-western zone (Endrödi-Younga, 1978) holds good for Tenebrionidae which have diversified in arid climates, it is less valid in terms of dung beetles which have limited diversification in deserts. There is a flightless group of related species (formerly the genus Pachysoma, now synonymized with Scarabaeus (Mostert & Holm, 1982) which is endemic to the arid west coastal sands from the Western Cape to Swakopmund (22)33*S, 14)35*E) in Namibia. However, cluster analysis (Davis, 1990) of numerical taxonomic data for these species (Holm & Scholtz, 1979) shows that there are three distinct taxonomic groups. Essentially, these are centred on the south-west of the Western Cape (winter rainfall), Namaqualand/southern Namibia (winter/summer rainfall), and southern Namibia (summer rainfall). Cluster 2D occurs mainly on finer-grained soils in the moister northern Namibia limited by arid climate to the west/south-west and by lower-lying Kalahari sands to the east/south-east (Figs 2, 3, Table 5). Other species showing a north Namibian distribution include, Onitis mnizechi Lansberge, O. obscurus, Phalops prasinus Erichson, P. pyroides d’Orbigny. Some of these species show a distribution extending into Angola, O. obscurus, P. prasinus. A few species occurring as rarities in Etosha National Park, Neosisyphus macroruber, Proagoderus lanista, show a disjunct distribution from their principal range, respectively, in the Northern Cape and the highveld, and on the highveld southwards to the Eastern Cape. A similar disjunct distribution is shown by Scarabaeus ambiguus and Catharsius ulysses (cluster 2E), which are abundant at the edge of the Kalahari both in northern Namibia and in South Africa. These northern Namibian outliers may be relicts of Pleistocene northwards expansion. The biogeographical status of the Kalahari region is debatable. It may be the north-eastern part of the central arid zone (Endrödi-Younga, 1978) or a poorly differentiated subregion of the summer rainfall, savanna region (Holm & Scholtz, 1983, 1984). Although it cannot be regarded as a distinct biogeographical region (Barker, 1993), there is a definite cluster (2F) of sand specialist dung beetle species centred to the south-west of the Kalahari in the Northern Cape and south-western Botswana (Figs 2, 4, Table 5). This suggests that the arid south-west does act as a biogeographical focal point combining the selective factors of climate and soil type. Furthermore, this centring to the south-west has been noted in other families of Coleoptera including, Buprestidae, Carabidae and Trogidae (Holm & Scholtz, 1983). Although zoogeographical affinities of these families are to the north-east (Holm & Scholtz, 1984), at least one group of dung beetles has speciated between the Kalahari (Scarabaeus flavicornis), southern Namib (S. fritschi Harold) and Namaqualand/Western Cape regions (S. canaliculatus Fairmaire) (Davis, 1993). Similar observations have been made for south-western Kalahari Tenebrionidae whose ancestral relationships are largely to the north-east with a minority showing south-westerly Namaqualand affinities (Penrith, 1984). Endemicity is low, as in grasshoppers (Acrididae) ? East African Wild Life Society, Afr. J. Ecol., 35, 10–38 34 A. L. V. Davis (Barker, 1993), since most of the Kalahari-centred dung beetles show distributions outside of the Kalahari as defined by Barker (1993). Extended distributions occur, especially, in sand outliers in Gauteng and Northern Province, Pachylomerus opaca, Copris cassius, Proagoderus sappharinus; southwards through Namaqualand along the west coast of the Western Cape, Scarabaeus proboscideus, Metacatharsius latifrons; and northwards into Angola, Proagoderus sappharinus var., Copris cassius ssp. angolensis Ferreira. Clusters 2E and 7A are loose groupings of species which each occur in three or four different clusters in the purely geographical analysis. Their circumKalahari or northern KwaZulu/Natal centres of distribution (Table 5) reflect a bias to greater frequency on tropical sands. Most species show a relatively broad distribution in the mid-summer rainfall region whereas some with more widespread biogeographical affiliations are found at the northernmost limits of the mega-Kalahari sands (Thomas, 1988) in Zaı̈re, Pachylomerus femoralis, Kheper lamarcki (Walter, 1978). The highveld/bimodal rainfall (5G) and east coast (5D) clusters (Figs 4–6, Table 5) are centred, respectively, in the eastern part of the mountain zone and the south-eastern coastal region of the tropical zone of Endrödi-Younga (1978). Several highveld species are widespread beyond the regional centre from the Northern Province/Mapumalanga highlands to climate Type V in the bimodal rainfall region, Euoniticellus africanus, Onthophagus asperulus. Other species occurring the entire length of the region are either distributed along the high rainfall zone to the east of Lesotho, Sisyphus costatus, Litocopris simplex, or largely distributed in the drier regions to the west of Lesotho, Copris antares, Gymnopleurus leei. Further species are restricted to the summer rainfall highlands occurring from Northern Province southwards beyond Lesotho, Copris jacchoides, C. corniger. Elements from probable northwards expansion of the Cape canthonine fauna occur in the extreme highland regions of the KwaZulu/ Natal Drakensberg and the Mapumalanga highlands, Epirinus asper Péringuey, E. mucrodentatus Scholtz & Howden, and at lower altitudes in more southerly latitudes, Epirinus obtusus. Few highveld species occurred in the eastern highlands of Zimbabwe where endemism was limited to four species, Onitis autumnalis Davis, Heliocopris marshalli Péringuey, Xinidium davisi Cambefort and Copris sp. nr integer. The east coast endemics comprise mainly sand specialists with a few clay specialists, Onthophagus beiranus, Kheper clericus (Boheman) (Doube, 1991). Some of these species are distributed from southern KwaZulu/Natal to central northern Moçambique, sand: Copris puncticollis, Proagoderus aciculatus, clay: Onthophagus beiranus. However, most are centred on the high rainfall coastline of northern KwaZulu/Natal and southern Moçambique where there is appreciable overlap between species of the temperate to tropical (5A, 5B, 7A, 7C, 7D, 8A) and highveld (5G) clusters. Species of the east coast cluster show tropical or highveld affinities. For instance, Onthophagus juvencus, is a pan-African tropical element and the dune forest endemic, Scarabaeus bornemisszai zur Strassen, is closely related to a highveld species, Scarabaeus caffer (Boheman) (zur Strassen, 1980). The presence of Copris inhalatus Quedenfeldt ssp. santaluciae and Scarabaeus galenus var. in the St Lucia (27)45*S 32)30*E) region also indicate recent links with the dry sandveld of the interior. ? East African Wild Life Society, Afr. J. Ecol., 35, 10–38 Associations of southern African dung beetles 35 Cluster 5B shows a widespread but fragmented distribution throughout the mid-summer rainfall region (Fig. 6). Collections of these species were made primarily in game reserves (71·3%, n=171) with an extreme bias to greater frequency on non-ruminant dung (Fig. 5). Of the 28·8% of collections of these species made outside of reserves, 12·1% (n=29) were made on non-ruminant dung and 16·7% (n=40) on other food types. This distribution reflects the fragmented range of non-ruminant mammals. Clusters 5A, 5B, 7C, 7D and 8A show primarily (78·8%) broad tropical biogeographical affiliations (Figs 4–8, Table 5). Most groups are centred on the trans-Botswana transitional area and the tropical subregion of Endrödi-Younga (1978) without any obvious faunal separation between the two regions. Cluster 8A comprises species showing pan-southern African or pan-eastern southern African distributions which are considered to be mostly recent elements. There is a reduction in the size of ranges from that occupied by cluster 8A to those of the the pan mid-summer rainfall region (7C) and game reserve (5B) clusters. A further reduction in range is shown by the largest cluster of species (7D) which occupies the moist eastern part of the mid-summer rainfall region and by tropical species (5A) which are largely centred on climate type II2B (45·8% of observations) in eastern Zimbabwe and central Moçambique. Thus, in widespread species, there is a regression in distribution from tolerance of mild temperate conditions to restriction to moist tropical regions. The biogeographical analysis suggests that southern Africa comprises six principal centres which focus regional distributions. These are, the southwesterly winter and bimodal rainfall zone comprising up to five subzones, the western arid zone of the Namib, Namibia and the Karoo, the south-western Kalahari arid zone, the south-eastern highland zone, the east coastal zone and the warm temperate to tropical zone in the north and north-east. Some of these zones are centres of generic endemism which is concentrated along the coastal regions and at high altitude in the highlands. Endemic Gondwanaland genera occur in the winter and bimodal rainfall regions, Dichotomiini: Macroderes (Ferreira, 1972), Canthonini: Aphengoecus, Byrrhidium, Outenikwanus (Scholtz & Howden, 1987b). Others occur in the Drakensberg, Canthonini: Peckolus (Scholtz & Howden, 1987b) or in the northern highveld and eastern highlands of Zimbabwe, Dichotomiini: Xinidium (Cambefort, 1985). Endemic onitine genera occur on the subtropical east coast associated with non-ruminant dung, Anonychonitis in Hluhluwe and Umfolozi Game Reserves, Tropidonitis in north KwaZulu/Natal coastal sandveld. Endemism in the scarabaeine genus, Drepanopodus, is centred around the south-western Kalahari, Namaqualand. Biogeographical associations of the dung beetle fauna have probably been shaped principally by the reduced influence of the easterlies and increased influence of the westerlies since the Pliocene &3 My ago (Deacon, 1983). Pleistocene climatic oscillation has been responsible for waves of penetration of temperate elements to the north and tropical elements to the south (EndrödiYounga, 1978). However, winter rainfall climate is not thought to have ever shifted more than 1) of latitude further north than at present (Deacon et al., 1992). Northern expansion has occurred particularly along the cooler eastern highlands and the coastline with outlier relicts of cooler Pleistocene climate occurring in the eastern Zimbabwe highlands and the northen Namibian ? East African Wild Life Society, Afr. J. Ecol., 35, 10–38 36 A. L. V. Davis highveld. Southwards faunal expansion in the present interglacial, dating from 10 000 years, has probably been enhanced by recent fragmentation of the natural shrubland habitat in the winter rainfall region (Davis, 1993). Biogeographical group distributions from the present analysis (clusters 2D, 7C, 7D) suggest that the arid west and the central Kalahari sandveld basin comprise barriers to southward movement by all but dry-tolerant and psammophile species. The eastern highveld is less of a barrier but has clearly filtered out distinctly tropical elements. Northward movement is presently limited by the Karoo/Namib, Kalahari and tropical northern lowlands. Acknowledgments I thank Dr George Bornemissza, Dr Bernard Doube, Dr Jane Wright and my other colleagues at the Australian CSIRO Dung Beetle Research Unit whose efforts were responsible for the reference collection on which this study is based. The collection is now part of the National Collection of Insects, Pretoria, South Africa. Dr John Hoffmann kindly criticized the manuscript. References A, D.I. & R, P.H. (1978) Late Cretaceous and Tertiary vegetation history of Africa In: Biogeography and Ecology of Southern Africa (Eds M.J.A. Werger and A.C. van Bruggen). Junk, The Hague. B, J.F. (1993) Distribution patterns of Kalahari Desert Acridoidea (Orthoptera: Caelifera). Afr. Entomol. 1, 81–91. C, Y. (1982) Les coléoptères Scarabaeidae s. str. de Lamto (Côte d’Ivoire): structure des peuplements et rôle dans l’écosystème. Annls Soc. Entomol. Fr. (N.S.) 18, 433–459. C, Y. (1985) Révision du genre Xinidium Harold (Coleoptera, Scarabaeidae). Annls Soc. Entomol. Fr. (N.S.) 21, 95–102. C, Y. (1991a) Dung beetles in tropical savannas. In: Dung Beetle Ecology (Eds I. Hanski and Y. Cambefort). Princeton University Press, Princeton. C, Y. (1991b) Biogeography and evolution. In: Dung Beetle Ecology (Eds I. Hanski and Y. Cambefort). Princeton University Press, Princeton. D, A.L.V. (1987) Geographical distribution of dung beetles (Coleoptera: Scarabaeidae) and their seasonal activity in south-western Cape Province. J. Entomol. Soc. Sth. Afr. 50, 275–285. D, A.L.V. (1990) Climatic Change, Habitat Modification and Relative Age of Dung Beetle Taxa (Coleoptera: Scarabaeidae, Staphylinidae, Hydrophilidae, Histeridae) in the South-western Cape. PhD thesis, University of Cape Town. D, A.L.V. (1993) Biogeographical groups in a southern African, winter rainfall, dung beetle assemblage (Coleoptera: Scarabaeidae)—consequences of climatic history and habitat fragmentation. Afr. J. Ecol. 31, 306–327. D, A.L.V. (1994a) Habitat fragmentation in southern Africa and distributional response patterns of five specialist or generalist dung beetle families (Coleoptera). Afr. J. Ecol. 32, 192–207. D, A.L.V. (1994b) Associations of Afrotropical Coleoptera (Scarabaeidae, Aphodiidae, Staphylinidae, Hydrophilidae, Histeridae) with dung and decaying matter: implications for selection of fly control agents for Australia. J. Nat. Hist. 28, 383–399. D, A.L.V. (1994c) Community organization in a South African, winter rainfall, dung beetle assemblage (Coleoptera: Scarabaeidae). Acta Oecol. 15, 727–738. D, A.L.V. (1996) Habitat associations in a South African summer rainfall, dung beetle community (Coleoptera: Scarabaeidae, Aphodiidae, Staphylinidae, Histeridae, Hydrophilidae). Pedobiologia 40, 260–280. D, A.L.V. & D, C.F. (1993) Climatic and biogeographical associations of Kenyan and northern Tanzanian dung beetles (Coleoptera: Scarabaeidae). Afr. J. Ecol. 31, 290–305. D, H.J. (1983) An introduction to the fynbos region, time scales and palaeoenvironments. In: Fynbos Palaeoecology: a Preliminary Synthesis (Eds H.J. Deacon, Q.B. Hendey and J.J. Lambrechts). South African National Scientific Report no. 75, CSIR, Pretoria. ? East African Wild Life Society, Afr. J. Ecol., 35, 10–38 Associations of southern African dung beetles 37 D, H.J., J, M.R. & E, F. (1992) Selective regime and time. In: The Ecology of Fynbos: Nutrients, Fire and Diversity (Ed. R.M. Cowling). Oxford University Press, Cape Town. D, R.V., S, W.G. & N, A.R. (1983) Mesozoic and Tertiary Geology of Southern Africa. Balkema, Rotterdam. D, B.M. (1983) The habitat preference of some bovine dung beetles (Coleoptera: Scarabaeidae) in Hluhluwe Game Reserve, South Africa. Bull. Entomol. Res. 73, 357–371. D, B.M. (1991) Dung beetles of southern Africa. In: Dung Beetle Ecology (Eds I. Hanski and Y. Cambefort). Princeton University Press, Princeton. E̈-Y, S. (1978) Coleoptera. In: Biogeography and Ecology of Southern Africa (Eds M.J.A. Werger and A.C. van Bruggen). Junk, The Hague. F, M.C. (1972) Os escaribådeos de Africa (sul do Saára). Revta Entomol. Moçam. 11, 5–1088. F, M.C. (1978) The genus Onitis F. of Africa south of the Sahara (Scarabaeidae, Coleoptera). Mem. Nas. Mus. 10, 1–410. F, G.T., S, T.B. & D, R. (1970) Attraction of coprophagous beetles to feces of various animals. J. Parasit. 56, 378–383. H, G. (1974) Elements anciens de l’entomofaune néotropical: ses implications biogéographiques. Quaest. Entomol. 10, 223–262. H, G. & M, E.C. (1966) The natural history of dung beetles of the subfamily Scarabaeinae (Coleoptera, Scarabaeidae). Folia Entomol. Mex. 12–14, 1–312. H, E. & S, C.H. (1979) A revision of the genus Pachysoma M’Leay with an evaluation of the subtribe Pachysomina Ferreira and its genera (Coleoptera: Scarabaeidae). J. Entomol. Soc. Sth. Afr. 42, 225–244. H, E. & S, C.H. (1983) A zoogeographical delimitation of the Kalahari subregion (South Africa), based on excluded species. J. Arid Environs 8, 165–169. H, E. & S, C.H. (1984) The boundaries of the Kalahari region as derived from distribution maps of three beetle genera. In: Notes on the Coleopterous Fauna of the Kalahari (Ed. E. Holm). Koedoe 27 (Suppl.) 154–157. H, H.F. & S, C.H. (1987a) A revision of the African genus, Odontoloma Boheman (Coleoptera: Scarabaeidae: Scarabaeinae). J. Entomol. Soc. Sth. Afr. 50, 155–192. K, A.A. & R-S, T.J. (1986) Dung beetle distribution patterns in the Iberian Peninsula. Entomophaga 31, 183–190. M, L.E. & H, E. (1982) Notes on the flightless Scarabaeina (Coleoptera: Scarabaeidae) with a description of a new species. Cimbebasia (A) 5, 273–284. M, L.E. & S, C.H. (1986) Systematics of the subtribe Scarabaeinae (Coleoptera: Scarabaeidae). Dept Agric. Water Supply, Rep. S. Afr. Entomol. Mem. 65, 1–25. N, V.G. (1977) Habitat associations and community analysis of south Texas dung beetles (Coleoptera: Scarabaeinae). Can. J. Zool. 55, 138–147. N-P, T. (1988a) Révision des espèces afrotropicales du genre Copris Müller 1764. IV. Le groupe fidius Olivier [Coleoptera, Scarabaeidae]. Rev. Franc. Entomol. (N.S.) 10, 5–15. N-P, T. (1988b) Révision des espèces afrotropicales du genre Copris Müller 1764. VI. Le groupe bootes Klug (Coleoptera, Scarabaeidae). Nouv. Rev. Entomol. (N.S.) 5, 247–258. N-P, T. (1988c) Révision des espèces afrotropicales du genre Copris Müller 1764. VII. Le groupe corniger Sahlberg [Col. Scarabaeidae]. Bull. Soc. Entomol. Fr. 92, 209–220. N-P, T. & C, Y. (1986) Révision des espèces afrotropicales du genre Copris Müller 1764. I. Le groupe integer Reiche (Coleoptera, Scarabaeidae). Nouv. Rev. Entomol. 3, 401–416. N-, T. & C, Y. (1987) Révision des espèces afrotropicales du genre Copris Müller 1764. II. Le groupe jacchus (Fabricius) (Coleoptera, Scarabaeidae s. str.). Annls Soc. Entomol. Fr. (N.S.) 23, 67–75. P, M.-L. (1984) Origin of sand-adapted tenebrionid beetles of the Kalahari. In: Notes on the Coleopterous Fauna of the Kalahari (Ed. E. Holm). Koedoe 27 (Suppl.) 159–165. S, C.H. & H, H.F. (1987a) A revision of the southern African genus, Epirinus Reiche (Coleoptera: Scarabaeidae: Scarabaeinae). J. Entomol. Soc. Sth. Afr. 50, 121–154. S, C.H. & H, H.F. (1987b) A revision of the southern African Canthonina (Coleoptera: Scarabaeidae: Scarabaeinae). J. Entomol. Soc. Sth. Afr. 50, 75–119. T, D.S.G. (1988) The nature and depositional setting of arid and semi-arid Kalahari sediments, Southern Africa. J. Arid Environs 14, 17–26. ? East African Wild Life Society, Afr. J. Ecol., 35, 10–38 38 A. L. V. Davis T, P.D. (1986) Climatic Change and Variability in Southern Africa. Oxford University Press, Cape Town. W, H. & L, H. (1964) Klimadiagramm-Weltatlas. Gustav Fischer, Jena. W, P. (1978) Recherches Écologiques et Biologiques sur les Scarabéides Coprophages d’une Savane du Zaı̈re. PhD thesis, Université des Sciences et Techniques du Languedoc, Montpellier. W, M.J.A. (1978) Biogeographical division of southern Africa. In: Biogeography and Ecology of Southern Africa (Eds M.J.A. Werger and A.C. van Bruggen). Junk, The Hague. Z , R. (1980) A new species of Scarabaeus Linnaeus 1758 (Coleoptera: Scarabaeidae) from coastal sand areas in Natal. J. Entomol. Soc. Sth Afr. 43, 107–112. (Manuscript accepted 21 May 1996) ? East African Wild Life Society, Afr. J. Ecol., 35, 10–38